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Structural and Dielectric Properties of CaSnO3-doped Sr2.1Na0.8Nb5O15 Ceramics 

Thomas E. Hooper1, Alexander Crick, James H. Killeen, and Derek C. Sinclair 

Department of Materials Science and Engineering, Sir Robert Hadfield Building, 

University of Sheffield, Mappin Street, Sheffield S1 3JD, UK 

 

Abstract. The crystallographic, microstructural, and dielectric properties of Sr2.1Na0.8-xCaxNb5-

xSnxO15 (x = 0.00, 0.01, 0.05, 0.10) polycrystalline ceramics have been studied by X-ray 

diffraction (XRD), scanning electron microscopy (SEM), dielectric spectroscopy (DS) and 

impedance spectroscopy (IS). For x=0.00, 0.05, and 0.10, samples are single phase with 

P4bm phase at room temperature with x = 0.01 showing a small quantity of secondary 

phase(s). All compositions show typical ceramic microstructure and d50 grain sizes ranging 

from 5.1 to 26.6 μm. DS shows a clear trend in the high temperature ferroelectric-paraelectric 

transition with the Curie temperature, T0, decreasing from ~ 160 to ~ 110 oC, and an additional 

relaxation at approximately 120 oC with increasing CaSnO3. IS reveals all samples have a 

homogeneous electrical microstructure with predominantly electronic conduction. The 

activation energy of conduction calculated from Arrhenius plots of the conductivity increases 

with CaSnO3 content from 1.27 to 1.38 eV likely due to the expansion of the band gap. 
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1. Introduction 

Tetragonal Tungsten Bronze (TTB) ferroelectrics are materials that offer a range of versatility 

with regards to ionic substitution and solid solution formation [1-6]. TTBs have corner sharing 

oxygen octahedra which arrange themselves to form 3 distinct A-sites with 15-, 12- and 9-fold 

coordination as shown in Figure 1. TTBs can be divided into three categories: ‘stuffed’ where 

all A1, A2 and C-sites are occupied, eg. K6Li4Nb10O30 [7, 8]; ‘filled’ where A1 and A2 sites are 

fully occupied and C-sites are unoccupied, eg. Sr5LaTi3Nb7O30 [9]; and ‘unfilled’ where A1 and 

A2 occupancy is <100% and C-sites are unoccupied, eg. (Sr,Ba)5Nb10O30 [6, 10-12]. 

 

 

 

 

 

 

 

 

Figure 1 (single column width): Crystal structure of Sr2NaNb5O15 tungsten bronze structure 

generated in CrystalMaker according to ICDD #04-006-4820. The dashed box represents the 

unit cell according to P4bm symmetry.  

 

Strontium sodium niobate (Sr2NaNb5O15 hereby referred to as SNN) complies with the 

aristotype TTB structure (A1)2(A2)4(C1)4(B1)8(B2)2O30 with Nb5+ ions located on B1- and B2-

sites, and Sr2+ and Na+ ions distributed on both the A1 and A2-sites owing to their similar ionic 

radii [13, 14]. The C-site is assumed to remain empty due to the inability to accommodate 

larger ions, although it is not clear what the upper and lower bounds for occupying this site 

are yet. According to the NaNbO3 – SrNb2O6 phase diagram proposed by Tang et al. [15], the 

formation of single phase SNN relies on the presence of A-site vacancies and therefore must 

be an unfilled TTB, with filled Sr2NaNb5O15 producing secondary phase NaNbO3 perovskite, 

although this is more likely to be Sr-doped NaNbO3 as proposed by Torres-Pardo et al. [14]. 

Furthermore, the conversion from a filled to an unfilled TTB has been demonstrated by the 

successful removal of secondary phase(s) [16, 17]. The dielectric properties of SNN are 

characterised by two distinct peaks labelled T1 and T2, where T2 is associated with the 
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A2 

B1 

B2 



3 
 

ferroelectric-paraelectric phase transition occurring between 250 and 300 oC, and T1 is 

associated with the smeared-out phase transition to a frustrated ferroelectric/ferroelastic low 

temperature state owing to changes in the elastic properties [13, 14]. 

Many doping studies have been carried out on SNN, however the aims and objectives of these 

doping studies vary depending on the proposed application. For example, doping regimes 

within the high energy density community aim to promote the room temperature relaxor 

behaviour to increase the recoverable energy density [18-21]. The dielectrics community aims 

to increase ionic disorder to break up long range ferroelectric transitions and improve dielectric 

temperature stability [22]. The piezoelectric community aim to form a morphotropic phase 

boundary (MPB) to create energetic degeneracy between two phases to improve domain 

switching capabilities and subsequent piezoelectric properties [23-27]. Most of these doping 

studies have related to exclusive A-site substitution for Sr2+, Na+ and co-doping both Sr and 

Na [16, 20, 23, 26-34], with only a limited amount of B-site doping being carried out [35, 36]. 

In general, doping with isovalent ions of larger radius than that of Sr2+ or Na+ such as Ba2+ or 

K+ expands the unit cell along the c-axis, increasing tetragonality and stabilising the [001] polar 

mode. This results in a decrease and sometimes a complete disappearance of the low 

temperature T1 transition as the commensurate tilting that occurs to allow for the ferroelastic 

transition is no longer possible [31, 32, 34, 37]. Conversely, isovalent doping with smaller ions 

such as Ca2+ and rare-earth elements, increases the unit cell along the a-b plane and reduces 

the tetragonality. The destabilisation of the polar [001] mode results in a decrease in the 

magnitude of ε’ at the high temperature T2 transition. The expansion of the unit cell along the 

a-b plane allows for a greater ease of commensurate tilting and therefore the low temperature 

T1 transition transforms from broad relaxor-like behaviour to a proper ferroelectric transition 

with little frequency dispersion [19, 23, 38, 39].  

Doping studies of SNN are more focussed on the influence of single dopant or dopants, 

whereas there have been limited studies on the effects of forming solid solutions. Here, we 

aim to expand the knowledge of ternary solid solution formations with single phase 

Sr2.1Na0.8Nb5O15 (hereby referred to as SNN0.8) by doping with CaSnO3 perovskite to 10 

mol%. 

 

2. Experimental Procedure 

Commercially available reagents of SrCO3 (Sigma Aldrich, 99.9%), Na2CO3 (Sigma Aldrich, 

99.5%), CaCO3 (Fisons, 99%), SnO2 (Sigma Aldrich, 99.9 %) and Nb2O5 (Gemch Ltd., 99.5%) 

were dehydrated overnight. Appropriate reagents to synthesise SrNb2O6, CaSnO3 and 

NaNbO3 were weighed stoichiometrically, ball milled in isopropanol for 24 hours, dried and 
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sieved, and calcined at 1100 oC (4h), 900 oC (3h) and 800 oC (5h), respectively. End members 

were then weighed according to Equation 1, and milled, dried, and sieved for a final time.  2.1SrNbଶO + (0.8 − x)NaNbOଷ + (x)CaSnOଷ  → Srଶ.ଵNa.଼ି୶Ca୶Nbହି୶Sn୶Oଵହ (1) 

Powders were uniaxially pressed at 12.5 MPa into 10 mm diameter pellets and cold 

isostatically pressed at 221 MPa for 1 minute. Pellets were buried in powder of the same 

composition and sintered at 1325-1450 oC for 5 h.  

X-ray diffraction (XRD) was performed on crushed sintered bulk samples which were annealed 

at 600°C for an hour before being cooled at a rate of 0.8°Cmin-1 to alleviate any crystallite 

strain imposed by grinding. Data were collected using monochromatic molybdenum Kα1 

(λ=0.7096 Å) radiation, measured using a STOE STADI P diffractometer with a Mythen 

detector and step size 0.015°. Rietveld refinements were conducted for the diffraction patterns 

using GSAS-II software [40] where refined parameters included lattice parameters, atomic 

coordinates, site occupancies, atomic thermal parameters, microstrain and crystallite size.  

Ceramic microstructure was analysed using an Inspect F50 scanning electron microscope 

(FEI, Netherlands) with accelerating voltage of 20 kV and working distance of 9.8 mm. 

Samples were polished beforehand using diamond paste (Beuhler) from 6 to 1 µm and 

thermally etched at 200 oC below the respective sintering temperature for 15 minutes before 

sputter coating a 5 nm Au layer to avoid charging.  

For electrical measurements, samples were ground and polished using SiC paper and 

electroded using fire-on Au paste at 850 oC for 2 h. High temperature Dielectric Spectroscopy 

(DS) and Impedance Spectroscopy (IS) analysis were carried out using an Agilent E4980A 

Precision LCR Meter connected to a tube furnace. IS measurements were carried out using a 

0.1 V ac signal from 20 Hz to 1 MHz at 25 oC intervals with 20 minutes dwell time to thermally 

equilibrate the sample. Subambient DS analysis was carried out using an Agilent E4980A 

Precision LCR Meter connected to a Cryodrive 1.5 cryocooler (Oxford Instruments, UK).  

 

3. Results and Discussion 

All sample geometric densities exceeded 92% based on theoretical densities calculated from 

XRD lattice parameters. It should be noted that although Li et al. [41] demonstrated the 

absence of abnormal grain growth in undoped SNN by a two-stage synthesis, here abnormal 

grain growth was still observed in SNN0.8 samples sintered >1340 oC as demonstrated by the 

significant intragranular stresses and subsequent macro cracking (Supplementary Material 

Figure S1).  
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XRD patterns for all compositions are shown in Figure 2 and refined parameters are shown in 

Table 1. For x = 0.00, 0.05, and 0.10, samples show single phase materials attributed to the 

P4bm structure at room temperature which is analogous with some literature [21, 22, 24-26, 

28, 32]. No observations of superlattice reflections attributed to orthorhombic space groups 

such as Im2a, Ccm2 or Ama2 can be observed as in Ref. [13, 14, 29, 35]. For x = 0.01, a 

small amount of secondary phase can be observed (Figure 2b) which could not be attributed 

to any reagents, end members, or any materials on the PDF4+ crystallographic database. It 

is clear from Figure 1 that the solid solution limit exceeds x = 0.10 and therefore may provide 

an opportunity to further explore this compositional space. Lattice parameters and unit cell 

volume against composition are shown in Figure 3. For single phase materials, the introduction 

of CaSnO3 results in the expansion of the unit cell along the a-b plane and a shrinking along 

the [001]. Overall this results in a decrease in the unit cell volume owing to the substitution of 

Na+ (1.39 Å [42]) with smaller Ca2+ (1.34 Å [42]) ions.  

 

 

Figure 2 (2 column width):  XRD Mo-Kα source scans for Sr2.1Na0.8-xCaxNb5-xSnxO3 (x = 0.00, 

0.01, 0.05, and 0.10) from (a) 9o – 30o 2θ, and (b) 9.8o to 11o 2θ. Peak indexing carried out 

according to ICDD file with red asterisks highlighting an undetermined secondary phase. Full 

Rietveld refinements are provided in Figure S1 in the Supplementary Material. 
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Table 1: Unit cell parameters indexed using a P4bm structure for Sr2.1Na0.8-xCaxNb5-xSnxO15 (x 

= 0.00, 0.01, 0.05, and 0.10), and fitting parameters obtained from Rietveld refinements.  

 

 

 

 

 

 

 

 

Figure 3 (1.5 column width): Lattice parameters and unit cell volume against composition. 

Filled symbols represent single phase materials, whereas open symbols represent samples 

with secondary phase(s).  

Backscattered secondary electron images and particle size distribution histograms for all 

compositions are shown in Figure 4 with unremarkable ceramic microstructure observed for 

all compositions. Median grain size (d50) varies from ~ 5.1 μm for undoped Sr2.1Na0.8Nb5O15 to  

~ 26.6, 23.1 and 6.3 μm for x = 0.01, 0.05, and 0.10, respectively. The differences are most 

likely related to the difference in sintering temperature between compositions rather than any 

chemical contributions. 

x a, b (Å) c (Å) Volume (Å3) RP (%) RWP (%) χ2 

0.00 12.3497(8) 3.8889(3) 593.12(7) 1.92 2.59 1.35 

0.01 12.3453(5) 3.8884(8) 592.62(12) 2.74 5.57 2.03 

0.05 12.3511(1) 3.8875(7) 593.04(11) 2.22 2.78 1.25 

0.10 12.3519(3) 3.8849(5) 592.72(7) 1.46 1.91 1.31 
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Figure 4 (1.5 column width): Backscattered electron images of polished and thermally etched 

ceramic surfaces of Sr2.1Na0.8-xCaxNb5-xSnxO15 for (a) x = 0.00, (b) x = 0.01, (c) x = 0.05, and 

(d) x = 0.10. Insets show grain size distribution for each composition. 

The variation in the real part of the relative permittivity (ε’) and tan δ with temperature for all 

compositions at fixed frequencies is shown in Figure 5. For all compositions, two distinct peaks 

are observed at ~ -25  and ~ 260 oC which are referred to as T1 and T2 respectively, as to be 

consistent with literature. T2 is attributed to the transition from non-centrosymmetric P4bm 

space group to the centrosymmetric P4/mbm space group, where the second-order Jahn-

Teller B-site polarisation is lost and the Nb5+ ions are no longer displaced from the centre of 

the oxygen octahedra. Here, a small level of frequency dispersion can be observed at T2 for 

x = 0.00, however this may be attributed to space charge contributions as demonstrated in the 

high temperature region of the tan δ data The behaviour of T1 is more complex with reports of 

a ferroelectric-ferroelastic transition on cooling with the combination of complex ionic 

occupancies and a significant number of potential minima for A-site ions to settle generating 

significant relaxor behaviour [14]. 
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Figure 5 (double column width): Real part of the relative permittivity (ε’) and tan δ at fixed 

frequencies as a function of temperature for (a) x = 0.00, (b) x = 0.01, (c) x = 0.05, and (d) x = 

0.10. 

Neurgaonkar et al. [30] reported orientation dependence in the permittivity response for single 

crystal SNN. When samples were measured along the [001], two distinct peaks are observed 

at ~ 100 and 270 oC, whereas the permittivity response along the [110] had a single relaxation 

with a peak at ~ -95 oC although the nature of these transitions were not discussed thoroughly 

in this work. Levin et al. [6] have proposed that in the TTB structure there are two competing 

B-sites, B1 and B2. B1 can only polarise along the c-axis; however, B2 has an extra degree 

of freedom with its polarisation and can rotate between the c-axis and a-b plane. Whilst this 

hypothesis was constructed within the framework of (Sr,Ba)Nb2O6, this may be extended to 

SNN, where the single relaxation observed in the single crystal [110] direction may be the 

reorientation of the B2-ions from along to the a-b plane to along the c-axis on heating. 
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As the CaSnO3 concentration increases, a third peak labelled T3 becomes more prevalent in 

both the ε’ and tan δ data. The presence of T3 has been previously mentioned in literature, 

however with two explanations. The first is space charge behaviour due to excess free charge 

carriers from Na and/or O loss during processing [18, 19]. The second explanation is a phase 

transition from the orthorhombically distorted Im2a or Cmm2 space group to the non-

centrosymmetric ferroelectric P4bm space group [35]. Given the nature of tan δ as a function 

of temperature and frequency within this temperature range as shown in Figure 5, we suggest 

that T3 is ‘real’ behaviour associated with a subtle phase transition and therefore the latter 

explanation is preferable. However as mentioned previously, no evidence of peaks at ~ 9o 

and/or ~ 17o 2θ (for Mo-Kα source, λ = 0.7096 Å) that signal either the Im2a, Cmm2 or the 

Ama2 structure could not be observed. It is likely that this transition is too subtle to observe 

with conventional laboratory XRD, and the use of neutron diffraction and/or national facility 

high energy x-rays are required. 

The introduction of CaSnO3 appears to increases the temperature coefficient of capacitance 

(TCC) compared to undoped SNN0.8. For undoped samples, the high temperature limit in 

which permittivities exceed ± 15% compared to room temperature values for an R-type 

capacitor increases from 82 to 120 oC from 1-1000 kHz, significantly lower than current 

commercial capabilities. For x= 0.10, the dielectric stability increases such that the ±15% 

window extends from -151 to 225 oC at 1 kHz to -115 to 256 oC at 1 MHz. Although this 

composition may be useful for potential X9R applications at relatively low frequencies (< 10 

kHz), the low temperature transition T1 causes a significant increase in tan δ values which 

exceed 0.05 at frequencies ≥ 100 kHz, and therefore comply with Y9R and Z9R classifications 

instead of X9R at higher frequencies. 

Curie-Weiss plots for all compositions along with extrapolated Curie temperature (T0) and 

Curie-Weiss constant (CCW) are shown in Figure 6. As the CaSnO3 content increases, there is 

an increase in CCW and a systematic decrease in T0 as the magnitude of ε’ at the high 

temperature transition T2 decreases. As mentioned previously, this behaviour in TTBs is 

indicative of the destabilisation of the polar [001] mode associated with the shrinking of the 

unit cell volume and c-axis lattice parameter. Similar behaviour was observed by Xie and 

Akimune [24], and again by Yang et al. [17], where an increase in concentration of Ca2+ in Sr2-

xCaxNaNb5O15 resulted in the systematic decrease in the magnitude of ε’ at T2 until a complete 

disappearance of this transition at 0.25 < x < 0.35. Although a smaller compositional space is 

explored in this study, it is likely that this behaviour will follow the same trend at higher CaSnO3 

concentrations as the solid solution limit was not observed by XRD. Interestingly, no T3 was 

observed in the study by Xie and Akimune for any composition. 
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Figure 6 (single column width): Curie-Weiss plots (1/ε’ vs T) for all compositions. Inset shows 

extrapolated Curie-Weiss constant (CCW) and Curie temperature (T0) against composition. 

 

Spectroscopic plots of the imaginary parts of impedance (Z’’) and electric modulus (M’’) at ~ 

650 oC are shown in Figure 7 and all data could be modelled on an equivalent circuit based 

on a single, parallel resistor-capacitor, RC element. The agreement in relaxation frequency 

between the two peaks demonstrates a degree of electrical homogeneity corresponding to a 

permittivity of ~ 25 pF/cm for all compositions which is consistent with a bulk (paraelectric) 

response. Furthermore, no increase in the Z’’ spectra at low frequency demonstrates 

predominantly electronic conduction. 
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Figure 7 (single column width): Imaginary components of impedance (Z’’) and electric modulus 

(M’’/E0) as a function of log10(frequency) for (a) x = 0.00, (b) x = 0.01, (c) x = 0.05, and (d) x = 

0.10 

 

The Arrhenius plot for all compositions is shown in Figure 8. The activation energy increases 

from ~ 1.27 eV for undoped SNN0.8 to ~ 1.32, 1.33, and 1.38 eV for x = 0.01, 0.05 and 0.10, 

respectively. Given the magnitude of the activation energy and the temperature range in which 

these are derived, it is likely that these values represent the intrinsic conduction of these 

materials and are therefore experimentally derived values for the Fermi energy, and 

subsequently ~ half the value of the band gap [43].  
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Figure 8 (single column width): Arrhenius plots of conductivity for all compositions. Inset graph 

shows activation energy (EA) as a function of composition. Error bars are calculated through 

propagation of errors associated with line fitting.  

 

4. Conclusions 

The structural and dielectric properties of two-stage synthesised Sr2.1Na0.8-xCaxNb5-xSnxO15 (x 

= 0.00, 0.01, 0.05, 0.10) polycrystalline ceramics have been studied. For single phase 

samples, the increase in CaSnO3 content results in a decrease in the c-axis lattice parameter 

and unit cell volume, and an expansion of the a-b plane owing to the introduction of smaller 

A-site ions and the subsequent reduction of the tolerance factor and tetragonality. With regards 

to dielectric properties, the Curie temperature T0 systematically decreases with increasing 

CaSnO3 content and the appearance of a third transition, T3, becomes more prominent at 

higher CaSnO3 concentrations. The origin of this dielectric anomaly is currently undetermined 

as the subtle orthorhombic-tetragonal structural changes that have been suggested in 

literature are not observed here. Despite variations in microstructure and the presence of 

secondary phase(s) in x= 0.01 samples, impedance spectroscopy data shows electrical 

homogeneity in all samples and an increase in the activation energy of intrinsic electronic 

conduction, signifying the expansion of the band gap with increasing CaSnO3 concentration 

from ~ 2.54 (x =0.00) to 2.76 eV (x =0.10).  
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Figure S1: Secondary electron images of polished and etched Sr2.1Na0.8Nb5O15 ceramics 

sintered at 1350 oC for 5 hours 
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Figure S2: Rietveld refinements for Sr2.1Na0.8-xCaxNb5-xSnxO15 for (a) x = 0.00, (b) x = 0.01, (c) 

x = 0.05, (d) x = 0.10 
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