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Abstract
Single Molecule Localisation Microscopy (SMLM) is becoming a widely used
technique in cell biology. After processing the images, the molecular localisa-
tions are typically stored in a table as xy (or xyz) coordinates, with additional
information, such as number of photons, etc. This set of coordinates can be
used to generate an image to visualise the molecular distribution, for exam-
ple, a 2D or 3D histogram of localisations. Many different methods have been
devised to analyse SMLM data, among which cluster analysis of the localisations
is popular. However, it can be useful to first segment the data, to extract the local-
isations in a specific region of a cell or in individual cells, prior to downstream
analysis. Here we describe a pipeline for annotating localisations in an SMLM
dataset in which we compared membrane segmentation approaches, including
Otsu thresholding and machine learning models, and subsequent cell segmen-
tation. We used an SMLM dataset derived from dSTORM images of sectioned
cell pellets, stained for the membrane proteins EGFR (epidermal growth fac-
tor receptor) and EREG (epiregulin) as a test dataset. We found that a Cellpose
model retrained on our data performed the best in the membrane segmentation
task, allowing us to perform downstream cluster analysis of membrane versus

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2024 The Author(s). Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

J. Microsc. 2024;1–13. wileyonlinelibrary.com/journal/jmi 1

https://orcid.org/0000-0001-6694-2613
https://orcid.org/0000-0002-3754-2028
https://orcid.org/0000-0002-3949-7523
mailto:m.peckham@leeds.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jmi
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjmi.13349&domain=pdf&date_stamp=2024-08-02


2 UMNEY et al.

cell interior localisations. We anticipate this will be generally useful for SMLM
analysis.

KEYWORDS
deep-learning, dSTORM, segmentation, SMLM

1 INTRODUCTION

The initial development of superresolution fluorescence
imaging included a number of single molecule localisation
microscopy (SMLM) approaches such as photoactivated
localisation microscopy (PALM1), stochastic optical recon-
struction microscopy (STORM2) and dSTORM (direct
optical reconstruction microscopy).3,4 A range of super-
resolution approaches since developed all use the basic
principle of ‘blinking’ fluorophores, in which a subset of
fluorophores in the sample fluoresce briefly at any one
time, and the positions of the fluorophores can be precisely
determined to nanometre precision (reviewed in Refs. 5
and 6). In turn, this has led to a wide range of methods
to quantitatively assess SMLM data (reviewed in Ref. 7) as
well as the development of deep learning approaches to
improve the rate and accuracy of SMLM imaging.8–10
To analyse the organisation of protein complexes in

SMLM data, a useful first step is to segment the dataset.
Segmentation of an image extracts the boundaries of an
object, such as the nucleus or plasma membrane, and
allows the analysis of that specific region.11 Segmentation
of an SMLM dataset labels each molecular localisation
(a data point with xyz position, channel identifier, other
properties) as belonging to a particular target structure
(nucleus, etc.) or not. This enables the nanoscale anal-
ysis of protein organisation in those structures, vital for
understanding sub‑cellular structures and function.
Several methods have been developed for image seg-

mentation, such as U-Net,12,13 Cellpose,14 reviewed in Ref.
(11), and Ilastik.15 U-Net is a widely used neural net-
work developed for biomedical segmentation, with many
pretrained models available to nonexperts through plug-
and-play style interfaces. Cellpose provides U-Net style
models for cell segmentation and is pretrained on a very
large and diverse set of cell images that have been man-
ually annotated, avoiding the need for retraining.14 Ilastik
is a semi-automated machine learning software that pro-
vides aGUI (graphic user interface) with access tomultiple
workflows including segmentation.15 However, as image
processing methods, these approaches cannot currently
be used directly on an SMLM dataset (point cloud). In
particular, although SMLM data can be rendered as an
image, these methods cannot output labelled localisations
for downstream analysis of segmented sets of localisations.

Methods for segmenting cells and subcellular regions
directly from SMLM data are not as well established.16–18
A range of software has been developed to segment clus-
ters from xy or xyz localisations in SMLM data.19 However,
these approaches are generally not designed for high
throughput processing of many images, require careful
parameter tuning for each FOV and require a subsequent
processing step to combine the segmented clusters into
whole cells. Alternatively, a widefield image of the FOV,
automatically thresholded, can be overlaid onto an SMLM
point cloud, to segment and extract the localisations in
this region.20 However, thresholding can struggle to deal
with images that are noisy or that have large variations in
the intensity of the background or object, which in turn
leads to poor segmentation. Nanowrap is a relatively new
approach that extracts subcellular membrane surfaces,
approximating the SMLM data using a coarse, density-
based isosurface or density‑thresholdedmesh, but requires
the user to set many parameters.21
To allow the nanoscale analysis of protein distribu-

tions in many new subcellular features and in cells, we
have developed a pipeline for automatic segmentation of
localisations in structures of interest. This pipeline auto-
matically makes downstream analysis possible on specific
structures in SMLM datasets over many fields of view. It
is available in locpix, a publicly available Python package
(https://github.com/oubino/locpix). locpix also provides a
means of manually annotating SMLM data rendered as
an image. This process labels individual localisations in
the SMLM point cloud, giving ground-truth data for both
training (in machine learning methods) and testing of seg-
mentation. Here, we automatically classify protein locali-
sations into sets of plasma membrane and nonmembrane
localisations, testing several segmentation algorithms, and
subsequently segment localisations into groups belonging
to different cells. Finally, we analyse protein localisations
from the segmented datasets.

2 MATERIALS ANDMETHODS

2.1 Pipeline overview

Following sample preparation and SMLM imaging
and data preprocessing (including drift correction and
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(A)

(B)

(C)

F IGURE 1 locpix analysis pipeline for segmentation of SMLM data. (A) The point cloud data is converted from tabular style data to an
image (2D histogram). Images are manually annotated in napari (yellow lines are manual annotations of plasma membrane). The output
tabular data has an additional ground-truth label for each localisation (zero for nonmembrane and one for membrane in this case). (B)
Partitions of the dataset for training and testing of a segmentation algorithm (26 FOVs in this case, using 5-fold cross-validation in training).
(C) Automated segmentation obtained on data from FOVs previously unseen by the segmentation algorithm (membrane segmentation
followed by cell segmentation here).

localisation filtering), we developed locpix (https://github.
com/oubino/locpix) for manual annotation and segmen-
tation of single-molecule localisation data (Figure 1). First,
the distribution of localisations is rendered as an image (a
2D histogram). Next, it is manually annotated to identify

the structures of interest (e.g. plasma membrane). This
manual annotation step adds a label to all localisations,
depending on whether they are within annotated pixels of
the image or not. Multiple layers of annotation (multiple
labels for different structures of interest) can be added at
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this stage, or just one. Next, a segmentation algorithm is
trained or otherwise optimised (if not a learning algorithm)
on a portion of the data. Then it is tested on data from
fields of view (FOVs) previously unseen by the algorithm.
The original annotation step provides a per-localisation
ground truth label for characterising segmentation per-
formance on the test data. The algorithm may then
be applied later to segment further, unannotated data.
Finally, this segmentation of localisations into different
labelled subsets may be used to analyse the organisation
of localisations in a particular structure or structures, for
instance in the plasma membrane or distinct cells.

2.2 Sample preparation and SMLM data
acquisition

To test our pipeline, we used SMLM data obtained from
imaging sections of cell pellets, taken from formalin fixed
and paraffin embedded (FFPE) samples. The cell pellets
were generated from an engineered single cell derived
clone (C15) of a metastatic colorectal cancer cell line,
SW620, which contained a targeted mutation in exon 22
of PTCH1 (Patch1).22 This mutation upregulated expres-
sion levels of EGFR and EREG in these cells (personal
communication, 2022). The sections were labelled using
antibodies to the plasmamembrane protein EGFR (epider-
mal growth factor receptor) using an anti-EGFR antibody
(5B7: rabbit monoclonal, Roche) and to its ligand EREG
(epiregulin) using an anti-EREG antibody (SP326: rabbit
monoclonal, Roche), followed by donkey anti-rabbit Alexa
647 and goat anti-rabbit CF568 secondary antibodies. A
goat anti-rabbit Fab antibody was used for blocking before
adding the second primary anti-EGFR antibody. Staining
for these two proteins generated a high-density mem-
brane localisation, often visible as cell outlines in sections
through the cell pellet.
To image the samples, we performed TIRFM (total

internal reflection fluorescence microscopy) dSTORM
(direct stochastic optical reconstructionmicroscopy) imag-
ing using a commercial system (Nanoimager (ONI)) and
100 × 1.4 NA oil‑immersion objective lens. Samples
were bathed in STORM buffer (B-cubed buffer (ONI,
BCA0017)). Using an exposure time of 30 ms, 5000
frames per channel were acquired sequentially. The
640 nm laser was set to 60% power and the 561 nm
laser to 20% power of the maximum excitation output
of the Nanoimager. 2D localisation of fluorescence emis-
sion events was performed while imaging using NimOS
(ONI, UK).
We obtained 26 FOVs from four samples with approxi-

mately 1.5× 107 localisations per FOV. In 12 of the 26 FOVs,
EREG/EGFR were imaged in the 568/647 nm channels,

respectively. In the remaining 14 FOVs, EREG/EGFR were
imaged in the 647/568 nm channels respectively.

2.3 Data preprocessing

Drift correction, filtering and temporal grouping for each
FOV was performed using CODI (COllaborative Discov-
ery platform from ONI, UK; https://oni.bio/nanoimager/
software/codi-software/). The filtering step removed local-
isations in the 647 nm channel in frames 5000-10,000
(while imaging at 568 nm) and in the 568 nm channel
in frames 0–4999 (while imaging at 647 nm). In addition,
localisations with >30,000 photons, with a standard devi-
ation of the fitted point spread function (PSF) <75 nm or
>200 nm, with a p-value for the fitted PSF above 0.01 or
with a localisation precision>25 nmwere removed. Local-
isations within 60 nm and no more than two frames apart
were grouped, removing those that existed for longer than
five frames. This resulted in ∼ 250,000 localisations per
FOV.
Each FOV was then reconstructed into one 2D his-

togram (image) per channel. The data in its proprietary
format was first converted into an Apache Parquet file, a
column-orientated data format which can be more effi-
cient for querying and storing than .csv files (https://
parquet.apache.org/). For each localisation, the channel,
frame number and xy coordinates were stored. For each
FOV, the point cloud data for the EGFR and EREG
channels were binned into separate 2D histograms and
rendered as images, with pixel grey levels equal to the
bin values. Each histogram consisted of 500 × 500 pix-
els over the x and y range of the FOV. Since the range
varied between FOVs, each pixel was between 99–100 nm
wide and 157–160 nm tall. For the analysis presented here,
we merged the data from the two channels, to obtain one
overall ‘membrane’ dataset.

2.4 Software development

We created locpix, a Python 3 package installable via
the Python Package Index. locpix prepares tabular SMLM
data for analysis (https://github.com/oubino/locpix) and
includes conversion of the SMLM data to 2D histograms
using numpy (https://pypi.org/).23 It enables manual
annotation of the dataset via napari, an image viewer
implemented in Python 3. For membrane segmentation,
locpix includes Otsu thresholding, a standard U-Net model
implemented in PyTorch using code adapted from https://
github.com/milesial/Pytorch-UNet and Cellpose (version
2.0).14,24 Cell segmentation using the watershed algo-
rithmwas implemented via scikit-image.25 We also include
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input and output of data to and from the Ilastik GUI for
membrane and cell segmentation.15 Finally, we include
evaluation of performance metrics for the segmentation.
For more details on the commands used to produce the
analysis below, please see the README in the locpix
repository https://github.com/oubino/locpix.

2.5 Manual annotation

The EGFR and EREG preprocessed localisation distri-
butions (point clouds) were binned into 2D histograms,
rendered as images, and loaded into separate channels
in napari.26 In napari, the cell membranes were manu-
ally traced using the freehand drawing tool to generate a
ground-truth labelled image, in which each pixel had an
integer value of either zero for nonmembrane or one for
membrane. The ground-truth label for each pixel was then
assigned to all localisations within the corresponding 2D
histogram bin. The localisations were then exported into
a new Apache Parquet file, with an additional column for
the ground-truth label (Figure 1A). This manual annota-
tion step is available as an open-source (OS) napari plugin
at https://www.napari-hub.org/plugins/napari-locpix.

2.6 Dataset partitions

Separate datasets for training and evaluation were created
(Figure 1B). First, the entire dataset was divided into a
training set (70%) and a test set (30%). The test set was
generated from the FOVs with the highest percentage of
membrane localisations according to the manual annota-
tions and was not used until performance analysis. The
training set was then divided into five subsets (hereafter
referred to as folds). Five different splits of the training
dataset were then generated, each with a different fold for
validation and the remaining folds for training (Figure 1B).
For each of the five methods used for membrane and cell
segmentation detailed below, we developed a model for
each split of the training dataset, using the training folds
for training the model where relevant (standard U-Net,
Cellpose (retrained) and Ilastik) and the validation set for
comparing performance. Each model was then evaluated
on the test set for the final comparison.

2.7 Segmentation algorithms:
probability map generation

We developed several methods to predict the probability
for each pixel in a FOV that it was located within the
plasma membrane (probability map). These probabilities

were then assigned to the localisations belonging to each
pixel. First, for each method except Ilastik, the EGFR and
EREG images (2D localisation histograms) were summed
into a single channel for processing. For Ilastik, the input
was a two-channel EGFR and EREG image. The pixel val-
ues in the resulting images (and each channel in the Ilastik
method) were scaled by log2 to reduce skew, thresholded
above zero and scaled to between 0 and 255. We obtained
membrane probability maps from these images using the
following approaches.

∙ Otsu thresholding: A binary probability map (0 or 1 for
each pixel and underlying localisations) is obtained after
Otsu thresholding of the transformed and scaled image.

∙ U-Net: Standard U-Net architecture, with four encoder
blocks and decoder blocks with skip connections
between them, and a final sigmoid function to con-
vert the raw output values to normalised probabilities
for image pixels (Supplementary Information: Architec-
tures). Images were normalised by subtracting themean
and dividing by the standard deviation of all pixel values
in the images in the training folds. Further, random aug-
mentation including rotations, horizontal and vertical
flips, erasing, and perspective shifting was applied to the
training folds. The model was trained for 1000 epochs
using a dice loss function and Adam optimiser with a
learning rate of 0.01 and weight decay of 0.0001.27 The
model was saved when the loss on the validation fold
was lowest.

∙ Cellpose (pretrained): We used the ‘LC1’ model in Cell-
pose, pretrained on phase-contrast images of cells with
only a single channel for cytoplasm. The LC1 model
was considered the most appropriate, given we expect
the edge of the cytoplasm and EGFR/EREG proteins
to define a similar boundary for the cell. Brief experi-
mentation on a training image also indicated this was
the best-performing Cellpose model. LC1 is a modifica-
tion of the standardU-Net (Supplementary Information:
Architectures). Cell diameter in LC1wasmanually set to
100 pixels as determined from training FOVs. Cellpose
(pretrained) assigned to each pixel an unnormalised
probability that it belonged to a cell, which we reas-
signed as the probability it belonged to a membrane,
followed by scaling to between 0 and 1, as usually
performed by Cellpose.

∙ Cellpose (retrained): We modified the Cellpose training
script to change the loss function to calculate binary
cross-entropy logits loss between the ground-truth label
image from manual annotation and the output mem-
brane probability map, manually set the cell diameter
and mean cell diameter for all images to 100 pixels and
allow training to run overmultiple splits of the data. The
pretrained Cellpose LC1 model was retrained for 1000
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epochs, with aweight decay of 0.0001 and a learning rate
of 0.01. We performed limited tuning for these hyperpa-
rameters by training with a small partition of split zero’s
training folds (Figure 1B), without evaluation on the test
dataset. The output probabilities were scaled as in Cell-
pose (pretrained). The model was saved when the loss
on the validation fold was lowest.

∙ Ilastik: The two-channel images and ground-truthmem-
brane annotation images were used to perform the
Ilastik pixel classification workflow. We trained the
model using the Ilastik GUI with all possible image
features. No further annotations were made to the
ground-truth images once they were loaded into the
GUI. We chose a label of 2, rather than 0 for non-
membrane pixels (in Ilastik a label of zero means no
label is present) and randomly removed ∼80% of these
nonmembrane ground-truth pixel labels to reduce the
computational overhead.

2.8 Membrane segmentation

The point cloud datasets were then segmented by clas-
sifying each localisation as membrane (positive class) or
nonmembrane (negative class). Performance was evalu-
ated at this per-localisation level, as this is most relevant
to downstream analysis of nanoscale protein organisa-
tion. Supplementary Information: Performance metrics
(together with Tables S1 and S2, and Figure S1) pro-
vides more information on the metrics used to evaluate
performance.
Following the membrane probability map generation

with each method, the probabilities assigned to the locali-
sations underlying each pixel were used together with the
ground-truth annotation of those pixels (membrane or not
membrane) to plot precision–recall (PR) curves. We pre-
fer this approach to the commonly-used ROC (receiver
operating characteristic) curve based on its sensitivity to
changes in false positives (FP), despite a large number of
true negatives (TN).28,29 First, for each split of the train-
ing data, the localisations from all FOVs in the training
folds were aggregated into one table. In this table, every
localisation nowhad both its ground-truth label fromman-
ual annotation (0: nonmembrane or 1: membrane) and its
model-generated probability of belonging to a membrane.
PR curves were generated by calculating the precision and
recall for different values of a classification threshold, τ,
that increased from zero to one, where localisations with
a probability above each τ were assigned to the membrane
(Supplementary Information: Performance Metrics). PR
curves for the validation folds and the test set were gen-
erated using the samemethod. The normalised area under
the PR curve (AUCNPR: area under curve normalised PR)
was then calculated for the test set.30 For the Cellpose (pre-

trained) and Otsu models, which were not trained on our
data, the probabilitymaps on the test set did not depend on
our training dataset splits, resulting in only one PR curve
and AUCNPR in each case.
The F1 score was chosen as the primary performance

metric as it accounts for class imbalance, as is present
in our dataset (more nonmembrane than membrane
localisations).31,29 For each segmentation method, the
probability threshold τ that maximised the F1 score for
localisation classificationwas determined for each training
fold. These values of τwere then applied to the probability
maps for the test dataset, used to calculate the accuracy,
precision, recall and the F1 score for each model on pre-
viously unseen data. For the Otsu method, the membrane
probability map was already binary, and setting different
probability classification thresholds, τ, between 0 and 1 did
not affect results. Therefore, therewas a single result on the
test set for eachmetric, independent of the training dataset
splits.

2.9 Cell segmentation

The probability maps for each method were used as the
starting point for cell segmentation, except for the Otsu
method, which operated directly on the 2D localisation
histogram. For all 26 histograms in the original SMLM
dataset, the approximate location of the cell centre was
identified manually, giving seed locations for the water-
shed algorithm for the Otsu, standard U-Net and Cellpose
methods. Seeds were also placed across the background, to
prevent cell segmentations extending into the background
and to avoid assigning the same label to well-separated
membrane localisations on different cells. Ilastik on the
other hand, automatically calculated seed locations for the
watershed algorithm.
For the Otsu method, the EGFR and EREG 2D local-

isation histograms were summed, transformed by log2,
thresholded above zero and scaled to between zero and
255 as performed for membrane segmentation. The result
was used as input to the watershed algorithm. The deci-
sion to use this thresholded and scaled histogram rather
than the raw histogram was based on a visual analysis
of the performance on one training histogram. For stan-
dard U-Net and both Cellpose methods, the watershed
algorithm was applied to the probability maps from mem-
brane segmentation. For Ilastik, the input 2D localisation
histograms and output probability maps from the Ilastik
membrane segmentation were used to perform the Ilastik
multicut workflow. We trained the model using the Ilastik
GUI with only five histograms from the training folds
to save time. Ilastik then batch-processed the remaining
histograms from the entire dataset using these trained
parameters.
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UMNEY et al. 7

2.10 Downstream analysis

We performed an example of downstream analysis
of segmented membranes as follows (https://github.
com/oubino/locpix/blob/main/examples/c15_data_ds_
analysis/analysis.ipynb). First, we manually picked
well-segmented cells from the test set. Next, comparing
localisations at the plasma membrane and interior of each
cell, we calculated the 2D radial distribution function and
clustered the localisations using DBSCAN with epsilon
and minimum points set to 75 nm and 5 respectively.
Then, aggregating over the cells for the test dataset, we
calculated the overall 2D radial distribution function,
localisations per cluster, and cluster length (using the
convex hull) for the cell interiors and plasma membranes.

2.11 Statistical analyses

The distributions of the cluster parameters for interior
and membrane localisations were tested for normality
using the Shapiro–Wilk test. As the distributions failed
the test for normality, we used the two-tailed nonparamet-
ric Mann–Whitney U rank test to test the null hypothesis
that the distributions for interior and membrane clus-
ter parameters come from the same population, with the
null hypothesis rejected for p ≤ 0.05. Both tests were
implemented in the Python package SciPy.32

3 RESULTS

3.1 Manual annotation

All 26 FOVs from the original SMLM dataset were man-
ually annotated. Each localisation that belonged to a
membrane was first manually annotated using the cus-
tom image annotation script (Figures 1A and 2A–D). It
was not always possible to clearly differentiate between
themembrane, and the cell interior or general background
(defined here as nonmembrane). The manual membrane
annotations thus did not always delineate the entirety of a
cell (Figure 2A–D). This contributed to a small imbalance
in the dataset, with ∼1.5 times more nonmembrane than
membrane localisations for the dataset.

3.2 Membrane segmentation

Multiplemethods formembrane segmentationwere devel-
oped, trained and validated on five splits of the training
dataset. These included methods that learnt from our
training dataset (Standard U-Net, Cellpose (retrained),

Ilastik): one that had been pretrained on a different dataset
(Cellpose (pretrained)) and one without any machine
learning (Otsu method). The results of these methods
were compared considering both the quantitative and
qualitative performance on the test set (Table 1 and
Figures 3 and 2). We used AUCNPR (area under the
curve, normalised precision–recall) as the key measure
of performance as it balances precision and recall and
accounts for class imbalance, while the F1 score was
most useful when evaluating the performance on the
final segmentation.29,31,33 We were mostly confident that
the annotated membranes were true membrane regions
but cannot rule out that some may have been missed;
therefore, true-positive and false-negative counts were the
most reliable. This made recall the most reliable metric
(Table 1), despite the pitfall of predicting all localisations
as membrane giving the maximum recall (1.0).
We found that Otsu was the second worst-performing

model for membrane segmentation (AUCNPR: 0.63,
Table 1). It overestimated the membrane localisations, as
shown by the high membrane recall (0.902, Table 1) and
lowmembrane precision (0.543, Table 1). Furthermore, the
false positives were in areas unlikely to be regions of mem-
brane thatweremislabelled during annotation, such as cell
interiors (Figure 2E and G, μ).
Standard U-Net significantly outperformed Otsu

and was the second best of all approaches (AUCNPR:
0.810 ± 0.003, Table 1). It had higher nonmembrane
recall and membrane precision but lower membrane
recall than Otsu (Table 1), demonstrating that it predicted
more membrane localisations as nonmembrane but made
fewer false-positive membrane predictions. In particular,
it predicted fewer localisations in cell interiors than
membranes compared to Otsu (Figure 2E and G, μ).
Cellpose (pretrained) performed the worst of all (AUC-

NPR: 0.36, Table 1). Despite outperforming Otsu in all
metrics apart from AUCNPR (Table 1), the predictions
appeared visually similar (Figure 2E–H). Further, like
Otsu and unlike standard U-Net, it mistook cell interiors
as membranes (Figure 2G, μ). It did have higher mem-
brane recall than standard U-Net (Table 1), but it also
made more false-positive mistakes (lower membrane pre-
cision, Table 1), predicting more of the nonmembrane
localisations as belonging to the membrane.
Cellpose (retrained) was the best-performing model

(AUCNPR: 0.853 ± 0.008, Table 1). Retraining Cellpose
demonstrated a clear performance improvement (rise in
the PR curve vs. pretrained, Figure 3). This model pre-
dicted fewer localisations as belonging to a membrane
(decrease in the membrane recall, Table 1), noticeably
predicting fewer cell interiors as membranes compared
to Otsu, Ilastik and Cellpose (pretrained) (Figure 2G, μ).
Compared to standard U-Net, Cellpose (retrained) gave
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8 UMNEY et al.

F IGURE 2 Manual annotation, membrane segmentation and cell segmentation results. (A–D) The original 2D histogram (sum of EGFR
and EREG) together with the annotated 2D dataset (yellow: membrane annotation) for four FOVs from the test set (unseen to all trained
methods), where all results are from the same split (zero). (E–H) The membrane and cell segmentations for each of the five methods. For cell
segmentation, each colour represents a different cell label and nonbordering segments of the same colour represent different cell labels. KEY:
Δ: nonannotated region that could be membrane; μ: nonmembrane localisations predicted as membrane; Σ: membrane localisations
predicted as nonmembrane; Ψ: error in cell segmentation; Ω: instability of the watershed algorithm.

TABLE 1 Performance metric scores (Supplementary Information: Performance metrics) for each method.

Recall non-
membrane

Recall
membrane

Precision
nonmem-
brane

Precision
membrane

F1 score
membrane

Accuracy
membrane

AUCNPR
membrane

Otsu 0.205 0.902 0.666 0.543 0.678 0.561 0.63
Standard U-Net 0.948 ± 0.001 0.608 ± 0.006 0.698 ± 0.003 0.924 ± 0.001 0.734 ± 0.004 0.774 ± 0.003 0.810 ± 0.003
Cellpose
(pretrained)

0.273 ± 0.036 0.943 ± 0.013 0.824 ± 0.019 0.576 ± 0.008 0.715 ± 0.003 0.616 ± 0.011 0.36

Cellpose
(retrained)

0.783 ± 0.023 0.842 ± 0.009 0.826 ± 0.005 0.803 ± 0.015 0.822 ± 0.004 0.813 ± 0.007 0.853 ± 0.008

Ilastik 0.911 ± 0.012 0.539 ± 0.033 0.654 ± 0.014 0.864 ± 0.010 0.663 ± 0.023 0.721 ± 0.012 0.784 ± 0.011

Note: Scores are presented as the mean ± standard deviation over the five splits evaluated on the test set. Recall is given by 𝑇𝑃

𝑇𝑃+𝐹𝑁
, precision (prec.) by 𝑇𝑃

𝑇𝑃+𝐹𝑃
, F1

score by 2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
and accuracy (acc.) by 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
„ where TP, TN, FP, and FN are the number of true-positive, true-negative, false-positive and false-

negative predictions, respectively, and either nonmembrane or membrane is the positive class. AUCNPR is the normalised area under a curve that plots precision
against recall for different thresholds applied to the probability map. For Otsu and Cellpose (pretrained), there is no variance for AUCNPR as the split has no
impact on the probability map for the test set (Section 2). For Otsu, the remaining metrics have no variance as changing the threshold for each split has no impact
on the probability maps (Section 2). The best scores for each metric are highlighted in bold.

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13349 by T
est, W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



UMNEY et al. 9

F IGURE 3 Precision–recall curves for each method evaluated
on the test set. The curves show the mean over the five training
dataset split models with ±1 standard deviation shaded where
appropriate. No variance values for Otsu and Cellpose (pretrained)
are shown as the algorithm applied to the test data did not depend
upon the training data (Section 2). Baseline performance was a
model that predicted all localisations as belonging to a membrane.

more extensive segmentations (higher membrane recall,
Table 1) but at the cost of more false positives (lower
membrane precision, Table 1). At points standard U-Net
seemed to better reflect our annotations, omitting an edge
that Cellpose (retrained) predicted (Figure 2E, μ), which,
despite looking membranous, was not manually anno-
tated. Further, standard U-Net correctly segmented locali-
sations in cell interiors that weremislabelled asmembrane
by Cellpose (retrained) (Figure 2F, μ). However, standard
U-Net also omitted regions that were clearly membrane,
which Cellpose (retrained) correctly segmented (Figure 2F
and H, Σ). Cellpose (retrained) also identified regions that
may have been membrane and that we were not confident
enough to annotate (Figure 2A and B, Δ).
Finally, we found that Ilastik performed worse than

retrained Cellpose and standard U-Net (AUCNPR:
0.784 ± 0.011, Table 1). Like standard U-Net, it pre-
dicted more membrane as nonmembrane than Cellpose
(retrained) (higher nonmembrane recall and lower mem-
brane recall, Table 1). This included missing a significant
proportion of the membranes (Figure 2E, Σ), which
Cellpose (retrained) correctly segmented. Further, it made
similar mistakes to Cellpose (retrained) with interiors
(Figure 2F and G, μ) and trailing edges (Figure 2E, μ),

the latter of which were not manually annotated despite
looking membranous. Ilastik overfit the training data, as
evidenced by the poorer performance for the validation
and test set compared to the training set (Figures 3 and S2).
One likely reason for this is the small size of the dataset.
A second is that we did not monitor for overfitting during
training by evaluating the performance on the validation
set. Therefore, the probability threshold determined using
the F1 score on the training set was also likely to be
suboptimal when applied to the test set.

3.3 Cell segmentation

Multiple methods for cell segmentation were developed,
trained and validated on five splits of the training dataset
and results compared using a qualitative analysis on the
test set (Figure 2).Quantitative performancemetrics on the
localisations could not be evaluated as the cells were not
manually annotated.
All methods segmented some cells correctly but gen-

erally performed poorly. This was most evident in the
examples shown in Figure 2H, where we were most con-
fident in the ground truth, reflected in the extensive
manual annotations (Figure 2D: ∼7 identified cells). Cell-
pose (retrained) did not make the same mistakes that
Cellpose (pretrained), standard U-Net and Ilastik made
for cell segmentation (Figure 2H, Ψ). This was expected
as these methods relied on the quality of the membrane
segmentation, which was best for Cellpose (retrained).
Further, as Cellpose (retrained) provided more extensive
annotations than the other high-performing model, stan-
dard U-Net, it was less likely to divide cells in two because
there were gaps in the membrane annotation (Figure 2F,
standard U-Net, Ψ). Despite this, the performance of Cell-
pose (retrained) was almost identical to the much simpler
Otsu method (Figure 2E–H).
There were problems using the watershed algorithm

for cell segmentation across all methods. Firstly, local-
isations from the exterior of different cell membranes
were incorrectly assigned the same label, despite being far
apart (Figure 2F, Cellpose (pretrained), Ψ). Even though
the same markers were used for all methods (apart from
Ilastik), small differences in the membrane segmenta-
tion caused large differences in the cell segmentation
(Figure 2G, Ω).

3.4 Downstream analysis

Once the data is segmented, it can then be used in
downstream analysis, as we show here for membrane
and cell segmentation results, by exploring EGFR
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10 UMNEY et al.

F IGURE 4 Analysis of segmented data. (A) Part of an FOV from the test dataset that shows five of the eight cells that were manually
selected following cell segmentation. (B) Radial distribution function (RDF) for the membrane and cluster localisations calculated for each
cell and aggregated over the whole test set. The median value for each radius is plotted with interquartile range shaded. (C) Interior
localisations and plasma membrane localisations for cell 3 from panel A. Each colour represents a different cluster from DBSCAN (epsilon =
75 nm). Grey localisations do not belong to a cluster. Localisations within the red box are shown at higher magnification below as indicated.
(D) Cluster metrics for the cells in the test dataset. Box plots for the number of localisations per cluster (top) and cluster length (bottom) for
each cell aggregated over the whole test dataset. The three central horizontal lines are the first (Q1), second (Q2) and third quartile (Q3) from
bottom to top; the whiskers are Q1–1.5 × (Q3–Q1) and Q3–1.5 × (Q3–Q1); and the outliers are plotted as crosses. Median localisations per
cluster: 8 (interior), 12 (membrane), Mann–Whitney U = 1.9 × 107, nmembrane = 6183, ninterior = 8141, p ≤ 0.05. Median cluster lengths: 127 nm
(interior), 174 nm (membrane), Mann–Whitney U = 1.8 × 107, nmembrane = 6183, ninterior = 8141, p ≤ 0.05.

distribution and clustering in the cell membrane and
interior (Figure 4). From the automated segmentation
from Cellpose (retrained), we manually selected well-
segmented cells from all FOVs in the test dataset (60
cells) and separately calculated the 2D radial distribution
function and clustering of their localisations (DBSCAN:
epsilon= 75 nm, minimum points= 5) predicted as ‘mem-
brane’ or ‘nonmembrane’. Localisations within the interior
of the cells were characteristically found in close proximity
(≤approx. 100 nm), while typical distances between those

at the membrane extended over a longer distribution
(Figure 4B). Localisations at the cell membrane formed
clusters with significantly higher localisations per cluster
and cluster length than the cell interior (Figure 4D).
These clusters included repeated localisations of the same
fluorescent dye molecule, multiple dye molecules per
secondary labelling antibody and any clustered instances
of EGFR. Although many membrane localisations are
grouped into large clusters, there is a smaller number
of these large clusters, and the difference between the
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UMNEY et al. 11

distributions appears to reveal a more subtle difference
between the arrangement of EGFR in the interior and
at the membrane. The cluster parameter distributions
in the interior likely include a major contribution from
monomeric EGFR, with multiple dye molecules per
labelling antibody. The increase in the median length and
number of localisations per cluster at the membrane may
be a result of the known dimerisation of EGFR at themem-
brane, or a larger number close together, although results
are confounded by the dense packing at themembrane and
the multiple fluorescent molecules per labelling antibody.

4 DISCUSSION

We have demonstrated a pipeline for annotating and auto-
matically segmenting cells and membranes from SMLM
point-cloud data, which is important for downstream sub-
cellular analysis. Using the normalised area under the
precision–recall curve (AUCNPR) to compare methods,
we found that Cellpose (retrained) performed the best for
membrane segmentation. This type of approach is useful
for identifying molecular localisations as belonging to spe-
cific cells and regions of cells, to enable directed analysis
of localisation data specific to those regions.
The trained models outperformed traditional meth-

ods for membrane segmentation (Otsu method).34 This
was expected, as the heterogeneity in membrane staining
between cells makes it challenging to set a threshold for
the entire FOV. Further, standard thresholding techniques
fail to consider both local (cells) and global (entire FOV)
context and can struggle to deal with small objects and
images that are noisy or show significant variation in the
background or object intensity.35,36
The inability of these trained models to outperform

the Otsu method in cell segmentation points to issues
with applying the watershed algorithm to this task. Small
changes in the membrane segmentation led to large differ-
ences in cell segmentation, and localisations fromdifferent
cell membranes that were large distances apart could
be assigned the same label. This is expected based on
the known disadvantages of watershed that it is sensi-
tive to noise and inhomogeneity of background and object
intensity, and it does not consider the global context.37,38
When comparing membrane segmentation models, one

should consider if it is more important for downstream
analysis to minimise the number of missing membranes
(false negatives), or the number of nonmembrane locali-
sations predicted as belonging to a membrane (false pos-
itives). Cellpose (retrained) had higher membrane recall
but lower membrane precision than standard U-Net. If it
is more important to avoid false positives while allowing
more false negatives, then standard U-Net would be bet-

ter, and vice versa for Cellpose (retrained). The accuracy
of these metrics should also be considered; for example,
some of the false positives from Cellpose (retrained) were
in regions likely to contain membrane that we were not
confident enough to annotate.
Using an ensemble ofmetrics can give a fairer indication

of model performance across both positive and negative
classes, rather than focusing on a single metric. For exam-
ple, membrane recall could be misleading in isolation,
because it can bemaximised by classifying all localisations
as membrane and giving no true negatives. Combining
PR curves and AUCNPR with k-fold cross-validation mea-
sures how robust the methods are to changes in threshold
and changes to training and evaluation data respectively.
The performance of Cellpose (retrained) was less variable
across a range of thresholds, evidenced by the highest
AUCNPR (Table 1), which is important if setting the
threshold is challenging.

5 CONCLUSION

Theworkflowwe have developed demonstrates howmem-
brane and cell segmentation can be incorporated into the
analysis pipeline for SMLMdata in a range of applications.
SMLM data segmentation allows the analysis of high-
precision molecular distributions in specific subcellular
regions, for instance using one of the many preexisting
algorithms.17,39,40 This analysis can be extended to anno-
tate, segment and analyse SMLM images from a broad
variety of samples, including clinical samples. Eventually,
this may enable the automated evaluation of biomark-
ers with SMLM, with the potential of predicting patient
response to treatment.

SOFTWARE AVAILAB IL ITY
locpix can be found at https://github.com/oubino/locpix
and is installable via the Python Package Index (https://
pypi.org/project/locpix/). The manual annotation tool is
available as a napari plugin from https://www.napari-
hub.org/plugins/napari-locpix. The modified Cellpose
training script is also available at https://github.com/
oubino/cellpose. The downstream analysis is available
as a Jupyter notebook in the locpix GitHub repository at
https://github.com/oubino/locpix/blob/main/examples/
c15_data_ds_analysis/analysis.ipynb.

ACKNOWLEDGEMENTS
OU was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) grant EP/S024336/1
for the University of Leeds Centre for Doctoral Training.
PQ andAC acknowledge funding from aNational Institute
for Health and Care Research (NIHR) i4i grant (Award ID:

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13349 by T
est, W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/oubino/locpix
https://pypi.org/project/locpix/
https://pypi.org/project/locpix/
https://www.napari-hub.org/plugins/napari-locpix
https://www.napari-hub.org/plugins/napari-locpix
https://github.com/oubino/cellpose
https://github.com/oubino/cellpose
https://github.com/oubino/locpix/blob/main/examples/c15_data_ds_analysis/analysis.ipynb
https://github.com/oubino/locpix/blob/main/examples/c15_data_ds_analysis/analysis.ipynb


12 UMNEY et al.

NIHR201643) in collaborationwithONI. PQ is an emeritus
NIHR Senior Investigator, partly supported byNIHRLeeds
Biomedical Research Centre. JL was funded by an EPSRC
fellowship: EP/R025819/1. MP is a Wellcome Trust Investi-
gator (223125/Z/21/Z). The views expressed are those of the
authors and not necessarily those of the NHS, the NIHR
or the Department of Health and Social Care. Engineer-
ing of the SW620 cells was funded by the Biotechnology
and Biological Sciences Research Council, grant number
BB/S01716X/1 (NRD-G), and Fondazione Italiana per la
Ricerca sul Cancro (AIRC) IG 25833 (GC). We also thank
Roche for the generous donation of the EGFR and EREG
antibodies.

ORCID
GianlucaCanettieri https://orcid.org/0000-0001-6694-
2613
Michelle Peckham https://orcid.org/0000-0002-3754-
2028
AlistairCurd https://orcid.org/0000-0002-3949-7523

REFERENCES
1. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W.,

Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-
Schwartz, J., & Hess, H. F. (2006). Imaging intracellular fluores-
cent proteins at nanometer resolution. Science, 313, 1642–1645.

2. Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-
limit imaging by stochastic optical reconstruction microscopy
(STORM). Nature Methods, 3, 793–795.

3. Heilemann, M., van de Linde, S., Schuttpelz, M., Kasper, R.,
Seefeldt, B., Mukherjee, A., Tinnefeld, P., & Sauer, M. (2008).
Subdiffraction-resolution fluorescence imaging with conven-
tional fluorescent probes. Angewandte Chemie (International ed
in English), 47, 6172–6176.

4. Heilemann, M., van de Linde, S., Mukherjee, A., & Sauer,
M. (2009). Super-resolution imaging with small organic fluo-
rophores. Angewandte Chemie (International ed in English), 48,
6903–6908.

5. Jacquemet, G., Carisey, A. F., Hamidi, H., Henriques, R., &
Leterrier, C. (2020). The cell biologist’s guide to super-resolution
microscopy. Journal of Cell Science, 133, jcs240713.

6. Liu, S., Hoess, P., & Ries, J. (2022). Super-resolution microscopy
for structural cell biology. Annual Review of Biophysics, 51, 301–
326.

7. Hugelier, S., Colosi, P. L., & Lakadamyali, M. (2023). Quantita-
tive single-molecule localization microscopy. Annual Review of
Biophysics, 52, 139–160.

8. Nehme, E., Freedman, D., Gordon, R., Ferdman, B., Weiss, L. E.,
Alalouf, O., Naor, T., Orange, R., Michaeli, T., & Shechtman, Y.
(2020). DeepSTORM3D: Dense 3D localization microscopy and
PSF design by deep learning. Nature Methods, 17, 734–740.

9. Ouyang, W., Aristov, A., Lelek, M., Hao, X., & Zimmer, C.
(2018). Deep learning massively accelerates super-resolution
localization microscopy. Nature Biotechnology, 36, 460–468.

10. Speiser, A., Muller, L. R., Hoess, P., Matti, U., Obara, C. J.,
Legant, W. R., Kreshuk, A., Macke, J. H., Ries, J., & Turaga, S.

C. (2021). Deep learning enables fast and dense single-molecule
localization with high accuracy. Nature Methods, 18, 1082–1090.

11. Gogoberidze, N., & Cimini, B. A. (2024). Defining the
boundaries: Challenges and advances in identifying cells
in microscopy images. Current Opinion in Biotechnology, 85,
103055.

12. Falk, T., Mai, D., Bensch, R., Cicek, O., Abdulkadir, A.,
Marrakchi, Y., Bohm, A., Deubner, J., Jackel, Z., Seiwald, K.,
Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu,
D., Tay, T. L., Prinz, M., Palme, K., Simons, M., . . . Ronneberger,
O. (2019). U-Net: Deep learning for cell counting, detection, and
morphometry. Nature Methods, 16, 67–70.

13. Siddique, N., Paheding, S., Elkin, C., & Devabhaktu, V. (2021).
U-Net and its variants for medical image segmentation: Theory
and applications. arXiv.

14. Pachitariu, M., & Stringer, C. (2022). Cellpose 2.0: How to train
your own model. Nature Methods, 19, 1634–1641.

15. Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X.,
Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K.,
Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang,
C., Koethe, U., Hamprecht, F. A., & Kreshuk, A. (2019). ilastik:
Interactive machine learning for (bio)image analysis. Nature
Methods, 16, 1226–1232.

16. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A
density-based algorithm for discovering clusters in large spatial
databaseswith noise. InKDD’96: Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining
(pp. 226–231). AAAI Press.

17. Nieves, D. J., & Owen, D. M. (2020). Analysis methods for
interrogating spatial organisation of singlemolecule localisation
microscopy data. International Journal of Biochemistry & Cell
Biology, 123, 105749.

18. Pike, J. A., Khan, A. O., Pallini, C., Thomas, S. G., Mund,
M., Ries, J., Poulter, N. S., & Styles, I. B. (2020). Topological
data analysis quantifies biological nano-structure from sin-
gle molecule localization microscopy. Bioinformatics, 36, 1614–
1621.

19. Nieves, D. J., Pike, J. A., Levet, F., Williamson, D. J.,
Baragilly, M., Oloketuyi, S., de Marco, A., Griffie, J., Sage,
D., Cohen, E. A. K., Sibarita, J. B., Heilemann, M., & Owen,
D. M. (2023). A framework for evaluating the performance of
SMLM cluster analysis algorithms. Nature Methods, 20, 259–
267.

20. Sieben, C., Banterle, N., Douglass, K. M., Gonczy, P., & Manley,
S. (2018). Multicolor single-particle reconstruction of protein
complexes. Nature Methods, 15, 777–780.

21. Marin, Z., Fuentes, L. A., Bewersdorf, J., & Baddeley, D.
(2023). Extracting nanoscale membrane morphology from
single-molecule localizations. Biophysical Journal, 122, 3022–
3030.

22. Caballero-Ruiz, B., Gkotsi, D. S., Ollerton, H., Morales-Alcala,
C. C., Bordone, R., Jenkins, G. M. L., Di Magno, L., Canettieri,
G., & Riobo-Del Galdo, N. A. (2023). Partial truncation
of the C-terminal domain of PTCH1 in cancer enhances
autophagy and metabolic adaptability. Cancers (Basel), 15,
369.

23. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,
Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13349 by T
est, W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-6694-2613
https://orcid.org/0000-0001-6694-2613
https://orcid.org/0000-0001-6694-2613
https://orcid.org/0000-0002-3754-2028
https://orcid.org/0000-0002-3754-2028
https://orcid.org/0000-0002-3754-2028
https://orcid.org/0000-0002-3949-7523
https://orcid.org/0000-0002-3949-7523


UMNEY et al. 13

H., Brett, M., Haldane, A., Del Rio, J. F., Wiebe, M., Peterson,
P., . . . Oliphant, T. E. (2020). Array programming with NumPy.
Nature, 585, 357–362.

24. Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021).
Cellpose: A generalist algorithm for cellular segmentation.
Nature Methods, 18, 100–106.

25. van der Walt, S. J., Schönberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., &
Yu, T. (2014). Scikit-image: Image processing in Python.
arXiv:1407.6245.

26. Ahlers, J., AlthvizMoré, D., Amsalem,O., Anderson, A., Bokota,
G., Boone, P., Bragantini, J., Buckley, G., Burt, A., Bussonnier,
M., Can Solak, A., Caporal, C., Doncila Pop, D., Evans, K.,
Freeman, J., Gaifas, L., Gohlke, C., Gunalan, K., Har-Gil, H., . . .
Yamauchi, K. (2022). Napari: A multi-dimensional image viewer
for Python (v0.4.18). Zenodo.

27. Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic
Optimization. arXiv:1412.6980v9.

28. He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data.
IEEE Transactions on Knowledge and Data Engineering, 21, 263–
1284.

29. Tharwat, A. (2021). Classification assessment methods. Applied
Computing and Informatics, 17, 168–192.

30. Boyd, K., Santos Costa, V., Davis, J., & Page, C. D. (2012).
Unachievable region in precision-recall space and its effect on
empirical evaluation. In ICML’12: Proceedings of the 29th Inter-
national Conference on International Conference on Machine
Learning (Vol., 2012, pp. 349). Omnipress.

31. Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021). Accuracy
assessment in convolutional neural network-based deep learn-
ing remote sensing studies—Part 1: Literature review. Remote
Sensing, 13.

32. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland,
M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern,
R., Larson, E., . . . SciPy, C. (2020). SciPy 1.0: Fundamental
algorithms for scientific computing in Python. Nature Methods,
17, 261–272.

33. Bender, S. W. B., Dreisler, M. W., Zhang, M., Kaestel-Hansen,
J., & Hatzakis, N. S. (2024). SEMORE: SEgmentation and
MORphological fingErprinting by machine learning automates
super-resolution data analysis. Nature Communications, 15,
1763.

34. Otsu, N. A. (1979). Threshold selection method from gray-
level histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9, 62–66.

35. Lee, S. U., Yoon, C. S., & Park, R. H. (1990). A comparative per-
formance study of several global thresholding techniques for
segmentation.ComputerVision,Graphics, and ImageProcessing,
52, 171–190.

36. Poletti, E., Zappelli, F., Ruggeri, A., &Grisan, E. (2012). A review
of thresholding strategies applied to human chromosome seg-
mentation. Computer Methods and Programs in Biomedicine,
108, 679–688.

37. Zhang, M., Zhang, L., & Cheng, H. (2010). A neutrosophic
approach to image segmentation based on watershed method.
Signal Processing, 90, 1510–1517.

38. Beucher, S. (1979). Use of watersheds in contour detection. In
Proceedings of the International Workshop on Image Processing.
CCETT.

39. Curd, A. P., Leng, J., Hughes, R. E., Cleasby, A. J., Rogers, B.,
Trinh, C. H., Baird, M. A., Takagi, Y., Tiede, C., Sieben, C.,
Manley, S., Schlichthaerle, T., Jungmann, R., Ries, J., Shroff,
H., & Peckham, M. (2021). Nanoscale pattern extraction from
relative positions of sparse 3D localizations. Nano Letters, 21,
1213–1220.

40. Khater, I. M., Nabi, I. R., & Hamarneh, G. (2020). A review of
super-resolution single-molecule localization microscopy clus-
ter analysis and quantification methods. Patterns, 1, 100038.

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Umney, O., Leng, J.,
Canettieri, G., Galdo, N. A. R.-D., Slaney, H.,
Quirke, P., Peckham, M., & Curd, A. (2024).
Annotation and automated segmentation of
single-molecule localisation microscopy data.
Journal of Microscopy, 1–13.
https://doi.org/10.1111/jmi.13349

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13349 by T
est, W

iley O
nline L

ibrary on [12/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/jmi.13349

	Annotation and automated segmentation of single-molecule localisation microscopy data
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Pipeline overview
	2.2 | Sample preparation and SMLM data acquisition
	2.3 | Data preprocessing
	2.4 | Software development
	2.5 | Manual annotation
	2.6 | Dataset partitions
	2.7 | Segmentation algorithms: probability map generation
	2.8 | Membrane segmentation
	2.9 | Cell segmentation
	2.10 | Downstream analysis
	2.11 | Statistical analyses

	3 | RESULTS
	3.1 | Manual annotation
	3.2 | Membrane segmentation
	3.3 | Cell segmentation
	3.4 | Downstream analysis

	4 | DISCUSSION
	5 | CONCLUSION
	SOFTWARE AVAILABILITY
	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


