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Abstract
We study a group field theory (GFT) for quantum gravity coupled to four mass-
less scalar fields, using these matter fields to define a (relational) coordinate
system. We exploit symmetries of the GFT action, in particular under shifts
in the values of the scalar fields, to derive a set of classically conserved cur-
rents, and show that the same conservation laws hold exactly at the quantum
level regardless of the choice of state. We propose a natural interpretation of
the conserved currents which implies that the matter fields always satisfy the
Klein–Gordon equation in GFT. We then observe that in our matter reference
frame, the same conserved currents can be used to extract all components
of an effective GFT spacetime metric. Finally, we apply this construction to
the simple example of a spatially flat homogeneous and isotropic Universe,
where we derive an effective Friedmann equation directly from this metric.
The Friedmann equation displays a bounce and a late-time limit equivalent
to general relativity with a single scalar field. Our proposal goes substantially
beyond the GFT literature in which only specific geometric quantities such
as the total volume or volume perturbations could be defined, opening up the
possibility to study more general geometries as emerging from GFT.
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1. Introduction

The conceptual foundation of classical general relativity starts from the notion of a space-
time metric, from which all relevant geometric properties of spacetime, as well as physical
effects related to gravity, can be derived. While the dynamical equations of general relativity
are formulated in diffeomorphism-covariant terms—they take the same form no matter what
coordinate system is used—the tensorial quantities in them, most prominently the metric itself,
are not diffeomorphism-invariant and therefore depend on the coordinate system. This means
that the metric or curvature tensors cannot directly be observable. Constructing interesting
(diffeomorphism-invariant) observables from the metric is in general a highly nontrivial task
[1–4].

The implementation of diffeomorphism symmetry at the quantum level is often seen as
one of the most formidable obstacles in the construction of a full theory of quantum gravity.
Discrete approaches somewhat circumvent this problem since they no longer work with a
differentiable manifold on which diffeomorphisms act, but directly with quantities such as
lengths, areas or finite parallel transports which are to an extent diffeomorphism-invariant.
However, such approaches then face at least two important basic challenges: one is the recovery
of a continuum limit in which differentiable structures, and with them the usual freedom to
choose coordinates emerge [5, 6]; the other is the extraction of relevant observables, given that
there is no useful way of directly defining tensorial objects, such as curvature invariants, in the
discrete setting (see, e.g. [7] for discussion in the setting of causal dynamical triangulations).

A common strategy to construct useful observables is to focus on relational observables
[4], particularly those built from using matter fields as coordinates. A prime example of this
is homogeneous cosmology, where a massless scalar field can serve as a good clock, and the
expansion of the Universe can be characterised by stating the evolution of the scale factor
relative to the value of the scalar field [8]. Such a characterisation is indeed invariant under
time reparametrisations.More generally, suitably chosenmatter fields allow the construction of
a relational coordinate system, such that the coordinates are now physical degrees of freedom
rather than arbitrary gauge structure. This idea has been employed particularly in dust models
(see [9–12] for some of the vast literature) and gravity coupled to scalar fields [13, 14].

In this paper we focus on the group field theory (GFT) approach to quantum gravity [15–17],
which is closely related to loop quantum gravity [18], matrix and tensor models [19]. GFT is a
fundamentally discrete (and background-independent) setting for quantum gravity; one does
not work with fields on a manifold but with combinatorial structures from which spacetime,
and all continuum matter fields, are supposed to emerge in a continuum limit. Because of this,
GFT shares with other discrete approaches the issues of defining observables and in particular
an analogue of a spacetime metric, which would be important in order to connect to clas-
sical gravitational theories (general relativity or extensions) or any type of phenomenology.
Gravitational observables that have been constructed so far in GFT are defined in analogy
with simple geometric operators in loop quantum gravity; in particular one can define a GFT
volume operator (based on [20, 21]), and from this a relational volume observable representing
the total spatial volume at a given instant of relational time, here again given by a massless
scalar field. This observable has been used to derive an effective Friedmann equation [22, 23],
very similar to the one in loop quantum cosmology [8]. By coupling additional massless scalar
fields that are used as ‘rods’ or spatial coordinates, one can turn this global volume into a local
volume element (now dependent on the spatial coordinates as well) and try and use this to
define an effective cosmological perturbation theory in GFT [24–28]. Such a formalism can
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then be used to gain initial insights on dynamics of volume perturbations around an effective
homogeneous Universe characterised by the Friedmann equation obtained before, but given
that volume perturbations are not gauge-invariant, translating the results into the usual text-
book discussions in terms of gauge-invariant quantities requires some effort. There is also no
direct way of accessing tensor fluctuations which do not affect the local volume element.

In the following we will propose a new approach towards tackling this issue, based on
the idea of locally conserved currents associated to GFT symmetries. All previous work on
GFT models for quantum gravity with massless scalar fields, starting from [22, 23], starts
by identifying symmetries of the corresponding classical theory, and requiring that these are
represented as symmetries in GFT. In the case of cosmological models based on a single matter
field, the most important symmetry is with respect to shifts in the field; this symmetry of
a classical free, massless scalar field justifies its use as a clock. In this relational coordinate
interpretation, it can be seen as a time-translation symmetry. The conserved quantity associated
to this symmetry is the momentum conjugate to the scalar field, whose conservation gives
the Klein–Gordon equation in the homogeneous approximation. Hence, the matter dynamics
obtained from GFT are consistent with classical expectations, and the scalar field is a good
clock also in GFT.

Our proposal is to extend this line of argument to four free, massless scalar fields, now used
as coordinates for space and time. There are now four independent translational symmetries,
leading to four conserved currents which form the analogue of the energy–momentum tensor
in standard quantum field theory. At the classical level, each massless scalar field has its own
Klein–Gordon current, whose conservation gives the classical field equations. By showing that
the GFT energy–momentum tensor arising from the translational invariance of the GFT action
with respect to the relational fields is conserved classically and quantum-mechanically, we
immediately obtain the Klein–Gordon equations for all matter fields, now no longer restricted
to the spatially homogeneous setting. Thus, as a first major insight we show that these matter
fields always satisfy the same dynamical equations in GFT as they do in standard spacetime
field theory. Within the approximations we use regarding the dynamics of GFT, this is true
for any state, and does not require any semiclassical approximations as are often used in the
literature. We then use the fact that classically the Klein–Gordon currents depend explicitly
on the metric, and so in a matter reference frame can be used to read off all components of the
metric.

Given that the GFT energy–momentum tensor represents the same physical quantities, we
show how to use the energy–momentum tensor to define a spacetime metric in full GFT for
sufficiently semiclassical states. This result is the main achievement of our work, given the
previous severe limitations in defining relational observables. We illustrate our new formal-
ism in the case of homogeneous, isotropic cosmology, finding some familiar results regarding
a Friedmann equation and bounce, but also some puzzling results regarding the role of the new
spatial coordinate fields. These results deserve further attention, but our formalism also sug-
gests applications to inhomogeneous cosmology, black holes or other spacetimes of interest,
which will be explored in future work.

While our proposal is specific to the GFT setting, it only requires a symmetry of the action
under shifts in thematter fields (to be used as coordinates) coupled to quantum gravity. As such,
it could in principle also be applied to other background-independent approaches to extract an
effective metric. Regarding GFT, we emphasise that our proposal differs from existing ideas
in the literature to use either bivector/area operators [29, 30] or a volume operator [22, 23] to
reconstruct metric information. Indeed, the properties of our effective metric can in general
disagree with results derived from these other operators.
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In section 2we show how in general relativity the classical shift symmetry of four freemass-
less scalar fields leads to conserved currents that encode the metric in a (relational) coordinate
system given by these scalar fields. Section 3 gives a short review of the canonical quantisation
of GFT, leading to the definition of an energy–momentum tensor. We explicitly show that the
energy–momentum tensor is conserved as an operator. Section 4 illustrates the general idea in a
simple cosmological example. By choosing an appropriate coherent state, we find an effective
metric corresponding to a spatially flat homogeneous and isotropic Universe. We also derive
the effective Friedmann equation, which is similar to equations derived by other methods in
the literature. At late times, this Friedmann equation reduces to the classical equation expected
for a single scalar field only, leading to a discussion of why the other fields do not contribute.
We conclude in section 5.

2. Spacetime metric as a conserved current

In standard field theory, a free massless scalar field χ on a curved background (with Lorentzian
metric gµν) can be defined in terms of the action

S=−1
2

ˆ

d4x
√−ggµν∂µχ∂νχ, (1)

which is invariant under constant shifts in the field χ 7→ χ+ ϵ, where ϵ is a constant. By
Noether’s theorem [31, 32], this symmetry implies a conservation law

∂µ j
µ = 0 , jµ =−√−ggµν∂νχ. (2)

This conservation law is of course nothing but the Klein–Gordon equation □χ = 0. Notice
that j0 is equal to πχ, the canonical momentum of χ.

Let us now identify the scalar field with a spacetime coordinate xA (i.e. surfaces of constant
xA are taken to be surfaces of constant χ). In this case, by definition, we have ∂µχ = δAµ and
hence

( jµ)A =−√−ggµA . (3)

We can use four such free massless scalar fields χA, A= 0, . . . ,3 to define an entire relational
coordinate system by identifying each spacetime point with the values of all χA taken at that
point. The resulting relational coordinate system is locally well-defined as long as we assume
the non-degeneracy condition (with respect to an arbitrary well-defined coordinate system)1

det
(

∂µχ
A
)

6= 0 . (4)

In this coordinate system, where the gradients of the scalar fields are mere numbers and thereby
dimensionless, the metric components have units of length4, [gAB] = L4, and the conserved
current has [( jµ)A] = L4 (with ℏ= c= 1). In principle, we could have inserted an arbitrary
dimensionful proportionality factor ξ when fixing the coordinate system, ∂µχA = ξ δAµ, but as
ξ just represents a unit convention without physical significance, the simplest choice is ξ= 1.

1 For a single scalar field to be used as clock, the equivalent condition is ∂tχ ̸= 0, which is (for a free massless scalar
field) almost always the case in homogeneous cosmology. Outside of spatial homogeneity and for four scalars, it is
less straightforward to say in general where this condition is satisfied, but generic configurations satisfy (4).
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In this coordinate system, knowledge of the currents on the left-hand side of (3) can be

used to define a symmetric matrix field jAB =
(

jA
)B

which defines the inverse metric (in this
coordinate system) as

gAB =−
(

−det
(

jAB
))−1/2

jAB . (5)

The positioning of the capital Latin index on the left-hand side of (3) is initially conventional,
given that it merely corresponds to a label for the different matter fields. However, once we
define jAB and establish its relation to the inverse metric, the notation becomes more intuitive
if we think of A, B as contravariant indices.

There are two minus signs in the relation (5); the one inside the brackets comes from the
assumption that gµν , and hence also jAB, has negative determinant (coming from a Lorentzian
signature). The overall minus sign can be traced back to the minus sign in the action (1),
which comes from the assumption that the metric gµν has one negative and three positive
eigenvalues (the ‘East Coast’ signature convention). Of course, classically these assumptions
are reasonable, but in a quantum gravity setting it may not be a priori clear whether we can
fix the metric signature or the number of positive and negative eigenvalues; see [33] for a
recent discussion of a general classical framework in which all possible signatures may co-
exist. Adopting the ‘West Coast’ signature convention throughout would change the signature
of gµν but also add an additional minus sign in (3), leading to a ( jµ)A of the same signature
(+−−−). Wewill come back to a discussion of this point when looking at concrete examples.

When coupling these matter fields to general relativity, we obtain a diffeomorphism-
invariant theory in which gµν becomes dynamical. The condition ∂µχA = δAµ is a local gauge-
fixing of this gauge symmetry, which can be seen as a specific case of the harmonic gauge con-
dition □xµ = 0 whose use has a long history in classical general relativity [34–36]. Whereas
the harmonic gauge condition in general does not uniquely fix the gauge (there are many solu-
tions to it for a general gµν), the ‘scalar field gauge’ we are adopting here does fix it completely,
assuming it is well-defined by (4). For free massless scalar fields, this gauge does not determ-
ine which of the coordinate directions given by χA are timelike, spacelike or null, unlike for
dust constructions such as [9] which are more suited to a (3+ 1) splitting in which spacelike
and timelike directions need to be separated.

The central result of this discussion is (5), which tells us how to compute all components
of the inverse metric from the symmetric jAB. Due to its direct relation to the metric, jAB for
the scalar field action given in (1) is symmetric in its two indices when written in the rela-
tional coordinate system. (For more general scalar field actions, this might change and the
construction would not work.) In a quantum theory in which jAB can be defined as an operator,
one can define an effective gAB, e.g. from expectation values of jAB in a semiclassical state by
using (5). In the following we will see that a GFT coupled to four scalar fields does have an
operator analogue of jAB (given by the GFT energy–momentum tensor) and hence an effective
spacetime metric can be written down unambiguously. Clearly, this operator analogue needs
to be symmetric as well, which will be the case for the GFT energy–momentum tensor we
construct in section 3.2.

3. Group field theory

GFT can be seen as a ‘quantum field theory not on, but of spacetime’. The basic object in any
GFT is a (typically real or complex bosonic) group field φ(gi,χA), where the gi are elements
of some group and the χA real valued, as discussed further below. The arguments of this field
do not represent coordinates on a spacetime manifold; instead, the ‘particles’ associated with
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excitations of this group field are seen as elementary building blocks of spacetime geometry
and matter, not living in a pre-defined spacetime. Concretely, such an elementary building
block is most commonly identified with a tetrahedron seen as the basic unit of simplicial geo-
metry, or equivalently with a four-valent spin network vertex as the basic structure forming
loop quantum gravity spin networks [17]. In a Fock space picture, a macroscopic geometry
can then only emerge from a large number of such excitations over the initial vacuum; in par-
ticular, this is because quantum fluctuations of geometric observables are suppressed in the
limit of large particle number.

The discussions of this paper are applicable to a large class of models, but for concrete-
ness we can choose to use SU(2) variables to represent parallel transports in the GFT discrete
geometry, in analogy with the basic variables of canonical loop quantum gravity. More import-
antly, as in previous work [27, 28, 37], we include four R-valued arguments χA, which rep-
resent scalar matter degrees of freedom. We also restrict ourselves to the case of a real group
field; generalisation to a complex field should be entirely straightforward but does not seem
necessary for our purposes. We thus have φ : SU(2)4 ×R

4 → R.
As in loop quantum gravity, it is useful to expand the group field in modes associated to

SU(2) representation data,

φ
(

gi,χ
A
)

=
∑

J

φJ
(

χA
)

DJ (gi) , (6)

where DJ(gi) represent suitable combinations of Wigner D-matrices and J= (⃗j, m⃗, ι) is a
multi-index representing SU(2) irreducible representations j⃗, magnetic indices m⃗, and inter-
twiners ι (for more details see, e.g. [38]). In the following, we will only need to use the exist-
ence of such an expansion, and no details of SU(2) representation theory. This means that our
results immediately apply to any choice of compact group for the gi variables.

While not many explicit constructions of GFT models for quantum gravity coupled to
four scalar fields exist in the literature, there are several GFT models built on the gauge
group SU(2), including a version of GFT corresponding to the Engle–Pereira–Rovelli–Livine
(EPRL) spin foam model studied in [22, 23]. Extensions to non-compact gauge groups have
been studied, e.g. in the context of the Barrett–Crane model [28, 39] and introduce new sub-
tleties due to the presence of continuous representations, but could be treated with similar
methods. An interesting question in the spin foam approach (and, by extension, in GFT [40])
is whether choosing a compact gauge group such as SU(2), interpreted as a restriction to space-
like tetrahedra only, impacts the possible causal structure of geometries emergent from such
a theory [41, 42]. We will comment on this point at the end of the paper.

Generally, when constructing possible actions one starting point is to demand that the GFT
action is invariant under symmetries representing symmetries of the matter fields one wants
to include [22, 23]. As discussed above, the spacetime scalar field action (1) is invariant under
shifts in the field χ. It is also invariant under reflections χ 7→ −χ. Demanding the same sym-
metries in GFT means that a GFT action local in χA cannot depend explicitly on the χA, and
can only include derivatives of even order. If all χA represent physically indistinguishable mat-
ter fields, we might also require symmetry under rotations χA 7→ RABχB [37]. Assuming that
the quadratic part of the action is also local in the gi (for terms with higher powers of the field
a certain type of nonlocality would be expected [15, 16]) gives the general form

S [φ] =
ˆ

d4χ

(

1
2

∑

J

∞
∑

n=0

K(2n)
J φJ

(

χA
)

∆nφJ
(

χA
)

−V(φ)

)

, (7)

6
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where the K(2n)
J are arbitrary couplings and∆=

∑

A

(

∂
∂χA

)2
is the Laplacian on R4. Here we

have written the quadratic part of the action explicitly and moved all higher-order terms into
the potential V(φ), which may take very different forms depending on the model.

Given that we are assuming a local theory, the sum over higher derivatives in the quadratic
part needs to terminate at some finite n, and indeed in most models studied in detail in the
literature [43–45] only the terms n= 0 and n= 1 corresponding to a mass term and a single
Laplacian appear. After an integration by parts of the term involving the Laplacian, one obtains
an action that only depends onφ and first derivatives, and is hence amenable to straightforward
canonical quantisation. (A theory with higher derivatives would have to be treated with more
involved methods, see, e.g. [46].)

Here we have not specified the precise form of the interaction terms making up the potential
V(φ). This form can be chosen by requiring that Feynman amplitudes of the resulting inter-
acting GFT match those of spin foam models [47, 48] (we gave some examples above) and/or
by again using symmetry arguments to write down a number of possible terms, which are con-
strained by renormalisability [49]. In our work here, we will neglect the effect of interactions.
Our discussion of classical GFT extends to interacting models but their quantum analysis will
be more involved in general. Neglecting interactions is a common assumption in applications
of GFT to cosmology [22, 23, 28, 50], since these are expected to be subdominant in the very
early Universe. In general, the range of applicability of this approximation will be limited [51].

The symmetry of (7) under translations χA 7→ χA+ ϵA for arbitrary constant ϵA leads to a
conserved current, the GFT energy–momentum tensor (here and below ∂A =

∂
∂χA )

TAB :=− ∂L
∂ (∂Aφ)

∂Bφ+ δABL=
∑

J

(

K(2)
J ∂AφJ ∂BφJ

)

+ δABL (8)

with a Lagrangian density

L=
∑

J

(

1
2
K(0)
J φ2

J −
1
2
K(2)
J

∑

A

(∂AφJ)
2

)

−V(φ) , (9)

in which we now assume that only the terms n= 0 and n= 1 are present in (7), and we have
performed the integration by parts discarding a boundary term. In these expressions, we do not
need to worry too much about the positioning of A,B, . . . indices; due to the E(4) symmetry of
the GFT action these can be raised and lowered with the Kronecker delta δAB. In the identific-
ation of these GFT quantities with classical spacetime tensors, we need to be more careful, as
discussed above and further below.

Naturally, the GFT energy–momentum tensor satisfies ∂ATAB = 0. The fact that transla-
tions in the scalar field variables χA represent constant shifts in the fields that span the rela-
tional coordinate system as discussed in section 2 now suggests identifying the conserved GFT
quantity TAB with the classically conserved current jAB. This leads to an effective spacetime
metric gAB via (5). Quantum-mechanically, the energy–momentum tensor will be represented
as an operator and so our identification would amount to defining also the current jAB as an
operator. Since the inverse metric gAB is a non-polynomial function of jAB, its definition as
an operator would be much less straightforward. However, rather than directly proposing an
‘effective metric operator’, we are usually interested in very semiclassical GFT states to be
interpreted as macroscopic effective geometries. In such a state, we can use the expectation
values of TAB (assuming fluctuations are small) to define an effective classical metric gAB. This
is analogous to the treatment of relational volume observables in most previous work on GFT
cosmology and only justified for states with suitable semiclassical properties (see, e.g. [51]).

7
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In the following, we construct the operators corresponding to TAB. We then show a concrete
example of a reconstruction of an effective metric from the identification with the expectation
values of the GFT energy–momentum tensor in section 4, where we also comment further on
the required semiclassical properties of the state.

3.1. Canonical quantisation

We can now implement a canonical quantisation procedure for a theory defined by (9). This
‘deparametrised’ approach to quantisation, in which a scalar field is used as a clock from the
beginning, was introduced in [52], and an extension of this procedure to the case of a GFT
action with four scalar fields was proposed in [37]. In the latter case, which we summarise in
this section, one needs to single out a clock field to construct the Hamiltonian, which breaks
the E(4) symmetry between the fields. In the following we will denote the clock field with
χ0 and the other ‘spatial’ fields as χa or χb, where a,b= 1, 2, 3. The Hamiltonian associated
to (9) reads

H=

ˆ

d3χ
∑

J

K(2)
J

2

(

− π2
J

|K(2)
J |2

+m2
Jφ

2
J +
∑

b

(∂bφJ)
2

)

+V(φ) , (10)

where we introduced the canonical momentum πJ =−K(2)
J ∂0φJ and the shorthand m2

J =

−K(0)
J

K(2)
J

.

Restricting to the free theory with V(φ) = 0 from now on, we then carry out a Fourier
decomposition of the above, defining ω2

J,k = m2
J + k⃗2:

H=

ˆ

d3k

(2π)3
∑

J

K(2)
J

2

(

− 1

|K(2)
J |2

πJ,−k

(

χ0
)

πJ,k
(

χ0
)

+ω2
J,kφJ,−k

(

χ0
)

φJ,k

(

χ0
)

)

. (11)

For the (Heisenberg picture) quantisation we promote the Fourier modes of the group field
φJ and its conjugate momentum πJ to operators satisfying

[

φJ,k
(

χ0
)

,πJ′,k ′
(

χ0
)]

= iδJJ ′ (2π)
3
δ
(

k⃗+ k⃗ ′
)

, (12)

so that these operators evolve in time according to

∂0πJ,k =−i [πJ,k,H] =−K(2)
J ω2

J,kφJ,k , ∂0φJ,k =− πJ,k

K(2)
, (13)

just as the classical field modes would.
It is then useful to introduce time-dependent creation and annihilation operators AJ,k(χ0),

A†
J,k(χ

0), which satisfy the equal-time commutation relations

[

AJ,k
(

χ0
)

,A†
J′,k ′

(

χ0
)

]

= δJJ ′ (2π)
3
δ
(

k⃗− k⃗ ′
)

, (14)

with all other commutators vanishing. These operators are defined from the field operators via

πJ,k
(

χ0
)

=−iαJ,k
(

AJ,k−A†
J,−k

)

, φJ,k

(

χ0
)

=
1

2αJ,k

(

AJ,k+A†
J,−k

)

; αJ,k =

√

|ωJ,k||K(2)|
2

.

(15)

8
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In the following, we will also use time-independent (or Schrödinger picture) creation and
annihilation operators aJ,k, a

†
J,k, defined by aJ,k = AJ,k(0) and a

†
J,k = A†

J,k(0).
As discussed in detail in [37, 52], when written in terms of ladder operators the Hamiltonian

takes on a different form depending on the sign of ω2
J,k, which in general depends both on the

sign of m2
J and the value of k⃗. Writing the total Hamiltonian (11) as H=

´

d3k
(2π)3

∑

JHJ,k, for a

mode with ω2
J,k < 0 one finds the Hamiltonian of a harmonic oscillator

HJ,k =− sgn
(

K(2)
J

) |ωJ,k|
2

(

aJ,−ka
†
J,−k+ a†J,kaJ,k

)

, (16)

whereas for a mode with ω2
J,k > 0 we obtain a squeezing Hamiltonian

HJ,k = sgn
(

K(2)
J

) |ωJ,k|
2

(

aJ,kaJ,−k+ a†J,ka
†
J,−k

)

. (17)

The modes with squeezing Hamiltonian are of particular interest for cosmology, given that
cosmological time evolution can be interpreted as squeezing [53], or in other words, given
that the action of such a Hamiltonian leads to an exponentially growing number of quanta of
geometry which one can interpret as an expanding Universe. In contrast, a harmonic oscillator
Hamiltonian leads to a conserved particle number for the given mode, more akin to a static
cosmology.

A particularly natural choice for K(2)
J and K(0)

J , which is often considered in the literature
(see also our discussion below (7)), is obtained from a GFT action whose kinetic term includes
a mass term and a Laplace–Beltrami operator on SU(2)4 ×R

4. In this case, one may set

K(0)
J = µ−

4
∑

i=1

ji ( ji + 1) , K(2)
J = τ , (18)

for some constants µ and τ , and where the ji are the irreducible representations appearing in
the multi-index J. We then have m2

J =
∑

i ji ( ji+1)−µ

τ and, if µ> 0, there is a sign change in m2
J

for large ji values. Choosing τ < 0 would imply that only small j modes have m2
J > 0 [54].

For the harmonic oscillator Hamiltonian (16) the explicit expressions for time-dependent
ladder operators are

AJ,k = aJ,ke
−i|ωJ,k|χ0

, A†
J,k = a†J,ke

i|ωJ,k|χ0

, (19)

whereas for a squeezing Hamiltonian of the form of (17), the operator dynamics are solved by

AJ,k =aJ,k cosh
(

|ωJ,k|χ0
)

− i sgn
(

K(2)
)

a†J,−k sinh
(

|ωJ,k|χ0
)

,

A†
J,k =a

†
J,k cosh

(

|ωJ,k|χ0
)

+ i sgn
(

K(2)
)

aJ,−k sinh
(

|ωJ,k|χ0
)

. (20)

These expressions can be used to write down the time-dependent expression for all operators
constructed out of AJ,k(χ0), A†

J,k(χ
0); within the approximation to the free theory, dynamics

can be solved exactly in the Heisenberg picture.Wewill use this fact in the new results obtained
below.

9
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3.2. Energy–momentum tensor

We now proceed to quantise the components of the GFT energy–momentum tensor TAB (8),
thus introducing a novel set of operators. From hereon we restrict to a single J mode and
therefore omit the J label; the single-mode assumption is often used when considering GFT
cosmology, as the mode with the largest |mJ| will dominate at late times [54]. Here we are not
yet interested in a specific physical scenario, but from the form of the Hamiltonian (11) it is
apparent that the construction carried out below can be conducted for any of the J modes, and
the total operators would be a sum over all modes. It would be straightforward to extend our
discussion to multiple modes, which could be interesting, e.g. for phenomenological applica-
tions such as [50, 55, 56].

First, we insert the expression for π into (8), where the expressions below depend on the
clock as well as the spatial fields TAB = TAB(χ0, χ⃗). We find

T00 =
π2

2K(2)
− K(2)

2

(

m2φ2 +
∑

b

(∂bφ)
2

)

,

T0b =−π∂bφ, Ta ̸=b =K(2)∂aφ∂bφ,

Taa = − π2

2K(2)
− K(2)

2



m2φ2 − (∂aφ)
2
+
∑

b̸=a

(∂bφ)
2



 (no sum over a) .

(21)

The Fourier transforms TABk = TABk (χ0) of the above functions, where φk = φk(χ
0) and πk =

πk(χ
0) denote the Fourier transforms of φ(χ0, χ⃗) and π(χ0, χ⃗), respectively, are given by the

following convolutions:

T00
k =

1
2

ˆ

d3γ

(2π)3

[πγπk−γ

K(2)
−K(2)

(

m2 − γ⃗ ·
(

k⃗− γ⃗
))

φγφk−γ

]

,

T0b
k =− i

ˆ

d3γ

(2π)3
γbπk−γφγ , T a̸=bk =−

ˆ

d3γ

(2π)3
K(2)γa (kb− γb)φγφk−γ ,

Taak =
1
2

ˆ

d3γ

(2π)3



K(2)



−γa (ka− γa)+
∑

b ̸=a
γb (kb− γb)−m2



φγφk−γ −
πγπk−γ

K(2)



 .

(22)

Initially, we will think of the corresponding operators, which we denote T AB, as defined simply
by replacing the Fourier modes φk and πk by operators, with πk−γ appearing to the left of φγ

in T 0b
k . (We discuss normal ordering below.)
The classical energy–momentum tensor satisfies ∂0T0B

k + i
∑

a kaT
aB
k = 0. Onewould expect

this conservation law to also hold at the level of operators: any alterations could only arise from
commutators (12) that appear from necessary operator reordering. However, such terms are
always proportional to δ(⃗k) and time-independent, so that we obtain ∂0T 0B

k + i
∑

a kaT aB
k =

∂0ξ
(0)δ(⃗k)+ i

∑

a ξ
(a)kaδ(⃗k) = 0, where ξ(A) are independent of χ0. Explicitly, we find

10
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∂0T 00
k =

ˆ

d3γ

(2π)3
1
2

[(

∂0πγ

K(2)
+
(

m2 − γ⃗ ·
(

k⃗− γ⃗
))

φγ

)

πk−γ

+πk−γ

(

∂0πγ

K(2)
+
(

m2 − γ⃗ ·
(

k⃗− γ⃗
))

φγ

)]

,

i
∑

a

kaT 0a
k =

ˆ

d3γ

(2π)3
1
2
k⃗ · γ⃗ (πk−γφγ +φγπk−γ + [πk−γ ,φγ ]) ,

(23)

where we made use of
´ d3γ

(2π)3 f(γ⃗)g(⃗k− γ⃗) =
´ d3γ

(2π)3 f(⃗k− γ⃗)g(γ⃗).
Combining the above terms, we then obtain

∂0T 00
k +i

∑

a

kaT 0a
k

=

ˆ

d3γ

(2π)3
1
2

[(

∂0πγ

K(2)
+ω2

γφγ

)

πk−γ +πk−γ

(

∂0πγ

K(2)
+ω2

γφγ

)

+ k⃗ · γ⃗ [πk−γ ,φγ ]

]

=0
(24)

from (13) and [πk−γ ,φγ ]∝ δ(⃗k). As anticipated, the extra term coming from operator ordering
does not contribute, as it is proportional to k⃗δ(⃗k) = 0.

In the case of ∂0T 0b
k + i

∑

a kaT ab
k = 0 we have

∂0T
0b
k = i

ˆ

d3γ

(2π)3
γb

(

K(2)ω2
k−γφk−γφγ +

πk−γπγ

K(2)

)

,

i
∑

a

kaT ab
k = i

ˆ

d3γ

(2π)3

[(

−(kb − γb) k⃗ · γ⃗+
kb
2

(

k⃗− γ⃗
)

· γ⃗−
m2

2
kb

)

K(2)φγφk−γ −
kb
2

πγπk−γ

K(2)

]

. (25)

In this case there are no mixed πφ terms, so there can be no nontrivial commutators and the
conservation law should follow as for the classical fields. To see this, in the expression for
∂0T 0b

k change integration variables γ⃗ → k⃗− γ⃗, add to the original expression and divide by 2
to obtain

∂0T 0b
k =

i
2

ˆ

d3γ

(2π)3

[

(

γbω
2
k−γ +(kb− γb)ω

2
γ

)

K(2)φk−γφγ + kb
πk−γπγ

K(2)

]

=
i
2

ˆ

d3γ

(2π)3

[(

γb

(

k⃗− γ⃗
)2

+(kb− γb) γ⃗
2 + kbm

2
)

K(2)φk−γφγ + kb
πk−γπγ

K(2)

]

. (26)

We then obtain

∂0T 0b
k + i

∑

a

kaT ab
k =

i
2

ˆ

d3γ

(2π)3

[(

γbk⃗
2 − kb

(

k⃗ · γ⃗
))

K(2)φk−γφγ

]

= 0 , (27)

since the integral can be transformed into minus itself under a variable change γ⃗ → k⃗− γ⃗.
We have hence shown explicitly that the operators representing the Fourier modes of

the GFT energy–momentum tensor for a single mode satisfy the conservation law ∂0T 0B
k +

i
∑

a kaT aB
k = 0. We should stress again that this is true already for the operators, and would in

particular hold for the corresponding expectation values in any state.

11
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Here we have defined the energy–momentum tensor without applying a normal ordering
prescription. One might then be worried that there are divergences in this definition of T AB

k ,
and wonder whether the same conservation law applies to a normal-ordered definition : T AB

k :.
Normal ordering can be implemented in terms of the time-dependent operators Ak(χ0) and
A†k (χ

0), i.e. moving all Ak(χ0) to the right of any A†k (χ
0), if one wants the procedure to be equi-

valent to standard normal ordering in the Schrödinger picture. However, this is not enough
to cancel divergences coming from the unstable squeezed modes with Hamiltonian (17). In
[37], normal ordering for time-dependent operators was followed by a regularisation in which
vacuum expectation values were subtracted. Both steps can be implemented as one by impos-
ing normal ordering at the level of the ak and a

†
k operators, leading to the definition

: T 00
k : =

ˆ

d3γ
(2π)3

sgn(K(2))

4
√

|ωγ ||ωk−γ |

[

2β+
k,γ : A†

−γAk−γ : +β−
k,γ

(

: A†
−γA

†
γ−k : + : AγAk−γ :

)

]

,

: T 0b
k : =

ˆ

d3γ
(2π)3

1
2

√

|ωk−γ |

|ωγ |
γb

(

: A†
γ−kAγ :− : A†

−γAk−γ :− : Ak−γAγ : + : A†
γ−kA

†
−γ :

)

,

: T a̸=b
k : =

ˆ

d3γ
(2π)3

sgn(K(2))

2
√

|ωγ ||ωk−γ |
γa (γb − kb)

(

: A†
−γAk−γ : + : A†

γ−kAγ : + : A†
−γA

†
γ−k : + : AγAk−γ :

)

,

: T aa
k : =

ˆ

d3γ
(2π)3

sgn(K(2))

4
√

|ωγ ||ωk−γ |

[

2(β−
k,γ − 2γa(ka − γa)) : A

†
−γAk−γ :

+ (β+
k,γ − 2γa(ka − γa))

(

: A†
−γA

†
γ−k : + : AγAk−γ :

)

]

,

(28)

where we defined β±
k,γ =−m2 + γ⃗ · (⃗k− γ⃗)± |ωγ ||ωk−γ |.

Using (19) and (20), one can now write the Fourier modes of the energy–momentum tensor
in terms of time-dependent functions of ladder operators ak and a†k , and implement normal
ordering. Notice that in general only four independent combinations of ladder operators are
needed to define all components of T AB. However, given that in general there are two different
types of modes (squeezed, ω2

k > 0, and oscillating, ω2
k < 0, ones), these explicit expressions

depend on what types of mode contribute, and hence on the value of m2. If m2 < 0 and for
γ⃗2 < |m2|, Aγ and A†γ operators have the dynamics of oscillating modes (19); for all other cases
they follow the dynamics of squeezing modes (20). Hence, in the operator products appearing
in the expressions for TAB both operators can be of squeezing type, one can be of squeezing and
one of oscillating type, or both can be oscillating modes. The mixed case occurs for all k⃗ ̸= 0
if m2 < 0, but in the following we will only be interested in k⃗= 0 expressions, and therefore
only provide the expressions for operator pairs of the same type; it is straightforward to derive
the mixed cases from (19) and (20).

For pairs of operators associated to two oscillating modes (ω2
γ < 0 and ω2

k−γ < 0) we obtain
the simple form

: A†−γAk−γ : = a†−γak−γ ,

: A†γ−kAγ : = a†γ−kaγ ,

: A†−γA
†
γ−k : = a†−γa

†
γ−ke

i(|ω−γ |+|ωγ−k|)χ0

,

: AγAk−γ : = aγak−γe
−i(|ωγ |+|ωk−γ |)χ0

.
(29)

12
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Normal-ordered expressions for pairs of A and A† operators associated to two squeezed
modes (ω2

γ > 0 and ω2
k−γ > 0) are given by

: A†−γAk−γ : = a†γ−kaγ sinh
(

ω−γχ
0
)

sinh
(

ωk−γχ
0
)

+ a†−γak−γ cosh
(

ω−γχ
0
)

cosh
(

ωk−γχ
0
)

+ i sgn
(

K(2)
)(

aγak−γ sinh
(

ω−γχ
0
)

cosh
(

ωk−γχ
0
)

−a†−γa
†
γ−k cosh

(

ω−γχ
0
)

sinh
(

ωk−γχ
0
))

= A†−γAk−γ − sinh
(

ωγχ
0
)2

(2π)3 δ
(

k⃗
)

,

: A†γ−kAγ : = a†−γak−γ sinh
(

ωγχ
0
)

sinh
(

ωγ−kχ
0
)

+ a†γ−kaγ cosh
(

ωγχ
0
)

cosh
(

ωγ−kχ
0
)

+ i sgn
(

K(2)
)(

−a†γ−ka
†
−γ sinh

(

ωγχ
0
)

cosh
(

ωγ−kχ
0
)

+ak−γaγ cosh
(

ωγχ
0
)

sinh
(

ωγ−kχ
0
))

= A†−γAk−γ − sinh(ωγχ
0)2(2π)3δ(⃗k) ,

: A†−γA
†
γ−k : = a†−γa

†
γ−k cosh

(

ω−γχ
0
)

cosh
(

ωγ−kχ
0
)

− aγak−γ sinh
(

ω−γχ
0
)

sinh
(

ωγ−kχ
0
)

+ i sgn(K(2))
(

a†−γak−γ cosh
(

ω−γχ
0
)

sinh
(

ωγ−kχ
0
)

+a†γ−kaγ sinh
(

ω−γχ
0
)

cosh
(

ωγ−kχ
0
))

= A†−γA
†
γ−k− i sgn(K(2))sinh(ωγχ

0)cosh(ωγχ
0)(2π)3δ(⃗k) ,

: AγAk−γ : =− a†−γa
†
γ−k sinh

(

ωγχ
0
)

sinh
(

ωk−γχ
0
)

+ aγak−γ cosh
(

ωγχ
0
)

cosh
(

ωk−γχ
0
)

− i sgn(K(2))
(

a†−γak−γ sinh
(

ωγχ
0
)

cosh
(

ωk−γχ
0
)

+a†γ−kaγ cosh(ωγ)sinh
(

ωk−γχ
0
))

= AγAk−γ + i sgn(K(2))sinh(ωγχ
0)cosh(ωγχ

0)(2π)3δ(⃗k) .

(30)

The normal ordering procedure only affects the form of the T 00 and T aa operators (the terms
arising from operator reordering vanish for the other components), and the difference depends
on the sign of ω2

γ and hence on the type of mode:

: T 00
k : =T 00

k − δ
(

k⃗
) sgn

(

K(2)
)

4

ˆ

d3γ |ωγ |
(

1− sgn
(

ω2
γ

))

, (31)

: T aa
k : = T aa

k + δ
(

k⃗
) sgn

(

K(2)
)

4

ˆ

d3γ

(

|ωγ |
(

1+ sgn
(

ω2
γ

))

− 2γ2
a

|ωγ |

)

+ δ
(

k⃗
)

sgn
(

K(2)
)

ˆ

d3γ Θ
(

ω2
γ

)

(

|ωγ | −
γ2
a

|ωγ |

)

sinh2
(

ωγ χ
0
)

. (32)

Given that ω2
γ ∼ γ⃗2 at large |γ⃗|, the integrals appearing as the difference between the normal-

ordered : T aa
k : and the previous definition (22) are divergent and require regularisation, e.g. by

a cutoff. The time-dependent integral in the last line (which involves the Heaviside func-
tion Θ(ω2

γ) since it only comes from squeezed modes) is particularly badly divergent with
an integrand growing exponentially at large |γ⃗| for any χ0 ̸= 0. The integral appearing in : T 00

k :

13
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is only relevant for m2 < 0 and finite, given that there is always a finite R such that ω2
γ > 0

for |γ⃗|> R, and modes with ω2
γ > 0 have a vanishing ‘vacuum energy’ already before normal

ordering. Even this finite integral is however still multiplied by a delta distribution. If m2 > 0,
this integral vanishes entirely. The additional term appearing in the normal ordered : T 00

k : is
time-independent, whereas the terms in : T aa

k : are multiplied by δ(⃗k). Hence, none of these
terms contribute to the conservation law and ∂0 : T 0B

k : + i
∑

a ka : T aB
k : = 0 also for the normal-

ordered definition, as expected.
A particular case of the conservation law applies to the zero modes of T 0B, which sat-

isfy ∂0T 00
0 = ∂0T 0a

0 = 0. These are the usual global conserved quantities corresponding to the
total energy and total momentum respectively, which were discussed already in [51]. We will
encounter them again in our explicit example below.

This concludes the discussion of the GFT energy–momentum tensor T AB. We considered its
conservation law, which holds irrespective of operator ordering, and obtained explicit forms in
terms of ladder operators whose dynamics depend on the type of mode we consider: using (19)
and (20) one can write down the explicit time-dependent form of (28). Through our earlier
identification of the expectation value of T AB with the classical current jAB, ⟨T AB⟩= jAB, and
hence the spacetime metric via (5), these solutions can be used to define an effective metric
from any GFT state that is sufficiently semiclassical (as we will discuss more concretely in
section 4.2). In what follows we examine the implications of this generic construction for a
specific example.

4. Simple cosmology example

As a first consistency check, we apply the above construction to a scenario widely studied in
existing GFT literature: the flat Friedmann–Lemaitre–Robertson–Walker (FLRW) spacetime.
We begin by recalling the classical scenario, which differs from standard cosmological models
due to the four massless scalar fields required to construct the relational coordinate system (see
also [28] for a discussion of cosmology with massless scalar fields used as coordinates).

We then take expectation values of the operators (28) in a highly peaked Gaussian state,
which, in addition to fulfilling the semiclassicality requirement, will be shown to represent an
effective FLRW geometry. These expectation values can then be compared to the components
of the classical current (3) and their dynamics.

4.1. Classical dynamics

We first recall the line element of a flat FLRW Universe

ds2 =−N2 (t)dt2 + a2 (t)δijdx
i dxj, (33)

where N(t) is the lapse function and a(t) the scale factor. As described in section 2, we con-
struct the quantum theory in a relational coordinate system characterised by ∂µχ

A = δAµ and any
identification of classical quantities with operator expectation values holds only for this choice
of coordinates. The units of the lapse and scale factor are [a] = [N] = L2 and [∂µχ

A] = L0. The
lapse for this choice of coordinate system can be obtained from the definition of the canonical
momentum π0 conjugate to χ0, namely π0 =

a3

N (∂tχ
0)⇒ N= a3

π0
. (The momenta of the spatial

fields give the shift vector as Na =−πa
π0
, which vanishes for (33), so these momenta must vanish

too.) The Klein–Gordon equation for χ0 with FLRW symmetry is equivalent to the statement
∂tπ0 = 0.

14
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In a flat FLRW Universe, the conserved currents (3) thus take the form

jAB =

(

|π0| 0

0 − a4

|π0|δ
ab

)

. (34)

Notice that all components have a fixed sign, determined by the Lorentzian signature imple-
mented in (33). For Euclidean signature, all entries would be positive.

The classical energy–momentum tensor of the four scalar fields, which we will denote as
(χ)Tµν to avoid confusion with the GFT energy–momentum tensor TAB, differs from that of
the single matter field case. It contains contributions ∝ a−2 from the spatial fields, as their
derivatives are non-vanishing at background level:

−(χ)T0
0 = ρ=

π2
0

2a6
+

3
2a2

, (χ)Taa = P=
π2
0

2a6
− 1

2a2
. (35)

The gradient energy coming from the spatial coordinate fields appears as an additional term
that would be equivalent to negative spatial curvature.

The resulting first and second Friedmann equations read (with κ= 8πG, and ′ denoting
derivatives with respect to χ0)

H2 =

(

a ′

a

)2

=
κ

6

(

1+ 3
a4

π2
0

)

,
a ′ ′

a
=

κ

6

(

1+ 9
a4

π2
0

)

, (36)

where, again, the terms proportional to a4

π2
0
would not appear in the case of a single (clock)

scalar field. This also implies that we no longer have an equation of state parameter w= P
ρ

exactly equal to one, but instead w< 1. The contribution of the spatial fields to the energy

density and pressure becomes negligible in the limit where π2
0
a4 ≫ 1, effectively recovering the

standard cosmological background scenario with a massless scalar field. Similarly, for the

sound speed we find c2s = P ′

ρ ′ =
3π2

0−a4

3π0+3a4 , and thus c2s ≈ 1 if we again assume π2
0
a4 ≫ 1. This limit

can be achieved for sufficiently early times, depending on the value of π0, but at late times the
gradient energy will dominate.

The scenario we have described here is rather unusual from the viewpoint of conventional
homogeneous cosmology, where one would require the fields χA to be spatially homogen-
eous, such that there can be no contributions from gradient energy. Of course, such a symmetry
requirement is incompatible with the condition that the χa can be spatial coordinates, ∂iχa = δai .
Here we adopted the view that only observables such as the energy–momentum tensor need to
be spatially homogeneous, and given that the field values themselves never enter any observ-
ables for free massless scalar fields, this is classically consistent with nonvanishing gradient
energy. Similar ideas appear in the context of solid inflation [57] where an analogous gradi-
ent energy contribution is present in the Friedmann equation. In the context of GFT, these
assumptions may indeed be mutually incompatible, as we discuss shortly.

4.2. Effective FLRW metric from GFT energy–momentum tensor

In order to extract an effective metric, we need to determine a state which reflects the physical
scenario we are interested in, as well as being sufficiently semiclassical. As shown in [51] for
models with a single massless scalar field, Fock coherent states form a suitable class of semi-
classical states, as the relative uncertainty in the volume remains small throughout the evolution
(see also [58] for a more in-depth analysis of a broader class of semiclassical GFT states). It is
then reasonable to assume that the same holds for expectation values of the T AB operators. We
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therefore use a coherent state |σ⟩ which is an eigenstate of the (time-independent) annihilation
operator aJ,k|σ⟩= σJ(⃗k)|σ⟩:

|σ⟩= e−||σ||2/2 exp

(

∑

J

ˆ

d3k

(2π)3
σJ

(

k⃗
)

a†J,k

)

|0⟩ , (37)

where |0⟩ is the GFT Fock vacuum and ||σ||2 =
∑

J

´

d3k
(2π)3 |σJ(⃗k)|

2.
We are interested in flat FLRW cosmology, where all quantities, in particular the compon-

ents of the classical current jAB, are homogeneous. A cosmological quantum state should reflect
this homogeneity. We thus choose a Gaussian as a sharply peaked mean field,

σJ

(

k⃗
)

= δJ,J0
A+ iB
cσ

e−
(⃗k−⃗k0)

2

2s2 , (38)

where A, B ∈ R, s determines the peakedness of the state and k⃗0 is the initially dominantly
excited Fourier mode. Similar to the single mode restriction made in section 3.2, in what fol-
lows we assume only one Peter–Weyl mode with J= J0 is excited. This is a standard assump-
tion in the literature [27, 51], motivated by the fact that in an expanding Universe a single
mode will dominate at late times and thereby determine the late-time limit [54]. (In general, if
multiple modes are included, the initial condition parameters A, B and s could of course be J

dependent.) We have fixed the normalisation factor cσ =
(

s
2
√
π

)3/2
for convenience regarding

later calculations. As the k⃗= 0 mode corresponds to the homogeneous mode, a strictly homo-
geneous state would correspond to an infinitely peaked state around k⃗0 = 0, i.e. the limit s→ 0.
To avoid any divergences, we choose a state with small, but finite s. This introduces a concep-
tual discrepancy to the classical case: in the quantum theory it is not possible to excite solely the
homogeneous background, but inhomogeneous modes will always be excited to some degree,
which clearly differs from the standard distinction between background and perturbations in
cosmology. In the following we set k⃗0 = 0 and consider the dynamics of the homogeneous,
k⃗= 0mode; all other modes should be identified with perturbations of the homogeneous back-
ground (which we will study in detail in an upcoming article).

The single mode J0 we consider can either have m2
J0 = m2 > 0 or m2 < 0 (we ignore the

fine-tuned special case m2 = 0 which needs to be analysed separately [59]). Since the mean
field is sharply peaked at k⃗= 0, the expectation value of the energy–momentum tensor will
be determined by (low |⃗k|) squeezed modes for m2 > 0 and by (low |⃗k|) oscillating modes for
m2 < 0.

For m2 > 0 we obtain the following expectation values:

⟨σ|T 00
0 |σ⟩=

ˆ

d3γ
(2π)3

sgn(K(2))|ωγ |(B2 −A2)
e−γ2/s2

c2σ
≈ sgn(K(2))|m|(B2 −A2) ,

⟨σ|T 0b
0 |σ⟩= 0 , ⟨σ|T a̸=b

0 |σ⟩= 0 ,

⟨σ|T aa
0 |σ⟩=

ˆ

d3γ
(2π)3

sgn(K(2))
e−γ2/s2

c2σ

×
((

−|ωγ |+
γ2
a

|ωγ |

)

(

(A2 +B2)cosh(2ωγχ
0)− 2sgn(K(2))AB sinh(2ωγχ

0)
)

+
γ2
a

|ωγ |
(A2 −B2)

)

≈−sgn(K(2))|m|
(

(A2 +B2)cosh(2|m|χ0)− 2sgn(K(2))AB sinh(2|m|χ0)
)

. (39)
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To simplify the integrals appearing in ⟨σ|T 00
0 |σ⟩ and ⟨σ|T aa

0 |σ⟩,2 we used the saddle-point
approximation

ˆ

d3x e−
(⃗x−µ⃗)2

s2 g (⃗x)≈ g(µ⃗)
ˆ

d3x e−
(⃗x−µ⃗)2

s2 = g(µ⃗)
(√

πs
)3

, (40)

which holds for sharply peaked Gaussians such that g(⃗x) can be considered approximately
constant in the region |⃗x− µ⃗|⩽ s. In effect, this approximation corresponds to the idealised limit
of s→ 0 given that we are ignoring all finite s contributions; we discuss the effects of next-to-
leading-order contributions in appendix, demonstrating that they can rightfully be neglected.
The approximation will break down at late times for ⟨σ|T aa

0 |σ⟩, as in the similar discussion of
[37]. The integrals for ⟨σ|T 0b

0 |σ⟩ and ⟨σ|T a ̸=b
0 |σ⟩ vanish due to antisymmetry. This result for

⟨σ|T 0b
0 |σ⟩ can be read either as the vanishing of some off-diagonal metric components or of

the canonical momenta conjugate to χb (see the discussion above (34)).
For m2 < 0, the integral over γ⃗ will contain both squeezed and oscillating modes, but for a

very sharply peakedmean field, only the region near γ⃗ = 0, which consists of oscillating modes
only, can contribute. We can hence write, using again the saddle-point approximation,

⟨σ|T 00
0 |σ⟩ ≈

ˆ

d3γ

(2π)3
sgn
(

K(2)
) e−γ2/s2

c2σ
|ωγ |

(

A2 +B2
)

≈ sgn
(

K(2)
)

|m|
(

A2 +B2
)

,

⟨σ|T 0b
0 |σ⟩= 0 , ⟨σ|T a ̸=b

0 |σ⟩= 0 ,

⟨σ|T aa
0 |σ⟩ ≈

ˆ

d3γ

(2π)3
sgn
(

K(2)
)

|ωγ |

e−γ2/s2

c2σ

×
(

γ2
a

(

A2 +B2
)

+
(

|ωγ |
2 + γ2

a

)((

A2 −B2
)

cos
(

2|ωγ |χ
0
)

+ 2AB sin
(

2|ωγ |χ
0
)))

≈ sgn
(

K(2)
)

|m|
((

A2 −B2
)

cos
(

2|m|χ0
)

+ 2AB sin
(

2|m|χ0
))

.

(41)

Before we can proceed to use the identification jAB = ⟨σ|T AB|σ⟩ to extract an effective met-
ric from the expressions (34) and (39), a discussion of signs is in order. Classically, the signs of
the conserved current given in (3) are determined by the choice of metric signature; in partic-
ular, for a Euclidean metric all entries of jAB would be positive. The signature of our proposed
effective metric, on the other hand, has so far not been fixed by the quantum theory. Given
that sgn(⟨σ|T aa

0 |σ⟩) =−sgn(K(2)) and sgn(⟨σ|T 00
0 |σ⟩) = sgn(K(2))sgn(B2 −A2), the initial con-

ditionsA, B determine whether the effective metric we reconstruct is Euclidean or Lorentzian.
To fix the signature convention (i.e. ‘East Coast’ or ‘West Coast’), one could choose a preferred
sgn(K(2)): identification with the classical discussion of section 2 would require sgn(K(2)) = 1.
However, for sgn(K(2)) =−1we could also simply identify jAB with−⟨σ|T AB|σ⟩, given that the
symmetry arguments used to make this identification would be compatible with any constant
rescaling, and already our definition (8) of the energy–momentum tensor could equally well
be replaced by a definition with the opposite sign.

In order to obtain a Lorentzian metric, we restrict to the case B2 >A2 and find the following
effective expressions for the momentum of the clock field and the scale factor in the case of
squeezing modes (39)3:

2 The integral for ⟨σ|T 00
0 |σ⟩ can be carried out analytically to give a Tricomi confluent hypergeometric function, but

as this does not add value to the results we present, we omit this result.
3 In Euclidean signature all entries in (34) would have the same sign, andwewould have to restrict toA2 > B2 instead;

we would then have |π0|= |m||B2 −A2| and the identification a4

|π0|
=−⟨σ|T aa

0 |σ⟩ would remain unchanged.
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|π0|=⟨σ|T 00
0 |σ⟩= |m|

(

B2 −A2
)

, (42)

a4 =−|π0|⟨σ|T aa
0 |σ⟩= m2

(

B2 −A2
)((

A2 +B2
)

cosh
(

2|m|χ0
)

− 2AB sinh
(

2|m|χ0
))

, (43)

from which we can calculate an effective Friedmann equation

H2 =
1
4
m2






1−

4
(

A2 −B2)2

(

(A−B)2 e2mχ0
+(A+B)2 e−2mχ0

)2






=

1
4
m2
(

1− |π0|4
a8

)

−→
late times

1
4
m2.

(44)

We thus obtain a bounce at a4 = |π0|2, or equivalently, ⟨σ|T aa
0 |σ⟩2 = ⟨σ|T 00

0 |σ⟩2.
The late-time limit—H2 going to a constant—agrees with all Friedmann equations previ-

ously obtained for GFTmodels with a single clock (matter) field (see, e.g. [51]) as well as with
the case of general relativity with a single massless scalar field where H2 = κ

6 , see (36). This
is an interesting observation given that in previous works effective Friedmann equations were
always obtained by studying the evolution of the number operator N= A†A, whose dynamics
for the squeezing case are given by ⟨σ|N|σ⟩= (A2 +B2)cosh(2|m|χ0)− 2AB sinh(2|m|χ0). In
the case of a single J mode, the number operator is proportional to the GFT volume oper-
ator V, whose expectation value is identified with the classical volume element, hence in pre-
vious literature ⟨σ|N|σ⟩ ∝ a3. For our choice of state in the saddle-point approximation, the
expectation value of the energy–momentum tensor component T aa

0 , leading to (43), is in fact
proportional to the expectation value of the number operator; hence our expression for a4 is
proportional to the one derived in previous literature for a3. Within our simplifying assump-
tions this result would suggest that the physical picture of Planck-scale quanta of fixed volume
whose total number is proportional to the total volume of space is not correct; rather, the rela-
tion ⟨σ|N|σ⟩ ∝ a4 following from our new proposal suggests that the number of fundamental
GFT degrees of freedom being excited grows more rapidly with the effective macroscopic
scale factor a than the classical volume which is proportional to a3.

Notice that this mismatch in the power of a identified with the particle number does not
affect the agreement of the Friedmann equation with general relativity (with one massless
scalar field) at late times; this agreement only requires that H= (loga) ′ should go to a con-
stant, which is compatible with identifying ⟨σ|N|σ⟩ with any power of a. (The GFT Friedmann
equation could also have an additional 1

⟨σ|N|σ⟩ term as in [37], which disappears here due to

the normal ordering procedure we impose.) In our case, m can be fixed to m2 = 2
3κ to repro-

duce the Friedmann equation of general relativity with a single massless scalar field in the
large volume limit, which is consistent with all previous literature. The only change is in the
numerical factor needed in the identification of m and κ.

We saw, however, that the classical Friedmann equation for a model with four massless
scalar coordinate fields (36) differs from that with a single clock field. The additional contri-
butions coming from spatial coordinate fields become dominant when a4

π2
0
∼ 1, which is exactly

when the bounce appears in (44). There is no early-time regime where these fields would not
yet dominate classically, but we are still far away from the bounce in the GFT model. Hence,
the GFT Friedmann equation does not match the Friedmann equation for a classical scenario
with four massless scalar fields. We discuss the origin of this discrepancy and possible exten-
sions that could lead to its alleviation in the conclusion.

Finally, one might be interested in the effective evolution of curvature through the bounce.
Consider the Ricci scalar, which for an FLRW spacetime for our lapse choice reads R=
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6π2
0

a6 (−2H2 + a ′ ′

a ) . As the effective scale factor remains finite throughout, so does R and the
singularity is avoided. At the bounce, where we have a ′ = 0 and |π0|= a2, the value of the
Ricci scalar is given by Rbounce = 6 a

′ ′

a3 . Using a ′ ′bounce = m2abounce from (43), we find that the

curvature at the bounce for our coherent state is given by Rbounce = 6 m2

|π0| and is thus determined
completely by the value of π0 if m is fixed by late-time consistency of the Friedmann equation.

For an oscillating mode with expectation values of T AB given in (41), we have the
identification

|π0|= sgn
(

K(2)
)

|m|
(

A2 +B2
)

, (45)

a4 =− |m|2
(

A2 +B2
)((

A2 −B2
)

cos
(

2mχ0
)

+ 2AB sin
(

2mχ0
))

. (46)

If we use the same convention as above with sgn(K(2)) = 1, we again find a positive |π0|, now
for arbitrary initial conditions in terms of A and B. The quantity a4, however, can change sign
throughout the evolution due to its oscillatory behaviour. This is rather different to what one
finds in the case with a3 ∝ ⟨σ|N|σ⟩, where the number operator remains constant for oscillating
modes (with an expectation value that is always positive). It is clear that a single oscillating
mode cannot lead to a realistic cosmology, however, if one includes both mode types, squeez-
ing modes would lead to an expanding Universe and oscillating modes would constitute an
additional modulation in the evolution of the scale factor, whose relative effect is reduced with
the expansion.

Finally, we would like to point out that ⟨σ|T 00
0 |σ⟩ is time-independent already prior to the

saddle-point approximation, implying that in this cosmological model |π0| is always constant.
This is an important consistency check, given that constancy of π0 corresponds to the Klein–
Gordon equation for the classical FLRW model. We have of course shown above that the
energy–momentum tensor is always conserved at the quantum level, so that we are guaranteed
to obtain the exact Klein–Gordon equation ∂AjAB = 0; however, what is nontrivial is to show that
our quantum state can be consistently interpreted as an FLRW Universe. This interpretation
has been substantially strengthened in our new approach, given that the effective metric we
recover explicitly gives a flat FLRW spacetime.

5. Conclusion

In this article we proposed a novel set of operators for GFT which we used to reconstruct
an effective metric directly from the quantum theory. This proposal goes beyond the entire
previous GFT literature in which only a limited set of geometric observables, usually derived
from the volume (or defining effective anisotropies [50]), were used. Working in a (depara-
metrised) Hamiltonian setting, we established a relational coordinate system by coupling four
massless scalar fields to the GFT action, where one of these fields is singled out as a clock
field and the others serve as spatial coordinates. The GFT action remains unchanged upon
translation of the scalar fields, leading to a conserved GFT energy–momentum tensor accord-
ing to Noether’s theorem. This translational symmetry represents the spacetime symmetry of
constant shifts in the matter fields, which in that context leads to a conserved current directly
related to the metric in the relational coordinate system. Hence, we proposed to identify the
expectation values of the GFT energy–momentum tensor with components of the classically
conserved current, obtaining an effective metric. We showed that the classical conservation
law for the GFT energy–momentum tensor arising from the symmetry holds also at operator
level, for different possible choices of operator ordering. In particular, this applies to the most
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relevant case of a normal-ordering prescription which removes divergent contributions to the
GFT energy–momentum tensor. In general, the free GFT action is decomposed into two dif-
ferent types of field modes, squeezed and oscillating modes, whose dynamics differ and which
appear in various combinations in the expressions for the GFT energy–momentum tensor. The
conservation law holds regardless of the choice of state, so that the matter fields always satisfy
the classical Klein–Gordon equation exactly.

While our proposal is very general, in the sense that an effective metric can be associated
to any state that is sufficiently semiclassical to allow operator expectation values to be con-
sidered as effective quantities, the particular choice of state governs the specific form of such
a metric and its symmetries. We tested our proposition in a simple example: homogeneous
cosmology as described by a flat FLRW metric. Here our choice of state was based on a few
physical requirements. To ensure sufficient semiclassicality, we chose Fock coherent states as
commonly done in the GFT literature. Secondly, the spacetime we are reconstructing should
be spatially homogeneous, which is why the coherent state is peaked around the homogeneous
k⃗= 0 mode.

We found that the canonically conjugate momentum of the clock field is conserved in time,
as it must be from the Klein–Gordon equation. Interestingly, only half of the possible space
of initial conditions leads to an effective Lorentzian metric, with the other half leading to
a Euclidean signature metric instead. This observation seems compatible with the fact that
the basic assumptions we have made about the GFT model itself (choice of compact gauge
group, neglecting interactions) would in principle be compatible with either Lorentzian or
Euclidean models for quantum gravity. Moreover, the metric signature would be invisible if
(as in almost all of the past work) one only has access to a Friedmann equation, which can
take a very similar form in Euclidean or Lorentzian signature. (At the level of perturbations,
the spacetime signature can of course be inferred from the equations of motion; here the work
of [27, 28] similarly finds that the effective signature depends on initial conditions, rather than
being determined by choices such as whether one uses compact or non-compact gauge groups.)
We also found an effective Friedmann equation that agrees with the previous GFT literature
for models with a single massless scalar field; it agrees with general relativity (coupled to a
single scalar field) at late times, and resolves the singularity by a bounce. We find a relation
between the number operator and the effective scale factor that differs from the literature,
namely ⟨σ|N|σ⟩ ∝ a4 instead of ⟨σ|N|σ⟩ ∝ a3. Oscillating modes would give a contribution to
the effective scale factor for which a4 can take negative values. Therefore, it seems that such
modes can only appear in conjunction with one or more squeezed modes.

While we find agreement with the standard GFT scenario for homogeneous cosmology, the
agreement with the classical Friedmann equation is not entirely satisfactory: given that the
spatial coordinate fields need to have nonvanishing gradient energy, they would be expected

to contribute additional terms in the energy density that can only be neglected when π2
0
a4 ≫ 1.

Such terms are not seen in the effective GFT dynamics, so that at best one might expect a
matching between GFT and classical cosmology for early times, where these terms do not yet

dominate. However, we found that the bounce already occurs at π2
0
a4 = 1, so that there is no such

early-time regime in the GFT setting. The bounce scale is determined by initial conditions,
namely the value of |π0|, and unrelated to quantities like the ratio of the energy density to the
Planck density. This seems to imply that the bounce could happen at low curvatures (somewhat
reminiscent of what happens in the so-called µ0-scheme of loop quantum cosmology [8]),
which needs to be clarified further.

One might think that the two Friedmann equations can be brought into agreement if one
deviates from the assumption of a flat FLRW Universe on the classical side; indeed, a positive
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curvature term could cancel the contribution from the spatial matter fields. In previous work on
GFT cosmology, where one only had access to the Friedmann equation, such an interpretation
would have been viable. However, in our scenario we have access to all metric components,
and since ⟨σ|T ab

0 |σ⟩ ∝ δab, our choice of state clearly corresponds to a flat metric. Themismatch
seems to arise from a general difficulty to include spatial gradients of the scalar fields in the
GFT construction. As we have seen, spatial homogeneity means that the mean field should be
peaked around k⃗= 0; indeed we have neglected all finite k⃗ contributions in our saddle-point
approximation. These assumptions then also imply that the canonical momenta (or, in other
words, the kinetic energy) of the spatial coordinate fields must vanish. It would not be possible
to introduce non-vanishing canonical momenta without also departing from homogeneity, as
discussed from a slightly different perspective in [37]. In our classical setup we had to assume
that while the spatial coordinate fields are not homogeneous in space (they would not be good
coordinates otherwise), their energy–momentum tensor is. It may be that in our GFT scenario
the imposition of spatial homogeneity by peaking on k⃗= 0 actually imposes a stronger condi-
tion of homogeneity on the matter fields themselves, which would be incompatible with the
presence of gradient energy, and imply an inconsistency in our starting point of assuming that
the matter fields are good spatial coordinates. Our results here are consistent with previous
literature, in which the spatial coordinate fields are either simply assumed to be negligible at
background level [27, 28], or where effective Friedmann dynamics only show contributions
from additional matter fields if one chooses a state peaked around k⃗0 ̸= 0 [37]. Introducing
gradient energy into the effective Friedmann equation might require entirely different types of
states, for instance states built from multiple Peter–Weyl modes. It might also require includ-
ing the effects of GFT interactions, which we neglected here; as stated above, this assumption
usually applies to the early Universe since interactions generally dominate at late times. If the
late-time limit of a suitably defined interacting GFT matches with the expression for general
relativity with four scalar fields, this could be seen as a phenomenological constraint on the
allowed types of GFT interactions.

A possible alternative to the model we studied would be to introduce an additional scalar
matter field as in [27, 28]. This fifth field is not interpreted as a relational coordinate and
has its own independent initial conditions; if this field dominates over the coordinate fields
at some initial time, such a scenario might yield an intermediate regime where the effective
Friedmann equation matches that of general relativity, before spatial gradient terms would be
expected to dominate. Whether this is realised in our new approach needs to be studied in more
detail. Another immediate question for future work would be how different types of coherent
state, such as those with a mean field peaked around k⃗0 ̸= 0, can be interpreted in terms of the
effective metric introduced in this paper. More generally, the constructions shown here can
be extended to small perturbations of an FLRW Universe or to situations such as spherical
symmetry, where they could describe the dynamics of an effective GFT black hole.
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Appendix. Saddle-point approximation: next-to-leading order

So far we have only considered the leading-order term in the saddle-point approximation,
effectively recovering the scenario of an infinitely peaked Gaussian, where only the k⃗= 0mode
contributes to the effective dynamics. However, as pointed out previously, in our construction
this limit cannot be realised exactly and inhomogeneous modes will inevitably contribute to
what is usually understood as background dynamics. In what follows we therefore include the
next-to-leading-order term in the saddle-point approximation and consider its implications for
the effective dynamics. We also establish the latest time at which the saddle-point approxim-
ation can be valid.

Including the next-to-leading-order term in (40), the saddle-point approximation reads

ˆ b

a
d3xg (⃗x)e−λ(⃗x−µ⃗)2 ≈

√

π

λ

3(

g(µ⃗)+
1
4λ

∆g (⃗x) |⃗x=µ⃗

)

, (A1)

where λ= 1
s2 > 0 and g(⃗x) is integrable, i.e.

´ b
a |g(⃗x)|d

3x<∞.4 The saddle point approximation
becomes increasingly accurate for λ→∞. In our case, we have µ⃗= 0. For a derivation of the
saddle-point approximation and its higher-order terms, see [60].

We apply the above to the components of the GFT energy–momentum tensor ⟨σ|T AB|σ⟩,
with σ specified in (37) and the T AB operators given in (28). Recalling that the off-diagonal
components ⟨σ|T 0b|σ⟩ and ⟨σ|T a ̸=b|σ⟩ are exactly zero, independent of the saddle-point
approximation, we need to consider only ⟨σ|T 00

0 |σ⟩ and ⟨σ|T aa
0 |σ⟩.

For ⟨σ|T 00|σ⟩, we have g(γ⃗) = |ωγ |=
√

γ⃗2 +m2 and thus∆g(γ⃗)|γ⃗=0 =
3
|m| . If we include the

next-to-leading-order correction to the expression in (39), we obtain a small constant shift in
the value of |π0|= ⟨σ|T 00

0 |σ⟩, namely

⟨σ|T 00
0 |σ⟩NLO ≈ sgn

(

K(2)
)

(

|m|+ 3
4|m|λ

)

(

B2 −A2
)

. (A2)

For the ⟨σ|T aa|σ⟩ component, on the other hand, we have more complex expressions that
include also a time dependence (see (39)):

g(γ⃗) =

(

−|ωγ |+
γ2
a

|ωγ |

)

(

(

A2 +B2
)

cosh
(

2|ωγ |χ
0
)

− 2sgn
(

K(2)
)

AB sinh
(

2|ωγ |χ
0
)

)

+
γ2
a

|ωγ |

(

A2 −B2
)

,

∆g(γ⃗) |γ⃗=0 =−
1
|m|

(

(

A2 +B2
)

cosh
(

2|m|χ0
)

− 2ABsgn
(

K(2)
)

sinh
(

2|m|χ0
)

)

− 6χ0
(

(

A2 +B2
)

sinh
(

2|m|χ0
)

− 2ABsgn
(

K(2)
)

cosh
(

2|m|χ0
)

)

+
2
|m|

(

A2 −B2
)

.

(A3)

As λ is large, but finite, g(γ⃗) as given above will dominate the integral (A1) for late enough
times, leading to an inapplicability of the saddle-point approximation. To establish the max-
imum value of χ0 for which the saddle-point approximation is viable, we consider the late-
time limit where g(γ⃗)∝ e2ωγχ

0

. The integrand then behaves as e−λγ⃗2

g(γ⃗)∝ e−λγ⃗2+2ωγχ
0

. The

4 Note that strictly speaking the integrals we consider are over the range (−∞,∞), with g(⃗x) increasing monoton-
ically with x⃗. We then need to limit integration to a finite range, which is tantamount to excluding modes with very
large wave numbers.
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saddle-point approximation is applicable at a maximum of −λγ⃗2 + 2ωγχ
0, which occurs at

γ⃗ = 0 for χ0 < |m|λ. Additionally, the condition g(0)> 1
4λ∆g(γ⃗)|γ⃗=0 needs to be satisfied to

ensure that g(0) remains the leading-order term throughout the evolution. In the late-time limit,
(A3) translates to

g(0)≈− |m|
2

(

A− sgn
(

K(2)
)

B
)2
e2|m|χ

0

,

∆g(γ⃗) |γ⃗=0 ≈−
(

A− sgn
(

K(2)
)

B
)2
e2|m|χ

0
(

1
2|m| + 3χ0

)

,

⇒ g(0)>
1
4λ

∆g(γ⃗) |γ⃗=0 ⇔ χ0 <
2
3
λ|m| − 1

6|m| ,

(A4)

which gives a similar, but more stringent constraint on the latest time the saddle-point approx-
imation can be considered as valid.

Restricting to this regime, the expression for ⟨σ|T aa
0 |σ⟩ then reads

⟨σ|T aa
0 |σ⟩NLO ≈sgn(K(2))

[A2 −B2

2λ|m| +

(

|m|+ 1
4λ|m|

)

(

2ABsgn(K(2))sinh(2|m|χ0)

−
(

A2 +B2
)

cosh(2|m|χ0)
)

+
3χ0

2λ

(

2ABsgn(K(2))cosh(2|m|χ0)−
(

A2 +B2
)

sinh(2|m|χ0)
)]

.

(A5)

If we recall that the above is related to the scale factor as a4 =−|π0|⟨σ|T aa
0 |σ⟩, it is apparent

that the additional terms will influence the form of the effective Friedmann equation, as we
have

a ′

a
=

1
4
⟨σ|T aa

0 |σ⟩ ′NLO

⟨σ|T aa
0 |σ⟩NLO

=
1
4

g ′ (0)+ 1
4λ∆g

′ (γ⃗) |γ⃗=0

g(0)+ 1
4λ∆g(γ⃗) |γ⃗=0

. (A6)

We first focus our attention on the implications of the next-to-leading-order terms in
the late-time limit, in which the expectation value (A5) and its logarithmic derivative (A6)
simplify to

⟨σ|T aa
0 |σ⟩NLO ≈−sgn

(

K(2)
)

e2|m|χ
0
(

A− sgn
(

K(2)
)

B
)2
(

|m|
2

+
3χ0

4λ
+

1
8λ|m|

)

, (A7)

(

⟨σ|T aa
0 |σ⟩ ′

⟨σ|T aa
0 |σ⟩

)2

NLO

≈
16m2 (2λm2 + 3|m|χ0 + 2

)2

(4λm2 + 6|m|χ0 + 1)2
, (A8)

where we neglected the subdominant constant term in (A5).
For large values of χ0 we have

(

⟨σ|T aa
0 |σ⟩ ′/⟨σ|T aa

0 |σ⟩
)2

NLO
→ 4m2 such that H2

NLO → m2

4 , as
in the main text. Note however that at the end of the period of validity for the saddle-point
approximation, one has H2

NLO = 1
16 (2m+ 3

4λm )
2, which is slightly larger than for the leading-

order contribution only.
To establish the effect of the next-to-leading-order term on the bounce behaviour we con-

sider the absolute difference between ⟨σ|T aa
0 |σ⟩NLO and ⟨σ|T aa

0 |σ⟩LO as well as the relative
difference of the leading-order and next-to-leading-order Hubble rate, defined as

∆H2, rel :=

(

(

⟨σ|T aa
0 |σ⟩ ′

⟨σ|T aa
0 |σ⟩

)2

NLO

−
(

⟨σ|T aa
0 |σ⟩ ′

⟨σ|T aa
0 |σ⟩

)2

LO

)

(

⟨σ|T aa
0 |σ⟩ ′

⟨σ|T aa
0 |σ⟩

)−2

LO

, (A9)
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Figure 1. Comparison of dynamics arising from including also the next-to-leading-
order term, ⟨σ|T aa

0 |σ⟩NLO, to those with the leading-order only, ⟨σ|T aa
0 |σ⟩LO, for dif-

ferent values of λ, namely λ= 10 (red, full) , λ= 100 (blue, small dashed), λ= 1000
(green, large dashed). The other parameter values are |m|= 4

√

π/3, A= 10, B = 20,
sgn(K(2)) = 1. The times were adjusted such that the bounces coincide and occur at
χ0 = 0.

where we correct for different bounce times, such that both bounces occur at χ0 = 0.5 Both
are depicted for different values of λ in figure 1. The qualitative bounce behaviour remains
unchanged by the contribution of inhomogeneous modes. The relative error peaks around the
bounce, where H2 is minimal, and decreases with increasing χ0, as can also be seen from (A6).
Overall, next-to-leading-order contributions have minimal impact on the dynamics, demon-
strating that they can be neglected as is done in the main text.
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