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REVIEW

The Role of Chimeric Antigen Receptor
T-Cell Therapy in Immune-Mediated

Neurological Diseases

Gavin Brittain, MD ,1,2† Elisa Roldan, MD,3,4† Tobias Alexander, MD,5,6

Riccardo Saccardi, MD,7 John A. Snowden, MD,3,4 Basil Sharrack, MD, PhD,1,2‡ and

Raffaella Greco, MD 8‡

Despite the use of ‘high efficacy’ disease-modifying therapies, disease activity and clinical progression of different
immune-mediated neurological diseases continue for some patients, resulting in accumulating disability, deteriorating
social and mental health, and high economic cost to patients and society. Although autologous hematopoietic stem
cell transplant is an effective treatment modality, it is an intensive chemotherapy-based therapy with a range of short- and
long-term side-effects. Chimeric antigen receptor T-cell therapy (CAR-T) has revolutionized the treatment of B-cell and
other hematological malignancies, conferring long-term remission for otherwise refractory diseases. However, the toxicity of
this treatment, particularly cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and the
complexity of production necessitate the need for a high level of specialization at treating centers. Early-phase trials of
CAR-T therapies in immune-mediated B cell driven conditions, such as systemic lupus erythematosus, neuromyelitis optica
spectrum disorder and myasthenia gravis, have shown dramatic clinical response with few adverse events. Based on the
common physiopathology, CAR-T therapy in other immune-mediated neurological disease, including multiple sclerosis,
chronic inflammatory polyradiculopathy, autoimmune encephalitis, and stiff person syndrome, might be an effective option
for patients, avoiding the need for long-term immunosuppressant medications. It may prove to be a more selective
immunoablative approach than autologous hematopoietic stem cell transplant, with potentially increased efficacy and lower
adverse events. In this review, we present the state of the art and future directions of the use of CAR-T in such conditions.

ANN NEUROL 2024;00:1–12

Multiple sclerosis (MS), myasthenia gravis (MG),

neuromyelitis optica spectrum disorder (NMOSD),

chronic inflammatory polyradiculopathy, autoimmune

encephalitis, and stiff person syndrome are debilitating

neurological disorders with heterogeneous clinical and

pathological manifestations, which share an underlying,

albeit different, immune-mediated mechanism, with a

central role of B cells.1 In MS, B cells drive disease through
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several mechanisms, including antigen presentation to

T cells, production of proinflammatory cytokines peripherally,

and are resident in the central nervous system across the

disease spectrum.2 However, pathogenic antibodies have not

been identified for most neurological immune-mediated

disorders, including MS. Two typical conditions that have

such antibodies are MG (acetylcholine receptors or muscle-

specific tyrosine kinase [MuSK] antibodies) and NMOSD

(aquaporin-4 [AQP4]–immunoglobulin G [IgG]). Although

vast improvements in treatment have been made over the past

20–30 years, with a spectrum of relatively safe and tolerable

therapies, there is no cure for such disorders, regardless of the

knowledge of the pathogenic antibody(ies). Most patients

require ongoing treatment, potentially causing cumulative

immunosuppressive and off-target adverse events, often with-

out completely suppressing disease activity. To mitigate this,

and the progressive accumulation of disability, the goal of

future treatments might focus on ‘resetting’ the immune sys-

tem to reintroduce a long lasting immunotolerant state with

no future immunosuppression required.

Discussion

Standard Disease-Modifying Treatments
There has been considerable progress in the use of disease-

modifying therapies (DMTs) in different immune-mediated

conditions that modulate or deplete the immune system with

varying efficacy and risk profiles. The use of monoclonal

antibodies has revolutionized the management of many of

these conditions. Treatment options for highly active or

refractory presentations include alemtuzumab (anti-CD52),3

ocrelizumab (anti-CD20),4 ofatumumab (anti-CD20),5 or

natalizumab (anti- α4-integrin)6 in relapsing remitting

MS (RRMS), or rituximab (anti-CD20)7 satralizumab (anti-

interleukin-6)8 and inebilizumab (anti-CD19)9 eculizumab

(C5 inhibitor)10 in NMO, and the latter in MG, are, partic-

ularly for anti-CD20 antibodies in RRMS, increasingly used

as first-line therapies.11 The dramatic success of anti-CD20

at reducing relapses in RRMS, or the closely related anti-

CD19 therapy for NMOSD, compared with animal

models,12 in these conditions has prompted a rethink about

the underlying disease mechanisms with the current target of

recently approved highly active therapies being B cells. Such

treatments, however, are not a cure, breakthrough disease is

unpredictable and there is no proven stopping strategy, mak-

ing the use of these treatments usually long term, conferring

a potential cumulative longitudinal risk of adverse effects and

healthcare costs, and an ongoing risk of further disease activ-

ity. Therefore, targeted one-off immunosuppression that

provides freedom from long-term immunosuppression and

treatment activity, in the case of MS, this would be both

relapses and progression independent of relapses, has been a

longstanding aspiration as a potential cure.

Hematopoietic Stem Cell Transplantation
The use of autologous haematopoietic stem cell transplanta-

tion (aHSCT) in immune-mediated neurological disease

has increased in the past 2 decades, with MS being the

fastest growing indication for this treatment in Europe.13,14

aHSCT is a procedure that involves the ablation and recon-

stitution of the myeloid and lymphoid systems, aiming to

eradicate malignant cells (in its use in cancer) or to develop

a new and tolerant immune repertoire (in its use in

immune conditions).15 The main indications in neurologi-

cal diseases include highly active RRMS failing DMTs and

other refractory types of MS, chronic inflammatory poly-

radiculopathy, NMO, MG, and stiff person syndrome.

Evidence for the use of aHSCT in MS is incomplete.

A phase 3 trial by Burt et al., which compared aHSCT

using a nonmyeloablative regimen (cyclophosphamide/

antithymocyte immunoglobulin) versus approved DMTs,

reported no deaths or serious toxicity in the aHSCT

group.16 The results of this study provided evidence that

aHSCT is safe and has superior efficacy compared with

several DMTs, with no evidence of disease activity rates of

66 to 83% although, for historical reasons, the standard

treatment arm of the trial did not include several currently

approved high-efficacy DMTs. Several European phase 3 tri-

als are currently ongoing (Star-MS [ISRCTN88667898],

NET-MS [EudraCT: 2022-002654-95], RAM-MS

[NCT03477500]) to establish the use of aHSCT in the

treatment paradigm of RRMS. Although aHSCT is a rela-

tively safe and cost-effective procedure for select MS

patients, there remain concerns about the treatment-related

mortality risk (within 100 days of treatment). Treatment-

related mortality remains higher than that of DMTs,

although, with improvements in patient selection and

treatment regiments, it has reduced considerably from

1.3% (between 2001 and 2007) to 0.2 to 0.3%, based on

large registry data.13–15,17–20 Additional considerations

include the loss of previous immunity, resulting in a risk of

infections and a requirement for re-vaccination, infertility

or subfertility, early menopause, secondary autoimmune

disease, and a theoretical risk of secondary malignancies.

Regardless of the outcome of ongoing trials, refinement of

our ability to reset the immune system to improve

outcomes for these conditions over the long term with less

toxicity is still needed.

CAR-T Therapy. A chimeric antigen receptor (CAR) is a

synthetic transmembrane protein expressed at the surface

of immune effector cells (IECs) that are reprogrammed

either in vitro or in vivo.21 CARs are engineered synthetic
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receptors that function to redirect lymphocytes, most com-

monly T cells, to recognize and eliminate cells expressing a

specific target antigen. Conventional T cells expressing CARs

revealed impressive clinical results in hematological malignan-

cies driven by B cells, plasma cells, or other malignancies,

and result in durable remission.22

The therapeutic strategy is based on the genetic modi-

fication of the patient’s T cells, such that they express the

immunoglobulin receptor that specifically recognizes a tar-

get cell antigen regardless of the human leukocyte antigen.

The structure of CAR-T receptors consists of an extracellu-

lar antigen-recognition part (single-chain variable fragment),

a transmembrane region, an intracytoplasmic costimulatory

domain (usually 4-1BB or CD28), and a CD3 intracellular

signaling domain (Fig 1).23 Based on the composition of

the intracellular region, different generations of CARs can

be constructed: (1) the first generation comprising only

CD3-zeta (CD3z); (2) the second generation with two dif-

ferent domains, most commonly CD28-CD3z and 4-1BB-

CD3z; and (3) a third generation with 3 domains, generally

obtained by adding OX-40 to a second-generation CAR.24

Production of CAR-T cells requires the collection of the

patient’s T cells by leukapheresis, enrichment and activation

of the T cells, transduction with a viral vector, and expan-

sion and isolation of CAR-T-expressing T cells (Fig 2).

Products targeting B-cell surface antigens, such as

CD19 or B-cell maturation antigen (BCMA), are available

through academic or commercial laboratories (Table 1).25–27

Once the lymphocytes have been modified, the

patient receives lymphodepletion chemotherapy and then

receives the infusion of CAR-T cells. In malignant condi-

tions, chemotherapy both reduces tumour mass and is also

an essential part of the CAR-T-cell cycle by maximising

the expansion of the CAR-T, and, therefore, increasing

the efficacy and long-term survival of the circulating

CAR-T cells. By eliminating endogenous lymphocytes and

modulating cytokine production, an appropriate microen-

vironment for the CAR-T cells to expand and persist is

created.28

Different lymphodepleting conditioning regimens have

been used, with varied combinations of agents, dosing, and

timing pre-CAR-T. Typical regimens are based on fludarabine/

cyclophosphamidewith a range of doses (fludarabine/cyclophos-

phamide 25/250 mg/m2 up to 30/750 mg/m2), duration of

treatment (between 3 and 5 days of fludarabine and 1–3 days of

cyclophosphamide), and time until transfusion (1 day up to

14 days prior to transfusion) of CAR-T are common.28 Other

agents, such as bendamustine, etoposide, or cyclophosphamide

alone, have been used in various different lymphodepleting

regimens.

Most CAR-T products are produced with autologous

T cells that, due to the need for leukapheresis, are therefore

associated with manufacturing and transit delays, increased

cost, and depend on the functional fitness of patient T cells,

which are often reduced by the disease or previous immuno-

logical therapies.29 The use of allogeneic CAR-T cells from

donors has many potential advantages over autologous

approaches, including the immediate availability of

cryopreserved batches for patient treatment, possible stand-

ardisation of the CAR-T-cell product, time for multiple cell

modifications, redosing or combination of CAR-T cells

directed against different targets, and decreased cost using an

industrialized process.30 However, allogeneic CAR-T cells

have to overcome two significant challenges: the risk of caus-

ing graft-versus-host disease, and a rapid recognition and

elimination of the CAR-T by the host immune system,

which impede their activity. To avoid host recognition, new

generation of T-cell receptor-deficient T cells (or other key

immunogenic molecules) using genome editing tools have

been developed and used in clinical trial settings.31,32

Other experimental CAR-T constructs include CAR

engineered natural killer cells, CAR-T regulatory cells,

dual-targeting CAR-T, RNA CAR-T (rCAR-T), chimeric

autoantibody receptor cells, and synthetic Notch T cells

are all in development.33–38 Some of these novel con-

structs have not used different lymphodepleting regimens

for their delivery.

CAR-T Toxicity. CAR-T-cell treatment can result in spe-

cific adverse effects, including cytokine release syndrome

FIGURE 1: Illustration of chimeric antigen receptor T-cell
(CAR-T) structure. The structure of CAR-T receptors consists
of an extracellular antigen-recognition part, composed of a
single-chain variable fragment (scFv), a transmembrane
region, an intracytoplasmic costimulatory domain (usually
4-1BB or CD28 in 2nd-generation constructs), and a CD3
intracellular signaling domain.
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(CRS) and immune effector cell-associated neurotoxicity

syndrome (ICANS; Table 2).39,40

CRS is an acute systemic inflammatory syndrome char-

acterized by fever and multiple organ dysfunction. It usually

presents as fever with or without hypotension or hypoxia, with

multiorgan failure occurring in severe cases. Treatment is

highly successful with tocilizumab (anti-interleukin-6), and ste-

roids. Currently, the management of CRS is well established,

and prompt treatment usually successfully prevents grade 3–4

CRS symptoms (the most severe forms).41 The frequency and

severity of CRS after CAR-T-cell therapy varies between prod-

ucts (any grade: 37–93%, G3/4: 1–23%).42–44 Some factors,

such as high tumor burden and CAR-T-cell dose, seem to be

associated with a higher risk of CRS.

Neurotoxicity, most commonly in the form of ICANS,

can occur in the days to weeks following administration of a

CAR-T (usually 4–10 days post-infusion), dependent on the

CAR-T product received. It has been postulated that the dis-

ruption of the blood–brain barrier leads to migration of

CAR-T cells into the brain parenchyma, and to elevated

FIGURE 2: Illustration of chimeric antigen receptor T-cell (CAR-T) treatment. Production of CAR-T cells requires the collection of
the patient’s T cells by leukapheresis (1). T cells are separated and removed, then genetically modified to include a chimeric
antigen receptor (CAR) and finally expanded to obtain millions of CAR T-cells (2–4). A short course of lymphodepleting
chemotherapy is given (5), then the CAR-T cells are infused (6). Careful clinical and immunological monitoring is needed after
infusion (7).
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levels of cytokines and protein in the cerebrospinal fluid lead-

ing to inflammation of the central nervous system. Greater

and faster CAR-T expansion in vivo correlates with higher

ICANS risk.40 ICANS presents with varying nonspecific

symptoms ranging from confusion to seizure and cerebral

oedema. Treatment is with dexamethasone or, for

grade 4 ICANS, high-dose methylprednisolone, with

response seen in the vast majority of patients.45 Adjuvant

tocilizumab should be given if ICANS occurs concurrently

with CRS.46 Prompt treatment reduces the incidence of

severe ICANS. Other agents, such as Anakinra (anti-inter-

leukin-1), have shown responses in up to 70% of refractory

cases.47 Reassuringly, evidence suggests that steroids do not

impact CAR-T efficacy, although longer courses can be

associated with shorter progression-free survival in hemato-

logical malignancies.48 Levetiracetam is usually part of

routine preventive measures, and with close working with

neurology and intensive treatment unit, seizures are man-

aged urgently with appropriate agents. The incidence of

ICANS varies with the type of CAR-T infused, approxi-

mately 15 to 30% of treatments, but usually <20% of cases

have severe (grade 3–4) ICANS.49 Additional risk factors

for ICANS, for patients with hematological malignancies,

include high disease burden and older age. Tumor

inflammation-associated neurotoxicity is an on-tumor, on-

target neurotoxicity syndrome, distinct from ICANS,

observed in central nervous system tumors treated with

CAR-T-cell therapies.50 Its symptom spectrum varies from

headache or fever to hydrocephalus. Although ICANS

results in global neurological dysfunction leading to

seizures, decreased level of consciousness, or speaking/

movement disorders, tumor inflammation-associated neuro-

toxicity manifests with focal symptoms, linked to the site of

the tumor and to local inflammation, without signs of

widespread neuronal damage.51

Other neurological complications have been described

specifically in anti-BCMA CAR-T products, specifically par-

kinsonism, cranial nerve palsies, and peripheral neuropathy,

which are increasingly recognized, but may be irrevers-

ible.52,53 Although neurotoxicity related to CAR-T is tradi-

tionally considered to be off-target, due to neural expression

of BCMA, which appears to have a role in neural develop-

ment, on-target physiopathology has been proposed.54 The

safety of using CAR-T anti-BCMA to treat immune-

mediated neurological conditions should be carefully

considered, although they have been used with early

signs of efficacy and safety (discussed below).55

Other toxicities related to CAR-T treatment are

immune effector cell-associated hemophagocytic

lymphohistiocytosis (HLH)-like syndrome (IEC-HS)56

and immune effector cell-associated hematotoxicity.57 IEC-

HS incidence is variable across CAR-T-cell constructs and

patient population, but an incidence of up to 40% has

been described.58 IEC-HS is characterized by high fever,

hyperferritinaemia, prolonged cytopenia, and eventually

multiorgan failure.57 Although these lymphohistiocytosis-like

manifestations are frequently seen in patients with severe

CRS, IEC-HS often has a delayed onset and manifests as

CRS is resolved/resolving. Interestingly, lymphohistiocytosis-

like toxicities are often not as directly associated with CRS

TABLE 1. Chimeric Antigen Receptor T-Cell Therapy Products and Indications Approved by the Medicines and

Healthcare Products Regulatory Agency European Medicines Agency and the United States Food and Drug

Administration

Generic name Brand name Antigen target Target disease(s)

Tisagenlecleucel Kymriah CD19 B-cell ALL

B-cell NHL

Axicabatagene ciloleucel Yescarta CD19 NHL

Follicular lymphoma

Brexucabtagene autoleucel Tecratus CD19 Mantle cell lymphoma

ALL

Lisocabtagene maraleucel Breyanzi CD19 NHL

Idecantagene vicleucel Abecma BCMA MM

Ciltacabtagene autoleucel Carvykti BCMA MM

Abbreviations: ALL = acute lymphoblastic leukemia, BCMA = B-cell maturation antigen, NHL = non-Hodgkin’s lymphoma, MM = multiple

myeloma.
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and/or its severity as initially described.56 Immune effector

cell-associated hematotoxicity results in prolonged cytopenia,

and its treatment is based on supportive treatment with

granulocyte colony-stimulating factor, eltrombopag

(thrombopoietin receptor agonist), and transfusion sup-

port, although CD34 stem cell boost (from previously

stored autologous stem cells) or allogeneic stem cell

transplant has been required in exceptional cases.57 Hyp-

ogammaglobulinemia is commonly seen after CAR-T,

and prophylaxis with intravenous immunoglobulin is

advised to reduce the risk of recurrent infections.

A recent, but concerning, toxicity risk is the possibil-

ity of secondary malignancies after CAR-T-cell therapy. A

total of 20 reports of T-cell malignancies have been

reported for >34,400 patients that have been treated with

these therapies.59–62 The US Food and Drug Administra-

tion has determined that the risk of T-cell lymphoma is

applicable to all currently approved BCMA-directed and

CD19-directed genetically modified autologous CAR-T-cell

immunotherapies. Genetic sequencing was performed for

4 cases with the CAR transgene identified in the malignant

clone. However, the current recommendation of the US

TABLE 2. Chimeric Antigen Receptor T-Cell Therapy Cell Toxicity

CAR-T toxicity type Clinical presentation Treatment

CRS Fever Supportive care with broad-spectrum

antibiotics

Hypotension Tocilizumab 8 mg/kg IV (max 800 mg)

Hypoxia Dexamethasone 10 mg

Multiorgan failure Anakinra 12 mg/kg/day

ICANS Confusion Supportive care

Aphasia Dexamethasone 10 mg IV/6 h or

methylprednisolone 1 g/day for 3 days

Deterioration of handwriting and tremor Levetiracetam

Seizures

Cerebral oedema

IEC-HS Fever As per severe CRS

Hepatomegaly

Cytopenia >2 lineages

Hypertriglyceridemia

Hemophagocytosis

Hypofibrinogenaemia

Hepatitis

ICAHT Early ICAHT (day 0–30) Antimicrobial prophylaxis

ANC <500/μL Transfusion support

Late ICAHT (after day +30) G-CSF

ANC <1,500/μL Eltrombopag

CD34 stem cell boost

Hypogammaglobulinemia and B-cell

aplasia

Immunoglobulin G <400 mg/dL

Recurrent infections

IVIg 0.4 g/kg bodyweight every 3–

6 weeks

Abbreviations: ANC = absolute neutrophil count, CRS=cytokine release syndrome, G-CSF = granulocyte colony-stimulating factor,

ICANS = immune effector cell-associated neurotoxicity syndrome, IEC-HS = immune effector cell-associated hemophagocytic lymphohistiocytosis-

like syndrome, ICAHT = immune effector cell-associated hematotoxicity, IV = intravenous, IVIg = intravenous immunoglobulin.
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and European transplant societies, and other experts’

opinion is that the benefits of CAR-T therapies continue

to outweigh the potential risk of having a secondary

CAR-positive lymphoma.

CAR-T Therapy in Non-Neurological Immune-
Mediated Disease
The ability of CAR-T cells to selectively target antigens and

to simultaneously boost cell activation is an attractive thera-

peutic potential within a broad spectrum of autoimmune

diseases.37 In 2022, remission (absence of disease activity

and freedom from immunosuppressive medication), was

reported in 5 refractory systemic lupus erythematosus

patients 3 months after treatment with autologous CD19

CAR-conventional T cells, delivered with fludarabine and

cyclophosphamide conditioning, despite the reconstitution

of B cells and the disappearance of the CAR-T cells.63 Clin-

ical (lower Systemic Lupus Erythematosus Disease Activity

Index [SLEDAI], 2000 scores and reduction in proteinuria)

and serological (disappearance of dsDNA antibodies)

improvements were also seen. Treatment was safe, with

mild cytokine-release syndrome, in the form of fever, the

only adverse event over a median follow-up of 8 months.

Antibody titers against viral and bacterial pathogens com-

monly vaccinated against were sustained despite CAR-T

therapy,64 indicating the sparing of immunoglobulin-

producing cells, an advantage over nonselective ablative

approaches, such as aHSCT. Immunophenotyping of

reconstituted cells showed memory B cells were naïve,

B-cell receptors were nonclass switched, CD38+CD20�

plasmablasts were suppressed, and there was an absence of

pathogenic CD11c+CD21lo activated memory B cells.

Mackensen et al. theorized that this ‘deep depletion’ of

B cells, which has previously been demonstrated among

patients treated for B-cell malignancies, including the

suppression of plasmablasts, is crucial to the response seen

in systemic lupus erythematosus patients who had previ-

ously failed anti-CD20 therapy. Since then, an additional

15 patients with systemic lupus erythematosus have been

reported as receiving CD19 CAR-T therapy,65 and several

early-phase studies are ongoing.

A single patient with refractory antisynthetase syn-

drome with widespread clinical manifestations and a high

level of disability has been reported to have responded dra-

matically to CD19 CAR-T therapy, with improvements

continuing beyond the reconstitution of B cells.66 A tran-

sient increase in myositis occurred post-treatment, but after

6 months of follow-up, serological parameters (creatinine

kinase previously >6,000 U/L and anti-Jo-1 antibodies

previously >300 U/mL) became undetectable, longstanding

myositis on magnetic resonance imaging recovered, and

oxygen-dependent interstitial lung disease fully regressed.

Grade 1 CRS and a worsening of pre-existing hyp-

ogammaglobulinemia, to a level requiring intravenous

immunoglobulin replacement, were the only adverse effects.

Successful treatment of a single patient with

severe, treatment refractory systemic sclerosis with CD19

CAR-T cells has been reported.67 Previously treated with

methotrexate and mycophenolate (cyclophosphamide not used

due to cardiac involvement), the CAR-T-cell therapy was well

tolerated. The patient had CRS grade 1, no signs of ICANS,

and no anti-interleukin-6 receptor treatment was needed.

Serological (ANA reactivity and RP11 autoantibodies normal-

ized) and clinical (right ventricular function, carpal arthritis,

skin fibrosis, and Raynaud’s phenomenon) improvements

occurred while other parameters, including left ventricular

function and pulmonary fibrosis, as seen on computed tomog-

raphy imaging of the thorax, remained stable.

CAR-T Therapy in Neurological Immune-Mediated

Disease. The consideration for use of CAR-T therapy in

the treatment of neurological immune-mediated conditions,

specifically MS, is not new.68 Compared with the use of

monoclonal antibodies, CAR-T treatment has the theoretical

advantage of a broader depletion of autoreactive B cells, espe-

cially those maintained within inflamed tissues, such as the

central nervous system, and access to lymphoid organs, such

as deep lymph nodes and the spleen.37 This approach may

result in the removal of ‘difficult to target’ pathogenic B cells

and plasmablasts. This is highly relevant for patients with

MS, given what is known about the underlying disease

mechanism and the role of Epstein–Barr virus infection and

persisting autoreactive B cells, a target for which refractory

Epstein–Barr virus-related lymphomas are successfully treated

with CAR-T cells.69–72

Preclinical trials in neurological disorders, in the experi-

mental autoimmune encephalomyelitis (EAE) animal model

of MS, and mice models of MuSK MG and anti-N-methyl-

D-aspartate receptor encephalitis, have targeted specific

antibodies rather than entire populations of cells expressing

CD19 or BCMA with sustained treatment effects seen.73–76

CAR-T therapy targeting myelin basic protein and myelin

oligodendrocyte glycoprotein (in EAE) and MuSK IgG

(in MuSK MG) led to sustained treatment effect. Fransson

et al. demonstrated the creation of an immunotolerant envi-

ronment post-treatment when symptom-free mice were

rechallenged with EAE induction.74 Targeting MuSK had a

similar efficacy to CD19 CAR-T therapy, but resulted in

specific MuSK B-cell depletion without reducing total B cells

or IgG levels, and with a freedom from off-target effects.75

Gupta et al. used anti-CD19 CAR-T cells in mice models,

showing improvement in clinical scores and lymphocyte

infiltration in the tissue, contrasting with previous data that

showed exacerbation of EAE after anti-CD19 CAR-T cells.77
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Several international trials of CAR-T therapy in

immune-mediated neurological disorders in humans are

ongoing (Table 3).

Interim results from 12 refractory NMOSD patients

treated with autologous BCMA CAR-T therapy

(NCT04561557) showed an improvement in the clinical

examination score of all patients, whereas 11 of 12 remained

in remission (absence of relapses free and freedom

from immunosuppression), at a median follow-up of

5.5 months.55 AQP4-IgG antibody reversal was seen in

70% of the patients. A patient whose AQP4-IgG level

increased after an initial decrease was the only patient to

relapse, at 14 months. Improvements were seen in clinical

examination, visual function, bowel and bladder function,

quality of life, and ambulation. A dose escalation approach

was used, 3 patients receiving half dose, with cyclophospha-

mide and fludarabine lymphodepletion. CAR-T-cell expan-

sion occurred maximally by 10 days, and persistence

reduced over follow-up with detection at 6 months seen in

1 of 6 patients, whereas BCMA levels were significantly

reduced at 1 month, but returned to baseline by month 6.

The single patient who relapsed received the lower dose of

CAR-T cells, and at the time of relapse, was found to have

low CAR-T cells and an increased AQP4-IgG level.

All patients experienced expected hematological toxicity

(anemia and leukopenia) and grade 1 or 2 CRS, whereas

7 of 12 patients developed an infection, and a minority

developed transient gastrointestinal disturbance.

Granit et al. presented the first study using rCAR-T

therapy in individuals with MG using RNA to improve

TABLE 3. Trials in Immune-Mediated Neurological Disorders According to clinicaltrials.gov, as of February 26,

2024

National Clinical Trial

number (and location) Construct Disease(s) Phase

Recruitment

target Status

NCT03605238

(Beijing, China)

CD19 and CD20

tandem

Refractory AQA4+

NMOSD

1 - Withdrawn due to

recruitment difficulties

(2019)

NCT0414605134

(Multi site, US)

BCMA (RNA) Refractory MG

(including seronegative)

2 30 Recruiting since

12/2019

NCT0456155755

(Wuhan, China)

BCMA Refractory AQA4+

NMOSD, MG, CIDP,

IMNM

1 18 Recruiting since

09/2020

NCT05451212

(Philadelphia, US)

MuSK CAR-T MuSK MG 1 24 Recruiting since

11/2022

NCT05828225

(Zhejiang, China)

CD19 Refractory AChR MG 1 9 Recruiting since

04/2023

NCT05828212

(Zhejiang, China)

CD19 Refractory AQA4+

NMOSD

1 9 Recruiting since

04/2023

NCT06220201

(Multi site, US)

CD19 MS (relapsing or

progressive)

1 98 Recruiting since

02/2024

NCT06138132

(Multi site, US)

CD19 Non relapsing,

progressive MS

(secondary or primary

progressive MS)

1 12 Not yet open

NCT06249438

(Shanghai, China)

CD20 and BCMA

tandem

Relapsing remitting

MS, NMOSD, IMNM

1 30 Not yet open

NCT06193889 (Not

listed)

CD19 MuSK or AChR

refractory MG

2 20 Not yet open

Abbreviations: AChR = acetylcholine receptor antibodies, AQA4+ = aquaporin-4-positive, CIDP = chronic inflammatory demyelinating

polyradiculopathy, IMNM = immune-mediated necrotizing myopathy, MG = myasthenia gravis, MS = multiple sclerosis, MuSK = muscle-specific

tyrosine kinase.
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the safety profile of the CAR-T.34 They theorized that the

temporary, nonreplicable influence of mRNA would

confer predictable pharmacokinetics and, consequently, a

more favorable safety profile, with no requirement for

lymphodepleting conditioning, versus the standard DNA

approach. The trial (NCT04146051) is a prospective, mul-

ticenter, open-label, phase 1b/2a study of Descartes-08, an

autologous anti-BCMA rCAR-T therapy. A dose escalation

protocol followed (3 patients received 3 doses, 11 were

planned to receive 6 doses). Interim results include 16 adult

patients with generalized treatment refractory MG and a

Myasthenia Gravis Activities of Daily Living score of ≥6.

Almost all the patients (13/14) were seropositive (11/14

acetylcholine receptor antibody-positive, 2/14 anti-MuSK

antibody-positive). Treatment was completed as planned in

12 patients, and was safe and well tolerated, showing clini-

cally meaningful decreases on Myasthenia Gravis Severity

Scales after up to 9 months of follow-up. Although anti-

body reversal was not demonstrated, there were reductions

in acetylcholine receptor antibody, but not MuSK titers.

rCAR-T was shown in peripheral blood for 1–2 hours post-

infusion, but not at later timepoints. There was no dose-

limiting toxicity, CRS, or neurotoxicity, with withdrawals

cited as due to 1 patient experiencing urticaria requiring

intravenous steroids (in the dose escalation group), which

was felt to be related to rCAR-T therapy, and 1 withdrawal

due to personal reasons.

Haghika et al. highlighted the utility of testing dif-

ferent CAR-T-cell constructs in the same condition by

treating a single patient with refractory MG with a CD19

approach.78 Self-resolving transaminitis was the only

adverse event during the short follow-up time (62 days)

reported, and clinical improvements in the Besinger dis-

ease activity and the Quantitative Myasthenia Gravis

scores have been seen. Immunosuppression, in the form

of prednisolone 10 mg, had been continued at the point

of reporting, with an intent to withdraw this at follow up.

Two patients with secondary and primary progressive

MS have been treated with a single dose of an autologous

CD19 CAR-T.79 Both patients had experienced progression

while taking ocrelizumab, and had Expanded Disability Status

Scale scores (EDSS) of 4.5 and 6.5, respectively, indicating

moderate or severe disability and, following a 4-month wash-

out, were treated with fludarabine and cyclophosphamide con-

ditioning followed by the CAR-T infusion. Expansion of

CAR-T cells was seen in the blood and cerebrospinal fluid

post treatment. The first patient, who had secondary progres-

sive MS with a disease duration of 23 years, experienced CRS

grade 1, requiring multiple doses of tocilizumab and steroids,

and a transient increase in transaminases. At the time of CRS,

a temporary worsening of disability (EDSS increased to 6),

which was felt to be due to a rise in body temperature and

resultant Uhthoff’s phenomenon, was reported. Although the

EDSS score returned to baseline, 2 months after treatment a

new spinal cord lesion was identified on magnetic resonance

imaging. Intrathecal production of immunoglobulins (oligo-

clonal bands) was reduced at follow-up.

The second patient, who had primary progressive

MS with a disease duration of 4 years, experienced a tran-

sient increase in transaminases only during the 28 days of

follow-up. Their EDSS remained stable, and no reduction

in intrathecal production of immunoglobulins was

observed. Fischbach et al. theorized that the ability of

CAR-T cells to enter the central nervous system may elim-

inate the cells responsible for progression independent of

relapse activity in MS. A number of phase 1/2 CAR-T tri-

als in relapsing and progressive MS, targeting CD19 cells,

are in an early phase (included within Table 3).80

To clarify the role of CAR-T-cell treatment in

immune-mediated neurological disease, more clinical trials

with longer follow-up are needed to identify which patient

populations can be treated effectively and safely. Recently,

a broad set of guidelines has been published by the EBMT

to guide patient selection moving forward in the field of

innovative cellular therapies and CAR-T.81 Even so, these

initial experiences in neurological and other immune-

mediated conditions open an interesting and promising

field for ongoing investigation, with an evolving range of

CAR-T-cell constructs and products.

Conclusion

A cure for immune-mediated neurological diseases has long

been a goal. The use of aHSCT in these disorders has

already been demonstrated to be highly successful, particu-

larly for RRMS patients. The efficacious use of CD20

B-cell depleting therapies demonstrates that autoreactive

B cells are a successful target for such conditions. The use

of CAR-T therapy, particularly a B-cell directed construct,

such as CD19, which is shared on almost all B cells, repre-

sents a promising approach that has the potential to selec-

tively target and modify a defective immune system; confer

long-term, potentially permanent, remission; and eliminate

the need for ongoing immunosuppression. Such a response

may ultimately have not only favorable long-term clinical

impacts, but also health economic and societal benefits.

Long-term follow-up from clinical trials and registry data

are needed to establish the value of this new strategy in

neurological immune-mediated diseases.
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