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Abstract. Large Language Models’ (LLMs) ability to explain complex
texts has raised the question of whether their encoded knowledge is suf-
ficient to reason about system failures. The current weaknesses in LLMs,
like misalignment and hallucinations suggest they make unsuitable safety
analysts, but could “fast but flawed” analysis still be useful? LLMs can
rapidly parse system descriptions for design mitigation strategies like re-
dundancy, they can trace failure propagation from common mode faults
(such as loss of power or hydraulics) to higher level events and even in-
corporate non-functional risks from outside the functional specification
into an analysis. But despite their knowledge of hardware component
failure modes, we found LLMs remain weak at failure logic reasoning.
We used OpenAI’s Generative Pre-trained Transformer (GPT) Builder
to develop a specific role for analysing failure logic and generating the
corresponding fault tree visualisation. Although there are no objective
measures that qualitatively assess failure logic analysis (i.e. logical errors
have variable significance) or whether the choice of higher-level failure
modes is a “good model” of system failure, we report on the iterative
process of developing the GPT, our inability to override the underlying
model behaviour to counter its weaknesses, and conclude by reflecting
on the productivity gains of using LLMs despite their flawed reasoning.

Keywords: Large Language Models · Fault Tree Analysis · Failure Logic

1 Introduction

LLMs have become an almost universal tool for text generation and knowledge
retrieval. In safety analysis this presents an opportunity to improve productivity
in areas that have traditionally been difficult to optimise. To date, LLMs have
been tried out in areas that make use of their creative potential [9] where factual
inaccuracy is less of a problem, rather than areas like failure logic which requires
accurate reasoning about how physical systems can fail. We accepted from the
outset the known weaknesses of LLMs, like hallucination and poor training data,
but given the ‘chat’ style interfaces for most LLMs we wanted to target a process
that involves interactive discussion and refinement typical of safety analysts
working with system and software engineers. Our selected task was to perform
failure logic analysis from a top down perspective, as would be typically done for
a (preliminary) System Safety Analysis (SSA). One advantage of choosing this
was that the level of specialist technical detail could be kept low, and it could
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be further extended by visualising the corresponding fault trees, a task which
is time-consuming to perform manually and often requires proprietary graphical
software or bespoke profiles within system modelling languages like SysML [4].

Analysing a system for failure logic requires an understanding of how hard-
ware failure modes can affect system or software functionality and how those
faults propagate through the system [7]. LLMs have been criticised as more
suited to creative work than analytical output based on critical reasoning [5],
although techniques have been published that appear to help with such tasks,
such as ‘tree of thought’ techniques and critical prompts [11]. Our own expe-
rience backs up the literature reporting greater success with these techniques,
but the weaknesses we have experienced also form part of the changing pic-
ture of how we will work with these ‘acceptably imperfect’ tools in the future.
Experiments in code generation and other content creation tasks have demon-
strated productivity gains despite the tendency of LLMs to output incomplete
or incorrect answers [8][10].

The contributions of this paper are to identify specific weaknesses in GPT-
4 with respect to failure logic analysis and the inability of our GPT’s system
instructions to override the default behaviour of GPT-4. We describe the GPT
Builder interface provided by OpenAI and our development of FLAGPT (§2). We
give the task scenarios (§3), present the results (§4.1 and §4.2) and finally discuss
the implications and future potential for this technology in safety analysis (§5).
We discuss the iterative process of coaxing better quality answers from LLMs in
§2, §4.4 and §5, noting that human oversight remains critical.

2 FLAGPT: developing a Failure Logic Analysis GPT

OpenAI offers various tools and APIs for developers to customize and integrate
GPTs into their applications, enabling the creation of bespoke GPT models
tailored to specific needs. They offer two ways to do this. One requires no pro-
gramming skills and can be used through ‘system instructions’ (aka ’prompt
engineering’) that can be generated automatically by GPT-4 through conversa-
tions with the Chat GPT Builder interface, where the user describes the type
of GPT they want and how it should respond or format its output. The second
is via their API that allows for fine-tuning, vector embeddings and other cus-
tomisations. OpenAI estimates that fine-tuning requires a minimum of 50-100
‘question + answer’ examples to train on. This amount of system descriptions
with corresponding failure logic analyses wasn’t available in the research time
we had, and neither was it obvious how we would evaluate the system responses
(see 3 for a more detailed discussion) and so we chose to use the GPT Builder
interface as it provides a ‘low barrier’ entry point based on prompt engineering.

A bespoke GPT is created using the GPT Builder by initially describing the
type of tasks you want the GPT to perform. GPT builder will then create a
logo and auto-generate some system instructions. You can upload a document
that GPT builder will use to create vector embeddings for fine-tuning, although
we had mixed results with this approach. It should be noted that each time you
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converse with the Create feature in the builder interface, your system instructions
may be updated in unexpected ways or even overwritten. The Create feature
remains useful to get testing quickly, but we got better results by handwriting
the system instructions ourselves.

FLAGPT’s system instructions are available in our github (see Acknowledge-
ments) in two parts. The first part instructs FLAGPT to analyse all parts of a
system for its failure logic and list all events and logic gates. The second part
uses a template of a text-based drawing environment for LaTeX called TikZ1

that can represent fault trees. Initially we told FLAGPT to create a LaTeX doc-
ument using the TikZ commands. However, the increased output length caused
a lot of errors and misalignment, resulting in generic LaTeX + TikZ output.
We got better results by reducing what was asked of FLAGPT. Instead of an
entire LaTeX file with TikZ commands, we restricted it to an example of node
declarations and definitions for the fault tree, followed by the list of logic gates
and how they connect. This was used as an input file to a LaTeX document we
predefined. It is important to note that we were using the fault trees as a visual
aid to identify errors in the fault logic, not to conduct fault tree analysis. How-
ever, there is no reason this couldn’t be done by changing the output format
using a different template, for example a spreadsheet that could be imported
into the Fault Tree+ module of Isograph’s Reliability Workbench™.

3 Task and system descriptions

The task to analyse a system for its failure logic is started by either uploading
a text file containing the system description and then instructing FLAGPT to
“Analyse this system for the top level failure ‘[your event name]’ ”.2 Explicitly
naming the top level event ensures that it will get used as the final event of the
fault tree, although left unprompted FLAGPT was able to derive appropriate
names itself. FLAGPT should briefly describe how it will proceed and list the
top level failure events in the fault tree hierarchy and the failure logic connecting
those events.

There is limited system descriptions and domain experts available that could
generate a quantitative assessment of failure logic analysis quality, and our in-
tention here is not to exhaustively test LLM performance. Fault logic modelling
is heavily reliant on domain expertise, and trying to compare different system
specifications and their subsequent analysis ends up being a subjective exer-
cise even with a panel of adjudicators. Increasing input token lengths to LLMs
can result in greater misalignment [6] and we limited our system description
lengths accordingly. But it is also true that not all errors are of equal severity
in fault logic, making meaningful quantitative analysis of LLM performance dif-
ficult. Similar arguments also apply to qualitative assessments on the output,

1 Further details are available at https://en.wikipedia.org/wiki/PGF/TikZ
2 It is also possible to upload a diagram of the system and make use of GPT-4’s ability
to generate image-to-text. However, combining images with system descriptions does
not improve the quality of FLAGPT’s analysis.
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Fig. 1. System descriptions for gas leak response, tank overfill and cabin air supply.
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Table 1. Failure logic complexity for each system. The human analyses (by respective
authors) are given in the top half of the table and FLAGPT’s in the bottom.

particularly when viewed from the explanatory value of fault trees to display
system failure modes. Instead we focus on our experience of co-working with
an LLM and the issues we encountered. We kept our experiments to four short
text descriptions that varied in terms of their redundancy, failure modes and
failure logic. These were: a gas leak response system (from [2]), a tank overfill
protection system (from [2]), an aircraft wheel braking system from ARP4761
[1] and an air cabin supply system (from University of York coursework). With
the exception of the example from ARP4761 [1] these are shown in Fig. 1.

While there is no objective measure we can apply to gauge difficulty for failure
analysis, and given that higher level failure modes can be subjective placeholders
to aid human comprehension, we nonetheless have attempted to show differences
between the system descriptions by counting the number of basic events, number
of logic gates and levels of redundancy or top level failure events produced in
each source by the authors. Table 1 shows these numbers alongside FLAGPT’s
for comparison. We acknowledge that neither counting the number of gates or
basic events, nor summing them to produce a comparative total, gives any kind
of meaningful measure of difficulty in comprehending the failure logic for the
systems. Context is critical, perhaps particularly for LLMs [3]. One might argue
that assigning incorrect failure logic to a conjunction of events (e.g. AND instead
of OR) is a more serious error with regard to quality than omitting a basic event,
however omission of a failure event could also be regarded as critical. We added
these two faults as a final row on the table, again acknowledging that where in
the fault tree the incorrect logic or omission occurs could make a big difference
that we have not attempted to quantify.

In the case of omission, we would also like to point out that on occasions
GPT-4 seemed to default to a minimal (‘lazy’) analysis and would either fail
to develop top level events any further or would not include basic events in
either the analysis or visualisation. As we couldn’t control GPT-4’s underlying



6 K. Clegg, I. Habli, J. McDermid.

behaviour (i.e. FLAGPT’s system instructions were the same each time it was
run) we would have to re-prompt FLAGPT to follow its system instructions.
In terms of correctly parsing system redundancy and failure logic, FLAGPT’s
difficulties seemed to centre around the exact wording or type of subsystems.
For example, systems that run in parallel to provide full capacity (like the air
conditioning packs in the air cabin supply system) were always misinterpreted
as AND failure logic, possibly due to use of the word ‘BOTH’ in the description.
Likewise the triple redundancy in the aircraft wheel braking system was often
not spotted by FLAGPT, as it appeared to consider the alternative braking
system as the emergency back up, and not recognise that the emergency system
was a manual override if all else fails. Both could be corrected by additional
prompting from a safety analyst who is familiar with the system design, but a
novel, unfamiliar specification would be more difficult to check.

4 Results and Working Experience

4.1 Tank Overfill failure event

First analysis of the tank overfill scenario will typically produce the output in
the top half of Fig. 2. Visualisation of the fault tree (Fig. 3) reveals that the
‘Relay R2 remains energised’ failure event was undeveloped for its dependencies.
Our first attempt at improvement was to prompt “You need to improve your
analysis. Expand why Relay R2 remains energised”. This did not change the
analysis. Next we asked “What about SW1?”. Again FLAGPT refused to ad-
just its analysis. Finally after several more attempts and further expansion, we
corrected FLAGPT by explicitly prompting “Shouldn’t E111 and E23 be con-
nected by an AND gate for R2 to fail?”. This generated the analysis in the lower
half of Fig. 2 and the fault tree shown in the lower half of Fig. 3. Note there
are several errors and omissions in this analysis, for example the push button is
not mentioned and ‘R1 remaining energised’ is not developed. Overall this is a
poor analysis that should start from the failure of the pump to stop and develop
through to R2 and then R1 remaining energised.

This corrective interaction between FLAGPT and the user is typical.3 In
most cases we would expect between 5–10 attempts to correct the analysis. The
analysis may still be incorrect at this point, but ‘good enough’ so that the user
can take it and finish it manually. The iterative process is perhaps unfamiliar to
tool users, where typically we expect exactly the same output each time a pro-
gram is run. LLMs offer a different user experience, where results vary and close
supervision by the user is needed before using the output. Despite generating
only partially correct outputs, the speed at which the analysis and visualisation
can be performed results in greater productivity. Within our research group we
found most users would take the time saved plus some manual corrections over
having to do the entire analysis and visualisation manually.

3 We analysed each scenario 15–20 times, ensuring that option to allow GPT-4 to
learn from our dialogue was turned off.
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Fig. 2. FLAGPT’s initial output (top) and ‘corrected’ output (bottom) after several
prompts to re-engage with the analysis and correct specific faults. The fault tree is
shown in Fig. 3
.
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Tank
overfills (E0)

Pump fails
to stop (E1)

R2 contacts
stuck (E11)

L1 fails high
level (E12)

SW1 fails to
open (E13)

Safety feature
fails (E2)

L2 fails high
level (E21)

SW2 fails to
open (E22)

R1 fails to
open (E23)

PB fails to
de-energize
R1 (E24)

Tank Overfills
(E0)

Pump fails
to stop
(E1)

R2 remains
energized
(E11)

R2 con-
tacts stuck
(E111)

SW1 fails
to open
(E23)

SW1 mechan-
ical failure
(E231)

SW1 electrical
malfunction

(E232)

SW1 oper-
ator error
(E233)

SW1 environ-
mental factors

(E234)

Fluid level
not correctly
monitored

(E2)

L1 fails
(E21)

L2 fails
(E22)

SW2 fails
to open
(E24)

R1 fails
(E25)

Fig. 3. FLAGPT’s fault trees for tank overfill system (see Fig. 1). The top tree is
a typical response before additional prompting to ask for further expansion on some
events and correct some failure logic. Note E2 shows a completely different analysis of
contributing events to the final tree’s logic, with L1 no longer contributing to SW1.
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4.2 Air bleed cabin supply system

The air bleed cabin supply example (see Fig. 1) which is given as an exercise
to our MSc students (most of whom are experienced safety specialists), gave
FLAGPT a great deal of difficulty. It frequently failed to develop the analysis
sufficiently, even after being instructed to include mechanical failure of the air
bleed supply in its analysis. FLAGPT would typically assign incorrect failure
logic connecting E0 to the air cycle machines and back up air conditioning packs.
When asked to check its answer it was able to correct this (i.e. initially assigns an
AND gate but subsequently assigns OR), but this did not work for E3 (the failure
of the air conditioning packs). It seems to be the wording (i.e. “. . . BOTH need
to be working to maintain the cabin air”) that causes FLAGPT to misinterpret
E3 as meaning both air conditioning packs need to fail, therefore it must have
an AND failure logic conjunction, even though its analysis described correctly
how both packs were needed for the system to work. With explicit direction it
could correct the logic and produce a reasonable fault tree (see Fig 4), but there
seems to be a systemic error in GPT-4 for this type of failure event wording.
We generated several synthetic examples based on this system description using
GPT-4 and none were analysed correctly.

4.3 Aircraft wheel brake and gas leak systems

Both of these systems were at the lower end of failure logic complexity, with
most of the failure logic represented by OR gates. FLAGPT did a reasonable
job on both but additional prompting was still required to get fully developed
fault trees and correct failure logic, e.g. the failure of both gas leak sensors
was always incorrectly assigned an OR gate. The aircraft wheel braking system,
while correctly separating the green and blue hydraulic systems and adding basic
events like servo motor failure, never included the emergency brake system as
an additional redundancy (see Fig. 5).

4.4 Alignment and consistency

Alignment (doing what the user wants) and consistency remain hurdles for ana-
lysts to adopt FLAGPT. Alignment is a particular issue, as the user is required
to correct the analysis several times before an acceptable output is produced and
depending on the length of this interaction, FLAGPT could start to drift from
its system instructions, particularly on the second part of its task for visualisa-
tion. Despite forbidding it to add unwanted code, we could not override GPT-4’s
default behaviour (to output a standalone LaTeX document environment). In a
commercial setting this would have meant paying for output tokens that were
of no use. The second frustration was the lack of consistency. Once software is
finished development you expect it to run repeatedly as programmed. However,
FLAGPT’s errors that had to be corrected could change on a repeat analysis. We
found that the interactive process of getting FLAGPT to correct itself worked
well provided you were confident in your own assessment of the system. If you
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No air supply
to cabin
(E0)

Failure of
Air Cycle
Machines

(E1)

Failure of
Machine A

(E11)

Bleed Air
Supply

Failure from
Engine 1
(E111)

Bleed Air
Supply

Failure from
Engine 2
(E112)

Failure of
Machine B

(E12)

Bleed Air
Supply

Failure from
Engine 1
(E121)

Bleed Air
Supply

Failure from
Engine 2
(E122)

Failure of Air-
Conditioning

Packs
(E2)

Failure of
Pack C
(E21)

Mechanical
Failure from
Engine 1
(E211)

Failure of
Pack D
(E22)

Mechanical
Failure from
Engine 2
(E212)

No air supply
to cabin (E0)

Both ACMs
fail (E1)

Machine A
fails (E11)

Bleed air A
fails (E111)

Engine 1
bleed fail
(E1111)

Engine 2
bleed fail
(E1112)

ACM A itself
fails (E112)

Machine B
fails (E12)

Bleed air B
fails (E121)

Engine 1
bleed fail
(E1211)

Engine 2
bleed fail
(E1212)

ACM B itself
fails (E122)

Either Pack
fails (E2)

Pack C
fails (E21)

Mech drive C
fails (E211)

Engine 1
mech fail
(E2111)

Pack C itself
fails (E212)

Pack D
fails (E22)

Mech drive D
fails (E221)

Engine 2
mech fail
(E2211)

Pack D itself
fails (E222)

Fig. 4. FLAGPT’s fault trees for air bleed cabin supply system using description from
Fig. 1. The top tree is before correction is applied through additional prompting.
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Loss of All
Braking
(E0)

Failure of
Normal
Braking
System
(E1)

Hydraulic
Failure in
GREEN
System
(E11)

Loss of
Hydraulic
Fluid
(E111)

Hydraulic
Line

Leakage
(E112)

Hydraulic
Pump
Failure
(E113)

BSCU
Failure
(E12)

Electrical
Failure
in BSCU
(E121)

Software
Error in
BSCU
(E122)

Failure of
Anti-Skid
System in
Normal
Mode
(E13)

Wheel
Speed
Sensor
Failure
(E131)

Control
Signal
Failure
(E132)

Servo
Valve

Failure in
Normal
Mode
(E14)

Mechanical
Failure
(E141)

Hydraulic
Blockage
(E142)

Failure of
Alternate
Braking
System
(E2)

Hydraulic
Failure
in BLUE
System
(E21)

Loss of
Hydraulic
Fluid
(E211)

Hydraulic
Line

Leakage
(E212)

Hydraulic
Pump
Failure
(E213)

Accumulator
Failure
(E22)

Failure of
Anti-Skid
System in
Alternate
Mode
(E23)

Wheel
Speed
Sensor
Failure
(E231)

Control
Signal
Failure
(E232)

Dual
Metering
Valve

Failure in
Alternate
Mode
(E24)

Mechanical
Failure
(E241)

Hydraulic
Blockage
(E242)

Inadequate
response
to a gas
leak (E0)

Failure
to isolate
the gas
leak (E1)

Failure
to close
isolation
valve V1
(E11)

Control
system
fails to

send close
signal to
V1 (E111)

V1 fails to
close despite
receiving
signal
(E112)

Failure
to close
isolation
valve V2
(E12)

Control
system
fails to

send close
signal to
V2 (E121)

V2 fails to
close despite
receiving
signal
(E122)

Failure to
de-pressurise
by flaring
gas (E2)

Failure
to open
blowdown
valve V3
(E21)

Control
system
fails to

send open
signal to
V3 (E211)

V3 fails to
open despite
receiving
signal
(E212)

Failure in
gas leak
detection
and system
control (E3)

Failure
in gas

detection
(E31)

Sonic
detector
fails to

detect gas
(E311)

Concentration
detector
fails to

detect gas
(E312)

Failure in
operator

intervention
(E32)

Operator
fails to
respond
to alarm
(E321)

Operator
fails to
manually
activate

push button
(E322)

Fig. 5. FLAGPT’s fault tree for ’loss of all braking’ from wheel brake system descrip-
tion in ARP4761 (top). Note the missing Emergency Braking redundancy could be
corrected by further prompting. The gas leak fault tree below shows separation of the
valves and gas detection system (E3), and separate listing of events E111 and E121.
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had no prior knowledge of the system design and its failure modes, it would be
difficult to trust FLAGPT’s analysis.

5 Conclusions

FLAGPT generates fast, flawed ‘first drafts’ of a failure logic analysis. Providing
near instant visualisation helps to see where the analysis is wrong and allows the
user to repeatedly query and correct it. Even outwith cases that were consistently
misunderstood (e.g. cabin air supply), the quality of the analysis was highly
variable, and reformulating FLAGPT’s system instructions had little effect on
solving misalignment issues due to the underlying model behaviour. There is
evidence that LLM reasoning is affected by premise order [3], which infers how
we write our system description matters in terms of how well the LLM will reason
about failure logic junctions. For future work we intend to break the analysis
task into sub tasks, each fulfilled by role-based agents that are overseen by an
LLM, to see if this improves consistency and quality of the output.
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descriptions, LaTeX files and example outputs from FLAGPT are available on our
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