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Abstract

Uganda has suffered from many damaging landslides like the 1966 Rwenzori, 1994 Kiso-

moro and 2010 Bududa  events. Despite escalating landslide risks exacerbated by rapid 

deforestation, urbanization and population growth coupled with a substandard build-

ing stock, comprehensive national co-seismic and rainfall-induced landslide hazard and 

risk maps for Uganda do not exist. This study therefore aims to conduct landslide hazard 

assessment and zonation for Uganda using a geospatial-based fuzzy logic methodology. In 

this methodology, landslide frequency ratios obtained for the 1966 Toro and 1994 Kiso-

moro earthquakes are assigned to the stochastic event-based probabilistic seismic hazard 

map derived using OpenQuake-engine. The available co-seismic and rainfall-induced land-

slide inventory datasets are used to derive the distribution of landslide frequency ratios 

based on geology, topographic slope position index, slope aspect, slope angle, distance 

from streams, and proximity to major active faults. The spatial distribution of fuzzy mem-

bership functions obtained from frequency ratios are overlaid and aggregated to produce 

landslide susceptibility maps showing relative probabilities of landslide occurrences across 

Uganda. Results indicate that the highest overall landslide hazard susceptibility is expected 

in areas comprising highly weathered outcropping rocks of precambrian granites, domi-

nantly metasedimentary, and granulites and gneisses geologies within 40 km from major 

active faults; where the bedrock peak ground acceleration ≥ 0.1  g, topographic position 

index ≥ 3.8, slope gradient ≥ 10°, and the distance from streams ≤ 1.25 km. These findings 

can inform Uganda’s directorate of disaster preparedness and management towards pio-

neering the development of co-seismic landslide risk mitigation measures for the country.

Keywords Uganda · Landslide inventory · Landslide conditioning factors · Fuzzy logic · 

GIS-based modelling · Stochastic event-based modelling · Landslide zonation and 

susceptibility mapping
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1 Introduction

Over the past few decades, Uganda has experienced an increasing frequency of landslide 

events due to the escalating rates of deforestation, urbanisation and population growth. 

Landslides in Uganda, which have mostly occurred in the mountainous areas (Nakileza 

and Nedala 2020), have resulted in numerous deaths, injuries and damage to the ecosys-

tem, services and infrastructure (Masaba et al. 2017). Uganda’s National Planning Author-

ity reported in its development plan that landslide occurrences between 1933 and 2012 

were responsible for approximately 14% of the country’s socio-natural disaster related 

deaths (Akera 2012), with over 4% of the population grossly affected due to past landslides 

(Doocy et al. 2013; Kato and Mutonyi 2011; Vlaeminck et al. 2016). Nationally, over 250 

people are annually exposed to landslide risk, with a long term mean annual fatality esti-

mate of 20 persons; and according to Uganda’s recent disaster risk profile, the expected 

average annual damage to the building stock falls in excess of US$ 850,000, in addition to 

over US$ 200,000 estimated as the combined average cost of damage to education centres 

and healthcare facilities each year (WorldBank 2019).

Various previous studies indicate that landslides across Uganda are largely induced by 

rainfall and earthquakes (Knapen et  al. 2006; Nefeslioglu et  al. 2011). In general, rain-

fall-triggered landslides have been observed around Mount Elgon in Eastern Uganda. In 

March 2010, a rainfall-induced landslide occurred in Bududa district in eastern Uganda 

and killed at least 388 people, with more than 8500 lives affected (Broeckx et  al. 2019; 

Mugagga et  al. 2012; Wanasolo 2012). Moreover, earthquake-induced secondary effects 

such as landslides can considerably aggravate the overall damages, injuries and loss of lives 

(Chousianitis et  al. 2016). Within Uganda’s territory, regions surrounding the Rwenzori 

Mountains in western Uganda are exposed to earthquake-triggered landslides due to their 

tectonic environment, seismicity, topography, geomorphology and geology (Jacobs et  al. 

2016). For example, the 1966 Toro and 1994 Kisomoro earthquakes with surface wave 

magnitude (Ms) of 6.6 and 6.2, respectively, triggered numerous co-seismic landslides in 

Bundibugyo, Kasese, Kabarole and Bunyangabu districts of western Uganda (Sykes 1967; 

UNESCO 1966; USGS 2010). Except for Kampala capital city and its immediate environs, 

these regions comprise some of the most populated areas of Uganda.

Landslide hazard and risk analyses typically encompass the utilization of suitable meth-

ods to assess complex geo-physical processes. Several methods proposed in literature have 

been used to assess landslide susceptibility, inventory mapping, hazard prediction and 

evaluation of the associated landslide risks (Aleotti and Chowdhury 1999). To begin with, 

different approaches have been categorised on the basis of assessment area units. Although 

the assessment area units may be automatically derived from overlays of each landslide 

parameter map (Ives and Bovis 1978), regular grids of identical size and shape (Anbalagan 

and Singh 1996; Carrara 1983) and/or individual hillslopes and other morphological units 

(Carrara et  al. 1992; Kienholz 1978) can alternatively be adopted. In contrast, landslide 

assessment procedures can be categorised into relative hazard, statistical or deterministic 

absolute hazard, empirical hazard, and monitored landslide hazard (Hartlen and Viberg 

1988).

On a broader perspective, landslide hazard assessment can be categorised to consist 

of qualitative and quantitative approaches. Previous studies (e.g., Bughi et al. 1996; Car-

rara and Merenda 1976; Fenti et al. 1979; Gupta and Anbalagan 1997; Hearn 1995; Ives 

and Messerli 1981; Rupke et al. 1988; Soeters and Van Westen 1996) utilized qualitative 

techniques to assess landslides. Conversely, quantitative landslide assessment techniques 
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essentially involve the interpretation of empirical data to evaluate both triggering (causa-

tive) and conditioning (preparatory) factors associated with landslides. Whereas the tem-

poral distribution of slope movement is governed by the triggering factors (e.g., rainfall, 

earthquakes, volcanic eruptions, human activity, and rapid snowmelt), landslide condi-

tioning parameters such as geology, topography, hydrology, environmental and meteoro-

logical aspects are linked with the spatial distribution of landslide occurrences (Hervás and 

Bobrowsky 2009). To conduct a quantitative landslide susceptibility assessment, statistical, 

geotechnical and/or neural network analyses can be employed.

In statistical analysis, weighted values are attributed to several landslide condition-

ing factors and the spatial distribution of landslides compared with each factor consid-

ered in the analysis, either in a bivariate or multivariate manner (Aleotti and Chowdhury 

1999; Baeza and Corominas 1996; Clerici and Dall’Olio 1995; Leroi 1996; Wieczorek 

et al. 1996). Regarding geotechnical approaches, either a deterministic framework which 

involves quantifying the soil properties and calculating the factor of safety (Aleotti and 

Chowdhury 1999; Chowdhury and Bertoldi 1977) or probabilistic methods that further 

account for the magnitude-time variability of undrained shear strength, angle of internal 

friction and cohesion (Chowdhury 1984; Nguyen and Chowdhury 1984) can be applied. 

On the other hand, neural networks (black box model) suggested by Lees (1996) can be 

used for landslide hazard assessment. The application and further descriptions of quantita-

tive methods for landslide hazard assessment can be found in literature (e.g., Aleotti et al. 

1998; Bortolami et al. 1994; Carrara 1983; Choubey et al. 1992; Kingsbury et al. 1992; 

Meherota et al. 1994).

The upsurge in human and economic losses due to previous landslides across Uganda 

has prompted several studies over recent decades. Knapen et  al. (2006) used statisti-

cal methods to investigate rainfall-induced landslides in the densely populated Manjiya 

County located at the foot slopes of Mount Elgon. The results indicated dominant land-

slides on steep concave slopes of northeast orientation. Besides, landslides along such 

slopes were exacerbated by human interferences like deforestation, unsuitable agricultural 

practices and foundation excavations along unstable hillslopes (Kitutu et al. 2009, 2011). 

In another study characterizing the physical properties and occurrence of major rainfall-

triggered landslides on the slopes of Mount Elgon, Mugagga et al. (2012) indicated that 

the soils are inherently prone to landslides, even without human intervention. Likewise, 

Bamutaze (2019) analysed 286 georeferenced rainfall-induced landslides from which the 

catchment area around Mount Elgon was delineated, and morphometric and terrain attrib-

utes extracted from a 33-m digital elevation model (DEM). Results showed the highest 

landslide frequency along middle segments at predominantly 1500–1900 m above sea level 

(m.a.s.l) and 10–30° gradients.

In their study of the upper Manafwa catchment located in eastern Uganda, Nakileza 

and Nedala (2020) used landslide inventory data, field surveys and a 30-m DEM to 

characterise and statistically determine frequency ratios for the most dominant topo-

graphic factors responsible for landslides in the area. The spatial distribution of land-

slides revealed that mid to upper slope positions (altitude ranging 1500–1800 m.a.s.l) 

of moderately steep gradients between 15 and 20° were most susceptible to landslides. 

Moreover, it was noted that human encroachment onto critical slopes often triggered 

shallow and deep landslides (Broeckx et al. 2019). In another study, Jacobs et al. (2017) 

assessed the characteristics and spatial distribution of both rainfall- and earthquake-trig-

gered landslides covering a catchment area of 114  km2 around the Rwenzori Mountains. 

The results showed the highest concentration of both rainfall-induced and co-seismic 

landslides on slope gradients of 10–15° and 25–30° along the lowlands (< 1500 m.a.s.l) 
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and highlands (1500–5109 m.a.s.l) respectively. Nseka et al. (2019) relied on field sur-

veys and a 10-m DEM to statistically evaluate the topographic parameters inducing 

landslides in the Kigezi region of south-western Uganda. The results revealed dominant 

occurrences in zones where slope gradients range between 25 and 35°.

Despite the vast spatial distribution of landslides across Uganda, many previous stud-

ies, except the attempt by Musinguzi and Asiimwe (2014), have only focused on land-

slide occurrences in the most critically struck regions of the country. Moreover, these 

previous studies have largely focused on Uganda’s susceptibility to rainfall-triggered 

slope failures, without accounting for earthquake-induced landslides which struck the 

country’s mountainous regions. Yet, the categorisation and discrimination of regions 

threatened by earthquake-induced landslides (e.g., using the GIS-based spatial multi-

criteria approach) is paramount towards building community resilience (Karpouza et al. 

2021). This study, therefore, aims to conduct a holistic landslide susceptibility assess-

ment and a comprehensive relative hazard zonation for Uganda. Using the OpenQuake-

engine (Pagani et  al. 2014), a fault-oriented spatially smoothed seismicity technique 

(Pagani et al. 2023; Weatherill 2014) is employed to model earthquake characteristics. 

A subsequent assessment of rainfall and earthquake-triggered landslides across Uganda 

is then performed using a fuzzy logic approach that is implemented in ArcGIS (Raines 

et al. 2010) environment. Predominant landslide conditioning factors (e.g., topography, 

lithology and hydrology) are analysed in conjunction with rainfall and earthquake trig-

gering factors to produce a comprehensive relative landslide hazard susceptibility map 

for Uganda.

2  Fuzzy logic method for landslide hazard assessment

Fuzzy logic approach, initially introduced by Zadeh (1965), can be used to assess the like-

lihood of landslides in an area by assuming that the factors responsible for inducing past 

landslides can reliably be used as indicators for triggering future events occurring within 

the same region (Anbalagan et al. 2015; Lee and Talib 2005; Tangestani 2004). As opposed 

to alternative methods of landslide susceptibility assessment, the GIS-based fuzzy logic 

approach is employed for regions with scarce landslide inventory. For instance Gorsevski 

et al. (2003), Kanungo et al. (2009), Kayastha (2012), Tangestani (2004) and Kritikos et al. 

(2015) employed the fuzzy logic approach to predict the distribution of landslides across 

various global catchments. This procedure involves determining landslide frequency ratios, 

deriving semi-data driven fuzzy memberships and fuzzy maps for the different condition-

ing factors, and implementing the fuzzy overlay tools to produce landslide susceptibility 

maps. The schematic diagram illustrating the sequential workflow of fuzzy logic approach 

implemented in ArcGIS (Raines et al. 2010) environment is presented in Fig. 1.

Herein, a statistical bivariate method (Aleotti and Chowdhury 1999; Leroi 1996) is 

used to calculate the spatial relationship between the location of landslides and land-

slide conditioning (geology, topographic slope position index, slope aspect, slope angle, 

distance from streams and proximity to active faults) as well as triggering factors (earth-

quakes). The frequency ratio (FRi) is defined as the ratio of the frequency of landslides 

within a specific conditioning and/or triggering factor class i to the relative frequency 

of all observed landslide pixels across the study area (Lee and Pradhan 2007; Lee and 

Sambath 2006; Yilmaz 2009). This is expressed as:
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where N(P)i is the number of observed landslide pixels (unit area) in a landslide factor cat-

egory i, N(P) is the total number of pixels in the selected factor category i, N(LP) is the total 

number of observed landslide pixels in the region of interest, and NT is the total number of 

pixels in the entire study area. The approach defined in Eq. 1 is adopted because the land-

slide scars obtained are captured as raster images which support pixel counts in ArcGIS 

(Raines et al. 2010).

Following the determination of landslide frequency ratios for each landslide parameter, 

the fuzzy membership functions (e.g., Linear, Large, Small, Gaussian, Categorical, MS 

Large, and Near) available in the fuzzy membership tool embedded in ArcGIS (Raines 

et al. 2010) are implemented to produce fuzzy maps; prior to the application of fuzzy over-

lay operators used to generate membership functions and landslide conditioning param-

eter maps for the various landslide conditioning factors (Bonham-Carter 1994; Wang et al. 

2009). Landslide conditioning parameter maps are then aggregated and their spatial distri-

bution overlaid to produce the final fuzzy sets describing the relative co-seismic landslide 

hazard susceptibility for the region in question (Dubois and Prade 1985; Kayastha 2012; 

Zimmermann 2012). The fuzzy algebraic OR, fuzzy algebraic AND, fuzzy PRODUCT , 

fuzzy SUM, and fuzzy GAMMA are defined as follows:

(1)FR
i
=

N(P)i
/

N(P)

N(LP)∕N
T

(2)Fuzzy OR �(x) = max(�
i
)

(3)Fuzzy AND �(x) = min(�
i
)

(4)Fuzzy SUM �(x) = 1 −

n
∏

i=1

(1 − �
i
)

Fig. 1  Schematic illustration of the GIS-based fuzzy logic method employed to produce co-seismic land-
slide susceptibility maps for Uganda
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where µ(x) is the combined membership function, µi is the fuzzy membership function 

for the ith fuzzy overlay map, and the parameter γ is chosen in the range of 0 and 1. The 

γ-value establishes the effect of large µi values (fuzzy membership functions favouring the 

occurrence of landslides) compared to small µi values (fuzzy membership functions dis-

couraging landslide occurrence). Therefore, at known landslide locations like in Bududa 

and Manafwa districts located around Mount Elgon in eastern Uganda, it is expected that 

the optimal value of γ will predict high hazard levels (Kritikos et al. 2015).

3  Case study area: Uganda

Uganda is a Sub-Saharan African country which lies along the equator between latitude: 1º 

S and 4º N, and longitude: 30º E and 35º E, as shown in Fig. 2a. The country has a total area 

of 241,550  km2, of which 41,027  km2 (approximately 17%) is open inland water. Majority 

of the country’s territory receives mean annual rainfall between 1000 and 1500 mm. An 

average annual population growth rate of 3.19% has been recorded over the past few years 

and as at June 2022, Uganda’s population stood at over 44.2 million (UBoS 2022). The 

landlocked East African country sits at an estimated average altitude of 900  m.a.s.l and 

comprises a diverse geography of lakes, mountains and volcanos. The first elevation data 

(5)Fuzzy PRODUCT �(x) =

n
∏

i=1

�
i

(6)Fuzzy GAMMA �(x) =

[

1 −

n
∏

i=1

(1 − �
i
)

]�

×

[

n
∏

i=1

�
i

]1−�

Fig. 2  a Uganda’s geographical location between the two arms of the East African Rift System, superim-
posed on the African continent; and b Map of the study area showing regional cities and the 30-m Shuttle 
Radar Topography Mission digital elevation model
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compiled between 1962 and 1970 is obtained locally from National Forest Authority and 

merged with the 30-m Shuttle Radar Topography Mission (RCMRD 2022; USGS 2022a) 

as depicted in Fig. 2b. The major areas that are largely prone to rainfall-induced and co-

seismic landslides include:

1. The Rwenzori Mountains, situated along the equator crossing the western arm of the 

East African Rift System (EARS) shown in Fig. 3, are amongst the country’s most 

remarkable highlands. Mount Rwenzori is a peninsular raising to a maximum of 

5109 m.a.s.l and it comprises an active seismo-tectonic setting (Koehn et al. 2010), 

gneisses geology (Bauer et al. 2012), ecology (Eggermont et al. 2009), glaciers (Taylor 

et al. 2009) and long-term soil erosion processes (Roller et al. 2012). Because of its 

geomorphology, regions around the Rwenzori Mountains have over the past experienced 

landslides of varying degrees. For instance, the densely populated districts of Kasese and 

Bundibugyo registered many human and economic losses due to previous landslides. 

However, limited scientific information is published regarding co-seismic landslides; 

except the studies conducted by Mavonga (2007), Eggermont et al. (2009) and Jacobs 

et al. (2017).

Fig. 3  Co-seismic and rainfall-induced landslide pixels (areas); relative to the major regional cities, active 
and minor fault systems, mountains and locations of known landslide scars which occurred in Uganda and 
around its neighbouring countries between 1933 and 2018
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2. Mount Elgon, located in Eastern Uganda (see Fig. 3), is Uganda’s most landslide-prone 

area. It is an extinct volcanic shield with a maximum elevation of 4321 m.a.s.l and pre-

dominantly characterized by weathering and intense precipitation along its steep cliffs 

(Knapen et al. 2006; Scott 1998). Partly due to its fertile soils, the human population of 

the area is quite high; with settlements spread on crests, hillslopes and valleys. This has 

led to increased losses during previous rainfall-induced landslides and rockfalls along 

the lower flanks of the volcano, especially in Bududa district (Broeckx et al. 2019; 

Knapen et al. 2006). More comprehensive descriptions of the geology, soils, land use 

and biodiversity of Mount Elgon can be found in literature (e.g., Simonetti and Bell 

1995; Sassen et al. 2013; Van Eynde et al. 2017; Kitutu et al. 2009; Mugagga et al. 

2012).

4  Landslide and earthquake datasets for Uganda

4.1  Landslide locations and pixel distribution

The landslide locations showing rainfall-induced and co-seismic landslide scars are 

acquired from National Aeronautics and Space Administration satellite repository (NASA 

2022). Additional information on earthquake-triggered landslides is obtained from the 

US Geological Survey database (USGS 2022b). On the other hand, landslide pixel data is 

obtained from the World Bank and the Global Facility for Disaster Reduction and Recov-

ery databases (WorldBank and GFDRR 2022). Subsequently, overall landslide scars are 

mapped on co-seismic and rainfall-induced landslide pixels as portrayed in Fig. 3, and the 

major active fault system indicated is taken from the Global Earthquake Model founda-

tion database (Styron and Pagani 2020). It is observed that the mountainous parts of the 

country, especially Elgon and Rwenzori mountains, have experienced greater concentra-

tions of landslide clusters compared to the other parts of the region. The concentration of 

landslides in these regions is partly due to unstable landscapes, in particular slope positions 

(Regmi et al. 2014).

4.2  Earthquake characteristics

Landslide frequency ratios and fuzzy membership functions are derived for two major 

events: 5th February 1994 Kisomoro (6.2 Ms) and 20th March 1966 Toro (6.6 Ms) earth-

quakes which struck the Rwenzori region in western Uganda (see Fig. 4a-b) at hypocen-

tral depths of 14.2 and 29.3  km, respectively (Jacobs et  al. 2017; Marano et  al. 2010; 

Tanyaş et  al. 2017). These events triggered extensive landslides around their epicentres. 

For instance, 0.1–1.0  km2 of the relatively low-populated remote countryside was exposed 

to landslides in the aftermath of the 1966 Toro earthquake (USGS 2022b). In this work, 

landslide hazard analysis is incorporated into an existing seismic hazard model for Uganda. 

The 30-m average shear wave velocity and site-specific hazard maps for a 475-year return 

period are shown in Fig. 5a-b, in addition to seismic hazard maps on reference rock site 

conditions for 475-year and 2475-year return periods shown in Fig.  6a-b, respectively. 

Information on the existing stochastic event-based probabilistic seismic hazard analysis for 

Uganda can be found in the literature by Oleng et al. (2024).
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Fig. 4  Seismic hazard maps in terms of peak ground acceleration (PGA [g]) for scenario earthquakes: a the 
5th February 1994 Kisomoro (6.2  Ms), and b the 20th March 1966 Toro (6.6  Ms)

Fig. 5  a 30-m average shear-wave velocity reference map of Uganda, and b site-specific seismic hazard 
map in terms of PGA (g), with contour lines imposed at a  0.05  g interval and presented for a 475-year 
return period (Oleng et al. 2024)
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5  Landslide inventory analysis and model design

Historical landslide inventories can be used to represent future landslide susceptibility for a 

given region. However, many countries in the global south lack accurate and complete data 

relating to landslide susceptibility and inventories (Xu 2015). That notwithstanding, mean-

ingful quantitative landslide hazard analyses are often performed based on triggering and 

conditioning parameters. The major landslide triggering parameters considered in this work 

include rainfall and earthquakes; which are modelled together lithology (geology, tectonics 

and topography) and hydrologic conditioning factors. The following sub-sections explain how 

the selected triggering and conditioning factors are designed and incorporated herein.

5.1  Triggering factors

Co-seismic landslides are often initiated when a rock/soil mass is subjected to strong ground 

motion, commonly quantified directly in terms of peak ground acceleration (PGA) or 

expressed indirectly in terms of the Modified Mercalli Intensity (MMI) scale (Baker et  al. 

2021; Kramer 1996; Kritikos et al. 2015). In this study, two earthquakes (the 1966 Toro and 

1994 Kisomoro events) whose ground motion responses are shown in Fig. 4a-b are consid-

ered. In addition to the standard groupings of the MMI scale, frequency ratios are evaluated 

in terms of the following PGA (g) ranges: < 0.014, 0.014–0.039, 0.039–0.092, 0.092–0.18, 

0.18–0.28, and 0.28–0.36.

5.2  Conditioning parameters

5.2.1  Geology

Extensive variations on the geological timescale of Uganda have been recorded for over 

three billion years (Maasha 1975; Westerhof et al. 2014). The simplified geological map of 

Fig. 6  Seismic hazard maps on reference rock site conditions in terms of PGA (g), with contours imposed 
at a 0.03 g interval, for: a 475-year return period, and b 2475-year return period (Oleng et al. 2024)
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Uganda presented in Fig. 7a shows that the country largely comprises of Precambrian base-

ment that is dominantly granulites and gneisses, metasedimentary, metavolcanics and gran-

ites. The other parts comprise Tertiary-Quaternary unconsolidated sedimentary geology. 

Along with Palaeozoic-Mesozoic sediments, across the country lies the volcanic region 

around the western and eastern boarders. Another geo-tectonic structure is the Aswar shear 

zone which is broadly stable and seismically inactive; except at its northern end where it 

intercepts the East African Rift System (Fairhead and Stuart 1982; Furman et  al. 2006; 

Karp et al. 2012; McDougall and Brown 2009; Muwanga et al. 2001; Schlüter 2008; Sykes 

and Landisman 1964; Westerhof et al. 2014).

5.2.2  Proximity to the major active faults

Owing to various soil/rock weakening mechanisms like fault slip, geochemical altera-

tions, and groundwater infiltration (Korup 2004; Warr and Cox 2001), the release of seis-

mic energy along active faults may substantially reduce material strengths within a few 

kilometres of the lithosphere (Brune 2001; Dramis and Sorriso-Valvo 1994; Kellogg 2001; 

Kramer 1996). Due to considerable loss of material strength, the regions closer to active 

faults are more vulnerable to earthquake-triggered landslides (Petley 2012). While taking 

into account the minimum distance between faults and the maximum distance at which 

Fig. 7  Landslide conditioning factor maps of Uganda showing the inventory model characterisation for: a 
generalised geological formations, and b proximity to active faults
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landslide scars are mapped, a class size of 20 km is used to group distances from active 

faults in Uganda as shown in Fig. 7b. It is obvious that areas near the western boarder are 

much closer to the East African Rift System compared with the rest of the country, except 

for the eastern boundary which lies within a few kilometres from the eastern or Gregory 

arm of the East African Rift System.

5.2.3  Topographic slope position

Various hillslope types (e.g., valleys, mid-slopes and ridges) respond differently to 

earthquake-induced ground shaking (Athanasopoulos et  al. 1999; Davis and West 1973; 

Havenith et al. 2003; Spudich et al. 1996). This is because of the localised increase in the 

amplitude of ground motion due to seismic wave propagation through the Earth’s crust 

(Lee et al. 2009; Meunier et al. 2008; Wald and Allen 2007). This work utilises the Top-

ographic Position Index (TPI), defined by Weiss (2001), to classify the land formation 

(morphology) across Uganda into discrete categories based on their  relative slope posi-

tions. Within a predetermined neighbourhood, for instance a 10–15 cell size (300–500 m 

for small-scale TPI) and a 62–67 cell size (1.86–2.1 km for large-scale TPI), the TPI essen-

tially measures the difference between the elevation of a given central point and the mean 

altitude of the surrounding grid cells. This is expressed as follows:

where Zo and Zn respectively denote elevation at the central point and altitude of surround-

ing cells within a local window, and N is the total number of surrounding points employed 

in the evaluation. Positive TPI values indicate that the point under consideration is located 

at a higher altitude than its average surroundings, and vice versa. It is worth noting that 

whilst large-scale TPI values largely reveal major landscape units, smaller morphologi-

cal features such as minor ridges and valleys are highlighted for small-scale TPI values 

(Drăguţ and Blaschke 2006; Jenness 2006; Weiss 2001). In this regard, small-scale pre-

determined neighbourhood of a 300-m grid/cell radius is considered herein and Uganda’s 

landscape is subsequently categorised into 6 classes: valley, lower slope, flat slope, middle 

slope, upper slope and ridge (Jenness et al. 2013). According to Bufalini et al. (2021), the 

morphological categories shown in Fig.  8 are defined based on the range of TPI values 

presented in Table 1.

From the slope position map shown in Fig. 9a, majority of Uganda’s territory consist of 

lower slopes, with the western and eastern boundaries predominantly comprising flat and 

(7)TPI = Z
o
−

∑

n−1
Z

n

N

Fig. 8  Slope position classifica-
tion obtained from topographic 
position index (Weiss 2001) used 
to generate the 6 topographic 
slope position classes used in 
this study
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middle slopes. Whereas the Albertine rift and West Nile block are mainly composed of val-

leys, upper slopes and ridges are largely observed around Uganda’s mountainous regions.

5.2.4  Slope aspect

In landslide hazard zonation, slope orientation with respect to the North may be consid-

ered as a vital parameter (Kanungo et al. 2009; Nagarajan et al. 1998; Saha et al. 2002). 

This is because the effect of soil moisture content, air dryness and solar heating are deter-

mined by the slope aspect influence (Capitani et al. 2013; Cellek 2021; Yalcin 2008). It is 

worth noting that due to its triggering effect on precipitation, slope aspect is often eval-

uated in combination with other factors considered in this study (Ahmed 2015; Ayalew 

and Yamagishi 2005; Pachauri and Pant 1992). Moreover, the influence of slope aspect 

on vegetation cover and moisture retention can affect material shear strengths, and pos-

sibly initiate slope failure (Silalahi et  al. 2019). Slope aspect can be classified in sev-

eral ways depending on the purpose at hand (Bourenane et al. 2015; Caniani et al. 2008; 

Tangestani 2004). In this study, the slope aspect map shown in Fig. 9b is generated for 8 

classes: north (0–22.5°, 337.5–360°), northeast (22.5–67.5°), east (67.5–112.5°), southeast 

(112.5–157.5°), south (157.5–202.5°), southwest (202.5–247.5°), west (247.5–292.5°) and 

northwest (292.5–337.5°).

5.2.5  Slope angle

Landslide incidences are substantially affected by slope angle, which is considered as a 

critical topographic parameter in the initiation of slope failures (Dahal et al. 2009; Gupta 

et al. 2008; Jibson et al. 2000; Kanungo et al. 2006). Steeper slopes are more susceptible to 

failure due to their greater vertical components of gravity which result in increased shear 

stresses within the soil (Kritikos et al. 2015). Hence, it is anticipated that steeper slopes 

subjected to significant ground motion will experience more landslides compared to gentle 

slopes. Accordingly, slope angles for the study region are categorized into 10 slope classes 

of 5° increments up to 50°, and a further class > 50° as shown in Fig. 9c. It is seen that 

most parts of the country generally lie within slope angles < 15°, except for the highland 

regions around Mount Elgon and Rwenzori ranges (see Fig. 3) where greater slopes angles 

are observed.

Table 1  Topographic position 
index (TPI) values corresponding 
to the various morphological 
features describing land form 
classes adopted for characterising 
slope positions across Uganda

Morphological classes Range of TPI values

Lower limit Upper limit

Valley (U-shaped valley/Spread water), 
deeply incised streams

 − 63.5  − 13.3

Lower slope, shallow valleys, faults  − 13.3  − 4.3

Flat slope  − 4.3 3.8

Middle slope 3.8 13.8

Upper slope, small hills 13.8 28.8

Mountain tops, high ridges 28.8 64.5
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Fig. 9  Landslide conditioning parameter maps of Uganda, represented in terms of: a topographic slope 
position index, b slope aspect, c, slope angle, and d distance from streams
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5.2.6  Distance from streams

Hydrological processes are significant in landscape evolution and as such various land-

slide hazard studies have incorporated distance from drainage networks amongst the 

critical conditioning factors (Bathrellos et al. 2021; Larsen and Montgomery 2012; Sny-

der et al. 2000; Whipple 2004). The inclusion of hydrology not only takes into account 

the undercutting stream flow and terrain modification, but also stream channel and gul-

ley erosion. These localised processes can progressively lead to the removal of horizon-

tal restraints, thereby increasing shear stresses in the soil; a phenomenon which may 

eventually lead to induction of slope instability in the event of an earthquake (Dai et al. 

2011; Donati and Turrini 2002; He and Beighley 2008; Korup 2004; Van Westen et al. 

2003b). Based on the density of Uganda’s drainage network, distances from streams 

are grouped into the following 8 classes: 0–0.25, 0.25–0.50, 0.50–0.75, 0.75–1.00, 

1.00–1.25, and > 1.25 km. The map shown in Fig. 9d indicates the distribution of land-

slide pixels with regard to their proximity to natural stream networks.

6  Results

6.1  Landslide frequency ratio

6.1.1  The 1966 Toro and 1994 Kisomoro earthquakes

Landslide frequency ratios for the 1966 Toro and 1994 Kisomoro events, whose char-

acteristics are described in Sect. 4.2, are computed and plotted against landslide condi-

tioning parameter classes in terms of MMI scale and PGA as shown in Fig. 10a-b. At 

a minimum, earthquakes of intensity exceeding MMI (II-III) and/or PGA > 0.05 g are 

capable of inducing landslides.

Legend:

1966 Toro Earthquake 1994 Kisomoro Earthquake Target landslide frequency ratio
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Fig. 10  Landslide frequency ratio for the 1966 Toro and 1994 Kisomoro earthquakes assessed in terms of: 
a Modified Mercalli Intensity (MMI) scale, and b Peak ground acceleration (PGA [g])
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Legend:

Co-seismic landslide frequency ratios Overall landslide frequency ratios

Rainfall-induced landslide frequency ratios Normalised total relative landslide areas
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Fig. 11  Landslide frequency ratios obtained from co-seismic, rainfall-induced, and both co-seismic and 
rainfall-triggered landslide pixels, for landslide conditioning factors: a slope angle, b slope position, c prox-
imity to active faults, d distance from streams, e geological formations, and f slope aspect. Slope Aspect 
N: North, NE: Northeast, E: East, SE: Southeast, S: South, SW: Southwest, W: West, and NW: North-
west; Geological formation G1: Precambrian dominantly granulites and gneisses, G2: Tertiary-Quaternary 
unconsolidated sedimentary, G3: Volcanic, G4: Surface water, G5: Precambrian dominantly metasedimen-
tary, G6: Palaeozoic-Mesozoic sedimentary, G7: Precambrian metavolcanics, G8: Precambrian granites, 
and G9: Aswa Shear Zone. The dotted dashed black lines denote a target landslide frequency ratio of 1
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6.1.2  Landslide conditioning factors

The distribution of landslide frequency ratios and the normalised overall relative land-

slide areas corresponding to the most relevant landslide conditioning factors described in 

Sect. 5.2 are presented in Fig. 11a-f. In general, there is a significant contribution of co-

seismic landslide pixels to the overall landslide hazard. For each landslide conditioning 

parameter, the normalised relative areas show the dominant landslide regions.

6.2  Comparison of landslide frequency ratios

Landslide frequency ratios covering the upper Manafwa catchment, stretching across 

Bududa district in Eastern Uganda, are compared with the findings of Nakileza and Nedala 

(2020) who characterized the morphometric conditions underpinning the spatial and tem-

poral dynamics of landslide hazards along the volcanics of Mount Elgon following the 

study by Bamutaze (2019). The comparison based on slope angle (shown in Fig. 12a) indi-

cates that except for slope angles less than 5°, the present study generally estimates approx-

imately 10–60% higher landslide frequency ratios across all gradients. Although both stud-

ies utilised similar elevation models at 30 m resolution, the differences can be attributed to 

the fact that whilst Nakileza and Nedala (2020) assessed only rainfall-triggered landslides, 

the present work integrates both co-seismic and rainfall-induced landslide pixels to assess 

landslide frequency ratios. Moreover, landslide scars previously reported in Namisindwa 

and Bududa (DesInventar 2020) are included herein. Furthermore, Fig. 12b shows that the 

landslide frequency ratios for slope aspect estimated in the present study agree well with 

the predictions of Nakileza and Nedala (2020); further indicating that co-seismic events are 

not substantially affected by slope aspect.

On the other hand, the spatial distribution of landslide scars and the isoseismals of the 

two scenario earthquakes which extensively triggered landslides in Bundibugyo, Kasese, 

Bunyangabu, Kabarole and Ntoroko districts of western Uganda is mapped in Fig. 13a. It is 

seen that majority of landslides occurred along the active fault segments located in Bundi-

bugyo and Kasese. Moreover, many medium-size landslides mapped within 2 km of active 

faults were possibly triggered by earthquakes in the region. Landslide frequency ratios 

derived from both rainfall-triggered and earthquake-induced landslide pixels are com-

pared with frequency ratios determined by considering co-seismic landslide pixels only. 
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Fig. 12  Overall landslide frequency ratios covering the upper Manafwa catchment across Bududa district 
compared with the study by Nakileza and Nedala (2020), derived for: a slope angle, b slope aspect
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The landslide frequency ratios corresponding to slope angles and slope position (Fig. 13b-

c) indicate that co-seismic landslide pixels contribute significantly to the overall landslide 

hazard in these regions. As further indicated in Fig. 13d, Precambrian dominantly granu-

lites and gneisses, Volcanic and Tertiary-Quaternary unconsolidated sedimentary geologi-

cal formations are predominantly more susceptible to earthquake-triggered landslides.

6.3  Fuzzy membership and aggregation

Using the coefficient of determination method, fuzzy membership curves are fitted to the 

normalized frequency ratios for the scenario earthquakes and their average fuzzy member-

ships determined, as presented in Fig. 14a-b. In both cases, fuzzy MS Large (sigmoid shape 

defined by mean and standard deviation) transformation function in which large values are 

more likely to be a member of the fuzzy set is used. In order to better represent the inferred 

G1: Precambrian dominantly granulites and gneisses, 

G2: Tertiary-Quaternary unconsolidated sedimentary, 

G3: Volcanic, G4: Surface water, G5: Precambrian 

dominantly metasedimentary.

Landslide frequency ratios obtained from:

Seismic and rainfall-induced landslide area

Co-seismic landslide pixel (area) only
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Fig. 13  a Spatial distribution of landslide scars and epicentres of scenario earthquakes which triggered 
landslides in western Uganda; and comparison of the overall and co-seismic landslide frequency ratios for 
selected landslide conditioning parameters: b slope angle, c slope position, and d geology
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influence of co-seismic factors and to account for any data inconsistencies, the fuzzy mem-

bership curve for the 1966 Toro earthquake is further subjectively adjusted from semi-data 

driven best fit curves so as to meaningfully represent larger memberships for higher PGA 

classes.

Using the suitable fuzzy membership functions, fuzzy membership maps describing the 

relative influence of landslide conditioning parameters on a 0–1 scale (0 represents low 

hazard and 1 denotes high hazard susceptibility) are derived from the distribution of land-

slide frequency ratios and mapped in Fig. 15a-c. In addition, the seismic hazard map on 

reference rock site conditions derived in terms of PGA (g) for a 475-year return period 

(presented in Fig. 6a) is similarly normalised as shown in Fig. 15d.

6.4  Relative probability of co‑seismic landslide in western Uganda

Using the fuzzy GAMMA overlay tool (γ = 0.95) of ArcGIS (Raines et al. 2010), the fuzzy 

membership map corresponding to each landslide conditioning factor is individually cor-

related with normalised landslide frequency ratio-based PGA values corresponding to a 

475-year return period on reference rock site conditions (Fig. 15d) in order to map the rela-

tive probability of co-seismic landslide hazard for each pixel. Since earthquake-induced 

landslides are typically concentrated in the Kigezi and Rwenzori sub-regions, and to more 

meaningfully depict the relative probability of co-seismic landslide hazard, the susceptibil-

ity maps shown in Fig. 16a-f are derived for the western part of the country only.

6.5  Co‑seismic and rainfall‑induced landslide susceptibility maps

The relative co-seismic landslide hazard susceptibility maps for Uganda shown in Fig. 17a-b 

are respectively derived by executing the GIS-based fuzzy SUM (Eq. 4) and fuzzy PRODUCT  

(Eq.  5) overlay tools. Whilst the landslide hazard susceptibility map based on fuzzy SUM 

(Fig.  17a) shows a wider distribution of co-seismic landslides, the map derived following 

Legend:

Normalised Frequency Ratio (1966 Toro) Fuzzy membership (1966 Toro)

Normalised Frequency Ratio (1994 Kisomoro) Fuzzy membership (1994 Kisomoro)
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Fig. 14  Normalized landslide frequency ratios and fuzzy curves for the  1966 Toro and 1994 Kisomoro 
earthquakes; assessed in terms of: a MMI scale, and b PGA on Type A rock/soil condition
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fuzzy PRODUCT  (Fig.  17b) indicates that co-seismic landslides are mainly concentrated 

in western Uganda. In addition, the GIS-based fuzzy GAMMA (Eq.  6) overlay tool (with 

γ = 0.95) is used to generate the relative co-seismic and rainfall-triggered landslide hazard sus-

ceptibility maps shown in Fig. 18a-b, respectively.

Fig. 15  Fuzzy membership maps for selected landslide conditioning factors: a slope angle, b slope position, 
c geology, and d landslide frequency ratio-based PGA (g) for a 475-year return period
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7  Validation of landslide susceptibility maps

The accuracy of landslide susceptibility maps proposed in this work is validated using 

the area under the receiver operating characteristic curve method in which success rate 

curves show the model performance (Chung and Fabbri 1999; Frattini et al. 2010; van 

Westen et al. 2003a). To verify whether the fuzzy overlay operators described in Eqs. 

(2–6) accurately predict the occurrence or non-occurrence of pre-established (known) 

landslide scars, the trade-off between false-positive and false-negative rates are graphi-

cally represented using the receiver operating characteristic (ROC) curves prior to 

determining area under curve (AUC) values (Gupta et al. 2023). False-positive rate λFP 

and true-positive rate λTP are defined as follows:

Fig. 16  Relative probability of co-seismic landslides in western Uganda, based on the conditioning factors 
and normalised landslide frequency ratio-based earthquake hazard map derived in terms of PGA (g) for a 
475-year return period and overlaid for: a slope angle, b topographic slope position, c geology, d proximity 
to major active faults, e distance from streams, and f slope aspect
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(8)�
FP

= 1 −
TN

TN + FP

(9)�
TP

=
TP

TP + FN

Fig. 17  Overall relative co-seismic landslide hazard susceptibility maps of Uganda obtained by combining 
landslide conditioning factors and normalised landslide frequency ratio-based PGA values, generated using 
the GIS-based fuzzy overlay tool: a Fuzzy SUM and b Fuzzy PRODUCT  

Fig. 18  a Relative co-seismic landslide hazard susceptibility based on various landslide conditioning fac-
tors and normalised frequency ratio-based PGA (g), and b Relative landslide hazard susceptibility obtained 
for conditioning parameters responsible for rainfall-induced landslides only. Both maps are generated 
using the GIS-based fuzzy GAMMA overlay tool with γ = 0.95
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where TN (true negative) and TP (true positive) represent the count of correctly grouped 

pixels, FN (false negative) and FP (false positive) indicate the count of erroneously catego-

rised pixels. Herein, landslide pixels are binned into 100 equal intervals and the number of 

landslide scars in each interval is summed (Miles and Keefer 2009). By comparing the pro-

portion of total landslides to the proportion of predictive bins in which landslide scars are 

mapped from highest to lowest (Beguería 2006; Pradhan and Lee 2010; Sema et al. 2017), 

the accuracy or success rate of the predictive models is assessed. In this work, success rate 

or model performance is defined by the AUC (ranging between 0.5 and 1.0) from which 

the highest value indicates the optimal approach (Nandi and Shakoor 2010). Whereas an 

AUC value equal to 1.0 represents a perfect forecast or prediction, AUC ≤ 0.5 implies that 

the model does not predict landslide occurrences any better than any random guess (Gupta 

et al. 2023). In general, AUC values exceeding 0.7 are a good representation and deem the 

model to be successful (Kritikos et al. 2015).

Success rates of landslide susceptibility maps shown in Fig. 17a-b, obtained using fuzzy 

SUM and fuzzy PRODUCT , are indicated in Fig. 19a-b. The landslide susceptibility map 

derived from fuzzy PRODUCT  (Fig.  17b) indicates a success rate of 89.7% (Fig.  19b) 

and is more accurate compared with the 83.0% (Fig.  19a) performance level obtained 

from fuzzy SUM map shown in Fig. 17a. Although the performance levels obtained using 

fuzzy SUM and fuzzy PRODUCT  may be deemed successful (AUC > 0.7), more accurate 

Fig. 19  Variation of true and false positive rates (AUC-ROC values) used to validate relative landslide haz-
ard susceptibility maps derived for: a co-seismic fuzzy SUM, b co-seismic fuzzy PRODUCT , c co-seismic 
fuzzy GAMMA with γ = 0.95, and d rainfall-induced fuzzy GAMMA with γ = 0.95
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predictions are obtained by implementing fuzzy GAMMA (Kritikos et al. 2015). The effect 

of γ-value on landslide susceptibility maps is assessed by generating AUC for various 

models in which γ is set between 0.65 and 0.95 in a 0.1 interval. As depicted in Fig. 19c, an 

optimal model performance level of 90.2% is obtained for co-seismic landslide susceptibil-

ity map in which γ is set to 0.95 (Fig. 18a). Following the relative landslide susceptibility 

map based on topographic factors responsible for rainfall-induced landslides (Fig. 18b), the 

evaluation of AUC indicates a higher success rate of 91.7% as shown in Fig.  19d. The 

improved success rate can be attributed to the accurate DEM from which landslide condi-

tioning factors are modelled.

8  Final landslide hazard susceptibility map

Subsequent to the relative co-seismic and rainfall-induced landslide hazard susceptibility 

maps shown in Fig. 18a-b, the final overall relative landslide hazard map combining co-

seismic and rainfall conditioning parameters is as shown in Fig. 20. As expected, whereas 

several parts of Uganda are susceptible to low landslide hazard, majority of the country’s 

highlands and seismically active zones (e.g., Fort Portal city) are prone to moderate and 

high intensities of slope failures. For the purpose of detailed absolute landslide hazard 

assessments envisaged as a possible extension of the present study, the overall landslide 

Fig. 20  Overall relative landslide hazard susceptibility map of Uganda combining both co-seismic and rain-
fall conditioning factors
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zones are broadly categorised into three hazard levels of low, moderate, and high; respec-

tively depicted as green, yellow, and red pixels. Based on the findings of this work, critical 

landslide conditions under which detailed absolute landslide hazard assessments are highly 

recommended for buildings and infrastructure developments are summarised in Table 2.

Although detailed assessments may be neglected in low (green) hazard zones, this 

study recommends mandatory analysis in high (red) landslide hazard areas. On the other 

hand, prior to construction and infrastructure developments within moderate (yellow) haz-

ard regions, it is recommended that detailed landslide hazard analysis be conducted if the 

following critical conditions presented in Table 2 are satisfied. Detailed landslide hazard 

analysis is encouraged in regions of moderate landslide hazard level comprising highly 

weathered outcropping rocks of Precambrian granites, dominantly metasedimentary, and 

granulites and gneisses geologies within 80 km from major active faults; where the bed-

rock PGA ≥ 0.1  g over a 475-year return period, topographic position index ≥ 3.8, slope 

gradient ≥ 10 degrees, and the distance from streams ≤ 1.25 km.

As an initial step, a local planning and regulatory approach that aims to manage devel-

opment within disaster-prone areas, adopt and enforce robust building codes, advocate for 

good environmental practices like restoration of vegetation cover and afforestation, resettle-

ment plans and utilization of disaster-prone areas for specific seasonal activities should be 

applied and appropriately implemented. Further to natural system protection remedies and 

raising community awareness, infrastructure protection and structural retrofitting, removal 

of existing constructions from disaster-prone areas, structural mitigation techniques and 

protection of critical facilities like hospitals should be applied.

9  Discussion

In this work, a detailed co-seismic and rainfall-triggered landslide hazard susceptibility 

assessment is performed for Uganda using a geospatial-based fuzzy logic approach and 

the findings largely confirm that several parts of the country are prone to slope failures 

of varying degrees. To begin with the assessment of landslide frequency ratios, Fig. 10b 

shows that for the 1966 Toro earthquake, landslide frequency ratios increase to a maxi-

mum value of 2.24 at PGA values ranging between 0.20 and 0.25 g, beyond which the 

likelihood of landslide occurrence reduces. On the other hand, a maximum landslide 

Table 2  Critical landslide conditions under which detailed landslide hazard assessments are highly recom-
mended for buildings and infrastructure developments

Landslide parameters Minimum conditions

Peak ground acceleration Considering a 10% POE in 50 years (475-year return period), PGA on reference 
rock site conditions ≥ 0.1 g

Geology Highly weathered outcropping rocks of Precambrian granites (G8), Precambrian 
dominantly granulites and gneisses (G1), and Precambrian dominantly meta-
sedimentary (G5) geological structure

Slope position TPI ≥ 3.8, which categorises all slope categories except U-shaped valley or 
spread water, and deeply incised streams valleys

Slope angle  ≥ 10 degrees

Proximity to active faults  ≤ 40 km

Distance from streams  ≤ 1.25 km
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frequency ratio of 2.25 is estimated for PGA raising to 0.35 g for the 1994 Kisomoro 

earthquake. The main mechanical reason behind this trend is that shear resistance of 

the exposed material is more likely to be exceeded when higher stresses are induced by 

stronger shaking intensity, thereby inducing landslides of even larger magnitudes (Tow-

hata et al. 2022; Valagussa et al. 2019).

Following the determination of landslide frequency ratios shown in Fig.  11a, it is 

seen that although majority of Uganda’s territory is largely dominated by slope angles 

between 0 and 5°, there is a significant contribution of rainfall-induced landslides 

from which frequency ratios increase with increasing slopes of up to 50°. Except for 

slopes < 5°, co-seismic landslide frequency ratios across slope classes range between 

1.43 and 2.67; implying that earthquakes are capable of triggering co-seismic land-

slides along most slopes as indicated by Valagussa et al. (2019). Whereas the instabil-

ity of lower slopes covered with thick residual soils is largely initiated by a high water 

table (Zhuang et al. 2015), overall landslide frequency ratios increase with slope angles 

increasing to a maximum of 40°. The increase is partly driven by gravitational forces 

from which greater shear stresses are generated along steeper slopes (Silalahi et  al. 

2019; Torizin 2011). However, the decline in landslide frequency ratios for slopes > 40° 

is partially attributed to increased shear resistance of the rock mass where relative land-

slide areas are minimal. The result presented in Fig. 11a is consistent with the findings 

of Bizimana and Sönmez (2015) which indicate that landslide-prone areas are situated 

along concave slope angles exceeding 41°. In contrast, Bamutaze (2019) reported the 

highest frequency ratio along slopes of up to 31° in Elgon region while Nseka et  al. 

(2019) indicated maximum frequency ratios for gradients of 25–35° in western Uganda. 

However, the analyses by Nseka et al. (2019) and Bamutaze (2019) ignored co-seismic 

landslides and did not cover the entire country.

Owing to the topographic variations induced by soil creep, incised channels, spurs, and 

ridges, the assessment of topographic slope position shown in Fig. 11b indicates the high-

est overall landslide frequency ratios along upper slopes, followed by ridges and middle 

slopes; with the major contribution of rainfall-induced landslides expected along these 

slope positions. Except for lower slopes, there is a strong correlation between co-seismic 

landslides and the other slope positions. Due to localised escalation of ground motion 

amplitudes generated by the propagation of seismic waves (Meunier et al. 2008), the trend 

shown in Fig.  11b is partly attributed to greater seismic amplification along ridgelines 

which in turn increases the likelihood of slope failures (Buech et al. 2010). Moreover, the 

lateral spread of seismic waves propagating along river banks within valleys can signifi-

cantly increase the likelihood of co-seismic landslide.

On the other hand, the highest landslide frequency ratios and relative landslide areas are 

observed within 40 km from fault traces as seen in Fig. 11c. As expected, regions closer 

to active faults are more susceptible to co-seismic landslides since previous earthquakes 

induce various weakening mechanisms which subsequently cause reduction in the strength 

of the neighbouring rock mass (Kellogg 2001; Korup 2004). With regard to hydrology, 

assessed in terms of distance from streams as shown in Fig.  11d, stream banks located 

within 0.75 km (comprising the majority of relative landslide areas) are overall more vul-

nerable to landslides. This is because fluvial erosion along streams causes higher shear-

ing stresses. Moreover, the collective reduction in shear strength of slope materials located 

near streams, caused by presence of soil moisture and increased pore water pressure, is an 

exacerbating factor (Berhane et al. 2023; Korup 2004; Kritikos et al. 2015). While many 

rainfall-induced landslides may be triggered at ≤ 1.25 km, most co-seismic landslides are 

within 1.00 km from streams.
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Regarding the variation of landslide frequency ratio and relative landslide areas with 

geology, Precambrian dominantly Metasedimentary and Precambrian granites (outcrop-

ping rocks which include a certain degree of fracturing and weathering) exhibit the high-

est overall landslide frequency ratios as shown in Fig. 11e. Within Uganda’s Precambrian 

basement/craton, the Precambrian dominantly metasedimentary, and Precambrian domi-

nantly granulites and gneisses geologies are exposed to relatively high likelihood of co-

seismic landslides. Gneisses geologies comprise coarse to medium grained banded met-

amorphic rocks (rich in feldspars and quartz, and mica and aluminous/ferromagnesian 

silicates) which are formed from igneous or sedimentary rocks. The correlation of land-

slides with the associated geologies is attributed to the reduction in material strengths as 

water percolates through columnar joints existing along geological fissures. Although the 

assessment of slope aspect (Fig. 11f) shows uniform landslide distribution, the strongest 

correlation exists in the eastern aspect. This can be attributed to moisture and the flow 

direction of storm water runoff, essentially influenced by the direction of sunlight (Berhane 

et al. 2023).

The relative earthquake-triggered landslide hazard susceptibility map shown in Fig. 18a 

shows that only western Uganda is exposed to the highest level partly due to its active 

seismicity and geo-tectonic environment. Although the worst hazard level is predicted 

around the Rwenzori and Kigezi sub-regions, Uganda’s north-western boarder (near Arua 

city) and Albertine graben (around Hoima city) can expect some co-seismic landslides. On 

the other hand, the relative rainfall-triggered landslide hazard susceptibility map shown in 

Fig. 18b (obtained for conditioning factors only, without considering earthquake charac-

teristics) confirms that several highlands are prone to rainfall-triggered landslides. In this 

regard, Uganda’s directorate of disaster preparedness and management under office of the 

Prime Minister should develop suitable disaster risk mitigation measures aimed at reducing 

future earthquake and landslide risks across Uganda. The findings of this work can be used 

to systematically suggest pre- and post-disaster remedies and inform the implementation of 

landslide prevention and mitigation strategies outlined in the country’s national policy for 

disaster preparedness and management (NPDPM 2010). The major limitation of this study 

is the lack of detailed information relating to co-seismic landslide occurrences and this 

points to the urgent need for a more robust scheme of monitoring, recording and mapping 

landslides, especially in the potentially hazardous sites.

10  Conclusions

This study demonstrates the ability of a fuzzy logic approach combined with geospatial 

techniques in the development of a comprehensive national co-seismic and rainfall-induced 

landslide hazard susceptibility assessment, despite scarce historical landslide inventories. 

Topographical maps, geological maps, 30-m digital elevation models and co-seismic and 

rainfall-induced landslide pixel datasets are collected from available resources. Five land-

slide conditioning factors including slope angle, topographic slope position, distance from 

streams, proximity to major active faults and geology are identified as the most prevalent 

conditioning factors. A statistical bivariate method is used to calculate the spatial relation-

ship between landslide conditioning factors and their locations prior to implementation of 

fuzzy membership functions and subsequent fuzzy maps. The average fuzzy memberships, 

obtained for the 1966 Toro and 1994 Kisomoro earthquakes, is assigned to the seismic haz-

ard map produced for a 475-year return period on reference rock site conditions. Landslide 
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conditioning factor maps are quantified, aggregated with the fuzzy membership-based 

PGA and their spatial distribution overlaid to derive final fuzzy maps showing relative co-

seismic and rainfall-triggered landslide hazards. The results show that areas of Precam-

brian granites located in ridges and upper slope gradients between 35 and 40° have the 

highest landslide hazard susceptibility. The findings conclude that Kigezi and Rwenzori 

sub-regions in western Uganda are highly prone to co-seismic landslides while landslide 

occurrences across the other parts are largely driven by rainfall. This work offers valu-

able insights into the relative co-seismic landslide hazard susceptibility towards informing 

the ministry of relief, disaster preparedness and management on the application of suitable 

landslide risk reduction strategies. As a precursor, the relevant government ministries and 

agencies should apply concerted efforts to strengthen existing pre- and post-disaster miti-

gation strategies aimed and reducing losses due to landslides in Uganda.
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