
This is a repository copy of Applications of artificial intelligence in computed tomography 
imaging for phenotyping pulmonary hypertension.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/215276/

Version: Published Version

Article:

Sharkey, M.J., Checkley, E.W. and Swift, A.J. orcid.org/0000-0002-8772-409X (2024) 
Applications of artificial intelligence in computed tomography imaging for phenotyping 
pulmonary hypertension. Current Opinion in Pulmonary Medicine, 30 (5). pp. 464-472. 
ISSN 1070-5287 

https://doi.org/10.1097/mcp.0000000000001103

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



     CURRENT

OPINION Applications of artificial intelligence in computed
tomography imaging for phenotyping
pulmonary hypertension

Michael J. Sharkeya,b, Elliot W. Checkleya and Andrew J. Swifta,c,d

Purpose of review

Pulmonary hypertension is a heterogeneous condition with significant morbidity and mortality. Computer
tomography (CT) plays a central role in determining the phenotype of pulmonary hypertension, informing
treatment strategies. Many artificial intelligence tools have been developed in this modality for the
assessment of pulmonary hypertension. This article reviews the latest CT artificial intelligence applications in
pulmonary hypertension and related diseases.

Recent findings

Multistructure segmentation tools have been developed in both pulmonary hypertension and nonpulmonary
hypertension cohorts using state-of-the-art UNet architecture. These segmentations correspond well with those
of trained radiologists, giving clinically valuable metrics in significantly less time. Artificial intelligence lung
parenchymal assessment accurately identifies and quantifies lung disease patterns by integrating multiple
radiomic techniques such as texture analysis and classification. This gives valuable information on disease
burden and prognosis. There are many accurate artificial intelligence tools to detect acute pulmonary
embolism. Detection of chronic pulmonary embolism proves more challenging with further research required.

Summary

There are numerous artificial intelligence tools being developed to identify and quantify many clinically
relevant parameters in both pulmonary hypertension and related disease cohorts. These potentially provide
accurate and efficient clinical information, impacting clinical decision-making.

Keywords

artificial intelligence, computer tomography, pulmonary hypertension

INTRODUCTION

Pulmonary hypertension is a chronic condition
defined by elevatedmean pulmonary arterial pressure
(mPAP) at rest. Pulmonary hypertension is estimated
to affect approximately 1% of the global population,
causing significant morbidity and mortality. Pulmo-
naryhypertension is aheterogeneous condition, accu-
rate patient phenotyping is essential to determine the
cause and subsequent therapeutic approach. Diagno-
sis ismadebasedonmultiple investigations; biochem-
ical, lung function, radiological and invasive
investigations. This determines the cause of the con-
dition and informs ongoing management [1

&&

]. Com-
puter tomography (CT) plays a central role in
determining the phenotype of each patient. Many
artificial intelligence techniques have been developed
in this modality to aid in the phenotyping of pulmo-
nary hypertension. This article reviews the latest CT
artificial intelligence applications in pulmonary
hypertension and related diseases.

PULMONARY HYPERTENSION

Pulmonary hypertension is defined as an mPAP
greater than 20mmHg at rest as proposed at the
Sixth World Symposium on Pulmonary Hyperten-
sion [2]. The European Society of Cardiology (ESC)
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and European Respiratory Society (ERS) have
reflected this in their new diagnostic criteria [1

&&

].
The ESC/ERS guidelines outline the different phe-
notypes of pulmonary hypertension based on the
underlying cause as follows:

(1) Group1 –pulmonaryarterialhypertension (PAH)
(2) Group 2 – pulmonary hypertension associated

with left heart disease (PH-LHD)
(3) Group 3 – pulmonary hypertension associated

with lung disease (PH-LD) and/or hypoxia
(4) Group 4 – pulmonary hypertension associated

with chronic pulmonary artery obstructions
(5) Group 5 – pulmonary hypertension with

unclear and/or multifactorial mechanisms

PAH is most commonly idiopathic but can be the
result of connective tissue diseases, congenital heart
diseases (CHD), portal hypertension and drugs. PH-
LHD is typically caused by diastolic heart failure,
systolic heart failure or valvular disease and has the
highest prevalence of all pulmonary hypertension
phenotypes. PH-LD is a heterogeneous group of
advanced parenchymal diseases, including interstitial
lung disease (ILD), chronic obstructive pulmonary
disease (COPD) and idiopathic pulmonary fibrosis
(IPF).Group4patients are largely representedby those
with chronic thromboembolic pulmonary hyperten-
sion (CTEPH). Finally, group 5 contains, but is not
restricted to, systemic, haematological and metabolic
disorders for which the prevalence is unknown.

The gold standard for pulmonary hypertension
diagnosis is right heart catheterization (RHC) but a
multimodal diagnostic approach, including CT, is
required to phenotype and risk assess patients [1

&&

].

COMPUTER TOMOGRAPHY IN

PULMONARY HYPERTENSION

CT imaging provides information on the pathophy-
siological impact of pulmonary hypertension on
cardiothoracic structures, allowing clinicians to
understand the underlying phenotype and target

therapies accordingly. ESC and ERS recommend that
CT imaging is performed in all patients with sus-
pected pulmonary hypertension [1

&&

,3]. This allows
for optimal imaging of the lung parenchyma and a
gross evaluation of cardiac structures and the pul-
monary vasculature. CT pulmonary angiography
(CT with iodinated contrast in the pulmonary arte-
rial phase) is required in patients with suspected
CTEPH. The Pulmonary Vascular Research Institute
imaging statement [3] places CT pulmonary angiog-
raphy more centrally in the diagnostic pathway for
all pulmonary hypertension patients given the addi-
tional diagnostic value for chronic embolic disease,
vascular anomalies and an assessment of the cardiac
structures. Although noncontrast CT imaging can
provide valuable information of parenchymal dis-
ease in those with suspected PH-LD, contrast-
enhanced CT, specifically CT pulmonary angiogra-
phy, is recommended for a more complete imaging
assessment, irrespective of the suspected pulmonary
hypertension aetiology.

Features of pulmonary hypertension on CTPA
imaging [4–6] are presented in Fig. 1. Dilatation of
the main pulmonary artery is seen in isolation and
in comparison to the aorta (Fig. 1a) with evidence
suggesting that a pulmonary artery diameter greater
than 30mm is sensitive and specific for pulmonary
hypertension [7]. The pulmonary arteries are further
assessed for pulmonary emboli (Fig. 1b), indicating a
group 4 phenotype. Arteriovenous (AV) malforma-
tions, aneurysms, and large vessel vasculitis may
also be present suggesting a group 1, PAH pheno-
type. Dilated bronchial arteries suggest chronic pul-
monary vascular disease, typically chronic embolic
disease causing regional pulmonary arterial hypo-
xaemia (Fig. 1c).

Morphology of the cardiac chambers and myo-
cardial hypertrophy provide evidence of left-sided
and right-sided disease manifestations in pulmo-
nary hypertension. Right ventricular hypertrophy,
deviation of the interventricular septum, and pul-
monary artery dilatation are the three features that
indicate increased pulmonary arterial pressures
(Fig. 1d). Right ventricular hypertrophy is com-
monly assessed at the right ventricular outflow tract
(given the compacted nature at this anatomical
location), with thickness �6mm suggesting pulmo-
nary hypertension (Fig. 1e). CHD and anomalous
arterial venous drainage can be visualized [4]. Other
nonspecific features of heart failure may be present
such as pericardial or pleural effusions (Fig. 1f) [1

&&

].
Lung parenchymal assessment provides infor-

mation as to the type and severity of lung disease.
Increases in lung density (or attenuation) are seen in
ground glass opacification or consolidation. Density
reductions are seen in emphysema-related lung

KEY POINTS

� Artificial intelligence cardiac CT segmentation is an
efficient and accurate method of providing important
metrics to inform diagnosis, phenotyping and prognosis
in those with pulmonary hypertension.

� Artificial intelligence tools accurately identify and
quantify lung parenchymal changes.

� Artificial intelligence tools have high diagnostic
accuracy in detecting acute pulmonary embolism but
lower accuracy in chronic pulmonary embolism.

Disorders of the pulmonary circulation
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destruction and mild reductions are seen in mosaic
perfusion abnormalities or air trapping. The distri-
bution should be assessed with specific diseases,
such as ILD, presenting with characteristic patterns
like honeycombing and reticulation (Fig. 1g). In
pulmonary hypertension, overlapping imaging pat-
terns emerge [5], highlighting the need for robust
modes of parenchymal assessment to phenotype
those with pulmonary hypertension.

ARTIFICIAL INTELLIGENCE IN

PULMONARY HYPERTENSION

Artificial intelligence involves programming com-
puters to perform tasks that typically require human
intelligence. Machine learning, a subset of artificial
intelligence, allows computers to learn and recog-
nize patterns or features from data without the need
for explicit programming. Deep learning is a form of
machine learning that utilizes many layers, an

FIGURE 1. Computer tomography findings in pulmonary hypertension. (a) Dilatation of the main pulmonary artery.
Comparison to the aorta is used to normalize for body size. (b) The pulmonary arteries are assessed for thromboembolic
disease and pulmonary obstruction. These provide information on AV malformations, aneurysms, and large vessel vasculitis. (c)
Mediastinal structures including the dilated bronchial arteries, dilated oesophagus, lymphadenopathy and pericardial effusions
provide evidence of pulmonary hypertension and potential cause. (d) Size and shape of cardiac chambers and myocardial
hypertrophy provide evidence of left-sided and right-sided heart failure. Assessment of congenital heart disease and
anomalous arterial venous drainage can also be made. (e) Thickening of the right ventricle (RV) outflow tract is suggestive of
RV hypertrophy. (f) Other thoracic evidence such as pleural effusion, pericardial effusion and ascites and features of left and
right heart failure should be considered. (g) Lung parenchymal assessment provides information as to the presence and
severity of lung disease as important factors for differentiation of pulmonary hypertension phenotypes.

Applications of artificial intelligence in CT imaging Sharkey et al.
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example being convolutional neural networks
(CNN). CNNs are widely regarded as effective tech-
niques in computer vision for tasks such as feature
recognition, localization, and classification [8–11].
These networks feed into radiomic applications such
as segmentation, texture analysis, and classification,
which will be explored subsequently.

Cardiac segmentation

Semantic segmentation in medical imaging is the
classification and delineation of pixels/voxels into
regions representing anatomical structures. This
identifies andquantifiesmorphological features such
as cardiac chambermasses, volumes and vessel diam-
eters. These parameters are crucial for disease diag-
nosis, treatment planning, prognostication and
disease monitoring [12–15]. Manual segmentation
is time-consuming [12,16]with significant variability
[17,18

&

,19]. Automatic segmentation has evolved
with the invention of deep learning tomatch human
performance (Fig. 2). UNet is a state-of-the-art CNN
widely used for segmentation that excels in image
segmentation by using an encoder–decoder architec-
ture to efficiently capture context and spatial infor-
mation [20–22].

Segmentation performance is evaluated using a
combination of area overlap metrics and surface

boundary distance metrics. The dice similarity coef-
ficient (DSC) is a widely used overlap metric, with
scores ranging from 0 to 1 representing no or perfect
overlap between the artificial intelligence-generated
segmentation and the ground truth, respectively.
Surface distance metrics, such as Hausdorff95 or
normalized surface distance, measure how closely
the surfaces of the segmented regions match [23

&

].
Segmentation tools have been developed to

identify individual structures for specific diagnostic
purposes. Yuan et al. [24] introduce PA-Net, a 2D
network designed for pulmonary artery segmenta-
tion in CTPA images for pulmonary embolism diag-
nosis. This demonstrated improved accuracy versus
other state-of-the-art segmentation tools with a DSC
score of 0.938 compared with the manual segmen-
tation.

Another structure of high clinical importance is
the left atrium. Its volume, when indexed by body
surface area (LAVI), is a surrogate marker for chroni-
cally raised left ventricular diastolic pressure [25],
found in PH-LHD, and is associated with raised all-
cause mortality [26]. Aquino et al. [27

&

] propose a
method for left atrium segmentation in multiphase
cardiac CTs, utilizing a 3D image-to-image network
with a conditional variational autoencoder (cAVE).
Tested on 55 patients awaiting ablation for atrial
fibrillation with CT coronary angiogram, the hybrid

FIGURE 2. Cardiac and great vessel segmentation. Segmentation of the cardiac structures and great vessels including
ascending and descending aorta (yellow and pink, respectively), pulmonary artery (light blue), right atrium (red), right
ventricular chamber (orange) and myocardium (light green), left atrium (dark blue), left ventricular chamber (dark green) and
myocardium (purple). For a colour version of this figure, see the online version of this article.

Disorders of the pulmonary circulation
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network generates multiple segmentations with the
cAVE identifying plausible segmentation distribu-
tions. The artificial intelligence-derived left atrial
volume was comparable with manual measure-
ments and was completed in less than half the time.

Sharkey et al. [18
&

] developed a multistructure
segmentation tool, employing a two-stage localiza-
tion and segmentationmethodology using nnU-Net
[21] to segment nine cardiac structures on CTPA
imaging. Trained on 100 patients with suspected
pulmonary hypertension, the model demonstrates
DSC scores greater than 0.85 for four-chamber, aorta
and pulmonary artery structures. DSC for RV hyper-
trophy was lower for RV hypertrophy 0.58 correlat-
ing with lower interobserver agreement of the
radiologists measurements of this structure. Visual
assessment was conducted in 1333 patients with
suspected pulmonary hypertension or suspected
pulmonary embolism with no difference in per-
formance between the two patient cohorts, increas-
ing applicability across different pulmonary
hypertension phenotypes [18

&

]. To our knowledge,
this is the only multistructure segmentation tool,
trained in a pulmonary hypertension cohort.

Chen et al. [28] extend the segmentation to 19
cardiac substructures in a lung cancer cohort using
the same nnU-Net. They employ separatemodels for
different substructure groups, balancing memory
requirements and potentially enhancing inference
speed. The segmentation achieves a high mean DSC
score with 94% of contours deemed clinically
acceptable for radiotherapy treatment planning.

A potential challenge is handling complex anat-
omy like CHD, and severe cardiac and vascular
disease manifestations in PAH, utilizing 2D and
3D UNets, Yao et al. [12] uniquely conduct cardiac
structure segmentation across 14 types of CHD.
They segment chambers and myocardium at low
resolution and blood pool at high resolution before
combining them. Graph theory is then applied for
patient-specific heart and vessel graph generation,
improving vessel categorization in complex CHD.
Compared with the previous state-of-the-art
method, this segmentation enhances DSC scores
by 12% [29].

Lung parenchymal assessment

Accurate lung parenchymal assessment is vital to
phenotype pulmonary hypertension with signifi-
cant crossover between different groups, especially
group 1 PAH and group 3 PH-LD [4]. Historically
quantitative evaluation of the lung parenchymawas
made based on density assessment, more recently
artificial intelligence tools have been developed
using various radiomic methods such as texture

analysis and classification, which are often used
together. The outputs contribute to diagnosis and
quantification of disease.

Texture analysis, in the context of deep learn-
ing, is the characterization of different regions of an
image based on the local pixel intensities. The
model learns its own set of filters, or weights, to
identify differing textures (or tissues) in the training
set. The identified regions of abnormal and normal
tissue create an overlay map of the lung, enabling
localization and quantification of disease (Fig. 3).
Classification is the use of deep learning to identify
patterns of disease to make single or multiclass
predictions. Classification methods are typically
used for automated diagnosis but can be used
in prognostication.

These techniques, when used in isolation, have
defined utility. Touloumes et al. introduced a CNN
classification network for pulmonary fibrosis diag-
nosis. Trained on 3600 CT scans and fine-tuned in
an external US cohort, the model had an AUC of
0.997 [30] with high sensitivity and specificity (91.3
and 95.3%) in both low and high pulmonary fibrosis
prevalence populations [31

&

]. However, this model
does not directly quantify disease burden, a limita-
tion of classification models.

To provide prognostic insight from a classifica-
tionmodel,Mei et al. [32

&

] used a CNNpretrained on
RadImageNet to classify five ILD subtypes and fur-
ther predict 3-year survival with a transformer
model. For prognostication, they used a novel
time-series multimodal model, integrating clinical,
medication, and imaging data, to enhance survival
predictions. The study further demonstrated that
using this multimodal data improved classification
predictions. This suggests longitudinal, holistic use
of data to generate artificial intelligence models to
improve diagnostics and prognostication.

To comprehensively assess lung parenchyma,
Sharkey et al. [33

&

] developed and tested an artificial
intelligence tool using segmentation, texture anal-
ysis, and classification techniques on 122 patients
with RHC confirmed pulmonary hypertension.
They used nnU-Net to first segment the lung volume
from CTPA images. This had a DSC score of 0.99 in
the internal cohort and was shown to be effective in
an external cohort with one failure out of 28 tested
[34]. They then classified and quantified five differ-
ent parenchymal patterns in a combined cohort of
idiopathic PAH and PH-LD using a patch-based
DenseNet-121 classification model. The proportion
of each lung texture was calculated to determine
disease severity. Area under the receiver-operating
characteristics curve (AUC) was 0.94 and 0.95 for
internal and external test sets, respectively. The
model showed strong correlation with diffusing

Applications of artificial intelligence in CT imaging Sharkey et al.
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capacity of carbon monoxide (DLCO), and good
correspondence with disease severity reported by
specialist radiologists [33

&

]. This suggests utility in
disease identification, quantification and lung func-
tion assessment. The clinical impact was consoli-
dated with the finding that artificial intelligence-
quantified percentage of fibrosis is an independent
mortality predictor in patients with PAH or PH-LD
[35

&

].
Handa et al. [36] developed a similar artificial

intelligence tool in the context of IPF. They trained
the artificial intelligence on 304High-ResolutionCT
(HRCT) images for patients with diffuse lung dis-
ease. They successfully quantified 10 parenchymal
lung patterns plus airway volumes, achieving DSC
scores of 0.67, 0.76, and 0.64 versus visual scoring
for reticulation, honeycombing, and bronchi,
respectively. In 120 IPF patients, over a median
follow-up of 2184days, the artificial intelligence-
measured lung and bronchial volumes were found
to be prognostic with hazard ratios of 0.97 and
1.33, respectively.

Pulmonary arterial clot detection
Approximately 2–3% of acute pulmonary embo-
lisms develop into CTEPH [37

&

,38] and with inter-
ventions such as PEA available for those with
chronic thromboembolic disease (CTED) [1

&&

], iden-
tification of both acute and chronic pulmonary
embolism is a clinically relevant endeavour.

There is a strong literature base for the auto-
mated detection of acute pulmonary embolism as
deep learning reading of CTPA could enable auto-
matic worklist prioritization, quantification and
characterization of disease, and smart reporting
[38,39]. A recent systematic review of deep learning
for pulmonary embolism detection [39] found five
studies prior to 2021 with pooled sensitivity and
specificity for pulmonary embolism detection of
0.88 [95% confidence interval (CI) 0.803–0.927]
and 0.86 (95% CI 0.756–0.924), respectively. All
studies analysed utilized a CNN to analyse the imag-
ing data, with one study additionally including
clinical data available in the electronic health
record. The algorithms were very sensitive but

FIGURE 3. Lung disease texture quantification and localization. Patient with interstitial lung disease overlaid with artificial
intelligence lung disease texture classifications; normal (dark blue), pure ground-glass (red), ground-glass with reticulation
(yellow), honeycombing (light blue) and low attenuation (pink). For a colour version of this figure, see the online version of this
article.

Disorders of the pulmonary circulation
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despite the implementation of deep learning, still
had high false-positive rate.

More recently,multiple studies have assessed the
performance of an artificial intelligence pulmonary
embolism detection system (AIDOC v1.0, AIDOC
Medical, Tel Aviv, Israel), which is both CE and Food
and Drug Administration (FDA)-approved. Cheikh
et al. [40

&

], in a cohort of 1202 patients with a
15.8% prevalence, revealed that the artificial intelli-
gence system had greater sensitivity (92.6%) and
negative-predictive value (NPV, 98.6%) compared
with the radiologists (90% sensitivity and 98.1%
NPV). The radiologists had greater specificity
(99.1%) and positive-predictive value (PPV, 95%)
versus the artificial intelligence algorithm (95.8%
specificity and 80.4% PPV). The artificial intelligence
detectedanadditional19pulmonaryembolisms.The
high diagnostic accuracy was corroborated in subse-
quent research [41,42]. This suggests a combination
of artificial intelligence and radiologists could
enhance clinical practice, with radiologists reducing
artificial intelligence’s overcall and artificial intelli-
gence detecting pulmonary embolisms thatmight be
missed otherwise.

The literature on artificial intelligence detection
of chronic pulmonary embolism (CPE) is sparse in
comparison to artificial intelligence detection of
acute pulmonary embolism. Ma et al. [43] intro-
duced a method to predict pulmonary embolism
presence, location (left/right/central), and condi-
tion (acute/chronic). CPE detection was signifi-
cantly lower than acute with AUCs of 0.69 and
0.89–0.95, respectively, highlighting the challenge
of accurately diagnosing CPE.

Vainio et al. [44
&

] introduced a novel method-
ology, utilizing 11 2D maximum intensity projec-
tion (MIP) images of volumetric CT scans to identify
CPE. A multinetwork ensemble model achieves a
classification AUC of 0.94 in a local dataset. Left and
right lungs were processed separately, with nonlung
tissue removed through lung segmentation.
Although this approach compels the network to
focus on the lung vasculature because of limited
additional information, MIP creation leads to a sig-
nificant loss of information about mosaicism, often
used by radiologists in CPE detection.

DEVELOPMENT IN IMAGING ACQUISITION

Artificial intelligence tools are yet to take advantage
of novel imaging techniques such as dual-energy CT
(DECT), lung subtraction iodine mapping (CT-
LSIM) or high-resolution imaging with photon-
counting CT.

DECT provides distinct images for differing tis-
sue types by modulating the x-ray energy or

spectrum. This improves image quality, increasing
diagnostic confidence with widespread applications
in cardiothoracic imaging [45,46]. However,
because of previous issues with increased noise
and imaging acquisition times, this technology
did not have widespread adoption. Advancements
in this technology has increased uptake and offers a
novel imaging modality for artificial intelligence
development [46].

CT-LSIMimages are generatedwhennoncontrast
CT images are subtracted from those of contrast-
enhanced CTPA. This provides high spatial resolu-
tion images of the pulmonary arterial system and
parenchyma with greater specificity for pulmonary
embolism detection than CT angiography. CT-LSIM
has comparable diagnostic performance to DECT
[47,48] without the need of dedicated hardware.

Photon-counting CT will provide a higher spa-
tial resolution evaluation of the pulmonary vascu-
lature, and other associated disease manifestations
in pulmonary hypertension such as interstitial lung
disease and chronic emboli. Utilizing artificial intel-
ligence to support evaluation of the fine details may
aid in the diagnosis and phenotyping of pulmonary
hypertension in the future.

Further work is required with each imaging
acquisition development to maximize the use of
new spectral data or more detailed structural infor-
mation.

CONCLUSION

Various artificial intelligence tools have been
applied to CT in those with pulmonary hyperten-
sion and related diseases. These demonstrate clinical
utility in automated diagnosis, quantification of
disease and prognostication, facilitating the pheno-
typing of pulmonary hypertension. Further work is
required to improve the models in areas such as CPE
detection. Developments in imaging acquisition
techniques require parallel developments in artifi-
cial intelligence techniques tomaximize use ofmore
detailed pathophysiological data.
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