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Abstract— The paper presents a frequency reconfigurable 

bowtie antenna designed on silicon carbide (SiC) substrate. A 

monolithic active antenna is achieved thanks to the co-design 

method between the active integrated junctions and the bowtie 

antenna. Indeed, the semiconductor substrate allows doping 

distributed areas to obtain integrated N+P+ junction into the 

substrate co-designed in a same process flow as the antenna. 

When the junctions are forward biased, they connect a pair of 

stubs to the antenna creating a second resonant frequency. The 

global co-design approach offers possibilities to optimize the 

antenna in both frequencies. In the prototype, the resonant 

frequency can be switched from 20.5 GHz to 17.3 GHz.  

Keywords— Antenna, bowtie, frequency, reconfigurable, 

silicon carbide (SiC), ScDDAs, tunable. 

I. INTRODUCTION 

Nowadays, smart systems are omnipresent and antenna 
designers must face many constraints to meet a system’s 
operating requirements, namely: low cost, high level of 
integration for size reduction, increased performance, and 
sometimes operation in harsh environments. Bowtie antennas 
are good candidate solutions for their ease of manufacture [1]-
[4], with frequency agility possible using vanadium dioxide 
[5], or PIN diodes [6]- [7]. Adding active components such as 
surface-mounted devices (SMDs) can cause parasitic effects. 
Indeed, these SMDs are often small compared with the 
microstrip lines inducing mismatching and losses. One 
solution is to co-design and to fabricate the active elements 
and passive components in the same processes. A co-design 
method was previously proposed for a resonator and two 
distributed doped areas [8]. This offers a great flexibility in 
the choice of size and position of the doped areas. Moreover, 
a silicon carbide (SiC) substrate [9] with high permittivity 
increases compactness and gives an answer to high constraints 
environments with a high-level of power handling and 
temperature capability.  Taking into account the co-design 
method, the idea in this work is to make a reconfigurable 
antenna on a SiC substrate. 

Taking advantage of the co-design flexibility, this paper 
implements a bowtie antenna that is designed with two stubs 
connected to the antenna with distributed doped areas 
allowing the frequency reconfigurability. This antenna is 
designed on 4H-SiC to offer solution in compactness and 
performances in constrained environments. Therefore, 
Section II explains the idea and proposes the antenna design. 
Then, Section III details the simulations procedure and the 
simulated results. The fabrication process is described in 
Section IV followed by the measurement setup and the 
measured results in Section V. Finally, Section VI discusses 
the perspectives of this work. 

II. ANTENNA DESIGN 

Figure 1 shows the frequency reconfigurable antenna. This 
is a bowtie antenna with a pair of stubs on a 4H-SiC substrate. 

Since it is a semiconductor substrate, co-design of the passive 
component and the active elements at the same time and in the 
same process flow was carried out. Two integrated junctions 
(in red in Fig. 1 (a)) in the substrate formed by a P+ doped area 
(in blue in Fig. 1 (b)) and an N+ doped area (in green) either 
isolate (OFF-state) or connect (ON-state) a pair of stubs. 
Figure 2 (a) shows a side view of a part of the antenna to zoom 
in one integrated junction. Figures 2 (b) and (c) illustrate the 
simplified models, respectively when the junction is not 
biased in the OFF-state and when the junction is direct biased 
in the ON-state. This additional pair of stubs increases the 
electrical length of the antenna when the stubs are connected 
to the bowtie antenna, thus offering a shift in the resonant 
frequency to the low frequency. 

 

 
 

 

(a) (b) 
Fig.  1 Bowtie antenna with integrated junctions (a) Top view. (b) Side view. 

 

 

 
 

 

(b) 

 

(a) (c) 
Fig.  2. (a) Side view of the antenna, zoom on the integrated junction. (b) 

OFF-state simplified model of the junction. (c) ON-state simplified model of 

the junction. 

III. SIMULATED RESULTS 

The electromagnetic behavior of this reconfigurable 
antenna is simulated using HFSSTM from Ansys©. The 
dielectric permittivity of the 4H-SiC substrate is fixed at 9.7. 
As a first approximation the junctions are not simulated in the 
OFF-state and replaced by aluminum contacts in the ON-state. 
The antenna was designed to first resonates around 20 GHz. 
Therefore, with the dimensions given in Table 1, the simulated 
results are presented in Fig. 3. They show a resonant 
frequency in the OFF-state at 20.8 GHz with a 6.1 dB realized 
gain whereas in the ON-state the resonant frequency is at 
17.3 GHz with a 3.1 dB realized gain, due to the dimensions 
of the stubs. Table 2 sums up the simulated antenna 
performances in both-states.  



Table 1. Dimensions in mm of the bowtie antenna 

Wa La Lpos Lt Lt Lac Wac 

3.6 2.9 1.2 2.2 2.2 4.65 0.47 

Lstub Wstub gap Wp+ Wn+   

1.52 0.128 0.02 0.2 0.2   

 

 
(a) 

 
(b) 

Fig.  3. Simulated results of the antenna. (a) S11. (b) Realized Gain.  

Table 2. Antenna simulated performances in both-states. 

 Frequency  S11  Realized Gain 

OFF-State 20.8 (GHz) -15 (dB) 6.1 (dB) 

ON-state 17.3 (GHz) -15 (dB) 3.1 (dB) 
 

 
(a) 

  
(b) (c) 

Fig.  4. (a) Antenna design. (b) zoom on the coplanar access. (c) zoom on the 

polarization circuit. 

Table 3. Dimensions in mm of coplanar access and the bias circuit 

Wm Lm Ltap Wac Wg   

0.55 0.8 0.39 0.114 0.044   

L1 W1 L2 W2 L3 L4 L5 

0.3 0.3 1.85 0.04 2.07 1.8 2.14 

A coplanar transition and a bias circuit were added to the 

antenna, such as in Fig. 4, to enable easy measurement with 

a probe station and to be able to bias the integrated junction 

minimizing the disturbances. Their dimensions are given in 

Table 3. 

IV. FABRICATION 

The manufacture was done on a 350-μm thick 4H-SiC 

semi-insulating substrate. The process steps are summed up 

in Fig 5. Five masks are required for alignment marks, 

implantation of p (Boron) and n (Nitrogen), dielectric 

opening and top metal contact.  

The fabrication process started with creating an 
alignment mark which then were dry etched into the 

substrate. Since relatively high implant energy was chosen, a 

1-μm SiO2 was deposited as pattering oxide to protect the 

undoped area instead of normal photoresist for both p and n 

implantation. After patterning the doped area, the patterning 

oxide was dry etched to the substrate followed by a 30 nm 

screening oxide deposition. Both implanted target depth for p 

and n is 500 nm with doping concentration higher than 

1E+18 cm-3. It was observed that the color of the implanted 

area became dark due to the crystal damage from 

implantation, and then it was removed by rapid thermal 
annealing at a very high temperature (>1400℃). A 600 nm 

fresh oxide was deposited and then the doped area was 

opened by standard photolithography with the dielectric 

opening mask. Finally, metal Ti/Au with a thickness of 

40/400 nm was deposited on the top and bottom of the 

substrate without further annealing.   

 

 
Fig.  5. Process steps 



 

 
Fig.  6. Fabricated antenna on main probe station [10]. 

Fig.  7. Antenna undergoing radiated test on special mini prober station (phi 

sweep is vertically downwards as viewed here) [10]. 

V. MEASURED RESULTS  

Figure 6 shows the fabricated antenna on main probe 
station. Tests were jointly performed at the University of Brest 
and at the UKRI National mmWave Measurement Laboratory 
[10] at the University of Sheffield. Figure 7 illustrates the 
antenna undergoing radiated test on special mini prober 
station (phi sweep is vertically downwards). 

 

 
Fig.  8. Comparison between S11 simulated and measured results. 

Fig.  9. Normalized Measured Radiation Pattern at location of peak 

power (diodes unbiased). 

Unfortunately, the process steps were not able to achieve 

quantity of doping atoms as high as required. This implies 

that the integrated junction is not working in the ON-state, 

and the measured results are only presented in their OFF-

state. To measure the demonstrator behavior, it was firstly 
placed on a probe station where a 67A-GSG-150-DP probe 

was used to measure the reflection coefficient with a vector 

network analyzer (VNA) ZVA67 from Rhodes & Schwarz. 

Figure 8 compares the simulated and measured results of the 

reflection coefficient. The measured resonant frequency is at 

20.5 GHz and the reflection coefficient is -22 dB at the 

resonant frequency. 

The wafer probes affect the gain measurements for 

certain radiated cuts, so Fig. 9 shows the results of phi cut at 

theta position of maximum gain. The maximum gain 

measured was +7.4 dBi. 

VI. CONCLUSION 

The monolithic frequency reconfigurable bowtie antenna 

presented in this paper aims to achieve low-cost, high 

integration level and ablility to work in highly constraint 

driven environments. Despite the process steps not allowing 

the frequency commutation, the concept is promising and the 

measured results show good performances in the OFF-state.   
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