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Abstract 

 

1. Potential increases in drought frequency and vapour pressure deficit pose a risk to 

the future function of tropical trees. Previous studies have found that taller tropical 

trees show a stronger increase in mortality than shorter trees in response to dry 

anomalies, but the mechanisms behind this are unclear. Here we investigate whether 
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canopy branches of taller tropical trees have different hydraulic traits compared to 

shorter conspecifics.  

2. We determined xylem resistance to embolism (P50), hydraulic safety margin (HSM), 

xylem functional traits and xylem theoretical hydraulic conductivity for canopy 

branches of four tree species across a range of tree heights (sapling to maximum tree 

height) in an ecotonal forest near the Amazonia-Cerrado transition. 

3. We found that canopy branches of taller trees within each species have lower HSM, 

suggesting that they are more susceptible to hydraulic failure under drought than 

smaller conspecifics. Height-related trends in HSM were driven by variation in P50 

with height and not by variation in leaf water potential which did not vary with 

height. We find that canopy branches with greater xylem vessel diameters are 

generally more vulnerable to embolism, suggesting a potential role for a diameter-

safety linkage in explaining observed patterns of decreasing HSM with height. 

However, we find no evidence of a branch-level trade-off between theoretical 

hydraulic conductivity and hydraulic vulnerability.  

4. The greater hydraulic vulnerability of larger trees provides a potential explanation 

for the higher drought-induced mortality observed in taller tropical trees. The 

consistency of the height-P50 relationship across species opens the door to a more 

accurate prediction of southern Amazon forest responses to future droughts. 

Whether the findings for forests in southern Amazonia can be generalized to other 

Amazonian regions remains an open question.  

Keywords 

 Height-hydraulic operation, hydraulic sensitivity, resistance to embolism, tropical trees, 

xylem anatomical traits 

1. Introduction 

Several climate models project an increase of dry season water stress over the 

eastern Amazon (Duffy et al., 2015), with potentially significant consequences for forest 

function, biomass storage and composition. Furthemore, marked increases in tree 

mortality have been observed following natural and experimental droughts in Amazonia 

(Phillips et al., 2010; da Costa et al., 2010; Meir et al., 2015). The most significant 

changes in recent climate have been observed in the southeastern Amazon, where 

deforestation has been most extensive (Marques et al., 2020; Gatti et al., 2021). In this 

region, temperature increases have been particularly marked (Jiménez‐Muñoz et al., 
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2013) and a lengthening of the dry season has been documented (Haghtalab et al., 2020; 

Marimon et al., 2020).  Field observations suggest that forests in southeastern Amazonia 

have the lowest hydraulic safety margins of all Amazon forests (Tavares et al., 2023), 

may already be approaching temperatures that may limit photosynthetic function (Tiwari 

et al., 2020; Araújo et al., 2021) and exhibit the highest mortality rate of all Amazonian 

regions (Esquivel-Muelbert et al., 2020, Reis et al., 2022). Therefore, forests in this 

region are at the frontline of climate change in Amazonia and a mechanistic understanding 

of their climatic sensitivity is critical for predicting forest responses to future climate 

change. 

Water is transported in trees in narrow xylem conduits under high tensions 

(negative water potentials), which intensify during periods of soil water deficit and high 

atmospheric evaporative demand. Under very negative water potentials, air embolism 

may form in the xylem (Tyree & Sperry, 1988), disrupting the continuity of the plant 

water column and interrupting the transport of water to the leaves. Severe embolism of 

the xylem vessels may lead to failure of the water transport system (i.e., hydraulic failure) 

and ultimately cause tissue and tree mortality (Tyree & Sperry, 1988; Adams et al., 2017). 

Embolism-induced hydraulic failure (Brodribb & Cochard, 2009; Rowland et al., 2015; 

Bittencourt et al., 2020) has been found to be the dominant mechanism of tree death under 

drought conditions (Adams et al.,  2017), although other mechanisms including carbon 

deprivation (Adams et al.,  2009) and insect outbreaks (Ferrell et al.,  1994), can also 

contribute to tree mortality. Given the observed recent changes in climate in the region, 

remaining forests in the southern Amazon may face a significant risk of drought-induced 

mortality (Tiwari et al., 2020; Esquivel-Muelbert et al., 2020; Araújo et al., 2021; Reis et 

al., 2022), but their hydraulic properties have been little evaluated (Jancoski et al., 2022; 

Tavares et al., 2023). 

The hydraulic limitation hypothesis predicts that hydraulic resistance increases 

with increasing xylem path length, making the transport of water to the leaves more 

difficult in tall trees (Ryan & Yoder, 1997; Koch et al., 2004), although tapering of xylem 

vessels with height partially compensates for these increases in resistance (e.g., Becker et 

al., 2000 a, b; Becker & Gribben, 2001; Zaehle, 2005). Taller trees generally have wider 

xylem vessels, which could make them more vulnerable to embolism than shorter trees 

with narrower vessels (Olson et al., 2018; Liu et al., 2019), mostly during drought events. 

Indeed, predictions based on Darcy's law suggest that tall trees are most at risk of drought-

induced mortality (McDowell & Allen, 2015).  
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The greater vulnerability of large trees is supported by several lines of empirical 

evidence. In tropical forests in Amazonia and worldwide, natural drought events tend to 

impact taller trees more than shorter trees (Phillips et al., 2010; Bennett et al., 2015). In 

a long-running experimental drought study in the Brazilian Amazon, high mortality of 

tall trees drove a 40% reduction of standing biomass over a 15-year period (Rowland et 

al., 2015), attributed to a greater risk of hydraulic failure in taller trees than in smaller 

trees as xylem resistance to embolism was found to decline with increasing tree height 

(Rowland et al., 2015). In a global scale study, Liu et al., (2019) showed that tree species 

attaining higher height are generally less resistant to embolism (less negative P50); on the 

other hand, they have greater xylem efficiency than species with lower maximum height. 

These findings have been attributed to a vessel diameter-vulnerability link (Olson et al., 

2023), whereby large-vesseled tall trees are also more prone to cavitation. The potential 

mechanisms underlying this relationship include the heightened likelihood of 

spontaneous embolism formation in larger vessels and the increased capacity for 

embolism transmission to adjacent vessels. Wider vessels may possess larger pores in 

their pit membranes and a greater number of intervascular depressions, thereby 

augmenting their susceptibility to water stress-induced embolism (Hargrave et al., 1994; 

Isasa et al., 2021).  

Studies investigating ontogenetic variation in hydraulic traits within taxa are rare, 

with substantial divergences between them. For example, Olson et al., (2018), 

demonstrated that taller individuals of some subtropical plantation species are less 

resistant to embolism than shorter individuals (e.g., Moringa oleifera; <150 cm, P50 = -

1.3 MPa; >250 cm, -0.7 MPa).  In the only study to date in Amazon forests, Bittencourt 

et al., (2020), showed that the relationship between tree diameter and P50 is widely 

variable in eastern Amazonian tree genera (e.g., P50 becomes more negative with diameter 

for Virola and Inga but less negative for Vouacapoua and Eschweilera). Understanding 

these relationships (e.g., between tree height and P50 and hydraulic safety margin) is 

particularly important for the southern Amazon, where there are no relevant empirical 

data but where there are urgent implications for forest structure and carbon storage due 

to the rapid deforestation and climate change observed in the region.   

In this study, we evaluated the relationship between tree height and key branch-

level hydraulic traits related to the conductivity and safety of xylem water transport (e.g., 

P50, vessel lumen diameter and frequency) as well as plant hydraulic status (minimum 

leaf water potentials, hydraulic safety margins) in one of the Amazon’s southernmost 
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closed canopy forest fragments, located at the transition of the Amazon and Cerrado 

(savannah) biomes. This combination of hydraulic architecture traits and hydraulic status 

variables allows us to integratively examine the implications of plant height for hydraulic 

conductivity and safety. With this dataset, we address the following research questions: 

(1) Do tall trees exhibit less embolism resistance and lower hydraulic safety margins than 

shorter conspecifics? (2) Are theoretical hydraulic conductivity and xylem functional 

traits coordinated with tree height? (3) Is there evidence of a trade-off between theoretical 

hydraulic conductivity (Kh estimated from xylem anatomical traits) and resistance to 

embolism (branch P50) in tree species in the southern Amazon? 

 

2. Materials and Methods 

2.1 Study area and species  

We carried out the study in a 1 ha plot in a large forest fragment located in the 

legal reserve area of Fazenda Vera Cruz (14º49'32’’S and 52º06’20’’W), Nova 

Xavantina, Mato Grosso, Brazil, at the transition of the Amazon and Cerrado biomes 

(Marimon et al., 2014; Marques et al., 2020). The plot is a closed canopy mixed forest 

with emergent trees that can reach 25 m in height but with an average tree height of 13.6 

m, classified as a pre-Amazonian transitional forest (Marimon et al., 2014; Araújo et al., 

2022) where > 80% are commonly-occurring Amazon species, but also containing some 

typical Cerrado species, as is the case in other savanna-forest contact areas (Ratter et al., 

1973; Mews et al., 2012; Morandi et al., 2016; Araújo et al., 2023).  

The altitude is approximately 200 m above sea level, with plinthosol, dystrophic, 

alic and medium-textured soil (Marimon et al., 2014; Marimon-Junior et al., 2020). Mean 

annual precipitation (based on CHIRPS) for our study site is 1544 +/- 192 mm (mean +/- 

SD).  Total annual precipitation in 2021, the year of our PMIN measurements was 1715 

mm and thus within one standard deviation of the mean. The region's climate is strongly 

seasonal with well-defined rainy (March to October) and dry (April to September) 

periods. The climate is classified as Aw type, according to the Köppen classification 

(Alvares et al., 2013).  

We selected four dominant evergreen species: Brosimum rubescens Taub. 

(Moraceae), Amaioua guianensis Aubl. (Rubiaceae), Cheiloclinium cognatum (Miers) A. 

C. Sm. (Celastraceae) and Protium altissimum (Aubl.) Marchand (Burseraceae) that 

jointly contribute 34% of the total plot basal area for individuals with diameter > 10 cm 
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(Mews et al., 2011, 2012). For A. guianensis and C. cognatum, we selected 15 individuals 

distributed among three height classes (five trees per class; intermediate 10-15m, low 5-

10m and saplings < 1m) for each species, while for the species B. rubescens and P. 

altissimum we selected 20 individuals in order to include a fourth class (tall >15m) due 

to their greater height variation. A laser hypsometer was used to measure tree heights. 

2.2 Leaf water potential measurements  

We determined the minimum water potential in canopy leaves (PMIN) in August 

2021 (peak of the dry period) between 12:00 and 14:00 on leaves from branches collected 

by a trained tree climber. Total dry season rainfall (April – September) in 2021 was 126 

mm and within one standard deviation of the long-term (1982-2023) mean values (161 

+/- 56 mm). For each sampled individual, PMIN was measured on three healthy (i.e., free 

from pathogens) and fully-expanded top-of-canopy leaves, using a Scholander pressure 

chamber (PMS Instruments Co., Albany, USA; model: 1505D-EXP; Scholander et al., 

1965) and took the mean of the three leaves to represent the PMIN for that individual. All 

leaf water potential measurements were made in situ, with a maximum time interval 

between branch collection and water potential measurement of 1-2 minutes.  

 

2.3 Xylem hydraulic vulnerability 

 

Field procedure 

Xylem vulnerability curves were constructed between February and May 2022, 

during or immediately after the rainy season at which point plants were fully hydrated. 

Wet season rainfall (October – March) corresponding to the year of sampling was 1697 

mm and within two standard deviations of the long-term (1982-2023) mean wet season 

rainfall (1372 +/- 173 mm).  We harvested two sunlit branches between 50 cm and 1 m 

in length from the upper part of the crown between 5:00 and 6:00 a.m. for each individual 

and species. Branches were then identified with a collection code (i.e., species name, 

branch and individual numbers) and kept in black plastic bags, wrapped with a damp cloth 

at their base and with 20 ml of water added to keep the branch hydrated during transport 

to the laboratory (one hour away by vehicle). 

Preparation and handling of samples in the laboratory 

We assessed the vulnerability of the xylem to embolism using sigmoidal curves 

of the relationship between the percentage loss of conductivity (PLC) and the water 

Jo
ur

na
l P

re
-p

ro
of



7 

 

potential in the xylem. We used the percentage of air discharge (PAD) from the xylem as 

a proxy for PLC using a pneumatic method (Pereira et al., 2016). In the laboratory, we 

prepared the connections for each branch and covered them with a black plastic bag for 

one hour to allow the leaf water potential to equilibrate with the branch xylem water 

potential. We induced cavitation using the bench-top dehydration method (Sperry et al., 

1988) and simultaneously measured the leaf water potential (PX) with a pressure chamber 

(Scholander et al., 1965) and the PAD at frequent intervals during the branch dehydration 

cycle (we used at least five points to fit each curve). We calculated P50 (i.e., water 

potentials at which the tissue loses 50% of its conductivity) for each individual (see 

Figures S4 to S17) using the equation of Pammenter & Willigen, (1998):  

 𝑃𝐴𝐷 = 1001 + e[ 𝑆25(P𝑥−𝑃50)] 
where PAD (percentage of air discharge) and PX (xylem water potential, MPa) are 

measured values and P50 (xylem water potential when PAD equals 50%) and S (slope of 

the curve, % PAD MPa-1) are parameters extracted from the best model fits. 

 

2.4 Hydraulic safety margin  

  We considered the hydraulic safety margin (HSM) with respect to P50 as an 

estimate of vulnerability to drought, which we calculated as: HSM50 = PMIN - P50 

(Brodribb et al., 2017) where P50 is derived from the vulnerability curve for each 

individual and PMIN is the minimum leaf water potential measured in the field for the same 

individual.  

 

  2.5 Xylem anatomy 

For each individual, we selected a 10 cm-long sample from the same branches for 

which we determined P50. Initially, to soften the material, we put the stem samples in an 

oven with water and liquid glycerin (3:1 ratio) at 75 °C for 72 h. We obtained cross-

sections (16-20 µm thick) with a rotary microtome (RM2235, Leica, Germany). We 

clarified the cuts in sodium hypochlorite (50%) and acidulous water (0.1%), dehydrated 

them in an ascending series (50% to 100%) of ethanol (Johansen 1940) stained the 

sections with Safranin (Berlyn & Miksche, 1976) and mounted the slides in glycerin 

gelatin. From the histological slides, we obtained photomicrographs using the Leica LAS 

E.Z 1.7.0 software coupled to a Leica ICC50 photomicroscope with 10x magnification. 
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We made 25 measurements per individual branch samples of the tangential diameter of 

the vessel (µm) and vessel frequency (number of vessels per mm²) using the Image Pro-

Plus 4.0 digital image processing system (Media Cybernetics, EUA), following the 

standards of the IAWA Committee (1989).  We note that all diameter measurements 

presented in this study refer to the tangential diameter.  Due to the high correlation 

between tangential and longitudinal diameters, it is common practice in anatomical 

studies to report only the tangential diameter (e.g., Castelar et al., 2023; Freitas et al., 

2024).  

2.6 Theoretical hydraulic conductivity Kh 

In line with previous studies (e.g., Castelar et al., 2023), theoretical hydraulic 

conductivity (Kh) was calculated using the Hagen-Poiseuille equation as follows: 

Kh = (π/128η) • Fv • Dh
4 

 

where Kh = Theoretical hydraulic conductivity in m4 MPa-1 s-1, η = water viscosity 

at 20 °C (1.002 x 10-9 MPa. s), Fv is the vessel density (n vessels mm2) and Dh is the 

hydraulically weighted diameter (m). For ease of reporting, the theoretical hydraulic 

conductivity was multiplied by 1012 to express in mm4 MPa-1 s-1. 

The hydraulically weighted diameter per segment was calculated following Scholz et al., 

(2013):   

 𝐷ℎ =  (∑𝑑4𝑛 )14
 

 

where d is the measured vessel diameter (m) and n is the number of vessels 

measured (25 per segment). 

 

2.7 Vulnerability index 

As an alternative measure of xylem vulnerability, the vulnerability index (VI) was 

calculated using the equation proposed by Carlquist (1977):  

VI = Dv/Fv 

where Dv = mean vessel lumen diameter per segment in mm, and Fv = vessel 

frequency in mm2. 
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3. Data analysis 

We constructed linear regression models to assess relationships between tree 

height and hydraulic and anatomical characteristics of xylem vessels with ggbiplot 

package (Wickham, 2011). In addition, we also built linear regression models to 

understand how resistance to embolism was related to xylem anatomical traits and 

theoretical hydraulic conductivity. Before performing the analysis, we tested the 

normality and homoscedasticity of the data using the Shapiro-Wilk and Levene tests 

(Levene, 1961; Shapiro-Wilk, 1965), and performed all analysis in R software version 

4.2.1 (R Core Team, 2022). 

 

4. Results  

 

4.1 Tree height influences hydraulic behavior 

In general, we found for all tree species that as the height increases, canopy branch 

xylem resistance to embolism decreases (less negative P50, P < 0.0001, R2 = 0.45, Fig. 

1a). Interestingly, minimum leaf water potential generally does not change with height, 

except for B. rubescens (Fig. 1b). A negative relationship between tree height and 

hydraulic safety margin was found for three of the evaluated species, where taller trees 

tend to have lower HSM50 (Fig. 1c). Slopes did not vary between species but had different 

intercepts. For a given height, B. rubescens and P. altissimum had higher HSM50 than C. 

cognatum and A. guianensis (Fig. 1c), reflecting the less negative minimum water 

potentials observed in those species.   
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Fig. 1 Relationship between tree height and hydraulic traits: (a) resistance to xylem 

embolism - P50, (b) minimum leaf water potential - PMIN and (c) hydraulic safety margins 

- HSM50. The solid lines provide the predicted linear regression for each species. The 

bold dashed black line provides the general linear regression best-fit line for all species 

together (The R2 in the figure and P value refers to the general linear regression best-fit 

line for all species together, extended data Tables S1 to S3). 

 

4.2 Theoretical hydraulic conductivity and xylem functional traits coordination with 

tree height  

In general, canopy branches of taller trees within each species have wider mean 

vessel lumen diameter and a smaller number of vessels than those of shorter conspecifics 

(Fig. 2a, b). With increasing height, mean vessel lumen diameter increases for all species 

evaluated (P < 0.0001, R2 = 0.48, Fig. 2a). A weaker trend was found for hydraulically 

weighted vessel diameter, which increased significantly with height for two of the 

evaluated species (Fig. S1). On the other hand, as trees increase in height, vessel 

frequency decreases in all species (P < 0.0001, R2 = 0.35, Fig. 2b). Theoretical hydraulic 

conductivity Kh, which combines vessel frequency and diameter, does not change with 

height (Fig. 2c).  

 

Fig. 2 Relationships between tree height and xylem anatomical traits. (a) vessel lumen 

diameter - DV, (b) vessel frequency - FV and (c) theoretical hydraulic conductivity - Kh. 

The solid lines provide the predicted linear regression for each species. The bold dashed 

black line provides the general linear regression best-fit line for all species together (The 

R2 in the figure and P value refers to the general linear regression best-fit line for all 

species together, extended data Tables S4 to S6). 
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4.3 Xylem functional traits and hydraulic vulnerability  

In general, xylem functional traits are related to hydraulic vulnerability, however 

the magnitude of the relationships varies between species (Fig. 3a, b). While vessel lumen 

diameter is positively related to embolism resistance (P <0.0001, R2 = 0.37, Fig. 3a), 

vessel frequency is negatively associated with hydraulic vulnerability (P = 0.0004, R2 = 

0.19, Fig. 3b). We did not find a relationship between embolism resistance and theoretical 

hydraulic conductivity for tree species (Fig. 3c). Furthermore, the overall relationship 

between embolism resistance and hydraulically weighted vessel diameter was much 

weaker than that between embolism resistance and mean vessel diameter (Fig. S2a) and 

driven by one species, B. rubescens (Fig. S2a, Table S11). We also observed that the 

xylem vulnerability index (VI) derived from anatomical measurements (DV/FV) exhibited 

an overall positive relationship to P50, but that the variation in VI was often much lower 

than that in P50 (Fig. S2b, Table S12). 

 

Fig. 3 Relationships between xylem anatomical traits and theoretical hydraulic 

conductivity with the resistance to xylem embolism P50: (a) vessel lumen diameter – DV, 

(b) vessel frequency -FV and (c) theoretical hydraulic conductivity - Kh. The solid lines 

provide the predicted linear regression for each species. The bold dashed black line 

provides the general linear regression best-fit line for all species together (The R2 in the 

figure and P value refers to the general linear regression best-fit line for all species 

together, extended data Tables S7 to S9). 

 

5. Discussion 

5.1 Variation of hydraulic safety and efficiency with tree height 

 

Jo
ur

na
l P

re
-p

ro
of



12 

 

Our results show that for all four species tested in a southern Amazon Forest, the 

canopy branches of taller trees have lower (more negative) hydraulic safety margins than 

equivalent branches of shorter conspecifics. These results are qualitatively consistent with 

the results of Giles et al., (2022), who found that smaller trees (1-10 cm in diameter) in 

the northeastern Amazon site of Caxiuanã had higher hydraulic safety margins than larger 

trees of the same genera, although no clear patterns in HSM50 were observed at the same 

site, in relation to diameter for adults trees with DBH >10 cm (Bittencourt et al., 2020). 

We are aware of no other studies that have specifically evaluated how hydraulic safety 

margins (integrating both resistance to embolism and leaf water potentials observed in 

situ) vary with tree height in Amazon forests. Although HSM50 declined with height for 

almost all species evaluated (Fig. 1c), we note that the steepest declines in HSM50 with 

height were for those species that attained lower maximum height (A. guianensis and C. 

cognatum).  In these species, HSM50 of larger individuals was invariably negative but was 

positive in all instances for B. rubescens and P. altissimum. Negative HSM50 values have 

been widely reported both in Amazonian forests (e.g., Tavares et al. 2023) and in global 

syntheses (e.g., Choat et al. 2012) and their occurrence indicates that at least some species 

are able to survive exposure to negative HSM50.  Indeed, lethal water potentials, although 

still unknown for tropical forest trees but have been found be well beyond P50 values in 

experimental studies on temperate trees (Li et al., 2016; Liang et al., 2020).  

 We find that in our study site, the relationship between tree height and HSM50 is 

driven by marked reductions in P50 with increasing height and not by changes in PMIN. 

Rather, PMIN displayed strong species-specific signatures that were independent of height. 

These results contrast with other studies in tropical forests that have reported lower PMIN 

in larger trees than in smaller trees (e.g., Kenzo et al., 2015; Giles et al., 2022). The lack 

of a height effect on PMIN may be associated with the specific characteristics of our study 

site, which is transitional in nature and has a more open canopy than tropical forests in 

core biome areas. Thus, the light and evaporative demand gradients between taller and 

smaller trees are less pronounced. Any differences in evaporative demand in our study 

site may also be offset by differential access to water by smaller plants. The soil in the 

study site has a layer of semi-concretionary hydromorphic laterite (Marimon-Junior et al., 

2020) at a depth of approximately two metres which may restrict deeper access to water 

by roots of smaller trees. Although we do not have direct observations of rooting depth at 

our sites, recent studies have shown that large trees tend to have long roots that help 

reduce water stress and competition during extreme drought compared to short tree 
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species with shallow roots (Brum et al., 2019; Giles et al., 2022).  Differences in access 

to soil water (e.g., rooting depth) and possibly in stomatal regulation may also explain the 

interspecific differences we observed whereby individuals of the two shorter species 

(Amaioua guianensis and Cheiloclinium cogantum) had lower PMIN and HSM50 values. 

The low HSM50 observed for taller individuals of these species suggests that hydraulics 

may limit the height attainment of these species.  

The decline in embolism resistance (i.e., the tendency towards less negative P50) 

with tree height is a consistent feature across all four species considered. The observed 

pattern is in agreement with other studies that report an interspecific relationship between 

maximum tree height and embolism resistance (e.g., Liu et al., 2019), decline in embolism 

resistance with height in experimental plantations (Olson et al.,  2018)  and reduced 

embolism resistance in taller trees compared to shorter trees of the same genera in the 

northeastern Amazon (Rowland et al., 2015; but see Bittencourt et al.,  2020; Giles et al., 

2022) or the same species in temperate systems (e.g., Prendin et al., 2018).  This 

relationship has been previously explained by: 1) small trees developing more resistant 

xylem to compensate for shallow rooting profiles (Brum et al., 2019; Giles et al., 2022), 

and 2) a vessel conduit diameter-vulnerability link whereby taller trees with larger vessels 

face greater embolism risk than shorter conspecifics. In line with a large number of other 

studies, we observe an increase in apical vessel lumen diameter with increasing tree 

height (e.g., Zach et al., 2010; Prendin et al., 2018). Taller trees face the challenge of 

transporting water to the canopy against increasing resistance due to increasing path 

length. Wider apical vessels in taller trees provide a mechanism for overcoming the 

effects of longer path length on hydraulic resistance (Prendin et al., 2018) but this may 

come at the expense of increased vulnerability to drought (e.g., Isasa et al., 2023; Olson 

et al., 2023).   

We find a moderately strong relationship (Fig. 3a) between embolism resistance 

and mean vessel lumen diameter of apical branches, such that branches with wider mean 

apical diameters (generally from taller trees) are less resistant to embolism. This is 

consistent with previous work on temperate species where the same general pattern has 

been observed at the interspecific level (e.g., Maherali et al., 2006; Levionnois et al., 

2021; Isasa et al., 2023). Our study finds that the vessel lumen diameter – P50 linkage also 

holds true across individuals of different sizes of the same species. The causal basis of 

this relationship remains unclear but possible mechanisms include: 1) Increased 

likelihood of spontaneous embolism formation in larger vessels: embolism formations are 
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discrete events and are more likely to happen at least once in vessels with larger xylem 

sap volumes (Isasa et al., 2021)  and 2) Increased potential for transmission of embolism 

to other vessels: wider vessels may have larger pores in their pit membranes and a higher 

amount of intervessel pitting, thus increasing their vulnerability to water-stress-induced 

embolism (Hargrave et al., 1994). A large intervessel pit fraction or number would 

increase the probability to have one to few disproportionately large pit membrane pores 

leading to embolism propagation (Wheeler et al., 2005). Recently, a study with temperate 

tree species (Isasa et al., 2023), provided clear evidence that vessel dimensions have an 

effect on embolism resistance, and that this relationship cannot be explained by pit 

membrane thickness only. Interestingly, we found that relationships between hydraulic 

diameter and P50 were weaker than between mean vessel diameter and P50 (Fig. S2), 

reflecting differences in vessel diameter distributions between species and within species 

across different sizes (Fig. S3).  

Beyond vessel diameter, other anatomical traits may also be related to embolism 

resistance.  In our study, we found that the vessel frequency – P50 linkage also holds in 

trees of different sizes within the same species. as plants with greater vessel frequency 

are more embolism resistant (have more negative P50). Concomitant decreases in vessel 

density with height have been reported alongside increases in apical vessel diameter in 

several studies (e.g., Echeverria et al., 2019; Chambers-Ostler et al., 2022).  This has been 

attributed to carbon economics as plants optimise carbon investment to maintain leaf-

specific conductance by investing more in fewer wider conduits (Echeverria et al., 2019).  

The relationships observed between P50 and Fv may simply reflect this. On the other hand, 

a greater number of vessels has independently been proposed to increase redundancy, 

providing alternative pathways for water transport in plants and thereby increase 

hydraulic safety (Ewers et al., 2007). As well as vessel number per se, vessel grouping 

may be important too.  For example, Levionnois et al. (2021) found that greater vessel 

grouping increased embolism resistance across rainforest species in French Guiana and 

also attributed this to redundancy in the vessel network as connections with other vessels 

allow embolised vessels to be bypassed more easily.  Finally, xylem ultrastructural 

properties, especially pit membrane thickness and architecture, have been shown to 

correlate well with P50 (e.g., Levionnois et al., 2021; Isasa et al., 2023) but were beyond 

the scope of this study.  

5.2 Trade-off between Kh and P50 
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Our results showed that total theoretical hydraulic conductivity - Kh does not 

change with tree height, suggesting no direct role for a trade-off between Kh and P50 in 

explaining increased xylem vulnerability with height. Furthermore, we found no general 

cross-species relationship between branch P50 and total theoretical hydraulic conductivity. 

The observed pattern is in line with other studies that either report no trade-off between 

P50 and Kh in enclaves of the Amazonian savannah (Simioni et al., 2023) or found a weak 

trade-off between Kh and hydraulic safety - P50 for woody plants at a global scale (e.g., 

Gleason et al., 2016).  In contrast, studies in two Panamanian forests (van der Sande et 

al., 2019) and Norwegian spruce forests in Italy (Prendin et al., 2018) have identified 

stronger relationships between Kh and P50. In our study, the lack of an overall relationship 

with total theoretical hydraulic conductivity likely reflects the compensating effects of 

diameter and vessel frequency – vessel frequency decreases as vessel diameter increases. 

The relationship between hydraulic vulnerability and vessel diameter may ultimately be 

more important than that between vulnerability and total theoretical conductivity, as it 

suggests that, on average, vessels in taller trees may be more vulnerable due to their larger 

diameters. 

 

5.3 Conclusions and implications for southern Amazon forests 

Our study evaluates the variation in the hydraulic properties of trees with height 

within species in one of the southernmost Amazon forests. This region has faced 

substantial recent climate changes (Nobre et al., 2016; Marengo et al., 2018) and its trees 

have the lowest hydraulic safety margins of all Amazon forests evaluated to date (Tavares 

et al., 2023). Our results provide a possible mechanism behind the increased mortality of 

tallest trees: the decrease in HSM50 with height, driven by declining resistance to 

embolism with height (less negative P50 in taller trees). As forest biomass is concentrated 

in the largest trees in these forests, continuing trends in increasing vapour pressure deficit 

and reduced rainfall in this region have the potential to further accentuate hydraulic stress 

in larger trees and to markedly alter forest structure and carbon storage.  Our study further 

finds a linkage between vulnerability and vessel diameter size that may potentially 

explain the declines in P50 with height. However, a deeper understanding of the 

biophysical processes that determine embolism formation and spread at the nanoscale 

level is crucial to fully comprehend the observed diameter-vulnerability link.  
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Finally, the results presented here have clear implications for modelling, as we 

find that height-related declines are consistent across all species evaluated (i.e., the slopes 

of the height-P50 relationships were not found to vary statistically). This facilitates 

inclusion of such a relationship in ecosystem models and may help to improve predictions 

of drought-induced tree mortality in this region. 
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Highlights 

 

• Potential increases in drought frequency and vapour pressure deficit pose a risk to the future 

function of tropical trees; 

• The greater hydraulic vulnerability of larger trees provides a potential explanation for the 

higher drought-induced mortality observed in taller tropical trees; 
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• The consistency of the height-P50 relationship across species opens the door to a more 

accurate prediction of southern Amazon forest responses to future droughts; 
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