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Modeling the Non-uniform Retinal Perception for

Viewport-Dependent Streaming of Immersive Video
Peiyao Guo, Wenjing Su, Xu Zhang, Hao Chen, and Zhan Ma, Senior Member, IEEE

Abstract—Viewport-dependent streaming (VDS) of immersive
video typically devises the attentive viewport (or FoV - Field of
View) with high-quality compression but low-quality compressed
content outside of it to reduce bandwidth. It, however, assumes
uniform compression within the viewport, completely neglecting
visual redundancy caused by non-uniform perception in central
and peripheral vision areas when consuming the content using
a head-mounted display (HMD). Our work models the unequal
retinal perception within the instantaneous viewport and explores
using it in the VDS system for non-uniform viewport compression
to further save the data volume. To this end, we assess the just-
noticeable-distortion moment of the rendered viewport frame by
carefully adapting image quality-related compression factors like
quantization stepsize q and/or spatial resolution s zone-by-zone
to explicitly derive the imperceptible quality perception threshold
with respect to the eccentric angle. Independent validations show
that the visual perception of the immersive images with non-
uniform FoV quality guided by our model is indistinguishable
from that of images with default uniform FoV quality. Our model
can be flexibly integrated with the tiling strategy in popular
video codecs to facilitate non-uniform viewport compression in
practical VDS systems for significant bandwidth reduction (e.g.,
about 40% reported in our experiments) at similar visual quality.

Index Terms—Quality perception threshold, non-uniform vi-
sual sensation, viewport-dependent streaming

I. INTRODUCTION

Immersive videos have been adopted in applications at a fast

pace in the past years, attributing to the advances of affordable

4K/8K 360◦ cameras used for immersive (or virtual reality -

VR) content acquisition, high-speed networks like 5G or Wi-

Fi 6 for inter-connection, and commodity head-mounted dis-

play (HMD) devices conveniently used for interactive content

consumption [1]–[4]. In immersive applications, users usually

wear an HMD device (e.g., HTC Vive, Meta Quest, Apple

Vision Pro, etc.) to immerse themselves in a virtual space

to consume the content through interactive navigation (see

Fig. 1(a)).

Background. As seen, at a specific moment, just the content

of the current viewport rendered on the HMD display is

actually perceived. This is consistent with our natural viewing

behavior in the physical world, where we are only capable

of seeing the scene just in the front. Such a phenomenon

thus motivates extensive explorations on viewport-dependent

streaming (VDS) of immersive/omnidirectional video content

to greatly save transmission bandwidth [5]–[13]. A practical
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VDS approach often applies a popular two-tier framework,

where it streams high-quality (high-bitrate) representations

of the fixated (attentive) viewport at the enhancement tier,

and delivers low-quality (low-bitrate) omnidirectional video

as the base tier. Such a two-tier VDS approach can avoid

the scene freezing (or blackout) when navigating from one

viewport to another. To guarantee the uncompromised quality

of experience (QoE), notable studies have also been conducted

to predict the next viewport for high-quality content prefetch-

ing [14]–[16]. Nevertheless, considering an omnidirectional

video with 8K spatial resolution at 60 FPS (frame per second),

to sustain the service with satisfied QoE, a typical solution

in [6] yet demands a stable connection close to and even

surpassing a hundred Mbps (megabits per second), which is

still impractical for most application circumstances.

This urges the further reduction of bandwidth consumption

in the VDS system to increase the application deployment

for more service provisioning. In typical VDS systems, the

high-quality (high-bitrate) viewport content instantaneously

rendered on the HMD screen contributes a significant por-

tion of total bandwidth consumption, e.g., ≈80% according

to our measurements. They usually assume uniform visual

sensation within the current field of view (FoV) and apply

uniformly compressed (high-quality) tiles across the entire

viewport. Actually, only the central vision (or macular) area

(CVA) of our retina requires ultra-high resolution and high

fidelity [17], [18], while the peripheral area has significantly

reduced sensitivity [19], [20]. Such non-uniform visual sen-

sitivity is attributed to the highly non-uniform distribution of

cones along with retinal eccentricity [21], as illustrated in

Fig. 1(c). Similarly, user perception when wearing the HMD

would have a similar non-uniform visual sensation since the

central and peripheral vision areas are included in the current

FoV, as shown in Fig. 1(b). As a result, leveraging such

unequal retinal perception of the human visual system (HVS)

within the instantaneous FoV can potentially reduce the data

volume for immersive video streaming without sacrificing the

perceptual quality.

Method. In our work, we aim to develop a quantitative per-

ception model to guide the non-uniform compression within

current FoV for reducing bandwidth requirements in VDS

streaming without perceptual degradation, which measures the

imperceptible quality perception thresholds over the current

viewport.

Given that the unequal retinal perception is mainly at-

tributed to the non-uniform density distribution of cones on

the retina [21] concerning retinal eccentricity θ, we rephrase

the perception model as the concrete Quality Perception
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Fig. 1. (a) A virtual space to consume immersive content is illustrated by wearing a head-mounted display (HMD), where the instantaneous FoV/viewport
within HMD is highlighted, and the FoV’s or viewport’s coverage can be characterized using the retinal eccentricity θ; (b) although the FoV offered by the
HMD display, i.e., one-side (0◦, 55◦], is a sub-area of the biological FoV of the HVS, i.e., (0◦, 110◦], it still consists of the vision areas that can be specified
using θ, e.g., central vision area (CVA) with one-side θ ∈ (0◦, 9◦], near peripheral area (NPA) with one-side θ ∈ (9◦, 30◦] and far peripheral area (FPA)
with one-side θ ∈ (30◦, 55◦]; (c) the distribution of cones on the human retina is highly non-uniform, contributing to unequal visual sensitivity.

Threshold (QPT) function with respect to the horizontal θ.

This function represents the minimum quality level that can

be achieved without any perceptual loss, and it is controlled

via the quantization stepsize q and spatial resolution s in

mainstream codec settings. Specifically, we assess the just-

noticeable-distortion (JND) moment of a zonally-compressed

viewport content at a set of given θs, which involves adapting

the quality of individual frame zones by adjusting q and/or s
according to the specific θ (dubbed θ-zone for convenience).

The QPTs are derived from the imperceptible compression

quality before JND measure at each θ, denoted with relevant

compression factors like q-threshold (maximum q), s-threshold

(minimum s), or their combination q-s-threshold. In the end,

analytical models along with θ like q(θ), s(θ) or q(s, θ) could

be formulated in the unified form to measure the separate

impact of q or s and the joint impact of q and s perceptually,

which is largely different from existing immersive quality

assessment works assuming the uniform-quality viewport [7],

[22], [23].

To verify our proposed model, we invited hundreds of

subjects with normal vision to participate in quality assessment

experiments. Experimental results have shown that both the

threshold values of q and s can be well modeled using

a generalized parametric Gaussian model in terms of the

θ separately. We have further discovered that q-threshold

can be independent of the s through the joint q-s-threshold

exploration. With these models, we are capable of setting

non-uniform q and/or s zone-by-zone to compress immersive

content rendered on the HMD screen with noticeable bitrate

saving but the same overall perceptual quality. Independent

validations with subjective assessments are conducted to eval-

uate the perceived quality of content with the proposed non-

uniform quality versus the default uniform quality, where high

correlation indexes demonstrate the efficacy of our model in

maintaining visual perception with non-uniform immersive

quality.

Besides, our model can provide specific quality thresh-

olds for various tiling strategies, which facilitates the flexi-

ble unequal quality setup in immersive applications without

perceptual degradation. When applying the perception model

to viewport-dependent VR streaming using the official plat-

TABLE I
ABBREVIATIONS

Abbr. Description

HMD Head-mounted display
VDS Viewport-Dependent Streaming
FoV Field of View
θ Retinal eccentricity or eccentric angle

θ-zone viewport’s regional zone specified by the θ range
q (QP) quantization stepsize (quantization parameter)

s spatial resolution
JND Just Noticeable Distortion
QPT Quality Perception Threshold

q-threshold
maximum q or minimum s corresponding to QPT

s-threshold
CVA central vision area

NPA/FPA near/far peripheral area
UFQ/NUFQ uniform/non-uniform FoV quality

form of Grand Challenge on 360-degree Video-on-demand

Streaming1, quantitative results show a significant bandwidth

reduction (over 40% on average) in comparison to the existing

VDS solution, promising its potential in practice for navigating

the prospective content with ultra-high definition fidelity and

high frame rate.

Contributions of this work are summarized below:

• To the best of our knowledge, our work is the first one to

characterize the unequal retinal perception with explicit

compression-quality (q/s) perception threshold functions

regarding the eccentricity θ when consuming immersive

content with the HMD.

• Hundreds of human subjects from various ages, majors,

and genders are invited to rate for quality perception

thresholds on different scenes. Independent validation

assessment reveals almost the imperceptible quality dif-

ference between the rendered content within HMD that

are respectively compressed using default uniform quality

setting and proposed non-uniform quality setting guided

by our model.

• Proposed models could be directly used to guide the non-

uniform viewport/FoV content compression with flex-

ible tiling strategies to realize data reduction without

noticeable perceptual degradation. Quantitative compar-

isons with the existing VDS solution report over 40%

1https://2024.acmmmsys.org/gc/360-vod/
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bandwidth reduction on average, promising its potential

in practice.

Table I lists frequently used abbreviations in this work.

II. RELATED WORK

This section briefly reviews relevant explorations, including

quality assessments of immersive content, peripheral vision,

and related studies, as well as viewport-dependent streaming

of immersive or VR content.

Quality Assessments. In a panoramic scene, only partial

content is rendered within the current FoV at a specific in-

stant, and signal degradation at different positions contributes

unequally to the final perception of the content. Many works

thus have extended traditional image and video quality met-

rics like PSNR (Peak signal-to-noise ratio), SSIM (Structural

SIMilarity), etc., by introducing pixel inequality to reflect such

viewing behavior [24]–[26] to measure the objective quality of

immersive content, such as the WS-PSNR (weighted spherical

PSNR) taking the positional weights on the spherical surface

into the account [24], and the SSIM360 index assuming

more stretching area makes less contribution to final quality

score [26].

However, as reported in [27], [28], the objective metrics

mentioned above can not accurately predict the subjective

quality. A collection of learning-based methods [29]–[34] have

been devised to predict the perceptual quality of immersive

content via extracted scene features and user viewing traces

in an end-to-end way. For instance, Kim et al. [30] encoded

positional and visual information of each image patch to

estimate patch-wised weight and quality score, which were

then aggregated to derive the overall assessment. Sun et

al. [31] firstly transformed the sphere image into a projected

cubemap for multi-plane feature aggregation and final quality

score estimation. Zhou et al. [33] further considered the pro-

jection conversion differences among various view directions

in the overall perceptual assessment via a transformer-based

architecture.

Unfortunately, the aforementioned metrics often lack direct

connections with compression quality control factors like

quantization, for which they can not be easily used to adapt the

underlying codec in practical streaming services. As a result,

another set of explorations has attempted to characterize the

overall perceptual quality as the function of resolution and

quantization [22], [23], [35], in which they generally assume

uniform visual sensation over the viewport for assessment and

model development.

A great review article with comprehensive studies on the

perceptual quality of immersive image/video can be found

in [2]. Till now, existing works have hardly considered the

unequal visual perception within the FoV when viewing the

content on the HMD screen for immersive quality assessment.

Peripheral Vision and Foveated Rendering. A notable

number of efforts have been devoted to studying the visual

acuity or sensitivity in the central vision area and periphery. A

review on peripheral vision can be found in [36]. Specifically,

in 1998, Duchowski et al. [37] conducted experiments to test

the perceptibility of spatial degradation in the visual periphery

of video frames. The result revealed image resolution, which

empirically decreased at the rate of visual acuity, produced an

imperceptible impact on subjective quality. Recently, Rai et

al. have performed serial explorations to understand the per-

ceptual quality in the visual periphery [38]–[40], including the

impacts of content features, e.g., texture, color, motion, and

flicker. Results have revealed that flicker and color distortions

are particularly important in the periphery.

Such non-uniform quality sensation in the periphery in-

spires subsequent investigations such as the foveated rendering

in [41]–[44]. They leverage lower visual sensitivity in the

peripheral vision to degrade the luminance signal along with

the retinal eccentricity to reduce rendering costs without per-

ceptual loss. Nevertheless, existing works do not end up with

a quantitative model capable of measuring the perception at a

given eccentric angle to guide the non-uniform compression

of the content within current viewport.

Viewport-Dependent Streaming of Immersive/VR Video.

In practice, viewport-dependent streaming (VDS) usually

transmits immersive videos in two quality scales [5]–[13],

where the current viewport or FoV is set with high-quality

scale while reduced-quality elsewhere. This is also known as a

two-tier scheme, which ensures high-fidelity perception within

the viewport and quick response against sudden bandwidth

dynamics or viewport re-orientation. Such a two-tier system

can be implemented by adapting compression settings in

tiles, providing a similar QoE but with significant bandwidth

reduction, in the way of adapting spatial resolutions [10], [11],

quantization parameters [5], [6], [9], etc. Then, the streaming

algorithm would jointly consider current network conditions,

buffer status, viewport prediction, etc., to determine which

video chunk to transmit at which quality scale. However,

existing works usually assume uniform compression in the

viewport and choose some typical parameter settings to realize

various quality allocations, which could not be optimal for

immersive visual perception. This work makes the first attempt

to explore and derive explicit models to guide non-uniform

compression within the viewport for more bandwidth reduction

without visual quality degradation.

III. MODELING THE NON-UNIFORM RETINAL PERCEPTION

First of all, the density of photoreceptors on the retina [21]

is non-uniformly distributed as shown in Fig. 1(c), leading to

non-uniform visual perception between central and peripheral

vision area. Tyler [47] thus proposed a power function to

quantify the cone’s density2 (e.g., measured by the number

of cones per mm2) with respect to the retinal eccentricity θ
from 0.2◦ to 20◦, i.e.,

ρ(θ) = 50000 ·
(

θ

300

)− 2
3

, θ ∈ [0.2◦, 20◦]. (1)

When θ > 20◦, ρ(θ) ≈ 4000 cones/mm2 for a large area in

peripheral retina [49].

On the other hand, it is known that the HVS presents non-

uniform perception capacity, which is related to the density of

2We assume the application scenario in the daytime where perception is
dominated by the cone-mediated vision [48].
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(a) Attic (b) Temple (c) Ship (d) Train (e) Beach (f) Sculpture (g) Football (h) Desert

(i) Studio (j) Man (k) Diving (l) Singer (m) Gym (n) Fish

(o) Arena (p) Garden (q) Conference (r) Church (s) Wedding (t) House

Fig. 2. Immersive images used for subjective assessment and model development (a)-(h) and independent model validation (i)-(t). They are selected from
the SUN360 database [45] to cover a sufficiently wide range of content characteristics. Images are rendered with meaningful saliency in the FoV or viewport
of the HMD display following prior studies [23], [46].

cones [50]. Specifically, users have higher perception acuity

in the central vision area with more cones, in which even a

small quality variation of rendered image zones in this area

is potentially detectable. On the other hand, users present

lower visual acuity in the periphery with the lower density of

cones, suggesting that reduced fidelity of the rendered scene

in this area may be imperceptible. Such non-uniform visual

perception within instantaneous HMD FoV should correspond

to the cone density distribution ρ(θ). As the frame quality vari-

ation is often controlled via compression factor q (quantization

stepsize) or s (spatial resolution) [51] in practical, the retinal

perception measurement is specifically rephrased to model the

quality perception threshold (i.e. the maximum q or minimum

s ) as a function of the eccentricity θ without noticing the

immersive image quality degradation. Towards this goal, we

have assessed the JND moments of viewport content at a set

of given θs, where we gradually adapt the frame compression

quality by θ-related zones within the current HMD FoV. The

imperceptible compression quality before the JND moment

at each θ represents the measured QPT, corresponding to q-

threshold, s-threshold, and their combination q-s-threshold in

separate q- or s-impact and joint q-s- impact exploration.

Lastly, analytical models like q(θ), s(θ), and even q(s, θ) are

concretely developed to guide the non-uniform compression

for the HMD FoV content without noticeable degradation.

A. Subjective Assessment

1) Test Preparation: Since adapting quantization and spa-

tial resolution mainly affects the spatial quality of immersive

content, immersive images are used for subjective assessment

and model derivation. Subsequent applications could apply

these derived models uniformly across video frames.

Eight immersive images from the SUN360 database [45] are

chosen and uniformly downscaled to the spatial resolution of

4096×2160 as the testing images, as shown in Fig. 2(a)-2(h).

Another twelve images shown in Fig. 2(i)-2(t) are used for val-

idation. They represent typical scenarios of immersive video

applications with the spatial information (SI) indexes [52]

covering a wide range of content characteristics. Besides, each

image contains meaningful saliency to fill up the user’s FoV

when rendered on the HMD screen for consumption [23], [46].

The HTC Vive system [53] with its associated HMD is set

up to perform subjective quality assessments, which provides

the binocular 110◦ FoV at 2160 × 1200 spatial resolution

refreshed at 90Hz (or frame per second, FPS). The same

methodology applies to other VR systems as well.

To ensure the derived model could describe the visual

perception of compressed content in daily media stream, each

image is compressed with multiple quality levels, by different

combinations of the s or/and q via mainstream encoders (e.g.,

x264). Three independent tests are performed to study the

separate and joint impact of q and s. Specifically,

• for evaluating the independent impact of q, we enforce the

image at its native resolution, but apply ten different qs

via equivalent quantization parameters (QPs) increasing

uniformly from 22 to 49;

• to study the impact of s, we adapt eight distinct resolution

levels (from 4K to 240p) for each raw image;

• for the joint impact of q and s, we still use ten different

QPs, but with only four resolution levels for each QP. It

is to reduce test cases for each subject as the subjects feel

dizzy after a long rating process. Normally, each subject’s

test duration should be less than 30 minutes [22].

To characterize the unequal perception concerning the ec-

centricity θ, the 110◦-wide FoV of the HMD display viewport

is divided into three zones following the retinal structures [17],

[20], [54], i.e., CVA with one-side eccentricity θ ∈ (0◦, 9◦],
NPA with θ ∈ (9◦, 30◦] and the rest θ ∈ (30◦, 55◦] for FPA

(see Fig. 1(b)). We implement an interactive UI to gradually

adapt the test material’s quality by zones for assessing the

perception. Although applying fine-grained θ with more zone

partitions would make the analytical model more accurate, the

increased experimental complexity makes assessments hard to

perform. The current three-zone setup already costs about 30

minutes per subject. More zones need longer rating duration,

causing subjects to feel fatigued and give noisy data.
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2) Test Procedure: As users commonly fixate on the

salient viewport for a reasonable duration without noticeable

movement when navigating the immersive content within

HMD [46], the subjects are kindly asked to stay steady by

fixating on the FoV center without head and body movement

for measuring non-uniform retinal perception conveniently

within current FoV. A tiny green cross is overlaid to assist

subjects in fixing their gazes quickly, as also suggested in [44].

In general, we show image pairs sequentially to deter-

mine the Quality Perception Thresholds by zones and the

corresponding compression parameters (e.g., q-threshold, s-

threshold, etc.) under the guideline of the double stimulus [55]

and JND criteria. Each sample in a pair is displayed for about 3

seconds, with 1 second in between and another 1-second pause

to record the subjective JND opinion. There is a 1-minute

interval for subjects to rest between two distinct scenes.

For each rating pair, one sample is the anchor image, and

the other is the testing sample. Specifically, the initial anchor

image is presented at its native spatial resolution smax and

uniformly compressed with q = qmin (i.e., QPmin = 22).

• First, we increase q or reduce s step-wisely to degrade

the compression quality of the testing sample until the

subject perceives distortion - this is referred to as the

JND moment. We retrieve the recorded qc or sc for the

quality just before the JND moment to infer the quality

perception threshold of the CVA zone, referred to as q-

threshold or s-threshold. In other words, with q ≤ qc
or s ≥ sc, we will not sense any perceptual difference

between the anchor image and the testing sample.

• Afterwards, we replace the anchor image with an image

that is compressed using qc or sc uniformly in the entire

image, then we fix the content quality at the CVA of each

test sample using the qc or sc and degrade the quality

in both the NPA and FPA until the subject notices the

distortion. We record the corresponding thresholds for

NPA, e.g., qnp or snp, respectively.

• Finally, we replace the anchor image by one that is

compressed using qc or sc in the CVA, and by qnp or snp
in the NPA and FPA, and for the test sample, we fix the

quality in the CVA and NPA with the qc/sc and qnp/snp,

respectively, and continue to degrade the quality in the

FPA separately until the subject can detect the difference

perceptually. The corresponding threshold, e.g., qfp or

sfp are marked.

To ensure the model generalization, we have tried our best

to make the assessments reliable for subsequent modeling.

First, the subjects could retract their decisions three times at

most if they do not have sufficient confidence, by adjusting

to the preceding level for re-evaluation. Additionally, we

perform three independent assessments with different subjects

for collecting the q-threshold, s-threshold, and q-s-threshold

separately. Results show a consistent trend, revealing the

generalization of the proposed methodology.

With measured QPTs across CVA, NPA, and FPA regions

specified by θ, analytical perception models are formulated as

q(θ), s(θ), or q(s, θ) for subsequent applications.
3) Test Participants: We invite 175 students, including

101 males and 74 females, from different majors in Nanjing

TABLE II
PARAMETERS FOR VISUAL QUALITY THRESHOLDS MODEL q̂(θ) OR ŝ(θ).

a b c d

q̂(θ) 2.2 0.08 1.38 0.05

ŝ(θ) 2.2 0.033 c(x) 0.06

University for subjective assessments. All viewers have normal

vision (or after correction) and color perception after per-

forming the respective Snellen and Ishihara tests [55]. About

90% of viewers are naı̈ve with video processing, subjective

assessment, or virtual reality. They volunteer to anonymously

participate in these tests after being clearly explained clear

explanations of the experimental purpose and procedures.

4) Data Post-Processing: It takes about 26 minutes for

each subject to view a test sequence, including various quality

scales for all images. Approximately 40-50 viewers assess

each test sequence. We collect and screen all raw data to

remove outliers (to reduce the rating noise). Specifically, we

first generate the probability distribution of the q-thresholds for

each image with all ratings, and then calculate the mean (µ)

and standard deviation (σ). For the j-th image rated by the i-th
subject on q-threshold of the CVA, if |qj,i,c−µqj,c | > 2×σqj,c ,

we would exclude this number. Here, µqj,c and σqj,c are the

mean and standard deviation of all the measured q-thresholds

in the CVA for i-th image from all subjects. Similar procedures

are conducted for screening s-threshold or q-s-threshold data.

All ratings of a subject will be removed if its individual rating

is excluded twice or more. After data screening, each test

sample has about 35 valid threshold ratings for each vision

area and the means of these valid data are considered as the

final q-, s- or q-s-thresholds of this image.

B. Analytical Models

1) Separate Impact of Quantization and Spatial Resolution:

We normalize the q and s for a unified presentation to model

the q- and s-thresholds, i.e., q̂ = qmin/q, and ŝ = s/smax (note

that s indicates the total number of pixels). When q = 64, the

corresponding q̂ is 0.125; while s = 2048× 1080, ŝ = 0.25.

The discrete points in Fig. 3 are measured q-thresholds

corresponding to the CVA, NPA, and FPA, respectively. Here,

we use eccentric angles at 9◦, 30◦, and 55◦ which are typical

boundaries across neighbor regions to represent their corre-

sponding vision areas. We call them “border θ” for simplicity.

Note that we measure the JND region-wisely, revealing the

lowest quality that can be just sensible in this specific region

(e.g., CVA, NPA, and FPA). In the meantime, the visual quality

acuity/sensitivity gradually degrades eccentrically following

the distribution of cone cells on the retina [17]–[19]. Thus, we

apply the border θ of each region to reflect its just impercepti-

ble quality threshold since the farthest border θ corresponds to

the lowest quality in this specific region accordingly. Similarly,

Fig. 4 shows measured s-thresholds in s-impact test.

We aim to derive an analytical model for these quality

perception thresholds as a continuous function of the eccentric

angle θ based on the measured thresholds at the critical points.

By examining the trend of how quality threshold changes with

θ, it is found that the generalized Gaussian function could fit
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Fig. 3. Measured quantization thresholds and fitted threshold model versus
eccentric angle, i.e., q̂(θ). e represents the root mean square error (RMSE).
Parameters are fixed for all image content.

the measured points well, i.e.,

q̂(θ), or ŝ(θ) =
1

c
√
2π

× e−
|(b·θ)a|

2c2 + d, (2)

where a, b, c, d are model parameters derived by fitting

the measured thresholds in Eq. (2) for the average error

minimization. This model also presents a similar trend with

the density distribution of cones ρ(θ).
Table II shows fitted parameters for respective q̂(θ) and

ŝ(θ). Parameters differ between q and s due to the visual dis-

tortion variations caused by quantization and down-sampling.

• Parameter a reflects the decay speed of the visual sensi-

tivity with the increasing θ. Parameter b differs for the

impacts of q and s on the visual sensitivity. Parameter c
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Fig. 4. Measured spatial resolution thresholds and fitted threshold model
versus eccentric angle, i.e., ŝ(θ). e represents the root mean square error
(RMSE). Parameters except c are fixed, while c is content dependent.

is generally content-dependent. But for q̂, we can still use

a fixed c for all images due to negligible accuracy loss

but significant model complexity reduction. Parameter d
indicates the quality perception threshold when θ goes to

the max value (i.e., where the number of cones goes to

zero). For q, d = 0.05 corresponds to QP = 48. In fact,

the subjective tests show that subjects cannot distinguish

between QP = 51 and 48. For s, d = 0.06 corresponds

to s = 840×630 as it is impractical to have s = 0 for

rendering. Thus, we set the parameter d with the least

model prediction error.

• Parameter c for model ŝ(θ) is content-dependent. We have

further explored how to predict parameter c from content
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Fig. 5. Normalized q̂(θ) at different spatial resolutions. Discrete points are
measured data; while the curve is fitted model.

features. Intuitively, image quality is mainly determined

by its spatial complexity, color distribution, and local

orientation. Through careful examination, it is found that

c could be predicted by the linear combination of ρcSI ,
ρµI

and ρµγv
, i.e.,

c = −0.002 ·ρcSI +0.4342 ·ρµI
+3.9029 ·ρµγv

+0.2557,
(3)

where ρcSI is the SI of the image’s partial content located

in the CVA of current FoV (This is because we constrain

the saliency region in the central vision), i.e.,

ρcSI =
1

N

∑

{x|x∈CVA}

√

Sobel
2

h(x) + Sobel
2

v(x), (4)

with Sobel
2

h(x) and Sobel
2

v(x) for horizontal and

TABLE III
PARAMETERS FOR q̂(θ) AT DIFFERENT SPATIAL RESOLUTION. FITTING

ERROR e REPRESENTS RMSE.

s a b c d e

q̂(s, θ)

4096×2160 2.2 0.05 1.2 0.05 0.0330

3072×1260 2.2 0.05 1.3 0.05 0.02365

2048×1080 2.4 0.06 1.2 0.06 0.04789

1024×540 2.4 0.05 1.1 0.08 0.04733

q̂s(θ) 2.2 0.055 1.1 0.06 0.04567

vertical Sobel computation, ρµI
is the averaged intensity

of the original image within current FoV in HSI color

space, and ρµγv
refers to the mean amplitude of vertical

orientation which is calculated using a 3×3 Gabor filter.

2) Joint Impacts of Quantization and Spatial Resolution:

This section investigates the joint impacts of the quantization

and spatial resolution on the perceptual quality with respect to

the eccentricity θ. It is hard to conduct tests with exhaustively

joint (q,s) settings for thorough exploration. Motivated by the

previous work [23], we have performed the test where the

q-threshold is studied at different spatial resolutions for joint

impact discussion. To reduce the overall rating duration, we

use a few typical spatial resolutions but still allow ten distinct

quantization levels to cover a variety of quality scales.

We plot the normalized q̂(θ) at different spatial resolution

s in Fig. 5. It is found that discrete q̂(s, θ) measurements

are almost overlapped for different spatial resolutions. This

implies that a single analytical model may be sufficient to

explain the q-threshold at different s, though individually

fitted models at different s can describe the perceptual sensa-

tion more precisely. Nevertheless, we directly fit the discrete

q̂(θ)s using Eq. (2) as q̂s(θ) which is listed in Table III,

first assuming the independent parameters at different spatial

resolution, and then enforcing the same parameters for all

spatial resolutions, via the least squared error criteria. As seen,

the optimal s-dependent parameters do not differ significantly

at different spatial resolutions and are quite close to the s-

independent parameters. Since the prediction errors of the

above two proposals for different s show homoscedasticity but

don’t meet the normality assumption of a one-way ANOVA,

we use the Kruskal-Wallis test [56] to compare the effects

of these two parameter sets, and the result (P = 0.6099)

demonstrates that there is no difference at a 5% significance

level. Thus, to minimize the number of model parameters, we

propose to apply fixed parameters for the following discussion.

IV. INDEPENDENT MODEL VALIDATION

This section details the validation of our proposed analytical

models for maintaining visual perception with non-uniform

immersive content quality.

A. Validation of q(θ) and s(θ)

We invite another set of individual subjects to participate in

the independent validation assessments with extra six scenes,

as illustrated in Fig. 2(i)-2(n).

Differing from the model development in Section III, we

propose to measure the mean opinion scores (MOS) directly
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Fig. 6. Illustration of measured MOS on average for the images with uniform FoV quality (UFQ) versus corresponding ones with non-uniform FoV quality
(NUFQ) guided by the separate model q(θ) or s(θ) and the joint model qs(θ).

(a)

10

8

6

4

2

0

Excellent

Good

Fair

Poor

Bad

(b)

Fig. 7. (a) An image with non-uniform compression using various q in central
and peripheral areas via model (2); (b) The rating scale of the subjective
assessment.

of each image pair for model validation, of which one is

uniformly compressed using a fixed qmin or smax; and the

other is compressed with non-uniform quality using q(θ) or

s(θ), where the image is partitioned into θ-related regional

zones accordingly, as shown in Fig. 7(a)3. Associated q or

s (or corresponding q̂ or ŝ) for each θ-related zones are

derived through the developed threshold model in Eq. (2) and

parameter settings in Table II.

For example, the predicted quality thresholds for the scene

Studio are given in Table IV. For other scenes, the distribution

of q-threshold remains constant while that of s-threshold

depends on the image’s content. Except for those fixed pa-

rameters, content features are extracted from the images to

derive the corresponding c via Eq. (3) explicitly.

To let the participants familiarize themselves with the qual-

ity scales from the worst (MOS = 0) to the best (MOS = 10) as

shown in Fig. 7(b), we prepare the training samples (Attic and

Dessert in Fig. 2) for assessment pre-training. During the test

procedure, we mix the image pairs from all test images and

place them randomly to collect MOSs. The subject is asked to

give a score ranging from 0 to 10 for each displayed sample

sequentially. Each image sample repeats three times, totaling

six repetitions of the same content: three for the sample with

uniform FoV quality (UFQ) and another three for the copy

with non-uniform FoV quality (NUFQ). Intuitively, the scores

for each test sample should be very close to a specific subject.

We enforce the repetition to avoid random noise.

3Note that the same methodology can be easily extended to various tiling
strategies with corresponding granularity.

TABLE IV
STAIRCASE REPRESENTATION FOR q̂(θ) AND ŝ(θ) OF THE SCENE Studio.

r1 r2 r3 r4 r5 r6 r7 r8
θ 0◦-9◦ 9◦-16◦ 16◦-23◦ 23◦-30◦ 30◦-38◦ 38◦-46◦ 46◦-55◦ > 55◦

q̂ 0.3399 0.3052 0.2345 0.1562 0.0978 0.0640 0.0529 0.0503

ŝ 0.7192 0.6599 0.5325 0.3744 0.2348 0.1306 0.0820 0.0644

TABLE V
STAIRCASE REPRESENTATION FOR q̂(θ) AND CORRESPONDING QP(θ) AT

DIFFERENT SPATIAL RESOLUTION s.

r1 r2 r3 r4 r5 r6 r7 r8
θ 0◦-9◦ 9◦-16◦ 16◦-23◦ 23◦-30◦ 30◦-38◦ 38◦-46◦ 46◦-55◦ > 55◦

q̂ 0.4236 0.3930 0.3262 0.2418 0.1649 0.1049 0.0751 0.0632

QP 29 30 32 34 38 42 44 46

* for θ ∈ [0◦, 55◦), s is a constant, e.g., 4096×2160, 3584×1890,
3072×1260, 2048×1080, 1524×810,1024×540.

For each image sample, all raw scores from all subjects

are collected and then screened as discussed in Section III.

The averaged value is referred to as its MOS. We then plot

the MOSs for the samples with uniform quality versus the

MOSs for the samples with non-uniform quality of the same

image content, in Fig. 6(a)-6(b) for the respective impact of

q and s. We further evaluate the PCC (Pearson correlation

coefficient) and SRCC (Spearman’s rank correlation coeffi-

cient) between averaged scores for each scene image with

UFQ and corresponding image with NUFQ in both q(θ) and

s(θ) validation. The PCC and SRCC are higher than 0.93,

suggesting that the MOSs of the NUFQ image are highly

correlated with the MOSs of the UFQ image, indicating the

high efficiency of our proposed individual q̂(θ) and ŝ(θ)
to model the non-uniform retinal perception quantitatively.

However, compared with the score of the UFQ image, there is

a slight decrease on that of the NUFQ image, which indicates

a reduction of 0.8384 and 0.6970 points respectively for q-

impact and s-impact in Fig. 6(a) -6(b). However, users can’t

distinguish the quality disparity between the UFQ image and

the corresponding NUFQ image as the relative deviations of

the ratings are less than 1.

B. Validation of qs(θ)

This section extends the validation to the scenarios with

non-uniform FoV quality, considering joint impacts of quan-

tization and spatial resolution. Quality variations of twelve

test images in Fig. 2(i)-2(t) are assessed by more than fifty
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Fig. 8. Illustration of model-driven 360-degree video streaming: (a) multi-
scale tile structure considering the variations from both spatial resolution
and quantization, guided by Eq. (2); (b) a user navigating the immersive
content from t0 to t1. The blue lines denote the FoV at t0 and the purple
lines indicate the FoV at t1. For the content tiles delivered within HMD
FoV at each timestamp ( FoV0/1/...), the typical VDS solution delivers tiles
within the FoV at uniformly high quality (denoted as the UFQ scheme),
while our proposed NUFQ scheme assigns diverse quality scales within the
instantaneous FoV.

subjects. We prepare 6 resolution variations for each scene

and compress different regional zones with non-uniform qs(θ)
following the model setting in Table III. Detailed compression

parameters are listed in Table V. Fig. 6(c) reveals that similar

rating trends of the uniform and non-uniform quality copies of

the same content, with very high PCC at 0.9645 and SRCC at

0.9526. Meantime, the score of the NUFQ image is 0.65 points

lower than that of the corresponding UFQ image on average

which only marginally affects users’ perception of the image’s

quality.

V. MODEL-DRIVEN 360-DEGREE VIDEO STREAMING

We further utilize the proposed non-uniform retinal percep-

tion model to optimize 360-degree video streaming for im-

proved efficiency. Unlike typical viewport-dependent stream-

ing approaches for immersive videos that only leverage the

unequal content quality inside and outside the user’s FoV, our

perception models suggest allocating non-uniform FoV quality

(NUFQ), a.k.a., non-uniform compression of the viewport

content, during the streaming to further reduce the bandwidth

Fig. 9. Illustration of user motion trajectories in the scene “Valley”. “User
#1” represents slow head movement while “User #2” shows the drastic head
movement.

without perceptual degradation. As shown in Fig. 8, we follow

Eq. (2) to process the videos into multiple quality scales (i.e.,

via a variety of q and s) and then determine the quality scale

of each tile within the FoV according to its corresponding

retinal eccentricity. For the tiles outside the FoV, we assign

the lowest quality following the basic practice used in VDS

systems.

In the following, the NUFQ scheme guided by our model is

evaluated on an open platform E3PO4 in comparison with the

existing VDS scheme that applies the uniform compression

within the FoV. E3PO, as the official valuation platform of

“Grand Challenge on 360-degree Video-on-demand Stream-

ing”5 in ACM MMsys24, could implement different 360◦

video streaming approaches for performance comparison, us-

ing the same video content and same motion trajectory.

A. Experimental Setup

The pipeline of the VR streaming evaluation in the E3PO

platform consists of three stages. Firstly, using the video pre-

processor in E3PO, the videos were temporally segmented

into 1-second chunks, each of which was further spatially

segmented into 24×12 tiles. Each tile was independently en-

coded at different quality scales. Secondly, we employed linear

regression and exponential smooth to predict potential user

viewports every 10ms for the streaming simulator of E3PO. It

then sent the detailed streaming actions that include when and

which video chunk/tile was transmitted along with the desired

quality scale. Here, the user’s FoV of the display viewport was

configured with a coverage of 90◦ × 90◦. Lastly, we analyzed

the whole streaming process from two perspectives. One is

the network bandwidth consumed during the streaming. Lower

bandwidth consumption demonstrates the ease of deploying

VR streaming services. Another is the FoV uncoverage rate,

which refers to the ratio or percentage of the FoV that is not

covered or predicted accurately. A lower FoV uncoverage rate

indicates a closer alignment between the predicted FoV and

the actual FoV, resulting in a more immersive and realistic

viewing experience.

We selected three 360-degree videos (“valley”, “coaster”,

and “forest”) from the grand challenge as the testing materials.

4https://github.com/bytedance/E3PO.git
5https://2024.acmmmsys.org/gc/360-vod/
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Fig. 10. Illustration of the FoV uncoverage rates in the form of cumulative distribution function (CDF) for both the UFQ and NUFQ schemes using the two
user trajectories in various scenes. When the CDF value approaches 1 earlier, it indicates a closer alignment between the predicted FoV and the user’s actual
FoV.

Fig. 11. Illustration of the bandwidth consumption during streaming with different tile sizes. As the tile size decreases, the compression efficiency decreases,
resulting in higher bandwidth consumption. However, the proposed NUFQ scheme still achieves significant bandwidth reduction even when using different
tile sizes.

Each test video is 10 seconds long and has a resolution of

7680×3840 with 30fps. Additionally, we selected two typical

user trajectories, one denoting slow head movement and the

other representing drastic head movement, as shown in Fig. 9.

We used the typical VDS method as a baseline, which

delivers the tiles within the user’s FoV at a high quality

and other tiles at a low quality. Since this scheme assigns

the same high quality within the FoV, we refer to it as

uniform FoV quality (UFQ) scheme. In contrast, our NUFQ

scheme assigned the tiles within the FoV at diverse quality

scales based on the non-uniform retinal perception model. The

quality of each tile is determined by its corresponding retinal

eccentricity according to Eq. (2), as shown in Fig. 8(a). In the

implementation of the UFQ scheme, we encoded the videos

using typical quantization parameters (QP) of 22 for high

quality and 44 for low quality. For the sake of fairness, we only

varied the QP for our proposed NUFQ scheme. Specifically,

the QP values were calculated according to Eq. (2). These QP

values gradually increased from the center tile of the FoV to

the peripheral tiles.

B. Experimental Results

Table VI illustrates the required bandwidth for streaming

each video using different user motion trajectories in both

the UFQ and NUFQ schemes. As demonstrated in Table VI,

streaming with the NUFQ scheme results in an average

bandwidth savings of over 40%, effectively reducing the

bandwidth requirements for accessing VR streaming services.

TABLE VI
AVERAGED BANDWIDTH REQUIREMENT ( MBPS) IN THE VDS METHODS

USING THE UNIFORM FOV QUALITY (UFQ)/NON-UNIFORM FOV QUALITY

(NUFQ) SCHEMES.

Scene User UFQ NUFQ Scalage

valley
# 1 59.360 29.846 49.72%

# 2 91.469 41.330 54.82%

coaster
# 1 80.04 49.846 37.72%

# 2 101.206 63.017 37.73%

forest
# 1 94.530 59.366 37.20%

# 2 148.450 90.080 39.32%

Average 95.843 55.581 42.01%

Particularly, the NUFQ scheme exhibits more significant ad-

vantages in bandwidth reduction when the user motion is

drastic. By reducing the bandwidth requirements, the NUFQ

scheme exhibits a superior capacity to adapt to diverse network

conditions, lowering the costs and complexity associated with

deploying VR streaming services.

Fig. 10 depicts the cumulative distribution function (CDF)

of the FoV uncoverage rate during the streaming processes.

Compared to the UFQ scheme, our proposed NUFQ scheme

exhibits a lower FoV uncoverage rate. This is because the

reduced delivery time in the NUFQ scheme eliminates the

need for long-range predictions of user movement, resulting

in more accurate user motion prediction. However, in cases

where the user motion is drastic, a long tail effect becomes

evident in the CDF curve. This means that there is a probability

of significant deviation between the predicted FoV and the
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user’s actual FoV. As shown in Fig. 10, the maximum FoV

uncoverage rate of the NUFQ scheme is substantially lower

than that of the UFQ scheme.

In the above experiment, we observed that using three qual-

ity tiles at a resolution of 320×320 within the FoV resulted in

an average bandwidth savings of over 40%. To further validate

the bandwidth reduction potential of our model’s guidance, we

explored various tiling strategies for VR videos, such as 16×8
patches at a resolution of 480× 480 and 32× 16 patches at a

resolution of 240× 240. As shown in Fig. 11, our perception

model successfully achieved significant bandwidth reduction

across various tile sizes. However, it is worth noting that

smaller tiles with more fine-grained quality scales may suffer

from a decrease in compression efficiency, which can limit the

overall bandwidth reduction achieved through unequal-quality

tile allocation. It deserves more exploration to realize the trade-

off between compression efficiency and bandwidth reduction

in our future work.

In general, the NUFQ scheme guided by our perception

model not only significantly reduces the bandwidth require-

ments of VR streaming, but also effectively enhances the align-

ment between the predicted FoV and the user’s actual FoV. It

shows remarkable robustness against network dynamics [57]

and user interactive behaviors.

VI. CONCLUSION

This paper characterized the non-uniform retinal perception

concerning the eccentricity θ, where, at each eccentric angle

θ, we measured the JND to determine the quality percep-

tion threshold in the form of corresponding compression-

related quantization q and/or resolution s, e.g., q-threshold,

s-threshold, or q-s-threshold. Then the closed-form theoretical

models like q(θ), s(θ), and qs(θ) are derived to quantitatively

offer various compression factors in respective θ-indexed

image zones for viewport rendering. As seen, these models

enabled non-uniform compression inside the viewport or FoV

without impairing the perceptual sensation when wearing the

HMD to consume the immersive content, which greatly differs

from the existing works. Such a model-driven non-uniform

FoV/viewport compression could be easily implemented on

typical viewport-dependent streaming methods of immersive

or virtual reality content. As demonstrated in a field test, our

method with model-driven non-uniform viewport compression

provides an average of 40% bandwidth savings without de-

grading the perpetual quality, promising the practical potential

of the proposed models in applications.
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