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A B S T R A C T   

Recently, resilience assessment has evolved and grown in prominence, yet most studies are carried out on 
operational stage when sufficient knowledge on the processes is available, overlooking the design stage, a time 
frame that is more suitable for making a resilient system. To this end, this work aims at developing a novel 
quantitative resilience assessment framework for engineering systems with two different approaches that prac-
tically analyse resilience at the early and late design stages when detailed information on the system’s safety and 
resilience capabilities may be deficient. In the early design stage, system resilience attributes are identified, and 
expert judgment is used to assess their quality. In the late design stage, attributes are derived from revealed 
information such as detailed emergency response and safety barrier data. In both stages, dynamic Bayesian 
Network (DBN) is used to quantify resilience based on the acquired information. Since the green hydrogen 
technology is relatively novice, the application of the proposed framework is demonstrated in a resilience 
assessment of a green hydrogen plant undergoing hydrogen release scenarios. The proposed framework can be 
used as an effective tool for early design improvements as well as enhancing process safety in the late design 
stage of hydrogen plants or any other complex engineering system.   

1. Introduction 

Failures and accidents are inherent to all engineering systems and are 
anticipated to recur (Aven and Zio, 2014). Throughout the various 
phases of design and operation, encompassing simple, complicated, and 
complex systems, engineers endeavour to recognize potential hazards 
and threats through hazard identification (Zio, 2018). They assess the 
likelihood of failures and the potential severity of consequences through 
risk assessment (Hoseyni et al., 2016). Subsequently, engineers engage 
in risk management practices to address and mitigate associated risks, 
aiming to minimize the impact of potential consequences (Yousefpour 
et al., 2017). Despite the implementation of sophisticated and compre-
hensive precautionary measures, it is important to acknowledge that risk 
can never be entirely eliminated. The inherent complexity of engineer-
ing systems, the multitude of interacting components, and the presence 
of inherent uncertainties create a context where surprises and unfore-
seen events may still occur (Modarres, 2006; Hoseyni et al., 2014; 
Pourgol-Mohammad et al., 2016). Hence, beyond striving to enhance 
the safety of engineering systems through hazard identification and 
subsequent risk assessment and management, it is crucial to institute 

measures that effectively handle incidents when they occur by fostering 
a system that is "safe to fail", in other words, a resilient system (Hollnagel 
et al., 2008). 

As a result, as much as traditional risk assessment plays a crucial role 
in ensuring safe design and operation of systems (i.e., by focusing on pre- 
failure accident scenarios), there is a need to broaden its scope to 
consider the post-failure phase when the ability to absorb disturbance, 
stresses, and shocks are duly considered by adapting to and learning 
from disruption occurrence (Mottahedi et al., 2021; Hoseyni et al., 
2017). This is achieved by conducting a resilience assessment which 
involves evaluating a system’s capacity to absorb and adapt to disasters 
and disruptive events, as well as its ability to recover functionality 
following a disruption (Gasser et al., 2021). 

Recent decades have seen a development and rise in the importance 
of research on engineering systems’ resilience (Abbasnejadfard et al., 
2022). Although resilience assessment is now a frequently discussed 
notion, no unique methodology has been concurred to understand and 
quantify a system’s resilient attributes, which severely restricts the 
scope of its applicability (Yarveisy et al., 2020). The existing resilience 
assessment research works in the engineering domain, despite their 
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merit in response to a specific hazard with detailed knowledge on 
associated processes’ and details, are ineffective in modelling disruptive 
events and their consequences at early and late design stages, time 
frames in which a system has a high chance of being made resilient. 
Determination of resilience at the design stage is crucial, as conventional 
hazard identifications combined with potential consequence estimations 
are insufficient. Even though traditional methodologies identify poten-
tial hazards and model accident scenarios, they often do not consider the 
aftermath of these accidents. Therefore, a proactive risk management 
mindset is required to anticipate failures and evaluate the survivability 
and recoverability of the system after disruptions. Identifying resilience 
issues early allows for the incorporation of design elements that can 
mitigate potential risks before they materialize, preventing costly 
modifications and downtime later in the operational phase. Addressing 
resilience during the design phase is often more cost-effective than 
making adjustments once the process is operational, saving significant 
time and resources. A process designed with resilience in mind is likely 
to be more robust and reliable, providing a competitive advantage by 
reducing the likelihood of disruptions that could impact production and 
customer satisfaction. Additionally, resilience assessment ensures that 
all components of the process are well-integrated and can work together 
seamlessly under stress, a holistic view often overlooked in risk assess-
ments alone. 

Resilience assessment is a complex and data-intensive process that 
requires a comprehensive understanding of the system’s design, opera-
tion, and maintenance practices (Cheng et al., 2022). To effectively 
evaluate the resilience of a system, it is crucial to gather detailed in-
formation on the system’s components, their interactions, and their 
performance under various conditions (Yodo and Wang, 2016a). Current 
resilience assessments often necessitate a wealth of knowledge primarily 
accessible during the operational stage. Assessing resilience requires a 
comprehensive understanding of the day-to-day functioning, response 
mechanisms, and adaptive strategies employed during normal opera-
tions (Chen et al., 2022). This operational knowledge becomes para-
mount in evaluating how well a system can endure and recover from 
disruptions (Yang et al., 2023). Consequently, an effective resilience 
assessment relies heavily on insights gained from real-world experiences 
and the practical application of strategies, making the operational stage 
a critical source of information for a thorough evaluation of resilience 
capabilities (Amer et al., 2023). For instance, to assess the resilience of 
processes industries, it is essential to collect data on their performance 
under normal operating conditions and in the face of disruptions (e.g., 
natural disaster). Analysing this data, which illustrates the system’s 
behaviour under normal conditions, its robustness in withstanding ac-
cidents, and the efficacy of maintenance activities in facilitating swift 
recovery, becomes crucial in pinpointing vulnerabilities within the 
processes (Pawar et al., 2021; Shirali et al., 2012). 

In the early design phase, resilience assessment faces additional 
challenges, notably the limited availability of realistic data regarding 
the operational conditions of plants. This is crucial, especially when 
considering the impact of aging on plant safety through the analysis of 
condition monitoring data (Hoseyni et al., 2019; Yang et al., 2015), a 
perspective primarily accessible during the operational stage (Chau 
et al., 2022). While techniques exist to update static risk measures over 
time based on plant aging and monitoring data, operational/dynamic 
risk measures, essential for a comprehensive resilience assessment, 
depend on real-time operational data (Jun et al., 2021; Bai et al., 2022). 
Obtaining such realistic data proves challenging during the early design 
stage when sufficient plant data may not be readily accessible. 

Applying existing resilience assessment methods to the early and late 
design stages faces challenges beyond data scarcity. The dynamic and 
uncertain nature of design changes, limited operational feedback, 
intricate interconnectedness of components, and evolving requirements 
differentiate the design stages from the operation phase (Buede and 
Miller, 2016). The absence of historical operational data in the design 
stage, coupled with resource constraints and a focus on preventive 

measures, further complicates resilience assessment at this stage. 
Furthermore, specific design objectives for each stage should also 
encompass considerations for the resilience of the system, where early 
design emphasizes overall concept and functionality, and late design 
refines details and addresses specific performance requirements. The 
varying levels of detail and uncertainty in design representations pose 
challenges (Lough et al., 2009), with early design involving conceptual 
models and late design incorporating detailed engineering drawings 
(Tan et al., 2017). Limited predictive power in early design decisions, 
influenced by trade-offs between cost, performance, and safety, un-
derscores the need for resilience assessment methods that aid designers 
in understanding these implications without extensive operational data. 
Considering the dynamic evolution of systems and the importance of 
feedback mechanisms and iterative design process, resilience assessment 
methods should adapt to the design process seamlessly. 

To address these challenges, this work presents a novel framework 
that quantifies the dynamic resilience of complex engineering systems. It 
incorporates two distinct approaches tailored to address the unique 
challenges encountered in two different time frames of the design pro-
cess: I) first approach introduces a practical way to assess the quanti-
tative resilience of a system in the early design stage and shows how to 
define the key characteristics of a system for the resilience without 
having much knowledge on systems feature in this conceptual design 
phase and then use expert judgment to identify the attributes of resilient 
design and calculate the system resilience quantitatively. II) second 
approach, provides a model to quantify the dynamic resilience in the late 
design stage when more study on hazard identification, process safety 
and potential accident scenarios are available. In both proposed ap-
proaches, Dynamic Bayesian Network (DBN) is chosen to be used for the 
temporal quantification of the system’s resilience in a dynamic and 
probabilistic manner. 

In light of the complexities of designing new energy systems to reach 
the net-zero goals, the application of the proposed methodology is 
demonstrated in a green hydrogen production plant, with a specific 
emphasis on analysing scenarios related to hydrogen release. 

This research is novel as it proposes a practical innovative method-
ology to fill the research gap in considering the resilience assessment at 
the design stages. Moreover, to the best of the authors’ knowledge, there 
is no research work dedicated to the quantitative resilience assessment 
of green hydrogen plants or, generally, any engineering system in the 
early and late design stages. Existing methodologies predominantly 
focus on assessing resilience at the operational stage benefitting from the 
abundance of detailed information on system’s specifications, and 
approved to be excessively complex, requiring a high level under-
standing on the system as well as computationally intensive modelling 
to execute the interconnectivities of an entire system impacted by dis-
ruptions. However, during the design stage, which is the focal point of 
the paper, detailed information on system specifications is typically 
lacking, making it difficult to apply existing methodologies effectively. 
The proposed framework aims to address this gap by providing a novel 
approach for quantitative resilience assessment during the early design 
stage, where information is scares and traditional methodologies may 
not be suitable. This work provides a practical tool for integrating 
resilience into the design stage, a critical phase when system resilience is 
usually overlooked in favour of cost and performance while the cost of 
implementing resilience measures is typically lower, highlighting pro-
active resilience-building as a cost-effective strategy. 

The remainder of this paper is organized as follows. In Section 2, the 
proposed framework for quantitative resilience assessment is discussed 
in detail. In Section 3, the real case study is presented and discussions 
and results of applying the framework to the case study are provided. In 
Section 4, concluding remarks are provided. 

2. Quantitative resilience assessment framework 

In this section, firstly, a brief introduction to the concept of resilience 

S.M. Hoseyni and J. Cordiner                                                                                                                                                                                                                



Process Safety and Environmental Protection 189 (2024) 612–627

614

in engineering is provided. Then, the dynamic Bayesian network and its 
application in quantifying resilience is introduced. Finally, the proposed 
framework for quantitative resilience assessment at the early design and 
late design stages is provided. 

2.1. Resilience assessment 

Resilience, with diverse definitions across different fields, is a key 
area of research, especially within the field of engineering. Various 
definitions are available based on the studied systems and their char-
acteristics while all highlighting common features like absorptive ca-
pacity, adaptability, and recoverability (Abbasnejadfard et al., 2022). 
Resilience, as per the US National Academies of Sciences, Engineering, 
and Medicine, is "the ability to anticipate, prepare for, and adapt to 
changing conditions and withstand, respond to and recover rapidly from 
disruptions" (National Academies of Sciences, 2012). In our view, 
resilience extends beyond the traditional risk and reliability assessments 
to not only consider the pre-accident phase of the disruption as in con-
ventional risk assessment, but also to deal with the post-accident phase 
of the systems to evaluate how a system survives an accident and re-
covers from subsequent consequences. Traditional idea of risk analysis 
focuses on achieving safety by ensuring complete protection against 
disruptions and the control of system change (i.e., fail-safe design). 
Resilience is a novel approach more focusing on the capacity of systems 
to restructure and recover from disruptions (i.e., safe to fail design). 
Although resilience is a capability of a system rather than a probability, 
as seen in traditional risk measures and reliability indicators, it’s crucial 
to recognize that the risk and resilience are interconnected and should 
not be managed independently, despite the current distinctions in their 
essence and focus (Yang et al., 2023; Logan et al., 2022). It is imperative 
to utilize methods resembling extensive reliability or risk assessment 
methodologies to model accident scenarios and predict consequences 
accurately. Understanding the accident, its probability of occurrence, 
and its adverse impacts on the system, along with possible scenarios and 
their probabilities, is essential. Subsequently, the system’s survival to 
the accident and its recovery to normal functionality are evaluated using 
this acquired information. It’s important to note that resilience models 
are not identical to risk assessment models; instead, they offer a more 
comprehensive approach to addressing system resilience and recovery 
from disruptions encompassing both pre and post-accident phases. 

Various metrics have been proposed to capture different aspects of 
resilience in engineering systems, each suitable for specific challenges 
and properties (Aruväli et al., 2023). Choosing appropriate measure-
ment metric for systems in applications with different levels of detail 
poses numerous challenges as there are numerous field-specific metrics 
for different domains to assess resilience for example in power systems 
(Bhusal et al., 2020; Umunnakwe et al., 2021; Daeli and Mohagheghi, 
2022), transportation (Sun et al., 2020; Mohebbi et al., 2020), critical 
infrastructures (Francis and Bekera, 2014a; He et al., 2022), process 
industry (Jain et al., 2018a, 2018b), societal communities (Johansen 
et al., 2017; Zhang et al., 2022), etc. Many of these metrics face diffi-
culties in practical implementation and often fall short of fully encom-
passing resilience concepts and dimensions. Technical resilience metrics 
can be broadly classified into three groups: attributes-based metrics 
focusing on specific properties like probability of failure and robustness; 
topological metrics examining the structure of systems with an emphasis 
on network topology; and performance-based metrics designed to 
measure resilience through operational or service performance metrics 
across the entire disruptive event, covering both the disruption and re-
covery phases (Trucco and Petrenj, 2023; Szatmári et al., 2024). These 
categories provide diverse perspectives and approaches to assessing 
technical resilience, catering to the specific focus and requirements of 
the analysis. Each category has its own set of limitations. 
Attributes-based metrics may oversimplify the complexity of real-world 
systems and fail to capture interdependencies among system compo-
nents and may not catch the temporal performance of infrastructure 

systems. Topological metrics may overlook important functional aspects 
of resilience and may not fully account for dynamic system behaviour. 
These metrics while being easier to measure as they require less data, 
provide limited information on systemic resilience. Performance-based 
metrics may face challenges in accurately measuring resilience due to 
the diverse range of metrics used and the subjective nature of perfor-
mance assessments. 

The resilience of a system can be shown with different metrics as 
discussed earlier but it can be intuitively shown with a performance- 
based curve known as resilience curves, first introduced by Bruneau, 
et al., that represent the quantitative and qualitative characteristics of 
system performance (Bruneau et al., 2003). Typically, these curves show 
how system performance changes prior to, during, and following a 
disruption. Fig. 1 shows two typical resilience curves where the first 
curve gains full recovery from the disruption while the second curve 
depicts partial recovery. 

There are various elements (called resilience attributes, hereafter) 
that constitute a system’s dynamic response to disruption. As can be seen 
in Fig. 1, there are two distinct parts in the resilience curve, the first 
being the survival with the drop in the performance after disruption 
until the minimum performance level (points 1–2 in Fig. 1) and second, 
being the recovery from the minimum performance level to partial 
(point 2–3 in Fig. 1) or full recovery states (point 2–4 in Fig. 1). These 
two parts represent the main dimensions of resilience and have been 
offered different names, or split into more dimensions in the literature 
(Hosseini and Barker, 2016). 

Resilience is a unique characteristic of an engineering system that 
represents the reliability and maintainability of the system against 
disruptive events. Therefore, it is required to assess the system’s resil-
ience in light of a probabilistic perspective to better represent the sys-
tem’s dynamics of resiliency. Therefore, Dynamic Bayesian Network, a 
probabilistic model based on Bayesian statistics, is selected to quanti-
tatively assess the resilience. 

2.2. Proposed framework for resilience assessment at design stages 

In this Section, a novel framework of resilience assessment at the 
design stage is proposed. To conduct a resilience assessment, firstly, it is 
required to gain knowledge on the hazards, potential disruptions and 
imposed risks, as well as the capability of the system to absorb and 
survive the disruption and recover from its consequences. This means 
that a comprehensive knowledge on the processes, system characteris-
tics, maintenance capabilities and threatening hazards are required to 
make a resilience model. This knowledge is not well obtained at the 
design stage when hazard identification studies are in progress. There-
fore, based on the available information on identified hazards and ac-
cident scenarios and consequences, the design stage is divided into two 
general time frames, namely the early design stage and the late design 
stage. Since the knowledge on system’s characteristics are different in 

Fig. 1. Resilience curves showing the performance of the system after disrup-
tion with: (a) full and (b) partial recovery. 
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these two stages, two different approaches are proposed in order to 
perform a quantitative resilience assessment. Fig. 2 shows, in brief, the 
proposed framework for the resilience assessment at the early and late 
design stages. The main difference between these two stages lies in the 
depth of the information available regarding the system’s characteristics 
on dealing with an accident prior, during and after the disruption (i.e., 
attributes of resilient design). During the early design stage, these at-
tributes may not be readily apparent, and it is required to firstly define 
them and then use the expert judgment to evaluate their quality in the 
studied system. On the contrary, at the late design stage, as more in-
formation becomes available and system response to accidents is 
assessed and safety barriers are clearly defined, some useful data like the 
event trees, fault trees, bow-tie diagrams, accidents scenario, failure and 
maintenance rates and much more are revealed which are mostly based 
on past operational experience of similar systems, expert judgment or 
design goals. This available data provides a great tool to redefine a more 
realistic resilience assessment model and to recalculate the resilience. 
For this reason, we intentionally do not link step 4 of the early design 
stage to the first step of the late design stage due to the differing levels of 
available information and knowledge maturity between these stages. In 
the early design stage, focus is on conceptualization and identifying 
resilient design attributes, whereas in the late design stage, more 
comprehensive data becomes available, allowing for a refined DBN 
model tailored to the system’s specific characteristics. At each design 
stage, the quantified resilience will serve as an effective and practical 
tool, based on the available information, to inform the decision-making 
process and improve resilience. 

As can be seen in Fig. 2, Dynamic Bayesian Network (DBN) is used to 
make a mathematical model of the system from the acquired informa-
tion and to quantify resilience. DBN, an advanced Bayesian Network 
(BN), is a reliable probabilistic approach for analysing and forecasting 
under uncertainty that also, dynamically, takes into account the concept 
of time (Dagum et al., 1992). This method is capable of analysing fail-
ures based on multiple interdependencies of causes and effects and 
updating the prior estimated failure probabilities when new posterior 
data become available (Murphy, 2002). DBNs provide a framework for 
capturing dynamic system behaviour by modelling influences over 
discrete time steps. It is essential to clarify that the structure and pa-
rameters of a DBN remain stationary, ensuring consistency in modelling 
the underlying stochastic process and that does not imply that the 
network structure or parameters change dynamically. Rather, DBNs 

provide a framework for modelling dynamic systems, where the sys-
tem’s behaviour evolves over time. A DBN is represented as a directed 
acyclic graph, with each time-slice containing its own set of variables. 
This approach enables the modelling of temporal dependencies and the 
evolution of the system’s state over discrete time steps providing a great 
tool to enhance the model’s predictive capabilities and to provide a 
more comprehensive understanding of system resilience dynamics. 

In resilience assessment, DBN is adopted to make a mathematical 
model that reflects the probabilistic dependencies between causes and 
effects of disruptive events as well as the system recovery (Tong et al., 
2020). Yodo et al. first used DBN as a tool to quantify the resilience of 
engineering systems (Yodo et al., 2017). Other research works have also 
applied a DBN-based approach to resilience assessment for a refinery 
unit (Tong et al., 2020), power supply and control systems (Cai et al., 
2021), oil and gas processes (Zinetullina et al., 2021), housing infra-
structure (Sen et al., 2022), and subsea infrastructure (Yazdi et al., 
2022). Some recent applications of the DBN-based resilience quantifi-
cation are as follows: Sun et al. used a DBN-based resilience approach 
considering the optimization of the maintenance cost (Sun et al., 2022). 
Tong and Gernay employed DBN to model the interconnections among 
process facilities with focus on analysing the domino effects (Tong and 
Gernay, 2023). Zeng et al. used DBN for quantitative resilience assess-
ment of chemical plants against Natech-related cascading multi-hazards 
(Zeng et al., 2023). The most recent studies includes using DBN to assess 
resilience-oriented maintenance optimization (Alipour et al., 2024), 
seismic resilience (Tasmen et al., 2023), multidimensional urban resil-
ience (Chen et al., 2023), and resilience of complex systems coupled 
with evidence propagation (Caetano et al., 2024). Interested readers can 
refer to the mentioned references for detailed mathematical back-
ground. A brief introduction to DBN is provided below: 

DBN, a Bayesian network, that has been supplemented with addi-
tional mechanisms to simulate influences over time represents the cause 
and effects in a probabilistic and graphical model that consists of arcs 
and nodes. In Bayesian Network (BN), based on an inference algorithm 
that uses Bayes’ theorem, marginal and conditional probabilities are 
used to determine the joint probability of the nodes X=(X1, X2, …, Xn). A 
DBN comprises of a sequence of BNs and relates variables along a dis-
cretized timesteps in contrast to typical BNs. A node at time t in a DBN 
model is reliant on its parent nodes at time t as well as their states and 
parent nodes at previous time steps (Tong et al., 2020; Jensen and 
Nielsen, 2007). The joint probability (at time t) of a series of variables 

Fig. 2. The schematic presentation of the resilience assessment farmwork at both the early and late design stages.  
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where pa(Xt
i
) represents the parent node Xi at time t, and Xt−1

i is the 
previous state of node Xi at time step t-1. All of the elements that affect 
the system’s resilience are combined to make a DBN model and are 
represented with random variables in nodes while their dependencies 
are linked with arcs. The proposed methodology and detailed discus-
sions for each stage is provided in Section 2.2.1. and 2.2.2. 

2.2.1. Early design stage 
At the early design stage, the knowledge on the system is at its 

minimum, therefore, it is needed to, first, identify the resilience attri-
butes of the system, and then use the expert judgment to evaluate the 
quality of these attributes that are defined to clearly evaluate the 
imposed risk, safety barriers and restoration capabilities of the system 
and to make a mathematical model that represents the system resilience. 
The framework for the resilience assessment at the early design stage, 
shown in Fig. 2, entails 4 major steps that are discussed in detail as 
follows. 

Step 1: Define attributes of resilient design 
First step is to identify the attributes of the system resilience that 

should represent the system’s dynamic response in surviving the 
disruption and then in recovering from the consequences and should be 
identified with multiple clearly segregated system properties. In this 
work, the attributes of system resilience are divided into three categories 
namely dimensions, metrics and indicators of the resilient design. Di-
mensions are the most general attributes of resilience being expanded to 

more detailed properties of the system named metrics and those are, 
also, expanded to the indicators of resilient design. 

Different resilience dimensions can be distinguished from a system’s 
dynamic reaction to a disruption. Various dimensions have been out-
lined in existing literature, such as the model proposed by Hollnagel et al 
(Hollnagel et al., 2008)., which describes resilience in terms of antici-
pation, monitoring, response, and learning. Hosseini and Barker iden-
tified absorption, adaptation and restoration (Hosseini and Barker, 
2016) as key dimensions, while Baroud et al. outlined resilience in terms 
of reliability, vulnerability, survivability and recoverability (Baroud 
et al., 2014), Similarly, Yodo and Wang defined survival and recovery as 
fundamental dimensions of resilience (Yodo and Wang, 2016b). 

A broad dimension definition is required in this stage which at the 
same time captures all system dynamics to respond to a disruption. As 
resilience represents the ability of a system to both survive a severe 
disruption with little negative impact and subsequently recover from 
that, the resilience dimensions are defined as survivability and recov-
erability with the following definitions:  

• Survivability: An engineering system’s capacity to decrease the 
severity of an impact due to disruption is referred to as survivability. 
A system’s ability to sustain a certain amount of disruption, without 
completely failing, can be conceived as the difference between 
normal performance and its minimum interrupted performance 
(points 1–2 in Fig. 1) (Taleb-Berrouane and Khan, 2019).  

• Recoverability: The ability of an engineering system to take corrective 
actions and return to normal operating circumstances after being 
interrupted is captured by recoverability. A system’s ability to 
recover and bounce back to normal performance can be conceived as 
the difference between minimum performance (point 2 in Fig. 1) and 

Fig. 3. Proposed scheme for identifying attributes of resilience.  
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its full or partial recovered performance level (points 3 or 4 in Fig. 1) 
(Yodo and Wang, 2016b). 

Survivability and recoverability are influenced by other system 
characteristics called as resilience metrics. Although this approach 
aligns with several methodologies in the literature, varying labels have 
been employed for these dimensions. For instance, survivability and 
recoverability have been likened to restoration and reliability, absorp-
tive and adaptive capacity, as well as static and dynamic resilience 
(Yodo and Wang, 2016a; Tong et al., 2020). The terminology used here 
is deliberately selected to minimize confusion between dimensions and 
other attributes linked to a resilient system. This provides a compre-
hensive framework while minimizing confusion with other terms used in 
the literature. As a result, the associated metrics (as a subset of these two 
dimensions) are also accurately reflecting the characteristics of the 
system within these main dimensions. Based on the literature survey, we 
have decided to dedicate four metrics that contribute most to surviv-
ability and three metrics to recoverability. The defined metrics are: 

Survivability Metrics  

• Early Warning: the ability of a system to monitor anomalies and 
quickly identify disruptions (Dinh et al., 2012; Hoseyni et al., 2021, 
2023).  

• Robustness: a certain degree of stress that a system can handle 
without experiencing performance issues (Bruneau and Reinhorn, 
2007).  

• Absorptive Capacity: the capacity of disruption’s consequences that 
the system can block or absorb (Francis and Bekera, 2014b).  

• Flexibility: a system’s capacity to function reliably under a variety of 
process settings as a result of error-tolerant design (Ishfaq, 2012). 

Recoverability Metrics  

• Resourcefulness: the amount of resources a system has access to and 
how rapidly it can deploy those resources (Yodo and Wang, 2016b).  

• Controllability: the capacity to guide and lead a system from a 
disruption to a regained equilibrium state (El-Halwagi et al., 2020).  

• Reconfigurability: the ability of a system to fluidly switch between and 
use several configurations (Oboudi et al., 2019). 

Metrics ought to be measured and described in terms of quantifiable 
system characteristics, which we characterise as indicators of resilient 
design. In this work, 27 indicators of resilient design are defined that 
consider not only the engineering design, but also take into account 
management and human factors (Vesey et al., 2023). Fig. 3 shows, in 
detail, the proposed attributes of the resilient design that is defined to 
evaluate the system resilience at the early design stage. 

The indicators summarized in Fig. 3 were developed with a keen 
emphasis on simplicity and versatility, ensuring they are easily appli-
cable across a range of engineering systems, particularly in the early 
design phase where comprehensive data is scarce. Based on extensive 
literature reviews, these indicators capture essential aspects of resil-
ience, providing various opportunities for enhancing system robustness. 
Notably, these indicators have undergone validation in a qualitative 
resilience assessment of early design process plants, as detailed in the 
authors’ previous work (Vesey et al., 2023). Building upon this foun-
dation, the current research seeks to further validate and refine these 
indicators through a quantitative approach, with the aim of enhancing 
their effectiveness in assessing and improving system resilience. It’s 
noteworthy that there are considerably more indicators related to sur-
vivability, which is unsurprising given its deeper understanding and 
extensive research within process safety. It’s important to recognize that 
this set of indicators serves as a foundation, implying that additional 
system properties contributing to resilience could be incorporated in 
future iterations of the model. This adaptability is especially crucial as 
the comprehension of resilient recovery evolves over time. 

The detailed model shown in Fig. 3 provides a holistic and broad 
approach to assess the main attributes of resilience in any engineering 
system at the early design stage and helps to overcome the lack of suf-
ficient information to analyse the resilience. The indicators of the 
resilient design can be considered as the root cause that directly affect 
the resilience metrics which contribute to the dynamics of the two main 
pillars of a system’s resilience (i.e., resilience dimensions of survivability 
and recoverability). For example, as can be seen in Fig. 3, diversity of 
monitoring, duplication of monitoring, and operator knowledge are the 
three indicators that influence the “early warning” metric which itself is 
one of the four metrics of the survivability dimension. These indicators 
can be evaluated by the experts and their judgment provide the required 
information to make the DBN-based resilience model. 

Step 2: Expert judgment 
As the second step of the framework after defining the attributes of 

resilient design, expert judgment should be collected on the defined 
attributes to evaluate system resilience capabilities. Linguistic phrases 
are proposed to the experts to judge the indicators, and Intuitionistic 
Fuzzy Numbers (IFNs), an extension of fuzzy sets, are designated to the 
collected judgment (Atanassov, 1986). The key advantage of IFNs is that 
experts can convey their judgments with a wide range of ambiguities 
and uncertainties by using qualitative terminologies. 

A questionnaire can be built and sent to the experts to evaluate an 
engineering system’s characteristics on 27 indicators of the resilient 
design. The experts are asked to evaluate each indicator of the resilient 
design and provide their judgment on the quality of that indicator in the 
studied engineering system. The expert judgment is provided based on 9 
qualitative ratings shown in Table 1 ranging from extremely low (i.e., 
the quality of the indicator of resilient design in the system is extremely 
low) to extremely high. The IFNs associated with each qualitative term is 
also extracted from literature and provided in Table 1 (Liu et al., 2014). 
Each qualitative term represents a subjective assessment of the quality of 
indicators related to resilient design. The IFNs (a,b) associated with each 
term represent the degree of membership (a) and non-membership (b) 
assigned to the indicator’s quality. For example, the term "Extremely 
low (EL)" is associated with the IFN (0.10,0.90), indicating a high degree 
of non-membership (b=0.90) and a low degree of membership (a=0.10). 
Similarly, the term "Medium (M)" is associated with the IFN (0.50,0.50), 
indicating equal degrees of membership and non-membership, sug-
gesting uncertainty in the assessment. Together, the membership and 
non-membership degrees provide a comprehensive representation of the 
degree of inclusion and exclusion of an element in a particular category 
or set. They allow for a nuanced assessment of the level of confidence or 
uncertainty associated with the evaluation of qualitative terms in the 
context of IFNs. These qualitative terms and their corresponding IFNs 
serve as a basis for experts to evaluate the quality of indicators in the 
studied engineering system. 

Step 3: Probability elicitation 
As the 3rd step of the framework, after the evaluation of the in-

dicators of resilient design are collected from experts, D number theory, 
a generalisation of Dempster-Shafer evidence theory for effective 
modelling of uncertainties (Zarei et al., 2021), is used to elicit the 

Table 1 
Qualitative terms for rating the quality of indicators of the 
resilient design (Liu et al., 2014).  

Qualitative terms IFNs 
Extremely low (EL)  (0.10,0.90) 
Very low (VL)  (0.25,0.70) 
Low (L)  (0.30,0.60) 
Fairly low (FL)  (0.40,0.50) 
Medium (M)  (0.50,0.50) 
Fairly high (FH)  (0.60,0.30) 
High (H)  (0.70,0.20) 
Very high (VH)  (0.75,0.20) 
Extremely high (EH)  (0.90,0.10)  

S.M. Hoseyni and J. Cordiner                                                                                                                                                                                                                



Process Safety and Environmental Protection 189 (2024) 612–627

618

probabilities using the IFNs of Table 1. In other words, IFNs are con-
verted to D numbers and aggregation of D numbers is used to obtain the 
experts opinions. Let’s assume that D={(a1,b1), (a2,b2), …, (am,bm)} is a 
D number obtained from m experts opinions where their evaluated IFNs 
are converted to D numbers’ first and second components, aj and bj 
respectively. The opinions of all experts can be aggregated into the crisp 
possibility (CP) as shown in Eq. 2 (Yazdi, 2019): 
CP =

∑m
j=1

(wj.aj.bj
) (2)  

where wj is the jth expert’s importance weight. 
Following the computation of the crisp value representing the pos-

sibility of an indicator, the probability of the indicator (Pr) is then eli-
cited using the Onisawa equation (Onisawa, 1990) as shown below: 

Pr =

⎧

⎪

⎨

⎪

⎩

1
10k,CP ∕= 0
0,CP = 0

, k = 2.301 × [
1

CP − 1]1/3 (3) 

The Onisawa equation is widely used to elicit the failure probability 
from expert opinion in numerous reliability engineering references 
(Sahin et al., 2022, 2021; Masalegooyan et al., 2022; Kabir et al., 2018) 
and we used this equation for the illustration purpose. However, it is 
important to acknowledge that the utilization of the Onisawa equation is 
not without its critiques. Some scholars may argue that there are more 
reliable ways for probability elicitation. Some other practical solutions 
are given in the literature (Dubois and Prade, 2015; Chanas and Now-
akowski, 1988) to replace this equation. There is also an established 
methodology for eliciting experts’ probabilities given by O′Hagan et al. 
in 2006 which can be used instead (O’Hagan et al., 2006). 

Fig. 4. (a):The resilience curve, states after disruption, and proposed Markov chain model at the early design stage; (b) DBN model for resilience assessment.  

Fig. 5. DBN model for resilience assessment connecting the resilient attributes at the early design stage.  
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Step 4: Build DBN model 
The 4th step is to build a DBN model from the available data. The 

DBN model is built based on the performance level of the system. After 
the occurrence of disruption, the performance of the system changes (see  
Fig. 4(a)). Three states are defined to show the effects of disruption in 
system’s performance:  

• S1: the normal operating state when disruption occurs at t1.  
• S2: the disrupted state that system encounters due to the disruption’s 

damaging effects and drops the performance to the minimum level at 
t2. 

• Sr: Final recovered state when system returns to a desirable perfor-
mance at tr. 

A Markov chain model can be used to model the transition among 
these three states. The transition among these three states are modelled 
using transitional probabilities λ1, µ, and λ2 as shown in Fig. 4(a). The 
transition, after the disruption, from the normal state S1 to the disrupted 
state S2 is identified with transitional probability λ1= 1

MTBF1 where MTBF1 
is the mean time between failure after the occurrence of disruption. The 
disrupted state S2 is transited to the recovered sate of Sr with transitional 
probability of µ= 1

MTTR where MTTR is the mean time to repair with in-
ternal auto-repair as well as external maintenance activities. λ2 can be 
obtained using MTBF0 as the mean time between failure at normal 
operating condition as λ2= 1

MTBF0. It is worth mentioning that when the 
system enters the new recovered stable state of Sr, a new cycle begins 
where the system starts over its normal operating condition decaying 
with the constant rate of λ2. A mathematical model for the quantitative 
assessment is built by transforming the Markov chain model into a DBN 
model that entails parent node of disruption and two other parent nodes 
that represent the dimensions of resilient design (i.e., the survivability 
and recoverability nodes) (See Fig. 4(b)) (Tong et al., 2020). 

The preliminary DBN model of Fig. 4(b) can be extended to include 
the metrics and dimension of resilient design at the early design stage as 
shown in Fig. 5. The indicators of the resilient design can be defined as 
the root parent nodes of the extended DBN model where the elicited 
probabilities are included in these nodes as marginal probabilities. 
Parent nodes causal impacts are assumed to be independent and the 
effects of parent nodes on child nodes are represented with conditional 
probabilities. The disruption node identifies external and internal ele-
ments that could contribute to system failure and reduced system reli-
ability and comes with two states of ‘True’ or ‘False’ meaning that the 
disruption may be either true or false. Similarly, all nodes related to the 
attributes of resilient design are dedicated two states of ‘High’ or ‘Low’. 
The child node ‘system’s performance state’ includes the 3 performance 
states namely S1, S2, and Sr with the transitional probabilities λ1, µr, and 

λ2 that are transformed to the conditional probability of the node given 
the dimensions of the resilience. 

The DBN model of Fig. 5 serves as a good tool for conducting resil-
ience assessment of any engineering system at the early design stage 
where the system response to disruption are quantified with the elicited 
and conditional probabilities and that enables quantifying the proba-
bility of system performance states at the child node by using Eq. (1). 

The last steps of the framework, as shown in Fig. 2, would be to run 
the DBN model and obtain the resilience curve. The probability that a 
system will maintain operating in a normal state (remaining in S1) or 
return to a recovered state from a disrupted state (reaching Sr) at each 
time step during and after a disruption can be used to determine a sys-
tem’s resilience (Zinetullina et al., 2020). Therefore, at each time step, 
the resilience of the system equals to the sum of the probabilities of 
states S1 and Sr obtained from the system’s performance state node after 
running the model. The aggregation of these probabilities at different 
time steps is used to build the quantitative resilience curve. 

2.2.2. Late design stage 
At the late design stage, as the design process has evolved, some 

hazard identification studies have been completely performed and some 
knowledge on system absorption and restoration capabilities are iden-
tified. This knowledge is presented at the last levels of design when 
hazard identification studies are completed and event trees and faults 
tress and bow-tie diagrams are released on different accident scenarios 
and their relevant safety barriers. These knowledge can be used to 
identify the resilience attributes and assess the system resilience. The 
four steps shown in Fig. 2 are discussed with further details as follows. 

Step 1: Build a preliminary DBN model 
As shown in Fig. 2, the first step, is to build a preliminary DBN model. 

Before building the model, it is required to define dimensions of resilient 
design. In this stage, we propose much more comprehensive dimensions 
for the resilient design. Resilience dimensions are defined as absorption, 
adaptation, restoration and learning (Zinetullina et al., 2020). A sys-
tem’s innate capacity to withstand and survive disruption is known as 
absorption. Adaptation is the system’s ability to adjust to a disturbed 
state, and to recover without the help of external restoration efforts. The 
ability of a system to embrace external efforts to fix the harm brought on 
by the disruptions and return it to a new normal operating condition is 
referred to as restoration. The new normal state is when the system 
bounces back to equilibrium and can be different than the normal 
pre-disruption state. Finally, learning is the capability of a system to 
provide useful feedback from evidence collected from prior incidents 
and aids in the generation of new information for disruption counter-
measures (Zinetullina et al., 2021). 

A Markov chain model is used to represent the resilience dimensions 
and performance changes after disruption that are shown with four 

Fig. 6. (a) The resilience curve, states after disruption, and proposed Markov chain model at the late design stage; (b) DBN model for resilience assessment.  
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states being:  

• S1: the normal operating state when disruption occurs at t1. 
• S2: the disrupted state that system encounters the minimum perfor-

mance level at t2. 
• S3: the performance slight improvement state reached after adapta-

tion by the temporary self-activated response at t3. 
• Sr: Final stable recovery state that system reaches a desirable per-

formance at tr thanks to the restoration. 

Fig. 6(a) shows the mentioned states in the resilience curve and 
schematically represent the Markov chain model that is defined for 
transition among states. 

The transition among these four states are modelled with the Markov 
chain model using transitional probabilities being λ1, µa, µr, and λ2 as 
shown in Fig. 6. λ1 and λ2 are defined similar to the early design stage 
based on MTBF (See Section 2.3.1). The system may begin to repair itself 
after a disruption before any external maintenance is carried out (i.e., 
adaption with self-repair activities like sprinkler system activation to 
extinguish the fire). The length of this adaptation process is identified by 
the response time (Tres) and is used to quantify the adaptation rate as µa 
= 1

Tres. After adaptation, external maintenance activities take place to 
restore the system to its normal operating condition with the rate µr =

1
MTTRr where MTTRr is the mean time to repair the system with external 
maintenance measures. The preliminary DBN model, shown in Fig. 6(b), 
is built form the Markov chain model similar to that of the early design 
stage except the fact that the child node of “system’s performance state” 

includes four performance states namely S1, S2, S3, and Sr. Furthermore, 
the dimensions of the resilient design represented by absorption, adap-
tation, restoration nodes are further influenced by learning, disruption, 
and the system’s performance. 

Step 2: Collect available information 
As step 2 of the framework, any available knowledge on system 

characteristics that has been evaluated in hazard identification studies, 
including event trees, fault trees, bow-tie diagrams, failure and main-
tenance rates should be extracted. A comprehensive study should be 
conducted to extract this information from the hazard identification 
studies that are performed during the design stage of the system. As 
wells as the knowledge extracted from process safety, hazard identifi-
cation and risk assessments studies performed, the recovery character-
istics of the system including the auto-repair, external maintenance 
activities and failure and repair rates should be clearly identified. 

Step 3: Identify the indicators of the resilient design 
The collected information provided at the late design stage are 

thoroughly studied, in this step, and indictors of the resilience design are 
identified from this data. The data provided by the fault trees are usually 

related to the root events of the disruption and can be identified as in-
dicators of resilient design used to expand nodes that will be the parent 
nodes of the disruption node while safety barriers provided in the event 
tree can be used to expand the resilience indicators used as nodes of 
absorption, adaptation and restoration. Other available information 
depending on attributes of resilient design can be identified to be 
mapped into the DBN model that represents all characteristics of 
disruption, safety barriers and system’s restoration capabilities. 

Step 4: Expand the preliminary DBN model 
When the indicators of the resilient design are identified from the 

available information, the indicators can be presented with the DBN 
nodes and mapped into the preliminary DBN model of Fig. 6(b). The 
available probabilities in the bow-tie diagrams (BTs), event trees (ETs), 
and fault trees (FTs) are used as the marginal probabilities or conditional 
probabilities of the nodes in the DBN model (Zinetullina et al., 2020). 
DBNs offer a solution to the limitations of traditional risk assessment 
models such as FTs, ETs, and BTs, which struggle to effectively assess the 
interconnectedness of risk factors and adapt to changing conditions or 
uncertainty by providing a temporal connection among parameters (Wu 
et al., 2016; Zhang et al., 2024). While there are limited references using 
the hierarchical Bayesian networks (HBNs) to quantify resilience (Vairo 
et al., 2020; Sen et al., 2020), and they can handle temporal data to some 
extent, DBNs are well-suited for modelling temporal dynamics and 
simulating scenarios to assess system resilience over time. 

Finally, the expanded DBN model is run to quantify the probability of 
four states of the system’s performance state (i.e., S1, S2, S3, and Sr) at 
each time step. The resilience curve is then quantified as the sum of the 
probabilities of states S1 and Sr similar to the method provide at the early 
design stage. 

3. Case study 

Green hydrogen, as its name implies, is an environment-friendly 
process where hydrogen is produced by splitting water molecules 
using electrolysis which is empowered by the electricity generated from 
renewable sources like wind and solar (Domínguez et al., 2022). This 
process produces hydrogen as a product and oxygen as a by-product 
from the feedstock water. Fig. 7 shows schematic presentation of 
green hydrogen production process. 

The framework is applied to an alkaline water electrolysis hydrogen 
production facility. The main equipment of the case study includes 
rectifiers, electrolysis cells, cooling system, compressors, gas holders, 
demisters, water cells, pall filtration system, H2 gas dryer and storage 
tanks (Zarei et al., 2021). 

Fig. 7. Green Hydrogen production scheme.  
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3.1. Resilience assessment at the early design stage 

Using the framework proposed in Section 2.2.1, at the early design 
stage, attributes of resilient design depicted in Fig. 3 are used to identify 
the risk and resilience characteristics of the case study. A questionnaire 
is prepared and sent to three experts to evaluate 27 indicators of the 
resilient design. Table 2 shows the collected experts opinions that have 
evaluated each indicator with the linguistic terms provided in Table 1. 
The IFNs of Table 1 is then transformed to D numbers. Using Eq. (2), the 
crisp possibility (CP) of each indicator is calculated based on the experts 
opinions. It is worth mentioning that, in this work, we assumed the 
importance weight of 0.6, 0.3, and 0.1 for experts#1, #2, and #3 
respectively. The three experts were selected based on their expertise 
relevant to the study. The first, with significant industrial experience in 
hydrogen production safety, was given a weight of 0.6. The second, an 

academic with process safety research experience, had a weight of 0.3. 
The third, specializing in resilience assessment, having limited experi-
ence on hydrogen safety, was assigned a weight of 0.1. These weights 
reflect their varying levels of expertise and relevance to this study and 
ensure a comprehensive range of insights. Using the CP and Eq. (3), the 
probability (Pr) of each indicator is elicited as shown in Table 2. 

The probabilities of Table 2 are used to fill the marginal probabilities 
of parent nodes that represent the indicators of resilient design in the 
DBN model shown in Fig. 5. These probabilities will be dedicated to the 
marginal probabilities of the root nodes of Fig. 5 for their ‘Low’ state 
while ‘High’ state is assumed to be the complementary event of the ‘Low’ 

state. Parent nodes causal impacts are assumed to be independent. Thus, 
in order to describe the effects of parent nodes on child nodes, the noisy- 
or function is used assuming conditional probabilities have equal 
importance weights for all the contributing factors (Yazdi et al., 2022). 

Assuming that the system works with high functionality (i.e., the 
states of the indicators of resilient design nodes are set to be in ‘High’ 

state), the resilience curve of the case study is quantified as shown in  
Fig. 8. 

Analysing the resilience curve reveals useful information about the 
dynamics of the plant response to the disruption in time. It can be 
concluded from Fig. 8 that after the disruption occurs, it takes 6 hours to 
reach the minimum performance level of 0.46. Then, the recovery show 
its effects and plant starts to bounce back with an increasing trend in 
performance level. The time to reach 90 % of the lost resilience can be a 
good utility value to evaluate the recoverability of the system with a 
single value (Tong et al., 2020; Poulin and Kane, 2021). In Fig. 8, the 
time required to 90 % recovery of the lost resilience from the minimum 
performance level (i.e., time to reach 0.9×(1–0.46)+0.46 equals 
35 hours) is 29 hours (i.e., 35–6=29 hours). Another useful resilience 
utility value is the area under the resilience curve that evaluates both 
survivability and recoverability. In our case, this value can range from 
0 (for immediate system collapse) to 100 (for no disruption and con-
tinues maximum performance) and is equal to 89.93 for the resilience 
curve of Fig. 8. 

A sensitivity analysis is performed on the dimensions of the resilient 
design to assess the survivability and recoverability characteristics of the 
green hydrogen plant. In this analysis, we set the state of survivability 
and recoverability nodes of Fig. 5 to be either High or Low. The resulted 
resilience curves are shown in Fig. 9. 

As can be seen in Fig. 9, recoverability of the plant plays a greater 
role than the survivability because when recoverability of the plant is set 
to be low, system collapse will occur even if the survivability is high. 
When survivability of the plant is low but the revocability is high, the 
performance drops significantly to 0.1 but eventually the system 
bounces back and recover. 

Another sensitivity analysis is performed to analyse the system’s 
response to the scenarios where the resilience metrics are assumed to be 
in their low functionality state. Table 3 shows the results of this analysis 
where the resilience is compared with two mentioned utilities that 
quantify the 90 % recovery time as well as the area under the resilience 
curve. The percentage of the resilience reduction with comparison to the 
normal condition and based on the area under the curve is also provided. 

As can be seen in Table 3, time to recovery in nodes that are related 
to recoverability dimension of the system (i.e., reconfigurability, 
resourcefulness, and controllability) is much longer than other nodes. 
Moreover, the resilience reduction is also much greater as well. Low 
resourcefulness, and low early warning scenarios pose the most and the 
least negative effect on the system resilience, respectively. 

3.2. Resilience assessment at the late design stage 

Knowledge on the threatening hazards, accident scenarios and safety 
barriers, at the late design stage, are obtained from the reference (Zarei 
et al., 2021) where hazard identification studies are conducted for a 
green hydrogen plant and the causation factors of hydrogen release 

Table 2 
Expert judgment on the indicators of resilient design.  

Indicator of Resilient 
Design 

Expert 
#1 

Expert 
#2 

Expert 
#3 

CP Pr 

Diversity of Monitoring VH H FH  0.15 7.90E- 
05 

Duplication of 
Monitoring 

H VH M  0.154 8.71E- 
05 

Operator Knowledge VH FH L  0.162 1.05E- 
04 

Safety Margin H FH VH  0.153 8.50E- 
05 

Reliability - Equipment 
Design 

VH VH EH  0.144 6.79E- 
05 

Reliability - Predictive 
Maintenance 

FH M VH  0.198 2.15E- 
04 

Reactive Maintenance VL M VH  0.195 2.04E- 
04 

Management of Change VH H FH  0.15 7.90E- 
05 

Operator Knowledge H H FH  0.144 6.79E- 
05 

Administrative 
Knowledge 

M FL L  0.228 3.51E- 
04 

Segregation of 
Equipment 

H H FH  0.144 6.79E- 
05 

Layers of Safety Systems VH VH FH  0.153 8.50E- 
05 

Design of Safety Systems VH VH H  0.149 7.71E- 
05 

Emergency Procedures VH H FH  0.15 7.90E- 
05 

Tests of Emergency 
Response Systems 

VH EH VL  0.1615 1.04E- 
04 

Diversity of Emergency 
Services 

M FH VL  0.2215 3.17E- 
04 

Fail-Safe Design VH VH M  0.16 1.00E- 
04 

Redundancy of Safety- 
Critical Utilities 

VH FH FL  0.164 1.10E- 
04 

Modularity of Unit 
Operation 

M FL EL  0.219 3.05E- 
04 

Modularity of Facilities M FL EL  0.219 3.05E- 
04 

Modularity of Unit 
Operation 

H FH L  0.156 9.13E- 
05 

Modularity of Facilities H FH L  0.156 9.13E- 
05 

Administrative 
Knowledge 

M L VL  0.2215 3.17E- 
04 

Throughput 
Adaptability 

H FH VL  0.1555 9.02E- 
05 

Response to Control 
Measures 

M FL FL  0.23 3.61E- 
04 

Redundancy H H M  0.151 8.10E- 
05 

Reconfigurability of 
Flowsheet 

H M FL  0.179 1.50E- 
04  
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scenarios are identified in the three sections of the plant (i.e., chemical, 
mechanical, and storage sections) leading to the disruption (i.e., H2 
release). Four safety barriers namely Release Prevention Barrier (RPB), 
Dispersion Prevention Barrier (DPB), Ignition Prevention Barrier (RPB), 
and Escalation Prevention Barrier (EPB) are dedicated to prevent the 
unsafe scenarios. Fig. 10 shows a schematic view of the bow-tie diagram 
of the studied green hydrogen plant for H2 release scenarios. Details of 

116 root events, 44 intermediate events, safety barriers and their asso-
ciated probabilities can be found in Table 3-9 of the reference (Zarei 
et al., 2021). 

Based on the preliminary DBN model of Fig. 6(b) and the bow-tie 
diagram of Fig. 10, the bow-tie diagram is mapped into DBN model. 
The expanded DBN model for resilience assessment is shown in Fig. 11. 

The DBN model of Fig. 11 connects the causes of the gas release 

Fig. 8. Resilience curve of the case study at the early design stage.  

Fig. 9. Sensitivity analysis for survivability and recoverability.  
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scenarios of the fault tree part of the bow-tie diagram to its effects at the 
disruption node as well as the prevention barriers and maintenance 
capabilities of the system. Fault tree part of the bow-tie diagram is 
mapped to the disruption node while BRP and RPB safety barriers of the 
event tree are mapped to the absorption node, IPB is mapped to the 
adaptation node, EPB is mapped to the restoration. Interested readers 
can refer to the reference (Khakzad et al., 2013) on the mathematical 
background of mapping a bow-tie diagram into a DBN model. 

Similar to the early design stage, the DBN model can be executed for 
different states of the nodes and resilience curves can be quantified. A 
sensitivity analysis for transitional probabilities of λ1, µa, µr, and λ2 that 
represent the transition among four states of the ‘System’s performance 
state’ node of the DBN model is conducted and the results are shown in  
Fig. 12. 

Fig. 12(a-d) show the resilience curves based on the system perfor-
mance for different values of the transitional probabilities and are useful 
for detecting the minimum performance level and when the system 
experience this level. The lowest minimum performance level (i.e., 0.53) 
occurs at the 2λ1 scenario at time step 9 (See Fig. 12 (a) blue circled line) 
while the highest minimum performance level (i.e. 0.81) also occurs in 
Fig. 12 (a) (red triangled line) at the 0.5λ1 scenario at time step 16. This 
shows that improvement in absorption capacity will play a key role in 
avoiding significant drops in system performance. Fig. 12(a-d) are also 
useful in realizing how the system response changes when transitional 
rate are changed. For example, when λ1 decrease, MTBF1 increase, and 
that cause improvement in system’s absorption capacity and perfor-
mance level. Another insight is that the change of λ2 has the minimum 

effect in resilience curves. 
Fig. 12(e) evaluates the resilience by the area under the curve of 

Fig. 12(a-d). The area under the curve aggregates the absorption, 
adaptation and restoration capabilities of the system presented in the 
resilient curves into a single value and gives a more comprehensive tool 
for the comparison of the resilience curves. The larger this value, the 
more resilient is the system in total. It can be seen that improving 
adaptation capability of the plant (i.e., increasing µa shown with blue 
squares in Fig. 12(e)) and improving restoration capabilities (i.e., 
increasing µr shown with green asterisks in Fig. 12(e)) will have the most 
positive effect on increasing the plant’s resilience. Fig. 12 (f) shows that 
the time required to recover 90 % of the lost resilience is more sensitive 
to the value of λ1 and it means that absorption capabilities should be 
improved if the objective is the instantaneous recovery of the plant. 

4. Discussion 

Analysing the results and the resilience curves reveal valuable in-
sights into the characteristics of the plant’s response to disruptions over 
time. The results offer crucial information regarding the post-disruption 
minimum performance level, the duration of recovery, and the overall 
recoverability capabilities of the system. Interestingly, the recover-
ability of the plant emerges as a critical factor, often outweighing sur-
vivability. This indicates that even if a system possesses high 
survivability, a lack of recoverability can lead to system collapse as 
shown in Fig. 9. Depending on whether recovery time, overall resilience, 
or minimum performance level holds greater significance, diverse stra-
tegies can be chosen to increase resilience during the design stage. This 
strategic flexibility allows organizations to tailor their approach to 
address specific vulnerabilities and optimize resilience. 

In our analysis, we observed that enhancing the adaptation capa-
bility of the plant and improving restoration capabilities (see Fig. 12) 
have the most significant positive impact on increasing the plant’s 
resilience. This suggests that management strategies should prioritize 
actions aimed at reinforcing these aspects to maximize resilience. 

Moving forward, management strategies can be directed towards 
initiatives such as investing in technologies or processes that enhance 
the plant’s adaptability to changing conditions. Technologies and pro-
cesses such as automation systems and predictive maintenance enhance 
a plant’s adaptability. Modular design and advanced simulation tools 
further optimize resilience by enabling rapid reconfiguration and 
informed decision-making. Additionally, efforts to improve the 

Table 3 
Sensitivity analysis for low functionality of resilience metrics.  

Scenarios Time to 90 % 
recovery 
(hours) 

Resilience (area 
under the curve) 

Resilience 
Reduction (%) 

Low 
Reconfigurability  

51  78.534  5.32 

Low 
Resourcefulness  

56  76.618  7.63 

Low Controllability  47  80.295  3.20 
Low Absorptive 

Capacity  
41  82.05  1.09 

Low Robustness  40  82.15  0.97 
Low Flexibility  39  82.25  0.85 
Low Early Warning  39  82.65  0.36  

Fig. 10. The bow-tie diagram of the green hydrogen plant undergoing H2 release scenarios.  
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restoration capabilities, such as implementing efficient recovery pro-
tocols or acquiring backup systems, can significantly contribute to 
enhancing overall resilience. By focusing on these areas, organizations 
can better prepare themselves to withstand disruptions and recover 
swiftly, thereby ensuring continued operational effectiveness and 
sustainability. 

The main strength of the proposed methodology lies in its adapt-
ability, versatility and capacity for expansion to consider different sys-
tem’s characteristics into the resilience assessment. the multifaceted 
nature of resilience, is considered in the early design stage by defining 
indicators targeting organizational, management, and human factors, 
alongside early warning systems. Moreover, the model is completely 
flexible to be further expanded to consider more factors and establish the 
interdependencies of the indicators. In the late design stage when more 
specific information on selected accident scenarios for a number of 
known disruptive events becomes available, different DBN models for 
each disruption scenarios can be built and these factors can be extracted 
from the available information to be included in the DBN model through 
steps 3 and 4 of the late design methodology. Similarly, the DBN model 
of the late design stage is flexible to be expanded to include more 
organizational and management factors. 

The primary constraint of the present methodology lies in its reliance 
on expert judgment for the assessment of resilient design indicators. This 
approach, while valuable in transforming resilience from an ambiguous 
concept in design stage into a simple and practical methodology, 

introduces subjectivity and potential biases into the evaluation process. 
For future model improvements, integrating data-driven and computa-
tional methods into the model can complement expert judgment, miti-
gate its limitations, and enhance the robustness, objectivity, and 
accuracy of resilience assessments. 

While disruptions are typically modelled with a likelihood of 
component failure, it may seem that resilience assessment begins at this 
point, neglecting previous phases (as it may appear from the preliminary 
DBN models of Figs. 4–6). However, the probability of disruption 
occurrence is usually quantified through rigorous analysis, including 
hazard identification, consequence modelling, and fragility analysis. For 
instance, the probability of a loss of containment (LOC) due to an 
earthquake is determined by site-specific seismic hazard analysis and 
subsequent structural fragility analysis, integrating the probability of 
earthquake occurrence and the system’s response to that earthquake, 
and its ensuing consequences, resulting in a disruption probability. This 
is evident in the late design DBN model of the case study, which dem-
onstrates extensive nodes of hazard identifications before the hydrogen 
relief disruption in Fig. 11. Therefore, if disruption probability is derived 
from assumptions rather than detailed analysis (usually in early design 
phase), the resilience assessment results should be interpreted with 
awareness of this assumption. We urge readers to consider this limita-
tion when applying the findings to their contexts. However, this limi-
tation arises if the failure likelihood is based on arbitrary assumptions 
rather than rigorous hazard and fragility analysis. 

Fig. 11. DBN model for the resilience assessment of the green Hydrogen plant at the late design stage.  
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5. Conclusion 

In this paper, a novel framework is introduced for quantitative 
resilience assessment of engineering systems at the early and late design 
stages. The application of the framework is applied in the resilience 
assessment of a green hydrogen production plant with a focus on gas 
release as a disruptive event. The introduced framework will fill the lack 
of applicable methodologies to quantitatively assess the resilience of 
engineering systems at the design stages when the knowledge on system 
processes are minimal. The quantitative framework provides a practical 
tool to quantify the resilience curves and perform sensitivity analyses on 
the key parameters of resilient design to identify the design defects and 
to suggest effective modifications that affects the resiliency of the system 
at most. The result of this work helps the designers to suggest efficient 
design changes and recommendations at the early and late design stages 
when system modifications are most efficient and cost-effective. Limi-
tations inherent in our approach include the assumption of stationarity 
in Bayesian networks and the subjectivity and potential evaluation 
biases in the expert judgment process. Using continuous Bayesian net-
works and data-driven methods may help overcome these limitations, 
but this will introduce extra computational costs. 

CRediT authorship contribution statement 

Seyed Mojtaba Hoseyni: Writing – review & editing, Writing – 

original draft, Visualization, Validation, Software, Resources, Method-
ology, Investigation, Formal analysis, Data curation, Conceptualization. 
Joan Cordiner: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Supervision, Project administration, Method-
ology, Investigation, Conceptualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 
Abbasnejadfard, M., Bastami, M., Abbasnejadfard, M., Borzoo, S., 2022. Novel 

deterministic and probabilistic resilience assessment measures for engineering and 
infrastructure systems based on the economic impacts. Int. J. Disaster Risk Reduct. 
vol. 75, 102956. 

Alipour, Z., Monfared, M.S., Monabbati, S.E., 2024. Developing a bi-objective 
maintenance optimization model for process industries by prioritizing resilience and 
robustness using dynamic bayesian networks. Comput. Ind. Eng., 109993 

Amer, L., Erkoc, M., Celik, N., Andiroglu, E., 2023. Operationalizing resilience: a 
deductive fault-driven resilience index for enabling adaptation. Process Saf. Environ. 
Prot. vol. 177, 1085–1102. 
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