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The paper is concerned with the asymptotic analysis of a 
family of Boltzmann (multiplicative) distributions over the 
set Λ̌q of strict integer partitions (i.e., with unequal parts) 
into perfect q-th powers. A combinatorial link is provided via 
a suitable conditioning by fixing the partition weight (the sum 
of parts) and length (the number of parts), leading to uniform 
distribution on the corresponding subspaces of partitions. 
The Boltzmann measure is calibrated through the hyper-
parameters 〈N〉 and 〈M〉 controlling the expected weight 
and length, respectively. We study “short” partitions, where 
the parameter 〈M〉 is either fixed or grows slower than for 
typical partitions in Λ̌q . For this model, we obtain a variety 
of limit theorems including the asymptotics of the cumulative 
cardinality in the case of fixed 〈M〉 and a limit shape result 
in the case of slow growth of 〈M〉. In both cases, we also 
characterize the joint distribution of the weight and length, 
as well as the growth of the smallest and largest parts. Using 
these results we construct suitable sampling algorithms and 
analyze their performance.
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1. Introduction

1.1. Integer partitions: setting the scene

“What, yet another paper on integer partitions?” Well, guilty as charged — but to 
be fair, this classical area of mathematics, dating back to Euler, Sylvester, MacMahon, 
Hardy and Ramanujan, is fresh as ever, and seems to be a non-depletable source of 
fascinating problems and many beautiful results (see the authoritative monograph by 
Andrews [2] for historical comments and further references).

Integer partitions constitute one of the most basic structures in additive number 
theory and combinatorics — a partition of an integer n ∈ N is just a decomposition 
as a sum of natural parts, up to reordering (e.g., partitions 5 = 2 + 3 = 3 + 2 are not 
distinguished). Perhaps, the most celebrated result in the asymptotic theory of integer 
partitions is the ingenious formula by Hardy and Ramanujan [38, Sec.1.4, p.79, and 
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Sec.1.7, pp. 84–85] for the number p(n) of all partitions of a large integer n, with the 
principal term1 reading

p(n) ∼ 1
4
√

3n
exp

(
π

√
2n
3

)
(n → ∞). (1.1)

The problem was attacked in [38] using the then new circle method (later on attributed 
to Hardy and Littlewood), based on the Cauchy integral formula and a careful singularity 
analysis of the corresponding generating function F (z) =

∏∞
n=0(1 −zn)−1 (known already 

to Euler). Interestingly, the same paper also contains a general result for partitions into 
sums of perfect q-th powers [38, Sec.7.3, p.111] (later on elaborated by Wright [87]),

p(q)(n) ∼ k(q)
√

q/(q + 1)
(2π)(q+1)/2 · n1/(q+1)−3/2 exp

(
(q + 1) k(q)n1/(q+1)

)
(n → ∞), (1.2)

where

k(q) :=
{

1
q

Γ
(

1 + 1
q

)
ζ

(
1 + 1

q

)}q/(q+1)

(q ∈ N).

A similar result was stated in [38] (and later on elaborated by Hua [43]) for strict 
partitions, that is, those with unequal parts,2

p̌(n) ∼ 1
4 · 31/4 n3/4 exp

(
π

√
n

3

)
(n → ∞). (1.3)

Strict partitions and their generating function F̌ (z) =
∏∞

n=0(1 + zx) were considered by 
Euler who noticed that p̌(n) coincides with the number of partitions of n with odd parts, 
using a simple identity3 for the corresponding generating functions, F̌ (z) = F (z)/F (z2), 
that is,

∞∏
n=0

(1 + zn) =
∞∏

n=0

1 − z2n

1 − zn
=

∞∏
n=0

(1 − zn)−1

( ∞∏
n=0

(1 − z2n)−1

)−1

.

These early benchmarks stimulated a growing interest in the (asymptotic) enumera-
tion of integer partitions under various constraints, such as restrictions on the source of 
parts and/or their number, on permitted repetitions of parts, etc. [87,26,46,57,40,52].

1 Obtained independently by Uspensky [75]; see also a streamlined treatment by Ingham [46].
2 The leading term of the asymptotic expansion of p̌(n) was given in [38, Sec.7.1, p.109] in terms of (the 

derivative of) the Bessel function J0(z), from which it is easy to derive an explicit formula (1.3) using the 
relation J ′

0(z) = −J1(z) [60, 10.6.3] and the asymptotics of J1(z) [60, 10.7.8]. See more direct derivations 
in [75,46].
3 See [61] for a modern survey of bijection methods and results for various classes of integer partitions.
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In particular, there has been intensive research into additive representations of inte-
gers with q-power parts, starting with q = 2 (squares) and dating back to Hardy and 
Ramanujan [38] (see also [76,87]). In connection with combinatorial enumeration, the 
class of (non-strict) integer partitions with a fixed number m of q-power parts is fea-
tured in at least two classical mathematical gems, the Waring problem [39,77] and the 
Gauss circle problem [37, Sec. F1, pp. 365–367], both originally considered for squares 
(q = 2) and with m ≤ 4 or m ≤ 2 parts, respectively. The Waring problem concerns 
q-power representability of all positive integers4 using at most g(q) parts, whereas the 
Gauss circle problem focuses on the cumulative cardinality of such representations (more 
precisely, on error bounds for the area/volume approximation). For instance, by virtue 
of the Lagrange theorem it is known that g(2) = 4, that is, any natural number can 
be written as a sum of at most 4 squares, while 3 squares may not be enough. More-
over, Legendre’s theorem gives an exact description of integers that can be represented 
as a sum of 3 squares — these are numbers not congruent to 7 (mod 8); for exam-
ple, for 23 = 7 (mod 8) the only representation is 9 + 9 + 4 + 1 = 23. On the other 
hand, numbers not representable using exactly 4 positive squares are given by the se-
quence comprising eight odd numbers, 1, 3, 5, 9, 11, 17, 29, 41, and all numbers of the 
form � · 4k with k ∈ N0 and � ∈ {2, 6, 14}. These two sequences overlap: for example, 
16 + 1 + 1 + 1 = 9 + 9 + 1 = 19 = 3 (mod 8). Another famous result, now about sums 
with up to 2 squares, is the Landau theorem [51] stating that the fraction of numbers 
up to n enjoying such a representation is asymptotically given by Kn/

√
log n, where 

K
.= 0.764223653 is the Landau–Ramanujan constant.

1.2. Random integer partitions

A more recent boost of research in this area has been due to a “statistical” approach 
focusing on asymptotic properties of typical random partitions and other decomposable 
combinatorial structures of large size (see, e.g., [3,5,25,78]). The words “typical” and 
“random” imply that partition ensembles of interest are endowed with suitable proba-
bility measures, such as the uniform distribution on the spaces of partitions of a given 
n ∈ N (so that all such partitions are assumed equally likely). Amongst the first results 
in this direction established in a seminal paper by Erdős and Lehner [26] is that the 
growth rate of the number of parts in the bulk of integer partitions of large n (i.e., in 
the sense of Law of Large Numbers) is given by π−1

√
3n/2 log n. A snapshot of sub-

sequent advances is documented, for example, in papers [27,32,45,63,78] and references 
therein. In particular, this research has led to the discovery of so-called limit shapes of 

4 It is known that g(q) ≥ 2q +�(3/2)q� −2 for any q ∈ N, and it is believed that in fact the equality is true 
— although exceptions may be possible in principle, no counter-examples have been found to date. While 
this version of the Waring problem (i.e., for all numbers n ∈ N) is almost completely settled, the asymptotic 
version asking for the smallest number of parts, denoted G(q), sufficient to partition any sufficiently large 
natural number into a sum of q-powers, remains largely open (clearly, G(2) = 4, and it is also known that 
G(4) = 16). See further details and references in [77].
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partition ensembles, which describe a typical settlement of parts and their multiplici-
ties within large partitions under appropriate scaling (see [78,79,63,28,12,14,84,89]). The 
limit shapes have a natural geometric interpretation through the so-called Young di-
agrams (also known as Ferrers’ graphs), with blocks visually representing constituent 
parts of the integer partitions (see more detail in Section 2.2 below). Incidentally, Young 
diagrams make it self-evident (by flipping rows and columns, called conjugation) that 
the number of partitions of n with at most m parts is the same as the number of par-
titions of n with the largest part not exceeding m, which immediately implies that the 
aforementioned asymptotics for the typical number of parts also hold for the largest part 
[26].

The modern approach to the asymptotic analysis of random combinatorial structures 
is based on a suitable randomization of the model parameters (collectively called pois-
sonization) and the subsequent conditioning (or de-poissonization) in order to return to 
the original (say, uniform) distribution with fixed parameters (see, e.g., [3,5,48,50,62,78]
and the vast bibliography therein). In the context of random integer partitions, this 
method was first successfully applied by Fristedt [32], leading to the probability measure 
on the space of partitions of all integers n ∈ N by assigning to each such partition a 
probability proportional to zn, respectively, where z ∈ (0, 1) is a free parameter. Un-
der such a measure (commonly referred to as Boltzmann distribution), the multiplicities 
of candidate parts j ∈ N, previously restricted by the partition target n (often called 
weight), become independent geometric random variables with success parameter 1 −zj, 
respectively. Furthermore, conditioning on the partition weight to be equal to n restores 
the uniform distribution on the space of all partitions of that n. This holds for any 
value of z, but it is helpful to calibrate the randomized model by replicating the original 
macroscopic properties (such as the partition weight) in terms of expectation. Crucially, 
for the conditioning trick to work effectively, asymptotic information is needed about the 
probability of the condition, specialized here as a weighted sum of random multiplicities, 
thus taking a familiar form of a local limit theorem in probability theory, albeit some-
what peculiar since the number of terms in the sum is random but almost surely (a.s.) 
finite (see [32,35,12,84,81,45]).

Similar ideas are well known as “equivalence of ensembles” in statistical physics, where 
the probabilistic description of the particle system of interest (e.g., ideal gas) may vary 
subject to optional fixation of the total energy and/or the number of particles, leading 
accordingly to micro-canonical, canonical or grand-canonical Gibbs distributions5 [44,36]. 
The usual tool to establish such equivalence is via the Darwin–Fowler method involving 
a complicated saddle-point asymptotic analysis of high-dimensional integrals (see [44]). 
As an alternative, Khinchin [47,48] advocated a systematic use of local limit theorems 

5 Cf. also [14], where the term “meso-canonical” was proposed as better suited to the space of integer 
partitions with a given weight and any length (interpreted as an assembly with fixed energy and an indefinite 
number of particles).
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of probability theory in problems of statistical mechanics, which facilitates the analysis 
by invoking probabilistic insight and well-developed analytical tools.

In fact, connections with statistical physics go even deeper, whereby integer partitions 
serve as a model for the random partitioning of total energy (under a suitable choice 
of units) in a large assembly of indistinguishable particles, with the Boltzmann distri-
bution arising naturally as a thermodynamic equilibrium [6,22,79,80,85,14,19]. Specific 
models of relevance include an ensemble of harmonic oscillators at high temperatures 
and ideal quantum gases, where discrete partition structures are particularly tailored 
to the energy quantization [6,73]. In this context, non-strict partitions are interpreted 
as bosons following the Bose–Einstein statistics, with no restriction on the energy level 
occupancy, while strict partitions model fermions under the Fermi–Dirac statistics obey-
ing the Pauli exclusion principle of not allowing more than one particle on any energy 
level. This analogy is quite productive — for instance, it offers an insightful combinato-
rial explanation of the Bose–Einstein condensation, manifested as a measurable excess 
of particles at the lowest (ground) energy level at temperatures close to the absolute 
zero [6,80]. Furthermore, there is a natural physical motivation for considering integer 
partitions with power parts (see more detail in [79,80,22,19,67] and reference therein).

More generally, Boltzmann distributions can be defined for a large variety of decom-
posable combinatorial structures C = {c}, such as assemblies, multisets, selections, se-
quences, trees, etc. [3,25,31], again assigning to each element c ∈ C a geometric probabil-
ity weight proportional to zs(c), as long as an additive “size function” C � c 	→ s(c) ∈ R+
is available (such as the partition weight). Multi-parametric versions of the Boltzmann 
distribution may also be considered using the weights of the form 

∏k
i=1z

si(c)
i , with suit-

able size functions s1(c) . . . , sk(c) [79,9]. For instance, this may be needed if we wish to 
control more than one macroscopic characteristic of a combinatorial object c ∈ C, such 
as the number of parts (length) in addition to the partition weight [79] (see also Sec-
tion 2.4 in the present paper). Another reason may arise if we are dealing with a truly 
multi-dimensional structure, such as vector partitions, convex lattice polygonal lines, or 
digitally convex polyominoes [70,79,15,18,11]. Boltzmann distributions are very popular 
in computer science as an effective tool to sample random instances of combinatorial 
objects — if required, with a given size, exact or approximate (which is achieved via 
rejection applied to the output of a free sampler, so as to implement the conditioning 
step), and with a uniform distribution of the output [25,31,11,10].

Some alternative probability distributions on partition spaces, different from the 
Boltzmann class, are also of great interest, such as the Ewens sampling formula [29,49], 
with important applications in population genetics and ecology, and the Plancherel mea-
sure arising in connection with representation theory of the symmetric group Sn of all 
permutations of the set {1, . . . , n} [33]. The limit shape in the Plancherel model is known 
[56,82,83], but here the poissonization of the partition weight leads to a determinantal 
ensemble (for more detail and further references, see [16,13,72]). Finally, let us mention 
that integer partitions find stunning applications in many other fields, such as economics 
[34], optimal transport [41], and statistics of scientific citations [91,59].
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1.3. Focus of the paper

Confronted with the awesome wealth of past research into integer partitions briefly 
sketched above, why should the reader take any interest in the present paper? The 
novelty is brought about by our focus on integer partitions under a conjunction of three 
constraints as follows:

(i) Firstly, the source of parts is limited to perfect q-th powers, with some q ∈ N.
(ii) Secondly, partitions are assumed to be strict, in that all parts must be distinct.
(iii) Finally, we consider “short” partitions, where the length (i.e., the number of parts) 

is either fixed or grows slowly as compared to the “free”, unrestricted regime.

In what follows, we denote by Λ̌q the class of integer partitions satisfying the first two 
conditions. Of course, each of the constraints (i) to (iii) taken alone is not novel and has 
been considered quite extensively; for instance, power parts were considered in [87,79,22,
19,67]; restricted growth of length was addressed in [26,85,68,17]; and strict partitions are 
a classical subject (see, e.g., [43,67,81]). However, a juxtaposition of the first and third 
constraints is new, leading to some interesting results. The choice of strict partitions is 
less significant and is mostly motivated by virtue of making the analysis a little easier.6

The random structure with which we endow the space Λ̌q is based on the Boltzmann 
distribution, with probability weights assigned to each partition λ ∈ Λ̌q proportional to 
zNλ
1 zMλ

2 (z1, z2 ∈ (0, 1)), where Nλ and Mλ are the weight and length of λ, respectively. 
Crucially, under this measure the random weight and length are finite with probability 1; 
but its little idiosyncrasy is that the “empty” partition λ∅, with zero weight and length, is 
assigned a positive probability.7 We calibrate the parameters z1, z2 through the moment 
conditions Ez(Nλ) = 〈N〉, Ez(Mλ) = 〈M〉, where 〈N〉 and 〈M〉 are the external hyper-
parameters that are used to control the distribution of the random weight and length. 
The slow growth condition (ii) is specialized as κ := 〈M〉q+1/〈N〉 → 0. The calibrating 
equations can be solved asymptotically as 〈N〉 → ∞ yielding the leading terms log z1 ∼
−〈M〉/(q 〈N〉) = o(1) and z2 ∼ κ1/q/(q1/q Γ(1 + 1/q)) = o(1) (Theorem 3.7). Using the 
terminology of statistical physics, (− log z1) is interpreted as the inverse temperature
1/(kBT ) (where kB is the Boltzmann constant and T > 0 the absolute temperature), 
while z2 has the meaning of fugacity [19,67,44,36]. In particular, it follows that the 
particle assembly is in a high-temperature regime and at a low fugacity, which is explained 
by a constrained number of particles, insufficient to create a non-negligible pressure.

Under the Boltzmann distribution calibrated as indicated above, we prove a variety 
of limiting results describing the joint behavior of the partition weight Nλ and length 
Mλ. Unsurprisingly, such results are different according as the expected length 〈M〉 is 

6 Non-strict partitions under constraints (i) and (iii) remain to be studied. An intermediate model with a 
finite bound on multiplicities is also of interest (cf. the Brillouin statistics in statistical physics [53], [55, 
p. 43]).
7 This nuisance can be easily eliminated by conditioning on Nλ > 0.
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either fixed or growing slowly. In the former case, Mλ is asymptotically Poisson with 
parameter 〈M〉 (which can be anticipated by virtue of general Poisson approximation 
results), while Nλ, conditionally on Mλ = m and scaled by m/(q〈N〉), is asymptotically 
gamma-distributed with shape parameter m/q (Theorem 4.1). This implies that the 
scaled parts of a random partition conditioned on length m can be interpreted as the 
order statistics of an independent sample of size m from gamma distribution with shape 
parameter 1/q. It also follows that for m strictly less than q the limiting density of the 
scaled weight Nλ has a power singularity of order xm/q−1 at zero. In the language of 
statistical physics, this means that the Boltzmann assembly of m < q fermions with q-
power energy levels may have, with a sizable probability, an untypically low total energy 
as compared to the expected “target” 〈N〉 → ∞. It would be interesting to give a physical 
justification of such a “small system condensation” phenomenon.

In the slow growth regime for the expected length 〈M〉, the random pair (Nλ, Mλ)
proves to be asymptotically normal, with the limiting correlation coefficient 1/

√
q + 1

(Theorem 5.1). In this case, we have found the limit shape of scaled Young diagrams 
(Theorem 5.5), determined (up to a constant) by the tail of the Γ(1/q)-integral, x 	→∫ ∞
x

u1/q−1 e−u du (x ≥ 0), and also showed that fluctuations around the limit shape are 
asymptotically normal (Theorem 5.6).

Asymptotics of extreme values in the partition spectrum (i.e., the smallest and largest 
parts) can also be analyzed. Specifically, if 〈M〉 is fixed then all parts appear to grow on 
the same linear scale of order 〈N〉/〈M〉 (Theorem 4.4). In the slow growth regime of 〈M〉, 
the extremal behavior is more interesting: the smallest part “lives” on the scale of order 
κ−1 = 〈N〉/〈M〉q+1 and has a Weibull limit distribution, whereas the largest part scales 
roughly as q 〈N〉/〈M〉 and has the Gumbel double-exponential limit (Theorem 5.8). Note 
that the latter result conforms to the general pattern for the maximum observed earlier 
in many particular cases (see, e.g., [26,85,20]).

It is easy to check that the Boltzmann distribution on Λ̌q conditioned on both weight 
Nλ = n and length Mλ = m reverts to the uniform distribution on the corresponding 
subspace Λ̌q(n, m) ⊂ Λ̌q. So it may be natural to attempt the conditional version of 
our Boltzmann-based limiting results in order to tailor them to the constrained spaces 
Λ̌q(n, m). As we explained above (cf. [32,89,12]), this approach requires a suitable lo-
cal limit theorem about the asymptotics of the Boltzmann probability of the “slicing” 
condition that defines the subspace Λ̌q(n, m) ⊂ Λ̌q (for large n and m either fixed or 
suitably large). However, there is a problem: unlike the case q = 1, where every num-
ber n ∈ N is partitionable with a required number m of (unequal) parts (as long as 
1 + · · · + m = m(m + 1)/2 ≤ n), for q ≥ 2 this is no longer guaranteed and the space 
Λ̌q(n, m) may appear to be empty, unless the pair (n, m) is covered by a solution of the 
Waring problem with the q-th powers [77].

Because of such number-theoretic complications, we did not pursue this approach in 
the present paper, so for the most part (with two notable exceptions indicated below) 
we confined ourselves to the Boltzmann-based results, which are nonetheless quite inter-
esting. One exception is that the conditioning device can be utilized in order to identify 
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the growth rate of the cumulative cardinality of the union 
⋃

k≤x Λ̌
q(k, m), with m fixed 

(Theorem 4.3), which gives the leading term in the generalized m-dimensional Gauss 
circle problem under the q-norm in Rm. Also, we outlined a “semi-local” result (Theo-
rem 5.3) in the slow growth regime to address the local type asymptotics for the length 
Mλ complemented by the conditional limit for the weight Nλ.

Last but not least, our interest in the class of Boltzmann distributions on the partition 
spaces Λ̌q is also motivated by the sampling applications, wherein simple but efficient 
algorithms can be designed and implemented to sample uniformly distributed random 
instances from the subspaces of interest such as Λ̌q(n, m). Although such algorithms are 
intuitively appealing and straightforward thanks to the intrinsic independence of the 
random multiplicities of parts, there are familiar issues with ensuring the finiteness of 
the sampling loops. An agreed convention in computer science to resolve such issues is 
to deploy the so-called oracle [25,31,10], which is a collective name for an external device 
that is capable of computing at request (exactly or approximately) the values of the 
corresponding generating function, serving as a normalizing denominator in probability 
expressions.

In the present paper, we pursue a different approach by truncating the sampling loop 
on the basis of high statistical confidence, thus adopting the methodology of hypotheses 
testing in statistics. Similar ideas have been used before, for instance, in the well-known 
Miller–Rabin algorithm for primality testing [65]. Selection of the proper truncation 
thresholds is guided by our limit theorems for the partition weight and length. This 
approach is especially useful in the case of partition spaces Λ̌q(n, m) that may suffer 
from being empty for some of the pairs (n, m) (which may not be known in advance). 
Moreover, we argue that the statistical approach to sampling may be beneficial as a 
practical tool to effectively explore the hypothetical partitionability of large integers.

Layout. The rest of the paper is organized as follows. Section 2 introduces the main 
elements that we use throughout this paper, including the definition of restricted classes 
of integer partitions and basic results about the Boltzmann distribution. In Section 3 we 
present important foundational results for our analysis of the class Λ̌q under the asymp-
totic regime specified by Assumption 3.1. The main result of this section is Theorem 3.7
about the asymptotic calibration of the Boltzmann parameters. Section 4 focuses on 
partitions with fixed expected length, where the main Theorem 4.1 characterizes the 
limit distribution of the random length and weight. This result can be used for enumer-
ation purposes, at least in the cumulative sense (Theorem 4.3). We also obtain the joint 
limit distribution of the largest and smallest parts (Theorem 4.4). Section 5 extends the 
analysis to partitions with a slowly growing expected length (under Assumption 5.1), 
where we obtain asymptotic results for the length and weight (Theorem 5.1) as well as 
for the extreme parts (Theorem 5.8). In this regime it is also possible to derive the limit 
shape of properly scaled Young diagrams, which form a family of curves indexed by q
(Theorems 5.5 and 5.6). Finally, Section 6 illustrates an application of the previously 
developed tools and results in the context of random sampling. Designing issues and 
performance of our sampling algorithms are discussed there in detail.
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Some general notation: N := {1, 2, . . . } is the set of natural numbers, N0 := {0} ∪N =
{0, 1, 2, . . . }, Nq := {jq : j ∈ N}. The cardinality of a (finite) set A (i.e., the number of 
elements) is denoted #A. Asymptotic comparisons: a ∼ b means that a/b → 1; a = o(b)
that a/b → 0; and a = O(b) that a/b is bounded. Vectors are understood as rows, e.g. 
z = (z1, z2).

2. Preliminaries

2.1. Integer partitions

For a given integer n ∈ N, a partition of n is a decomposition of n into a sum of non-
negative integers, disregarding the order of the terms; for example, 35 = 10 +7 +5 +5 +
4 + 3 + 1 is an integer partition of n = 35. To fix the notation, we adopt a convention of 
non-increasing ordering of terms; that is to say, a sequence of integers λ1 ≥ λ2 ≥ · · · ≥ 0
with finitely many parts λi > 0 is a partition of n ∈ N if n = λ1 + λ2 + · · · . This 
is expressed as λ � n. We formally allow the case n = 0 represented by the “empty” 
partition λ∅ = (0, 0, . . . ), with no parts. This is convenient when working with generating 
functions. The set of all partitions λ � n is denoted by Λ(n), and the set Λ :=

⋃
n∈N0

Λ(n)
is the collection of all integer partitions. The subset Λ̌ ⊂ Λ of strict partitions is defined 
by the property that all parts (λi) are different from one another, λ1 > λ2 > · · · . 
Accordingly, the set of all strict partitions λ � n is denoted Λ̌(n).

For a partition λ = (λi) ∈ Λ, the sum Nλ := λ1 + λ2 + · · · is referred to as its 
weight (i.e., λ � Nλ), and the number of its parts Mλ := #{λi ∈ λ : λi > 0} is called 
the length of λ. Thus, for λ ∈ Λ(n) we have Nλ = n and Mλ ≤ n. The largest and 
smallest parts of a partition λ = (λi) are denoted λmax = λ1 = max1≤i≤Mλ

λi and 
λmin = λMλ

= min1≤i≤Mλ
λi, respectively. We make a convention that for the empty 

partition λ∅, its largest and smallest parts are defined8 as λmax = 0 and λmin = ∞.
The alternative notation λ = (1ν12ν2 . . . ) refers to the multiplicities of the parts 

involved, ν� := #{λi ∈ λ : λi = �} (� ∈ N), with zero multiplicities usually omitted 
from the notation. Thus, the partition λ � 35 in the example above can be written 
as λ = 1131415271101). The weight and length of a partition λ ∈ Λ can be expressed 
through its multiplicities (ν�) as follows,

Nλ =
∑
�

�ν� , Mλ =
∑
�

ν� . (2.1)

In terms of multiplicities (ν�), the set of strict partitions Λ̌ is defined by the condition 
that any part � can be used no more than once,

8 The familiar paradox of such definitions, suggesting that the maximum is smaller than the minimum, 
is but a logical consequence of applying the operations sup and inf to the empty set ∅. Despite a counter-
intuitive appearance, these definitions are perfectly consistent with our limiting results in Theorem 4.4.
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Fig. 1. (a) The Young diagram Υλ (shaded) of partition λ = (10, 7, 5, 5, 4, 3, 1), with weight Nλ = 35 and 
length Mλ = 7. The graph of the step function x �→ Yλ(x) defined in (2.2) depicts the upper boundary of 
Υλ (shown in red in the online version). (b) Two classical limit shapes, for unrestricted partitions λ ∈ Λ(n)
(red) and strict partitions λ ∈ Λ̌(n) (blue), determined by equations (2.4) and (2.5), respectively.

Λ̌ := {λ = (�ν�) ∈ Λ : ν� ≤ 1 for all �}.

2.2. Young diagrams and limit shape

A partition λ = (λ1, λ2, . . . ) is succinctly visualized by its Young diagram Υλ formed 
by (left- and bottom-aligned) row blocks with λ1, λ2, . . . unit square cells (see Fig. 1(a)). 
The upper boundary of Υλ is a piecewise-constant, non-increasing function Yλ : [0, ∞) →
N0 defined by

Yλ(x) =
∑
�≥x

ν� (x ≥ 0). (2.2)

In particular, Yλ(0) = Mλ, while the area of the Young diagram Υλ is

∞∫
0

Yλ(x) dx =
∑
�

�ν� = Nλ.

According to the definition (2.2), the step function Yλ(x) is left-continuous and has right 
limits (and is also right-continuous at the origin).

The geometric nature of Young diagrams makes it natural to pose a question of 
a possible typical behavior of their boundary as the “size” of partitions grows. This 
motivates the concept of limit shape, which may be thought of as such a curve to which 
the bulk of the Young diagram boundaries are asymptotically close, of course upon a 
suitable scaling. More precisely, choosing some sequences an → ∞, bn → ∞, define the 
scaled Young boundary

Ỹ
(n)
λ (x) := b−1

n Yλ(anx), x ≥ 0.
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Then (the graph of) a function y = ω∗(x) is the limit shape for partitions λ ∈ Λ(n) as 
n → ∞ if, for all x > 0 and for any ε > 0,

lim
n→∞

#{λ ∈ Λ(n) : |Ỹ (n)
λ (x) − ω∗(x)| ≤ ε}

#Λ(n) = 1. (2.3)

It is well known that the limit shape ω∗ exists under the scaling an = bn =
√
n and is 

determined by the equation

e−xπ/
√

6 + e−yπ/
√

6 = 1. (2.4)

It was first identified by Temperley [74] in connection with the equilibrium shape of a 
growing crystal, and obtained more rigorously by Vershik (see [83, p. 30]) using some 
asymptotic estimates from [71]. A different proof in its modern form was outlined by 
Vershik [79] and elaborated by Pittel [63], both using a suitable randomization and 
multiplicative measures (see also a more recent survey in [28]). For completeness, let 
us mention an alternative approach to the limit shape based on bijections [24] and a 
powerful variational method [78,79], which also yields a large deviation principle [23].

Note from (2.4) that ω∗(0) = ∞, indicating that the number of parts, Mλ, grows 
faster than 

√
n. Indeed, as was shown by Erdős and Lehner [26], Mλ ∼ (2π)−1√6n log n

(in the sense similar to (2.3)).
For strict partitions λ ∈ Λ̌(n), the limit shape (under the same scaling an = bn =

√
n

and in the sense of definition (2.3) adapted to Λ̌(n)) is specified by the equation (see 
Vershik [79])

eyπ/
√

12 = 1 + e−xπ/
√

12. (2.5)

Note that here the value at the origin is finite, ω∗(0) = π−1√12 log 2, which implies that 
the number of parts Mλ in a typical strict partition λ ∈ Λ̌(n) grows like π−1 log 2

√
12n

[26]. The graphs of the limit shapes (2.4) and (2.5) are shown in Fig. 1(b).
The limiting formula (2.3) and its version for strict partitions, as mentioned above, 

may be interpreted as convergence in probability, Ỹ (n)
λ (x) p−→ ω∗(x), under the uniform 

probability measure on the corresponding partition spaces Λ(n) or Λ̌(n) (whereby all 
member partitions are assumed to be equally likely). A general question about limit 
shapes under alternative measures was pioneered by Vershik [78,79]. In the present paper, 
we study the limit shape under the Boltzmann measure (see Sections 2.4 and 5.2).

2.3. Integer partitions with constraints

The main focus of our paper is on strict partitions with parts confined to be q-th 
powers of integers (for some q ∈ N), which means that ν� = 0 unless � ∈ Nq; we denote 
the corresponding set of partitions by Λq. Moreover, it is of interest to combine these 
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two constraints by considering only strict partitions in Λq, leading to the subset that we 
naturally denote by Λ̌q.

A general approach to introducing certain constraints in the partition spaces can be 
described as follows. Fix non-empty integer sets A ⊆ N and B� ⊆ N0 (� ∈ A), assuming 
that 0 ∈ B� but B� �= {0}, for each � ∈ A. The set A specifies the source of permissible 
parts � ∈ N. For example, if A = 2N0 + 1 then all parts must be odd integers, or if 
A = Nq with some q ∈ N then only perfect q-th powers can be used; if A = N then any 
(positive) integer part is allowed. The sets (B�) specify the allowed values of multiplicities 
ν� ∈ B� for each part � ∈ A. For example, if B� = {0, 1} then part � can be used no more 
than once; if B� = N0 then ν� is not constrained.

Given the sets A and (B�, � ∈ A), we use a generic notation Λ̃ to denote the set of 
integer partitions satisfying the constraints imposed by A and (B�) as described above,

Λ̃ := {λ = (�ν�) ∈ Λ : � ∈ A, ν� ∈ B�}. (2.6)

In this loose notation we take the liberty to omit the explicit reference to A and (B�), 
which should cause no confusion. When the specific choice of A and (B�) becomes im-
portant (in Section 3 below), this will be clarified. For a partition λ ∈ Λ̃, we keep using 
the notation Nλ and Mλ for its weight and length, respectively, which are now given by 
(cf. (2.1))

Nλ =
∑
�∈A

�ν� , Mλ =
∑
�∈A

ν� . (2.7)

2.4. Boltzmann distributions

The general idea of the Boltzmann distribution as a probability measure on a decom-
posable combinatorial structure C = {c} (such as the set of all integer partitions Λ or its 
constrained versions, e.g., the set of strict partitions Λ̌) is that it is defined by picking 
some additive structural features of the elements in C (such as weight and/or length 
of a partition) and making the probability of the element c ∈ C depend only on those 
features in a “geometric” fashion. Below, this idea is made precise for the class Λ̃ of 
integer partitions (see (2.6)) with constraints on the source of parts (via set A) and their 
multiplicities (via sets (B�)).

Definition 2.1. Suppose that the constraining sets A and (B�) are fixed, and consider the 
corresponding partition space Λ̃ defined in (2.6). Given a two-dimensional parameter 
z = (z1, z2), with 0 < z1 < 1 and 0 < z2 < 1/z1, the Boltzmann distribution on Λ̃ is 
defined by the formula

Pz(λ) = zNλ
1 zMλ

2
F (z) , λ ∈ Λ̃, (2.8)

with the normalizing factor
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F (z) =
∑
λ∈Λ̃

zNλ
1 zMλ

2 . (2.9)

Considering the constituent subspaces

Λ̃(n,m) := {λ ∈ Λ̃ : Nλ = n,Mλ = m}, (2.10)

the function F (z) can be expressed as a double power series,

F (z) =
∑
n,m

Fn,mzn1 z
m
2 , (2.11)

where Fn,m = #Λ̃(n, m). In particular, the “initial” values with n = 0 are reduced to

F0,0 = 1, F0,m = 0 (m ≥ 1). (2.12)

Of course, Fn,m > 0 if and only if the condition {Nλ = n, Mλ = m} is realizable, that is, 
if Λ̃(n, m) �= ∅. If the focus is on the specific weight Nλ = n or length Mλ = m alone, 
this corresponds to the “marginal” subspaces

Λ̃(n, •) :=
⋃

m≤n

Λ̃(n,m) = {λ ∈ Λ̃ : Nλ = n}, (2.13)

Λ̃(•,m) :=
⋃

n≥m

Λ̃(n,m) = {λ ∈ Λ̃ : Mλ = m}. (2.14)

The joint distribution of Nλ and Mλ under the Boltzmann measure (2.8) is given by

Pz(Nλ = n,Mλ = m) = Pz(Λ̃(n,m)) = Fn,mzn1 z
m
2

F (z) , (2.15)

with the marginals

Pz(Nλ = n) = Pz(Λ̃(n, •)) = zn1
F (z)

∑
m≤n

Fn,mzm2 , (2.16)

Pz(Mλ = m) = Pz(Λ̃(•,m)) = zm2
F (z)

∑
n≥m

Fn,mzn1 . (2.17)

Remark 2.1. For the empty partition λ∅ � 0 formally associated with the null configura-
tion ν� ≡ 0, formula (2.8) yields Pz(λ∅) = 1/F (z) > 0. On the other hand, Pz(λ∅) < 1, 
since F (z) > F (0, 0) = 1 for z1 > 0, z2 > 0.

The following result describes the Boltzmann distribution (2.8) in terms of the joint 
distribution of the multiplicities (ν�). As a by-product, it provides a multiplicative rep-
resentation of the generating function F (z).
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Lemma 2.1. Under the Boltzmann measure Pz on the generic partition space Λ̃ defined 
in (2.6), the random multiplicities (ν�, � ∈ A) are mutually independent, with marginal 
distributions

Pz(ν� = k) = z�k1 zk2
F�(z) , k ∈ B�, (2.18)

where

F�(z) =
∑
k∈B�

z�k1 zk2 , � ∈ A. (2.19)

In particular, the generating function F (z) admits the following product representation,

F (z) =
∏
�∈A

F�(z). (2.20)

Proof. It suffices to verify that the product measure P̃z on Λ̃ with marginals (2.18) is 
consistent with the definition (2.8). Let a partition λ ∈ Λ̃ be specified by the sequence of 
multiplicities k� ∈ B� (� ∈ A). Due to independence of (ν�) under P̃z and formula (2.18), 
we have on account of expressions (2.7),

P̃z(λ) =
∏
�∈A

P̃z(ν� = k�) =
∏
�∈A

z�k�
1 zk�

2
F�(z)

= z
∑

�∈A �k�

1 z
∑

�∈A k�

2∏
�∈A F�(z) = zNλ

1 zMλ
2

F̃ (z)
, (2.21)

where F̃ (z) :=
∏

�∈A F�(z). Since the probability distributions (2.8) and (2.21) on the 
same space Λ̃ appear to be proportional to one another, it follows that the normalization 
factors F (z) and F̃ (z) coincide, which proves the product representation (2.20). �
Remark 2.2. Since 0 ∈ B�, we have a lower bound

F�(z) =
∑
k∈B�

z�k1 zk2 ≥ 1, � ∈ A. (2.22)

The next lemma ensures that a random partition generated according to the Boltz-
mann distribution Pz is a.s. finite, so that Pz(Mλ < ∞) = 1.

Lemma 2.2. Under the probability measure Pz, the number of nonzero terms in the se-
quence of multiplicities (ν�) is a.s. finite.

Proof. By the Borel–Cantelli lemma (see, e.g., [69, Sec. II.10, p. 255]), it suffices to check 
that
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∑
�∈A

Pz(ν� > 0) < ∞.

Noting that z�1z2 ≤ z1z2 < 1 (see Definition 2.1), we have

F�(z) =
∑
k∈B�

z�k1 zk2 ≤
∞∑
k=0

(z�1z2)k = 1
1 − z�1z2

.

Hence, from the distribution formula (2.18) we get

Pz(ν� > 0) = 1 − 1
F�(z) ≤ 1 −

(
1 − z�1z2

)
= z�1z2,

and therefore

∑
�∈A

Pz(ν� > 0) ≤ z2
∑
�∈A

z�1 ≤ z2

∞∑
�=1

z�1 = z1z2

1 − z1
< ∞,

as required. �
2.5. Conditional Boltzmann distributions

Recall that the Boltzmann distribution Pz (see (2.8)) is defined on the partition space 
Λ̃ subject to the tacit constraints determined by the sets A and (B�, � ∈ A), as described 
in Section 2.1. It is sometimes useful to impose further constraints on permissible parti-
tions and consider the arising conditional projections of the original measure Pz onto the 
corresponding partition subspaces. To be specific, let Λ̃† ⊆ Λ̃ and consider the conditional 
measure supported on the space Λ̃†,

P†
z(λ) := Pz(λ |Λ̃†) = Pz(λ)

Pz(Λ̃†)
, λ ∈ Λ̃†. (2.23)

Lemma 2.3. The measure (2.23) coincides with the Boltzmann measure on the partition 
space Λ̃†.

Proof. By the definition (2.8), for any partition λ ∈ Λ̃† we have

Pz(λ |Λ̃†) = zNλ
1 zMλ

2 /F (z)
F †(z)/F (z) = zNλ

1 zMλ
2

F †(z) , λ ∈ Λ̃†, (2.24)

where

F †(z) =
∑

zNλ
1 zMλ

2 .
λ∈Λ̃†
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Again referring to (2.8) together with (2.9), we see that formula (2.24) defines the Boltz-
mann distribution on Λ̃† with the same parameters z = (z1, z2). �

In fact, the Boltzmann measure (2.8) on the partition space Λ̃ constrained by means 
of the sets A and (B�) as described in Definition 2.1, can itself be identified with the 
conditional Boltzmann measure projected from the full partition space Λ via conditioning 
on λ ∈ Λ̃. The following particular cases of further constraints on the space Λ̃ are also 
of interest:

Λ̃K := {λ ∈ Λ̃ : max ν� ≤ K} (multiplicities bounded by K);

Λ̃L :=
{
λ ∈ Λ̃ : max λi ≤ L

}
(parts bounded by L);

Λ̃M := {λ ∈ Λ̃ :
∑

� ν� = M} (fixed length Mλ = M);

Λ̃N :=
{
λ ∈ Λ̃ :

∑
� �ν� = N

}
(fixed weight Nλ = N).

Note that the result of Lemma 2.1 about mutual independence and marginal distri-
butions of the multiplicities (ν�) remains true for the first two examples, Λ̃K and Λ̃L, 
simply because they follow our basic Definition 2.1 with the constraining sets B� or A
replaced by B�,K = {k ∈ B� : k ≤ K} or AL = {� ∈ A : � ≤ L}, respectively. However, 
this result does not apply to the Boltzmann measures on the spaces Λ̃M = Λ̃(•, M) or 
Λ̃N = Λ̃(N, •) (see (2.13) and (2.14)), which take a reduced form by “burning out” the 
parameters z1 or z2, respectively:

Pz(λ | Λ̃M ) = zNλ
1∑

n≥M F (n,M)zn1
, λ ∈ Λ̃M , (2.25)

Pz(λ | Λ̃N ) = zMλ
2∑

m≤N F (N,m)zm2
, λ ∈ Λ̃N . (2.26)

Individual constraints such as listed above can be combined. An important example 
is considered in the next lemma, stating that the Boltzmann distribution conditioned 
on both Nλ and Mλ is reduced to a uniform measure on the corresponding partition 
subspace.

Lemma 2.4. Let n, m ∈ N0 be such that the conditions Nλ = n and Mλ = m are 
compatible with the constraining sets A and (B�), that is, Λ̃(n, m) �= ∅. Then

Pz

(
λ |Λ̃(n,m)

)
= 1

#Λ̃(n,m)
, λ ∈ Λ̃(n,m). (2.27)

Proof. By virtue of Lemma 2.3, it suffices to observe that the Boltzmann distribution 
on Λ̃(n, m) is uniform, because Pz(λ) ∝ zn1 z

m
2 = const for all λ ∈ Λ̃(n, m). �

Thanks to Lemma 2.4, the Boltzmann distribution can be used for enumeration pur-
poses.
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Corollary 2.5. The following representation holds with any z = (z1, z2) such that 0 <
z1 < 1 and z2 < 1/z1,

Fn,m ≡ #Λ̃(n,m) = F (z) Pz(Nλ = n,Mλ = m)
zn1 z

m
2

. (2.28)

To use formula (2.28) in practice, the parameters z1, z2 are usually calibrated so as 
to make the events {Nλ = n, Mλ = m} “likely” under the Boltzmann distribution Pz
when n and m are close to some target values 〈N〉 and 〈M〉, respectively (treated as 
hyper-parameters). In this paper, we pursue the standard approach (see, e.g., [32], [84], 
[85], [68], [17], [12]) based on making the expected values of Nλ and Mλ consistent with 
the prescribed values 〈N〉 and 〈M〉, respectively,

Ez(Nλ) = 〈N〉, Ez(Mλ) = 〈M〉. (2.29)

Using (2.7) and (2.18), conditions (2.29) are rewritten more explicitly as a system of 
equations for the parameters z1 and z2,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
�∈A

�
∑
k∈B�

kz�k1 zk2
F�(z) = 〈N〉,

∑
�∈A

∑
k∈B�

kz�k1 zk2
F�(z) = 〈M〉.

(2.30)

Solving such a system exactly is usually beyond reach but an asymptotic analysis may be 
feasible when one or both of the hyper-parameters 〈N〉 and 〈M〉 are large (see Section 3.3
below).

Truncation of the source of parts, thus reducing the partition space to Λ̃L may be 
useful in the design of Boltzmann samplers with the aim to avoid indefinite computation 
(see Section 6). Clearly, if L < maxA then the truncation leads to a distortion of the 
original Boltzmann distribution Pz; in particular, it will cause a negative bias between 
the target hyper-parameters 〈N〉 and 〈M〉 used for calibration of Pz (see (2.30)) and the 
truncated expected values,

EL
z (Nλ) =

∑
�∈AL

�
∑
k∈B�

kz�k1 zk2
F�(z) <

∑
�∈A

�
∑
k∈B�

kz�k1 zk2
F�(z) = Ez(Nλ) = 〈N〉, (2.31)

EL
z (Mλ) =

∑
�∈AL

∑
k∈B�

kz�k1 zk2
F�(z) <

∑
�∈A

∑
k∈B�

kz�k1 zk2
F�(z) = Ez(Mλ) = 〈M〉. (2.32)

However, if the probability of the condition {λ ∈ Λ̃L} is large enough, then the two 
distributions are close to one another in total variation, which is justified by the following 
elementary estimate.
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Lemma 2.6. Let (Ω, F , P) be a probability space, and let an event A ∈ F be such that
P(A) ≥ 1 − δ for some (small) δ > 0. Then for any event B ∈ F ,

|P(B |A) − P(B)| ≤ 2δ
1 − δ

.

Proof. Denoting Ac = Ω \A, we have

|P(B |A) − P(B)| = |P(B ∩A) − P(B)P(A)|
P(A)

= |P(B ∩A)P(Ac) − P(B ∩Ac)P(A)|
1 − P(Ac)

≤ 2 P(Ac)
1 − P(Ac) ≤ 2δ

1 − δ
,

noting that P(Ac) ≤ δ. �
A simple but useful version of the truncation idea adapted to the spaces Λ̃(n, m) states 

that if the truncation threshold L is high enough then the additional condition � ≤ L

does not affect the conditional uniformity stated in Lemma 2.4.

Definition 2.2. Assuming that the partition space Λ̃(n, m) is non-empty, denote by L∗ =
L∗(n, m) any majorant of parts involved in partitions λ belonging to this space, that is,

L∗≥ max{λ1 : λ = (λi) ∈ Λ̃(n,m)}. (2.33)

In terms of multiplicities (ν�) encoding partitions λ ∈ Λ̃(n, m), condition (2.33) is equiv-
alent to saying that ν� ≡ 0 for all � > L∗.

For example, a loose majorant is provided by L∗ = n; this is actually sharp if m = 1. 
In general, a sharp majorant is given by

L∗ = max{� ∈ A : Λ̃(n− �,m− 1) �= ∅}. (2.34)

Note that formula (2.34) holds in the boundary case m = 1 due to our convention in 
Section 2.1, effectively stating that the set Λ̃(0, 0) is not empty by containing a (single) 
partition λ∅ = (0, 0, . . . ).

The following fact is self-evident by observing that Λ̃(n, m) ∩ Λ̃L∗ = Λ̃(n, m) and in 
view of Lemma 2.4.

Lemma 2.7. Suppose that Λ̃(n, m) �= ∅ and let L∗ be a majorant as in Definition 2.2. 
Then

Pz(λ | Λ̃(n,m) ∩ Λ̃L∗) = 1
˜ , λ ∈ Λ̃(n,m). (2.35)
#Λ(n,m)
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This lemma can be utilized in random sampling of integer partitions based on the 
Boltzmann distribution. Indeed, choosing a suitable majorant L∗ and building a random 
partition in Λ̃(n, m) by iteratively sampling the multiplicities ν� with � ∈ AL∗ until the 
target conditions (2.10) are satisfied, the resulting partition λ = (�ν�) will be uniformly 
sampled from Λ̃(n, m), according to (2.35). We will return to these issues in Section 6.

2.6. Second-order moments of the partition weight and length

Consider the covariance matrix of the vector (Nλ, Mλ) under the Boltzmann measure 
Pz,

K(z) :=
(

Varz(Nλ) Covz(Nλ,Mλ)
Covz(Nλ,Mλ) Varz(Mλ)

)
, z = (z1, z2). (2.36)

As such, the matrix K(z) is automatically positive semi-definite; moreover, it is positive 
definite provided that the set A of permissible parts contains at least two elements, 
#A ≥ 2. To this effect, since both Varz(Nλ) > 0 and Varz(Mλ) > 0, we only need to check 
that detK(z) > 0, that is, the underlying Cauchy inequality is strict, 

∣∣Covz(Nλ, Mλ)
∣∣ <√

Varz(Nλ) Varz(Mλ). Indeed, otherwise the random variables Nλ and Mλ would be 
linearly dependent, that is, with some deterministic constants c1, c2 ∈ R

c1Nλ + c2Mλ =
∑
�∈A

(c1� + c2) ν� ≡ const (Pz-a.s.).

But this is impossible if #A ≥ 2, since (ν�) are mutually independent and ν� �≡ const
(Pz-a.s.).

A single-parameter version of the next lemma is well known (see, e.g., [25, Proposition 
2.1] or [10, formula (2.2), p.110]). An extension to the general multi-parametric case is 
stated, with a sketch proof, in [9, Proposition 7, pp. 772–773]. For convenience, we 
give a direct proof in the general case of a constrained partition space Λ̃ described in 
Definition 2.1.

Lemma 2.8. For s = (s1, s2), denote es := (es1, es2). Define the function

Φ(s) := logF (es), s1, s2 < 0, (2.37)

where F (z) is introduced in (2.9). Then

∂Φ

∂s1
= Ez(Nλ)

∣∣
z=es ,

∂Φ

∂s2
= Ez(Mλ)

∣∣
z=es , (2.38)

Moreover, the Hessian of Φ(s) is expressed as follows,(
∂2Φ

)
= K(z)

∣∣
z=es , (2.39)
∂si∂sj
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where K(z) is the covariance matrix defined in (2.36).

Proof. Differentiating (2.11) and using formula (2.16), we get

z1
∂F

∂z1
= z1

∞∑
n=0

nzn−1
1

n∑
m=0

Fn,mzm2

= F (z)
∞∑

n=0
nPz(Nλ = n) = F (z) Ez(Nλ).

Similarly, using (2.17),

z2
∂F

∂z2
= z2

∞∑
m=0

mzm−1
2

∞∑
n=m

Fn,mzn1

= F (z)
∞∑

m=0
mPz(Mλ = m) = F (z) Ez(Mλ).

Hence, the chain rule applied to (2.37) yields

∂Φ

∂s1
= es1 ∂F/∂z1

F (z)

∣∣∣∣
z=es

= Ez(Nλ)
∣∣
z=es ,

∂Φ

∂s2
= es2 ∂F/∂z2

F (z)

∣∣∣∣
z=es

= Ez(Mλ)
∣∣
z=es ,

which proves formulas (2.38).
Likewise, considering second-order partial derivatives, we obtain

z2
1
∂2F

∂z2
1

= z2
1

∞∑
n=0

n(n− 1)zn−2
1

n∑
m=0

Fn,mzm2

= F (z)
∞∑

n=0
n(n− 1) Pz(Nλ = n)

= F (z) Ez

(
N2

λ −Nλ

)
.

Therefore,

∂2Φ

∂s2
1

= ∂

∂s1

(
es1 ∂F/∂z1

F (z)

∣∣∣∣
z=es

)

= es1 ∂F/∂z1

F (z)

∣∣∣∣
z=es

+ e2s1 ∂
2F/∂z2

1
F (z)

∣∣∣∣
z=es

− e2s1
(
∂F/∂z1

F (z)

∣∣∣∣
z=es

)2

=
(
Ez(Nλ) + Ez

(
N2

λ −Nλ

)
−

(
Ez(Nλ)

)2
)

z=es
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= Varz(Nλ)
∣∣
z=es . (2.40)

Similarly, one can show that

∂2Φ

∂s2
2

= Varz(Mλ)
∣∣
z=es . (2.41)

Furthermore, considering the mixed partial derivative, by means of formula (2.15) we 
have

z1z2
∂2F

∂z1∂z2
= z1z2

∞∑
n=0

n∑
m=0

Fn,mnzn−1
1 mzm−1

2

= F (z)
∞∑

n=0

n∑
m=0

nmPz(Nλ = n,Mλ = m) = F (z) Ez

(
NλMλ

)
.

Hence,

∂2Φ

∂s1∂s2
= ∂

∂s2

(
es1 ∂F/∂z1

F (z)

∣∣∣∣
z=es

)
= es1 es2 ∂

2F/∂z2
1

F (z)

∣∣∣∣
z=es

− es1 es2
(
∂F/∂z1

F (z) · ∂F/∂z2

F (z)

)∣∣∣∣
z=es

=
(
Ez(NλMλ) − Ez(Nλ) Ez(Mλ)

)
z=es

= Covz(Nλ,Mλ)
∣∣
z=es . (2.42)

Finally, it remains to notice that, collectively, formulas (2.40), (2.41) and (2.42) prove 
the claim (2.39), which completes the proof of Lemma 2.8. �
Corollary 2.9. Suppose that #A ≥ 2 (see a comment after definition (2.36)). Then the 
function Φ(s) defined in (2.37) is strictly convex. Consequently, any system of equations 
in variables z = (z1, z2) of the form (2.29) has at most one solution.

Proof. Convexity of Φ(s) follows from the representation (2.39) and the fact that the 
covariance matrix K(z) is positive definite. �
3. Strict power partitions

3.1. Basic formulas

From now on, we consider the case A = Nq, with a fixed q ∈ N, and B� ≡ {0, 1} for 
all � ∈ Nq. This specification corresponds to strict integer partitions (i.e., with unequal 
parts) into perfect q-th powers. To highlight the choice of this model, in what follows 
we switch from the generic notation Λ̃ and Λ̃(n, m) to a more adapted notation Λ̌q

and Λ̌q(n, m), where the super-index q indicates that parts are q-th powers, while the 
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“check” symbol ˇ stands as a reminder that partitions are strict. To conform with the 
conventional notation, for q = 1 we will omit the super-index by writing Λ̌, Λ̌(n, m), etc.

The next key lemma is but a specialization of the general Proposition 2.1 to the case 
Λ̌q.

Lemma 3.1. Under the Boltzmann distribution on the space Λ̌q, the random multiplici-
ties (ν�, � ∈ Nq) are mutually independent and have a Bernoulli distribution with the 
corresponding parameter z�1z2 (1 + z�1z2)−1,

Pz(ν� = 0) = 1
1 + z�1z2

, Pz(ν� = 1) = z�1z2

1 + z�1z2
(� ∈ Nq). (3.1)

Furthermore, the corresponding generating function is given by

F (z) =
∏
�∈Nq

(1 + z�1z2) =
∞∏
j=1

(1 + zj
q

1 z2). (3.2)

Remark 3.1. Here the Borel–Cantelli condition 
∑

� Pz(ν� > 0) < ∞ (see the proof of 
Lemma 2.2) specializes to

∑
�∈Nq

z�1z2

1 + z�1z2
≤ z2

∞∑
�=1

z�1 = z1z2

1 − z1
.

Thus, we need 0 < z1 < 1 but no condition on z2 > 0.

3.2. Sums asymptotics

We will be frequently using asymptotic formulas for certain sums over the integer set 
Nq. Of course, such results are well known for q = 1. The analysis is greatly facilitated 
by the classical (first-order) Euler–Maclaurin summation formula (see, e.g., [21, §12.2]
or [60, 2.10.1]), conveniently written in the form9

∞∑
j=1

f(j) =
∞∫
0

f(x) dx +
∞∫
0

B◦
1
(
x− �x�

)
f ′(x) dx, (3.3)

where B◦
1(x) := x (0 ≤ x < 1), and both the series 

∑∞
j=1 f(j) and the integral 

∫∞
0 f(x) dx

are assumed to converge. In particular, formula (3.3) gives a simple bound for the error 
arising from replacing the sum with the integral,

9 The Euler–Maclaurin formula is usually written using the (first-order) Bernoulli polynomial B1(x) =
x − 1

2 (0 ≤ x < 1). Our notation yields simpler expressions. A similar remark applies to the second-order 
version (3.5) below.
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∞∑
j=1

f(j) =
∞∫
0

f(x) dx + O(1)
∞∫
0

|f ′(x)|dx.

A more general “indented” version of the Euler–Maclaurin formula reads

∑
j>j∗

f(j) =
∞∫

j∗

f(x) dx +
∞∫

j∗

B◦
1
(
x− �x�

)
f ′(x) dx, (3.4)

leading to the estimate

∞∑
j>j∗

f(j) =
∞∫

j∗

f(x) dx + O(1)
∞∫

j∗

|f ′(x)|dx.

For most of our purposes, the first-order formulas will suffice. If needed, a refined 
estimate of the remainder term can be obtained using a second-order Euler–Maclaurin 
formula (cf. [60, 2.10.1]),

∞∑
j=1

f(j) =
∞∫
0

f(x) dx− f(0)
2 + 1

2

∞∫
0

B◦
2
(
x− �x�

)
f ′′(x) dx, (3.5)

where B◦
2(x) := x − x2 (0 ≤ x < 1).

Lemma 3.2. Let s ≥ 0 be fixed. Then, as γ → 0+,

∑
�∈Nq

�se−γ� = Γ(s + 1/q)
q γs+1/q

(
1 + O

(
γ1/q)). (3.6)

Proof. Setting f(x) := �se−γ�|�=xq , we have

f ′(x) = d(�se−γ�)
d�

∣∣∣∣
�=xq

· (xq)′ = (s− γ�) �s−1e−γ�|�=xq · q xq−1. (3.7)

Hence, the Euler–Maclaurin formula (3.3) yields

∑
�∈Nq

�se−γ� =
∞∑
j=1

jqse−γjq =
∞∫
0

xqs e−γxq

dx + Δs(γ), (3.8)

where the error term is given by

Δs(γ) = q

∞∫
B◦

1(x) (s− γxq)xqs−1 e−γxq

dx. (3.9)

0
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The integral in (3.8) is easily computed by the substitution u = γxq,

∞∫
0

xqs e−γxq

dx = 1
q γs+1/q

∞∫
0

us+1/q−1 e−u du = Γ(s + 1/q)
q γs+1/q . (3.10)

To estimate the error term Δs(γ), we have to consider the cases s = 0 and s > 0
separately. Using that 0 ≤ B◦

1(x) ≤ 1, from (3.9) we obtain, via the same substitution 
u = γxq,

0 < −Δ0(γ) < qγ

∞∫
0

xq−1e−γxq

dx =
∞∫
0

e−udu = 1. (3.11)

If s > 0 then expression (3.9) implies a two-sided inequality,

−qγ

∞∫
0

xq(s+1)−1e−γxq

dx < Δs(γ) < qs

∞∫
0

xqs−1e−γxq

dx. (3.12)

Computing the integrals as before, the bounds (3.12) specialize as follows,

−Γ(s + 1)
γs

< Δs(γ) < sΓ(s)
γs

= Γ(s + 1)
γs

. (3.13)

In fact, the estimate (3.11) for s = 0 can be included in (3.13).
Finally, the claim (3.4) follows from (3.8), (3.10) and (3.13). �
Refined asymptotics of sums of the form (3.6) can be obtained with the help of 

the second-order Euler–Maclaurin formula (3.5). Keeping the same notation f(x) =
�se−γ�|�=xq and using that B◦

2(x) is bounded, we obtain

∑
�∈Nq

�se−γ� =
∞∫
0

f(x) dx− f(0)
2 + O(1)

∞∫
0

|f ′′(x)|dx, (3.14)

where f(0) = 0 for s > 0 and f(0) = 1 for s = 0. Similarly as in (3.7), we have

f ′′(x) = d2(�se−γ�)
d�2

∣∣∣∣
�=xq

· (xq)′2 + d(�se−γ�)
d�

∣∣∣∣
�=xq

· (xq)′′. (3.15)

Recalling from (3.7) that d
d� (�

se−γ�) = (s − γ�) �s−1e−γ�, we further compute

d2(�se−γ�) = d (
(s− γ�) �s−1e−γ�

)
=

(
(s− 1)s− 2sγ� + γ2�2

)
�s−2 e−γ�.
d�2 d�
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Returning to (3.15) and (3.14), one can check that each of the arising integrals in the 
remainder term is estimated by O(γ−s+1/q). As a result, this leads to an improved 
asymptotic formula (cf. (3.6))

∑
�∈Nq

�se−γ� =

⎧⎪⎪⎨⎪⎪⎩
Γ(1/q)
q γ1/q − 1

2 + O
(
γ1/q), s = 0,

Γ(s + 1/q)
q γs+1/q

(
1 + O

(
γ2/q)) , s > 0.

(3.16)

The refined estimate (3.16) with s = 1 will be useful in the discussion of a numerical 
implementation of the Boltzmann sampler in Section 6.1.

Lemma 3.3. As η → 0 and γ → 0+,

∑
�∈Nq

log
(
1 + η e−γ�

)
= η Γ(1/q)

q γ1/q

(
1 + O(η) + O

(
γ1/q)). (3.17)

Proof. By the elementary inequalities

x− 1
2 x

2 ≤ log(1 + x) ≤ x (0 < x < 1),

applied to each term in the sum, we obtain∑
�∈Nq

log
(
1 + η e−γ�

)
= η

∑
�∈Nq

e−γ� + O(η2)
∑
�∈Nq

e−2γ�

= η
∑
�∈Nq

e−γ�

(
1 + O(η)

∑
�∈Nq e−2γ�∑
�∈Nq e−γ�

)
,

and the claim follows due to Lemma 3.2 (with s = 0). �
We will also need a more general version of Lemmas 3.2 and 3.3, which can be proved 

in a similar manner using the indented Euler–Maclaurin formula (3.4). In what follows, 
the summation range {� ≥ �∗} is a shorthand for {� ∈ Nq : � ≥ �∗}. We also use the 
notation

Γ(a, x) :=
∞∫
x

ua−1 e−u du (a > 0, x ≥ 0) (3.18)

for the (upper) incomplete gamma function [60, 8.2.2].

Lemma 3.4. As γ → 0+,

∑
�se−γ� = Γ(s + 1/q, γ�∗)

q γs+1/q

(
1 + O

(
γ1/q)). (3.19)
�≥�∗
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Lemma 3.5. As η → 0 and γ → 0+,

∑
�≥�∗

log
(
1 + η e−γ�

)
= η Γ(1/q, γ�∗)

q γ1/q (3.20)

For ease of future reference, we state here a well-known criterion for uniform conver-
gence of monotone functions adapted to the half-line domain (see, e.g., [66, Sec. 0.1]).

Lemma 3.6. Let a sequence of monotone functions on (0, ∞), uniformly bounded on [δ, ∞)
for any δ > 0, converge pointwise to a continuous (monotone) function. Then this con-
vergence is uniform on [δ, ∞) for any δ > 0.

3.3. Calibration of the parameters

To analyze the Boltzmann distribution under various limit regimes, it is convenient 
to re-parameterize it via the hyper-parameters

〈N〉 = Ez(Nλ), 〈M〉 = Ez(Mλ). (3.21)

Throughout the rest of the paper, we will work under the following growth condition.

Assumption 3.1. It is assumed that 〈N〉 → ∞ and 〈M〉−1 = O(1) (that is, 〈M〉 is 
bounded away from zero), and furthermore,

κ := 〈M〉q+1

〈N〉 → 0. (3.22)

Remark 3.2. The meaning of Assumption 3.1 is elucidated by a comparison with the 
case of all strict partitions Λ̌q, that is, without controlling the number of parts. Here, the 
parameter z2 would become obsolete (we can formally set z2 = 1 in the Boltzmann distri-
bution formula (2.8)), while the parameter z1 ∈ (0, 1), calibrated from the weight condi-
tion in (3.21), can be shown (using the Euler–Maclaurin sum formula (3.29), similarly as 
in the proof of Theorem 3.7 below) to satisfy the asymptotics − log z1 ∼ cq 〈N〉−q/(q+1), 
with

c1+1/q
q = 1

q

∞∫
0

u1/q e−u

1 + e−u
du. (3.23)

In turn, the expected length has the asymptotics Ez(Mλ) ∼ Cq 〈N〉1/(q+1), where

Cq = 1
q c

1/q
q

∞∫
u1/q−1 e−u

1 + e−u
du. (3.24)
0
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For example, for q = 1 the integrals in (3.23) and (3.24) can be evaluated to yield 
c1 = π/

√
12 and C1 =

(√
12 log 2

)
/π (cf. [26]). Thus, the restriction that we put on 

the growth of 〈M〉 in Assumption 3.1 means that the number of parts is asymptotically 
smaller than what is expected from typical partitions in Λ̌q of large expected weight 〈N〉.

The conditions (3.21) can be viewed as a set of equations on the parameters z1 and 
z2 (cf. (2.29)). According to Corollary 2.9, a solution to (3.21) is unique, if it exists. The 
following theorem gives an asymptotic representation of the roots z1 and z2 in terms of 
〈N〉 and 〈M〉.

Theorem 3.7. Under Assumption 3.1, the roots z1 and z2 of the equations (3.21) are 
asymptotically given by

z1 = exp
(
− 〈M〉
q 〈N〉

(
1 + O

(
κ1/q))), (3.25)

z2 = κ1/q

q1/q Γ(1 + 1/q)

(
1 + O

(
κ1/q)). (3.26)

Proof. Denote for short γ := − log z1. In view of Lemma 3.1 (see (3.1)), we have

Ez(Mλ) =
∑
�∈Nq

Ez(ν�) =
∑
�∈Nq

z�1z2

1 + z�1z2
= z2

∑
�∈Nq

z�1 −R1(z), (3.27)

where

0 < R1(z) =
∑
�∈Nq

z2�
1 z2

2
1 + z�1z2

< z2
2

∑
�∈Nq

z2�
1 . (3.28)

Then Lemma 3.2 (with s = 0) applied to the sums on the right-hand side of (3.27) and 
(3.28) yields

Ez(Mλ) = z2 Γ(1/q)
q γ1/q

(
1 + O

(
γ1/q) + O(z2)

)
. (3.29)

Similarly,

Ez(Nλ) =
∑
�∈Nq

� Ez(ν�) =
∑
�∈Nq

�z�1z2

1 + z�1z2
= z2

∑
�∈Nq

�z�1 −R2(z), (3.30)

where

0 < R2(z) =
∑ �z2�

1 z2
2

1 + z�1z2
< z2

2
∑

�z2�
1 . (3.31)
�∈Nq �∈Nq
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Again applying Lemma 3.2 (now with s = 1), we get

Ez(Nλ) = z2 Γ(1 + 1/q)
q γ1+1/q

(
1 + O

(
γ1/q) + O(z2)

)
. (3.32)

Returning to the calibrating conditions (3.21) and substituting the asymptotic ex-
pressions (3.29) and (3.32), we obtain the following system of asymptotic equations,⎧⎪⎪⎨⎪⎪⎩

〈M〉 = z2 Γ(1/q)
q γ1/q

(
1 + O

(
γ1/q) + O(z2)

)
,

〈N〉 = z2 Γ(1 + 1/q)
q γ1+1/q

(
1 + O

(
γ1/q) + O(z2)

)
.

(3.33)

Since 〈M〉 is bounded away from zero, the first of these equations implies that γ1/q =
O(z2), so that the error terms O(γ1/q) in (3.33) are superfluous.

A further simple analysis of the system (3.33) shows that z2 is of order of κ1/q; 
specifically, using that Γ(1 + 1/q) = (1/q) Γ(1/q), we find

γ = 〈M〉
q 〈N〉

(
1 + O

(
κ1/q)),

z2 = 〈M〉γ1/q

Γ(1 + 1/q)

(
1 + O

(
κ1/q)) = κ1/q

q1/q Γ(1 + 1/q)

(
1 + O

(
κ1/q)),

in line with formulas (3.25) and (3.26). �
Assumption 3.2. Throughout the rest of the paper, we assume that the parameters z1
and z2 are chosen according to formulas (3.25) and (3.26), respectively. In particular, 
the Boltzmann measure Pz becomes dependent on the hyper-parameters 〈N〉 and 〈M〉, 
as well as the Pz-probabilities and the corresponding expected values.

For the sake of future reference and to fix the notation already used in the proof of 
Theorem 3.7, the asymptotic formula (3.25) can be written as

γ := − log z1 = 〈M〉
q 〈N〉

(
1 + O

(
κ1/q)). (3.34)

It is also useful to record a simple consequence of the relations (3.25) and (3.26) (on 
account of the notation (3.22) and (3.34)),

z2

γ1/q = 〈M〉
Γ(1 + 1/q)

(
1 + O

(
κ1/q)). (3.35)

Lemma 3.8. Under Assumptions 3.1 and 3.2,

logF (z) ∼ 〈M〉. (3.36)
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Proof. Using formula (3.2) and applying Lemma 3.3 with γ = − log z1 and η = z2, we 
have

logF (z) =
∑
�∈Nq

log
(
1 + z�1z2

)
∼ z2 Γ(1 + 1/q)

γ1/q ∼ 〈M〉,

according to formula (3.35). �
Remark 3.3. The result (3.36) provides the asymptotics of the probability of the empty 
partition λ∅ (cf. Remark 2.1); indeed, by formula (2.8)

Pz(λ∅) = 1
F (z) = e−〈M〉 (1+o(1)). (3.37)

3.4. Asymptotics of the covariance matrix

Theorem 3.9. Under Assumptions 3.1 and 3.2, we have

Varz(Mλ) ∼ 〈M〉, Varz(Nλ) ∼ (q + 1)〈N〉2
〈M〉 , Covz(Mλ, Nλ) ∼ 〈N〉. (3.38)

Proof. Using formulas (2.1), mutual independence of the multiplicities (ν�) and the 
Bernoulli marginals (3.1), we have

Varz(Mλ) =
∑
�∈Nq

Varz(ν�) =
∑
�∈Nq

z�1z2

(1 + z�1z2)2
= z2

∑
�∈Nq

z�1 −R3(z), (3.39)

where (cf. the proof of Theorem 3.7)

0 < R3(z) =
∑
�∈Nq

z2�
1 z2

2
(
2 + z�1z2

)
(1 + z�1z2)2

< 2z2
2

∑
�∈Nq

z2�
1 + z3

2
∑
�∈Nq

z3�
1 . (3.40)

By Lemma 3.2 we obtain, for any r > 0,

z2
∑
�∈Nq

zr�1 ∼ z2 Γ(1/q)
q (rγ)1/q

∼ 〈M〉
r1/q , (3.41)

according to (3.35). Recalling that z2 = o(1) (see (3.26)), it follows from (3.40) and 
(3.41) that

R3(z) = O (z2〈M〉) = o(〈M〉). (3.42)

Hence, returning to (3.39) and using (3.41), (3.42) and formulas (3.25) and (3.26), we 
get
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Varz(Mλ) ∼ z2
∑
�∈Nq

z�1 ∼ 〈M〉, (3.43)

in accord with the first formula in (3.38).
Similarly (omitting technical details, which can be easily worked out), we obtain

Varz(Nλ) =
∑
�∈Nq

�2 Varz(ν�) =
∑
�∈Nq

�2z�1z2

(1 + z�1z2)2

∼ z2
∑
�∈Nq

�2z�1 ∼ z2 Γ(2 + 1/q)
q γ2+1/q ∼ (q + 1)〈N〉2

〈M〉 , (3.44)

and

Covz(Mλ, Nλ) =
∑
�∈Nq

� Varz(ν�) =
∑
�∈Nq

�z�1z2

(1 + z�1z2)2

∼ z2
∑
�∈Nq

�z�1 ∼ z2 Γ(1 + 1/q)
q γ1+1/q ∼ 〈N〉, (3.45)

as claimed in (3.38). �
Corollary 3.10. The correlation coefficient between Mλ and Nλ is asymptotically given 
by

�(Mλ, Nλ) ∼ 1√
q + 1

.

Remark 3.4. Corollary 3.10 shows that the dependence between Mλ and Nλ does not 
vanish, and also that the amount of this dependence is decreasing with the growth of 
the power index q.

4. Fixed expected length

4.1. Limit theorems for the partition length and weight

In what follows, we use the notation

Gα(x) := 1
Γ(α)

x∫
0

uα−1 e−u du, x ≥ 0, (4.1)

for the distribution function of the gamma distribution Gamma(α) with shape parameter 
α > 0 (and unit scale parameter). We are now in a position to obtain our main result in 
this section.



32 J.C. Peyen et al. / Advances in Applied Mathematics 159 (2024) 102739
Theorem 4.1. Under Assumptions 3.1 and 3.2, consider the regime where Ez(Mλ) =
〈M〉 > 0 is fixed, while Ez(Nλ) = 〈N〉 → ∞. Then the following distributional asymp-
totics hold under the Boltzmann distribution Pz on the space Λ̌q.

(a) The distribution of the length Mλ converges to a Poisson distribution with parameter 
〈M〉,

Pz(Mλ = m) → πm := 〈M〉m e−〈M〉

m! , m ∈ N0. (4.2)

(b) The conditional distribution of the weight Nλ given Mλ = m ≥ 1 converges to the 
gamma distribution with shape parameter αm = m/q,

Pz

(
γNλ ≤ x

∣∣Mλ = m
)
→ Gm/q(x) = 1

Γ(m/q)

x∫
0

um/q−1 e−u du, x ≥ 0, (4.3)

where γ is defined in (3.34), Moreover, convergence (4.3) is uniform in x ≥ 0.
(c) The marginal (unconditional) distribution function G(x) = lim〈N〉→∞ Pz(γNλ ≤ x), 

with atom G(0) = π0 = e−〈M〉 at zero, is determined by its Laplace transform

φ(s) = exp
{
−〈M〉

(
1 − (1 + s)−1/q

)}
, s ≥ 0. (4.4)

Furthermore, conditioned on Mλ > 0, the Laplace transform becomes

φ̃(s) = e−〈M〉

1 − e−〈M〉

(
exp

{
〈M〉

(1 + s)1/q

}
− 1

)
, s ≥ 0. (4.5)

Remark 4.1. Part (a) is a particular case of a well-known Poisson approximation for the 
distribution of the total number of successes in a sequence of independent Bernoulli trials 
with success probabilities (pi), which is valid as long as 

∑
i pi → const > 0 and 

∑
i p

2
i → 0

[8,58]. Indeed, here we deal with the Bernoulli sequence (ν�), where Mλ =
∑

� ν� and 
p� = Ez(ν�) = z�1z2/(1 + z�1z2). According to (3.21), 

∑
� p� = 〈M〉. Furthermore, noting 

that (p�) is monotone decreasing, we obtain∑
�∈Nq

p2
� ≤ p1

∑
�∈Nq

p� = z1z2

1 + z1z2
〈M〉 ≤ z2 〈M〉 = O

(
〈N〉−1/q) = o(1), (4.6)

on account of formula (3.26). Alternatively, the asymptotic estimate (4.6) follows with 
the help of formula (3.41) (with r = 2).

Remark 4.2. The normalizing constant γ in parts (b) and (c) can be replaced by its 
asymptotic equivalent γ0 = 〈M〉/(q 〈N〉) (see (3.34)).
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Remark 4.3. The case m = 0 excluded in Theorem 4.1(b) corresponds to the empty 
partition λ∅,

Pz

(
γNλ ≤ x

∣∣Mλ = 0
)

= Pz(Nλ = 0 |Mλ = 0) = 1, x ≥ 0.

This is consistent with the gamma distribution (4.3) weakly converging to 0 as the 
parameter αm = m/q is formally sent to zero. Indeed, using the Laplace transform, for 
any s > 0 we have

1
Γ(α)

∞∫
0

xα−1e−sx−x dx = 1
(s + 1)α → 1 (α → 0+).

Remark 4.4. Noting that Gamma(m/q) is the convolution of m copies of Gamma(1/q), 
the result of Theorem 4.1(b) may be interpreted by saying that, on the scale γ−1 ∼
q〈N〉/〈M〉 and conditional on Mλ = m, the partition parts {λ1, . . . , λm} (considered 
without ordering) behave asymptotically as m independent random variables, each with 
distribution Gamma(1/q).

Proof of Theorem 4.1. Consider the Laplace transform of the pair (Nλ, Mλ),

φz(s) := Ez

[
exp(−s1Nλ − s2Mλ)

]
, s1, s2 ≥ 0. (4.7)

Using formulas (2.1), mutual independence of the multiplicities (ν�) and the Bernoulli 
marginals (3.1), the definition (4.7) is rewritten as

φz(s) = Ez

[
exp

(
−

∑
�∈Nq

(s1� + s2) ν�

)]

=
∏
�∈Nq

Ez

[
e−(s1�+s2)ν�

]
=

∏
�∈Nq

1 + z�1z2 e−(s1�+s2)

1 + z�1z2
.

The normalization γNλ corresponds to replacing the argument s1 in (4.7) by γs1. Hence,

log φz(γs1, s2) = log Ez

[
exp(−γs1Nλ − s2Mλ)

]
=

∑
�∈Nq

log 1 + z�1z2 e−(γs1�+s2)

1 + z�1z2

=
∑
�∈Nq

log
(
1 + z�1z2 e−(γs1�+s2)

)
−

∑
�∈Nq

log
(
1 + z�1z2

)
. (4.8)

Starting with the last sum in (4.8), Lemma 3.8 immediately gives∑
�∈Nq

log
(
1 + z�1z2

)
= logF (z) → 〈M〉. (4.9)
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Similarly, applying Lemma 3.3 we obtain

∑
�∈Nq

log
(
1 + z�1z2 e−(γs1�+s2)

)
∼ z2 e−s2 Γ(1/q)

q γ1/q(1 + s1)1/q
∼ e−s2〈M〉

(1 + s1)1/q
, (4.10)

according to the asymptotic relation (3.35).
As a result, combining (4.9) and (4.10) yields

φz(γs1, s2) → exp
{
−〈M〉

(
1 − e−s2

(1 + s1)1/q

)}
. (4.11)

In particular, setting s1 = 0 we get the limiting Laplace transform of Mλ,

φz(0, s2) → exp
(
−〈M〉(1 − e−s2)

)
=

∞∑
m=0

πm e−s2m,

which corresponds to the Poisson distribution (πm) (see (4.2)), thus proving the claim 
of part (a).

Furthermore, by Taylor expanding the exponential in the formula (4.11), we obtain

e−〈M〉 exp
(

〈M〉 e−s2

(1 + s1)1/q

)
=

∞∑
m=0

πm e−ms2

(1 + s1)m/q
. (4.12)

This can be interpreted as follows: by the total expectation formula, we have

φz(γs1, s2) = Ez

[
Ez

(
e−γs1Nλ−s2Mλ

∣∣Mλ = m
)]

=
∞∑

m=0
Pz(Mλ = m)φz(γs1 |m) e−ms2 , (4.13)

where φz(s |m) := Ez

(
e−sNλ |Mλ = m

)
. Comparing (4.12) and (4.13), we conclude that

φz(γs1 |m) → 1
(1 + s1)m/q

. (4.14)

To be more precise, by the continuity theorem for Laplace transforms [30, Sec. XIII.1, 
Theorem 2, p. 431] applied to the measure with atoms az(m; s1) := Pz(Mλ =
m) φz(γs1 |m) (with s1 ≥ 0 fixed), it follows from (4.12) and (4.13) that

az(m; s1) →
πm

(1 + s1)m/q
, m ∈ N0.

But since the convergence (4.2) has already been established, this implies (4.14), and it 
remains to observe that the right-hand side is the Laplace transform of Gamma(m/q), 
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as claimed in part (b). Finally, the uniform convergence in (4.3) readily follows by ap-
plication of Lemma 3.6.

As for part (c), the first claim follows immediately by setting s2 = 0 in the limit 
(4.11). The atom at zero is identified as lims→∞ φ(s) = e−〈M〉 = π0, and the conditional 
Laplace transform is expressed as φ̃(s) = (φ(s) − e−〈M〉)/(1 − e−〈M〉). This completes 
the proof of Theorem 4.1. �

The limiting marginal distribution defined in (4.4) is a mixture of a discrete family of 
gamma distributions indexed by the shape parameter αm = m/q (m ∈ N0), subject to 
a Poisson mixing distribution with parameter 〈M〉,

G(x) = π0 +
∞∑

m=1
πmGm/q(x), x ≥ 0. (4.15)

Formula (4.15) defines the compound Poisson-Gamma distribution of a random variable

Y = Z1 + · · · + ZM , (4.16)

where (Zi) are independent random variables with gamma distribution Gamma(1/q)
and M is an independent random variable with a Poisson distribution (πm). In line with 
Remark 4.3, the case m = 0 is represented in (4.15) by a point mass π0 = e−〈M〉 at zero. 
The absolutely continuous part of this distribution has density

g(x) =
∞∑

m=1
πmG′

m/q(x) =
∞∑

m=1
πm

xm/q−1 e−x

Γ(m/q) = e−〈M〉−x

x
W1/q

(
〈M〉x1/q), (4.17)

where W
(x) =
∑∞

m=1

xm

m! Γ(m�) is a special case of the Wright function [88]. Noting 

that Gamma(α) has mean α, the expected value of the distribution (4.15) is given by

∞∑
m=1

πm

∞∫
0

x dGm/q(x) =
∞∑

m=1
πm

m

q
= 〈M〉

q
,

which is consistent with the calibration Ez(Nλ) = 〈N〉 (see (3.21)) in view of the asymp-
totic formula γ ∼ γ0 = 〈M〉/(q 〈N〉) (see (3.34)). Of course, the same result can be 
obtained by differentiating the Laplace transform (4.4) at s = 0.

The principal term in the asymptotics of the density g(x) as x → +∞ can be recovered 
from the known asymptotic expansion of the Wright function [88, Theorem 2, p. 258], 
yielding

g(x) = e−〈M〉

2π (q + 1)

( q

x

) q+2
2(q+1) exp

(
(q + 1)

(
x

q

) q
q+1

− x

)(
1 + O

(
x− q

q+1
))

(x → +∞).
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Turning to the behavior of g(x) near zero, from the expansion (4.17) it is clear that this 
is determined by the lowest-order terms with m ≤ q, that is,

g(x) =
q∑

m=1
πm

xm/q−1

Γ(m/q) + O(x1/q) (x → 0+). (4.18)

Observe that if q > 1 then the density of the absolutely continuous part of G(x) has sin-
gularity at the origin, thus causing an “excess” of partitions with an anomalously small 
weight on the scale γ−1 ∼ γ−1

0 = q 〈N〉/〈M〉. On the other hand, the contribution of this 
singularity is exponentially vanishing as 〈M〉 → ∞. These effects will be verified empir-
ically using the output of the Boltzmann sampler considered below in Section 6.1.3 (see 
Fig. 4). The exact distribution (4.15) will also be contrasted there with a crude approx-
imation via replacing the Poisson mixing parameter by its expected value 〈M〉, yielding 
the gamma distribution with shape parameter 〈M〉/q. Of course, such an approximation 
cannot capture the aforementioned singularity at zero, but it works reasonably well for 
larger values of 〈M〉, whereby singularity becomes immaterial.

For the benefit of the Boltzmann sampling considered below in Section 6, we conclude 
this section by stating a “truncated” version of Theorem 4.1 with a reduced source of 
parts. We write Gα(x | a) := Gα(x)/Gα(a) (0 ≤ x ≤ a) for the distribution function of 
the Gamma(α)-distribution truncated by threshold a > 0. The symbol � stands for the 
convolution of probability distributions.

Theorem 4.2. Under the hypotheses of Theorem 4.1, let L ∼ θ 〈N〉 with θ > 0, and 
denote aθ := θ〈M〉/q. Then the following distributional asymptotics hold subject to the 
constraint λmax ≤ L.

(a) The conditional distribution of the length Mλ converges to a Poisson law,

Pz(Mλ = m |λmax ≤ L) → πθ
m := μm

θ e−μθ

m! , m ∈ N0, (4.19)

with mean

μθ := 〈M〉G1/q(aθ) = 〈M〉
Γ(1/q)

aθ∫
0

u1/q−1 e−u du. (4.20)

(b) The conditional distribution of the weight Nλ given Mλ = m ≥ 1 converges to the 
convolution of m copies of an aθ-truncated gamma distribution with shape 1/q,

Pz(γNλ ≤ x
∣∣Mλ = m,λmax ≤ L) →

(
G1/q(· | aθ) � · · · � G1/q(· | aθ)︸ ︷︷ ︸

m

)
(x),

0 < x ≤ maθ.

(4.21)

Like in (4.3), convergence (4.21) is uniform in 0 ≤ x ≤ maθ.
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(c) The marginal distribution function G(x; θ) := lim〈N〉→∞ Pz(γNλ ≤ x |λmax ≤ L), 
with atom G(0; θ) = πθ

0 = exp
{
−〈M〉G1/q(aθ)

}
at zero, is determined by its Laplace 

transform

φ(s; θ) = exp
{
−〈M〉

(
G1/q(aθ) −

G1/q
(
aθ (1 + s)

)
(1 + s)1/q

)}
, s ≥ 0. (4.22)

Furthermore, conditioned on Mλ > 0, the Laplace transform becomes

φ̃(s; θ) = e−μθ

1 − e−μθ

(
exp

{
〈M〉G1/q

(
aθ (1 + s)

)
(1 + s)1/q

}
− 1

)
, s ≥ 0. (4.23)

This theorem can be proved by adapting the proof of Theorem 4.1, whereby the 
(finite) sums of logarithmic expressions are analyzed with the help of Lemma 3.5 in 
place of Lemma 3.3.

Remark 4.5. Comparing Theorems 4.1 and 4.2, a reduction of the Poisson parameter 
(mean) in part (a) from 〈M〉 to μθ = 〈M〉G1/q(aθ) < 〈M〉 (see (4.20)), as well as the 
replacement of the gamma distribution G1/q(x) in part (b) with a truncated version 
G1/q(x |aθ) (see (4.21)) is clearly due to a reduced source of parts, � ≤ L ∼ θ〈N〉.

Remark 4.6. As a sanity check of formula (4.22), the expected value of γNλ conditional 
on λmax ≤ L is asymptotically evaluated (using Lemma 3.4 and formula (3.35)) as

Ez(γNλ |λmax ≤ L) = γ
∑
�≤L

�z�1z2

1 + z�1z2
∼ 〈M〉

Γ(1/q)

aθ∫
0

u1/q e−u du. (4.24)

On the other hand, by differentiating the Laplace transform (4.22) at s = 0 we obtain

Ez(γNλ |λmax ≤ L) ∼ 〈M〉
(

1
q
G1/q(aθ) −

a
1/q
θ e−aθ

Γ(1/q)

)
.

These two expressions are reconciled by integration of parts in (4.24) and in view of 
notation (4.1).

4.2. Cumulative cardinality of strict power partitions

For fixed q, m ∈ N and for any x > 0, consider a sub-level partition set

Λ̌q
m(x) :=

⋃
n≤x

Λ̌q(n,m), (4.25)

and denote its cardinality
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Lq
m(x) := #Λ̌q

m(x) =
∑
n≤x

#Λ̌q(n,m). (4.26)

That is to say, Lq
m(x) denotes the number of integral solutions to the inequality jq1 +

· · · + jqm ≤ x such that j1 > · · · > jm > 0.

Theorem 4.3. The following asymptotics hold as x → ∞,

Lq
m(x) ∼

q
(
Γ(1 + 1/q)

)m
xm/q

m!m Γ(m/q) . (4.27)

In particular, for q = 1 and q = 2

Lm(x) ∼ xm

m!m! , L2
m(x) ∼ πm/2xm/2

2m−1m!m Γ(m/2) . (4.28)

Proof. Without loss of generality, we may and will assume that x is an integer. Set the 
hyper-parameters in the Boltzmann distribution Pz to be 〈M〉 = m and 〈N〉 = x. By 
Corollary 2.4,

#Λ̌q(n,m) = F (z) Pz(Mλ = m) Pz(Nλ = n |Mλ = m)
zn1 z

m
2

. (4.29)

Hence, according to (4.26),

Lq
m(x) = F (z) Pz(Mλ = m)

zm2

∑
n≤x

Pz (Nλ = n |Mλ = m)
zn1

. (4.30)

First of all, by Lemma 3.8, Theorem 4.1(a) and formula (3.26), we get

F (z) Pz(Mλ = m)
zm2

∼ em mm e−m

m!

(
m1+1/q

q1/q Γ(1 + 1/q)
x−1/q

)−m

=
qm/q

(
Γ(1 + 1/q)

)m
xm/q

m!mm/q
. (4.31)

To handle the sum in (4.30), define the cumulative probabilities

Tn := Pz(Nλ ≤ n |Mλ = m), T0 := 0. (4.32)

Then by Abel’s summation-by-parts formula (see, e.g., [69, p. 390]) we can write

∑ Pz (Nλ = n |Mλ = m)
zn1

=
∑(

Tn − Tn−1
) 1
zn1
n≤x n≤x
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= Tx

zx+1
1

− T0

z1
−

∑
n≤x

Tn

(
1

zn+1
1

− 1
zn1

)

= Tx

zx−1
1

− 1 − z1

z1

∑
n≤x

Tn

zn1
. (4.33)

To shorten the notation, denote α := m/q. By the asymptotic formula (3.25), we have 
1 − z1 ∼ α/x; moreover, uniformly in n ≤ x

z−n
1 = eαn/x

(
1 + O

(
x−1/q)), (4.34)

since κ = mq+1/x = O(x−1) (see (3.22)). Furthermore, using Theorem 4.1(b) and Re-
mark 4.2 we get for the first term in (4.33),

Tx

zx−1
1

→ eα Gα(α) = eα

Γ(α)

α∫
0

uα−1 e−u du. (4.35)

Generalizing, observe that Tn ≈ Gα(αn/x) for n ≤ x. More precisely, taking advantage 
of the uniform convergence in (4.3), for any ε > 0 and all large enough 〈N〉 we have, 
uniformly in n ≤ x,

|Tn −Gα(αn/x)| < ε.

Hence, the total approximation error arising from the sum in (4.33) is estimated as 
follows,

(1 − z1)
∑
n≤x

|Tn −Gα(αn/x)|
zn1

≤ ε (1 − z1)
x∑

n=0
z−n
1

= ε
(
z−x
1 − z1

)
= O(ε). (4.36)

Therefore, replacing Tn with Gα(αn/x) in the sum (4.35) and also using (4.34), we 
obtain

1 − z1

z1

∑
n≤x

z−n
1 Gα(αn/x) ∼ α

x

x∑
n=1

eαn/xGα(αn/x) →
α∫

0

euGα(u) du. (4.37)

Furthermore, the integral in (4.37) is evaluated by integration by parts,

α∫
0

Gα(u) d(eu) = eαGα(α) − 1
Γ(α)

α∫
0

uα−1 du = eα Gα(α) − αα−1

Γ(α) . (4.38)

Thus, collecting (4.35), (4.36), (4.37) and (4.38), from (4.33) we obtain
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Fig. 2. Geometric illustration of the sub-level partition sets Λ̌q
m(x) (defined in (4.25)) with m = 2 and (a) 

q = 1 or (b) q = 2, represented as the sets of integer points (j1, j2) ∈ Z2 such that 0 < j2 < j1 and 
j1 + j2 ≤ x or j21 + j22 ≤ x, respectively. In line with Theorem 4.3, their cardinalities have the asymptotics 
L2(x) ∼ 1

4 x2 and L2
2(x) ∼ 1

8 πx, corresponding to the area of the shaded domains.

lim
x→∞

∑
n≤x

Pz(Nλ = n |Mλ = m)
zn1

= αα−1

Γ(α) + O(ε) ≡ αα−1

Γ(α) , (4.39)

since ε > 0 is arbitrary.
Finally, returning to (4.30) and substituting the limits (4.31) and (4.39) (the latter 

with α = m/q), we obtain the asymptotic formula (4.27). �
Continuing an illustration of Theorem 4.3 for q = 1 and q = 2 started in Fig. 2 with 

m = 2, it is well known [26, Theorem 4.1, p. 341]10 (see also [2, Theorem 4.3, p. 56]) 
that, with m ≥ 2 fixed (or even m = o(n1/3)),

#Λ̌(n,m) ∼ 1
m!

(
n− 1
m− 1

)
∼ nm−1

m! (m− 1)! (n → ∞). (4.40)

This is consistent with our cumulative formula (4.28) for q = 1, noting that

∑
n≤x

nm−1 ∼ xm

m
(x → ∞).

With regards to the case q = 2, it is interesting that in their famous paper of 1918 
on an “exact” enumeration of integer partitions, Hardy and Ramanujan [38, Eq. (7.21), 
p.110] stated without proof an asymptotic formula for the number of representations of 
a large n ∈ N as the sum of m > 4 squares,

10 To be precise, Theorem 4.1 of [26] is stated for partitions with at most m parts, but due to Corollary 
4.3 [26, p. 343] the same result also holds for partitions into exactly m distinct parts.
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rm(n) := #{(j1, . . . , jm) ∈ Zm : j2
1 + · · · + j2

m = n}

= Cmπm/2nm/2−1

Γ(m/2) + O(nm/4) (n → ∞),
(4.41)

where the constant Cm > 0 is defined through a series 
∑

k≥1 ckk
−m/2 with computable 

coefficients ck = O(k). Using a geometric embedding of such representations into the 
space Zm, it is easy to see that their enumeration is asymptotically reduced to strict 
partitions with m positive parts,

rm(n) ∼ 2mm! #Λ̌2(n,m),

and in view of (4.41) it follows

#Λ̌2(n,m) ∼ Cmπm/2nm/2−1

2mm! Γ(m/2) . (4.42)

By the order of growth, this formula matches our cumulative asymptotic result (4.28)
(for q = 2), and moreover, the constant is explicitly recovered from this comparison, 
Cm = 1.

4.3. A joint limit theorem for the extreme parts (fixed expected length)

In this section, we address the limiting distribution of the largest and smallest parts of 
a random partition, λmax and λmin. Recall the notation γ = − log z1 ∼ γ0 = 〈M〉/(q〈N〉)
(see (3.34)).

Theorem 4.4. Assume that 〈M〉 > 0 is fixed. Then λmax and λmin are asymptotically 
independent as 〈N〉 → ∞, with the marginal limiting laws given by (for any x ≥ 0)

Pz(γλmax ≤ x) → Gmax(x) := e−〈M〉
(
1−G1/q(x)

)
, (4.43)

Pz(γλmin > x) → Gc
min(x) := e−〈M〉G1/q(x). (4.44)

Moreover, conditionally on non-empty partition,

Pz(γλmax ≤ x |λmax > 0) → G̃max(x) := Gmax(x) − e−〈M〉

1 − e−〈M〉 , (4.45)

Pz(γλmin > x |λmin < ∞) → G̃c
min(x) := Gc

min(x) − e−〈M〉

1 − e−〈M〉 . (4.46)

Remark 4.7. Clearly, the normalization γ in Theorem 4.4 can be replaced by its asymp-
totic equivalent, γ0 = 〈M〉/(q〈N〉) (see (3.34)).
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Remark 4.8. Note that the distribution function Gmax(x) has a jump at zero with mass 
Gmax(0) = e−〈M〉. This is in line with our convention for λmax = 0, which corresponds 
to the empty partition λ∅ (cf. Remark 3.3 and formula (3.37)). On the other hand, 
G̃max(0) = 0, and so the distribution function G̃max(x) is continuous at zero. Likewise, 
the tail distribution function Gc

min(x) is improper, with defect mass Gc
min(∞) = e−〈M〉, 

which again matches our convention for λmin = ∞. But G̃c
min(∞) = 0, so G̃c

min(x) defines 
a proper distribution.

Proof of Theorem 4.4. For x ≥ 0, set �∗(x) := min{� ∈ Nq : � > γ−1x}, and note that 
γ�∗(x) → x. By virtue of Lemma 3.1,

Pz(γλmin > x1, γλmax ≤ x2) = Pz

(
ν� ≡ 0 for all � < �∗(x1) and � ≥ �∗(x2)

)
=

∏
�<�∗(x1), �≥�∗(x2)

1
1 + z�1z2

= exp
{
−
( ∞∑

�∈Nq

−
∞∑

�≥�∗(x1)

+
∞∑

�≥�∗(x2)

)
log

(
1 + z�1z2

)}
.

(4.47)

Hence, applying Lemma 3.5 (with γ = − log z1 and η = z2) and using the asymptotic 
relation (3.35), we get

− log Pz(γλmin > x1, γλmax ≤ x2) ∼
z2

q γ1/q

⎛⎜⎝ ∞∫
0

−
∞∫

γ�∗(x1)

+
∞∫

γ�∗(x2)

⎞⎟⎠u1/q−1 e−u du

∼ 〈M〉
Γ(1/q)

(
Γ(1/q) − Γ(1/q, x1) + Γ(1/q, x2)

)
= − logGc

min(x1) − logGmax(x2),

which proves asymptotic independence and the marginal laws (4.43) and (4.44).
The conditional versions (4.45) and (4.46) easily follow using that Gmax(0) =

Gc
min(∞) = e−〈M〉 (see Remark 4.8),

Pz(γλmax ≤ x |λmax > 0) = Pz(γλmax ≤ x) − Pz(λmax = 0)
1 − Pz(λmax = 0)

→ Gmax(x) − e−〈M〉

1 − e−〈M〉 = G̃max(x),

and similarly

Pz(γλmin > x |λmin < ∞) = Pz(γλmin > x) − Pz(λmin = ∞)

1 − Pz(λmin = ∞)
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→ Gc
min(x) − e−〈M〉

1 − e−〈M〉 = G̃c
min(x),

as claimed. �
Remark 4.9. The result of Theorem 4.4 indicates that all parts (λi) of a Pz-typical 
partition λ ∈ Λ̌q ‘live” on the universal scale A = γ−1 ∼ q 〈N〉/〈M〉. Clearly, this is 
a manifestation of keeping the expected number of parts 〈M〉 fixed. The situation is 
different when the parameter 〈M〉 is allowed to grow with 〈N〉, as will be shown below 
in Theorem 5.8.

Remark 4.10. The interpretation of the limiting distribution of parts given in Remark 4.4
can be used for a heuristic derivation of Theorem 4.4. Indeed, using independence and 
the Gamma(1/q)-distribution of the independent limiting parts (Zi) (see (4.16)), the 
distribution function of Zmax = max{Z1, . . . , ZM} is given by

Gmax(x) =
∞∑

m=0
πm

(
G1/q(x)

)m = exp
{
−〈M〉

(
1 −G1/q(x)

)}
= exp

{
−〈M〉Γ(1/q, x)

Γ(1/q)

}
,

which conforms with claim (4.43). Derivation of (4.44) is similar.

5. Slow growth of the expected length

Throughout this section, we impose the following condition on the growth of the 
hyper-parameters 〈N〉 and 〈M〉 (cf. Theorem 3.7).

Assumption 5.1. In addition to Assumption 3.1 stating that κ = 〈M〉q+1/〈N〉 → 0 as 
〈N〉 → ∞, it is assumed that 〈M〉 → ∞.

Recall that the vector parameter z = (z1, z2) of the Boltzmann measure Pz is cal-
ibrated according to Assumption 3.2. We use our standard notation γ = − log z1 ∼
〈M〉/(q 〈N〉) (see (3.34)).

5.1. A joint limit theorem for the weight and length

Theorem 5.1. Under Assumptions 3.2 and 5.1, define the normalized versions of Nλ and 
Mλ,

N∗
λ :=

√
〈M〉√
q + 1

(
Nλ − 〈N〉

〈N〉

)
, M∗

λ := Mλ − 〈M〉√
〈M〉

. (5.1)

Then both N∗
λ and M∗

λ are asymptotically standard normal,

N∗
λ

d−→ N (0, 1), M∗
λ

d−→ N (0, 1).
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Moreover, the joint limiting distribution of N∗
λ and M∗

λ is bivariate normal with zero 
mean and covariance matrix

Kq =

⎛⎜⎝ 1 1√
q + 1

1√
q + 1

1

⎞⎟⎠. (5.2)

Proof. Consider the characteristic function of the pair (N∗
λ , M

∗
λ),

ϕ(t1, t2) := Ez

[
exp

(
i t1N∗

λ + i t2M∗
λ

)]
, t1, t2 ∈ R. (5.3)

Substituting (5.1), this is transformed as

ϕ(t1, t2) = exp
(
−i t̃1〈N〉 − i t̃2〈M〉

)
Ez

[
exp(i t̃1Nλ + i t̃2Mλ)

]
, (5.4)

where

t̃1 =
t1

√
〈M〉√

q + 1 〈N〉 , t̃2 = t2√
〈M〉

. (5.5)

Furthermore, using formulas (2.1), mutual independence of the multiplicities (ν�) and 
the Bernoulli marginals (3.1), the expectation in (5.3) is rewritten as

Ez

[
exp

( ∑
�∈Nq

i
(
t̃1� + t̃2

)
ν�

)]
=

∏
�∈Nq

Ez

[
e i(t̃1�+t̃2)ν�

]
=

∏
�∈Nq

1 + z�1z2 e i(t̃1�+t̃2)

1 + z�1z2
. (5.6)

Choosing the principal branch of the logarithm function C \ {0} � ξ 	→ log ξ ∈ C (i.e., 
such that log 1 = 0), we can rewrite (5.4) and (5.6) as

logϕ(t1, t2) = −i t̃1〈N〉 − i t̃2〈M〉 +
∑
�∈Nq

log (1 + w�), (5.7)

where

w� ≡ w�(t̃1, t̃2) := z�1z2

1 + z�1z2

(
e i(t̃1�+t̃2) − 1

)
. (5.8)

Remembering that 0 < z1 < 1 and z2 → 0 (see (3.25) and (3.26)), note that, uniformly 
for � ∈ Nq,

|w�| ≤
2z�1z2

�
≤ 2z2 ≤ 1 =: R0,
1 + z1z2 1 + z2 2
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provided that κ = 〈M〉q+1/〈N〉 is small enough (cf. Assumption 5.1).
By Taylor’s formula for complex-analytic functions (see, e.g., [86, Sec. 5.4, p. 93]) 

applied to the function g(w) = log (1 + w) with |w| ≤ R0 < 1, we have

g(w) = g(0) + g′(0)w + w2

2πi

∮
ΓR

g(ξ)
ξ2 (ξ − w) dξ, (5.9)

where ΓR is the circle of radius R ∈ (R0, 1) about the origin, positively oriented (i.e., 
anti-clockwise). Noting that |ξ−w| ≥ R−R0 for all ξ ∈ ΓR and |w| ≤ R0, the remainder 
term in (5.9) is bounded in modulus as follows,∣∣∣∣∣∣ w

2

2πi

∮
ΓR

g(ξ)
ξ2 (ξ − w) dξ

∣∣∣∣∣∣ ≤ 2πR
2π

(
|w|
R

)2
CR

R−R0
= |w|2CR

R (R−R0)
,

where

CR := max
{
|g(ξ)|, ξ ∈ ΓR

}
< ∞.

Thus, the expansion (5.9) specializes to

log (1 + w) = w + O(|w|2), (5.10)

where the O-term is uniform in the disk |w| ≤ R0 = 1
2 .

We will also use Taylor’s expansion for the complex exponent in (5.8) with a uniform 
bound on the error term for any k ∈ N and all t ∈ R (see, e.g., [30, Sec. XV.4, Lemma 1, 
p. 512]), ∣∣∣∣∣eit −

k−1∑
j=0

(it)j

j!

∣∣∣∣∣ ≤ |t|k
k! . (5.11)

Now, combining the uniform expansions (5.10) and (5.11) (the latter with k = 2 or 
k = 1 as appropriate) and returning to (5.7), we obtain

∑
�∈Nq

log (1 + w�) =
∑
�∈Nq

z�1z2

1 + z�1z2

(
i (t̃1� + t̃2) −

1
2
(
t̃1� + t̃2

)2 + O(1)
(
t̃1� + t̃2

)3
)

+ O(1)
∑
�∈Nq

z2�
1 z2

2
(1 + z�1z2)2

(
t̃1� + t̃2

)2

= i t̃1
∑
�∈Nq

�z�1z2

1 + z�1z2
+ i t̃2

∑
�∈Nq

z�1z2

1 + z�1z2
− 1

2
∑
�∈Nq

z�1z2

1 + z�1z2

(
t̃1� + t̃2

)2

+ O(1)
∑

z�1z2
(
t̃1� + t̃2

)3 + O(1)
∑

z2�
1 z2

2
(
t̃1� + t̃2

)2
�∈Nq �∈Nq
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=: i t̃1Σ1 + i t̃2Σ2 − 1
2Σ3 + O(1)Σ4 + O(1)Σ5. (5.12)

According to the calibration equations (see (3.27) and (3.30)), the first two sums in 
(5.12) are known exactly,

Σ1 = 〈N〉, Σ2 = 〈M〉. (5.13)

Next, the error sums Σ4 and Σ5 can be shown to asymptotically vanish. Indeed, using 
the elementary inequality (a + b)r ≤ 2r−1 (ar + br) (r ≥ 1) and combining Lemma 3.2
with formulas (3.25), (3.26) and (3.35) gives upon simple calculations the estimate

0 ≤ Σ4 ≤ 4 t̃3
1

∑
�∈Nq

�3z�1z2 + 4 t̃3
2

∑
�∈Nq

z�1z2

= O(1)〈M〉3/2z2

〈N〉3 γ3+1/q + O(1)z2

〈M〉3/2 γ1/q = O(1)
〈M〉1/2 = o(1). (5.14)

Similarly,

0 ≤ Σ5 ≤ 2 t̃2
1

∑
�∈Nq

�2z2�
1 z2

2 + 2 t̃2
2

∑
�∈Nq

z2�
1 z2

2

= O(1)〈M〉z2
2

〈N〉2 γ2+1/q + O(1)z2
2

〈M〉γ1/q = O(κ1/q) = o(1). (5.15)

Finally, consider the sum Σ3 in (5.12) which, as we will see, provides the main con-
tribution to (5.7). To this end, observe (cf. (3.27)) that

0 ≤
∑
�∈Nq

z�1z2
(
t̃1� + t̃2

)2 −Σ3 =
∑
�∈Nq

z2�
1 z2

2
1 + z�1z2

(
t̃1� + t̃2

)2

≤
∑
�∈Nq

z2�
1 z2

2
(
t̃1� + t̃2

)2 = Σ5 = o(1), (5.16)

as shown in (5.15). In turn, using the asymptotic results (3.43), (3.44) and (3.45), and 
recalling the rescaling expressions (5.5), we obtain the limit∑

�∈Nq

z�1z2
(
t̃1� + t̃2

)2 = t̃2
1

∑
�∈Nq

�2z�1z2 + 2 t̃1t̃2
∑
�∈Nq

�z�1z2 + t̃2
2

∑
�∈Nq

z�1z2

→ t21 + 2 t1t2√
q + 1

+ t22 , (5.17)

which is a quadratic form with matrix (5.2).
Thus, substituting the estimates (5.13), (5.14), (5.15), (5.16) and (5.17) into (5.12)

and returning to (5.7), we obtain
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ϕ(t1, t2) → exp
{
−1

2

(
t21 + 2 t1t2√

q + 1
+ t22

)}
,

and the proof of Theorem 5.1 is complete. �
Corollary 5.2. Under the hypotheses of Theorem 5.1, the following laws of large numbers 
hold under the Boltzmann measure Pz,

Mλ

〈M〉
p−→ 1, Nλ

〈N〉
p−→ 1. (5.18)

Remark 5.1. As a curiosity, we observe that the limiting distribution in Theorem 4.1
formally conforms to Theorem 5.1 under the additional limit as 〈M〉 → ∞. Indeed, start 
with the intermediate limit (4.11) (with 〈M〉 fixed) and switch from Laplace transform 
to characteristic function by formally changing (s1, s2) (si ≥ 0) to −i (t1, t2) (ti ∈ R). 
Then, bearing in mind the normalization (5.1), we obtain

−〈M〉

⎛⎝1 − eit2/
√
〈M〉

(
1 − i t1q√

〈M〉

)−1/q
⎞⎠ +

i t1
√
〈M〉√

q + 1
→ −1

2

(
t21 + 2 t1t2√

q + 1
+ t22

)
,

(5.19)

by Taylor expanding the left-hand side of (5.19) up to the second order in parameter 
〈M〉−1/2 = o(1).

We finish this section by stating a theorem concerning the marginal local-type asymp-
totics for the length Mλ and the corresponding conditional asymptotics for the weight 
Nλ.

Theorem 5.3. Under Assumptions 3.2 and 5.1, the following distributional asymptotics 
hold under the Boltzmann distribution Pz on the space Λ̌q.

(a) (Local limit theorem for Mλ) For any m such that m − 〈M〉 = O
(√

〈M〉
)
,

Qz(Mλ = m) ∼ f〈M〉(m), (5.20)

where f〈M〉(x) is the normal density with mean 〈M〉 and standard deviation 
√
〈M〉,

f〈M〉(x) = 1√
2π〈M〉

exp
{
− (x− 〈M〉)2

2〈M〉

}
, x ∈ R.

(b) (Conditional limit theorem for Nλ) Conditionally on Mλ = m with m − 〈M〉 =
O
(√

〈M〉
)
, the partition weight Nλ is asymptotically normal with mean m〈N〉/〈M〉

and variance q 〈N〉2/〈M〉, that is,
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√
〈M〉
√
q

(
Nλ

〈N〉 −
m

〈M〉

)
d−→Mλ=m N (0, 1). (5.21)

Part (a) of this theorem can be anticipated from the marginal asymptotic normality of 
Mλ proven in Theorem 5.1. The result in part (b) can be formally derived from the joint 
asymptotic normality of the pair (Nλ, Mλ) by calculating the conditional density of Nλ

given Mλ. Alternatively, one can refer to the “normal correlation” result (see, e.g., [69, 
Sec. II.13, Theorem 2, pp. 303–304]). A rigorous proof of Theorem 5.3 can be obtained 
by adapting the standard proof of a “one-dimensional” local limit theorem for Nλ (see, 
e.g., [12], [81]). We will return to this issue in a separate publication.

5.2. Limit shape of Young diagrams

In this section we show that, under the slow growth condition on 〈M〉, properly scaled 
Young diagrams of random partitions λ ∈ Λ̌q have a limit shape given by the tail of the 
gamma integral,

ω∗
q (x) := 1

Γ(1/q)

∞∫
x

u1/q−1 e−u du = 1 −G1/q(x), x ≥ 0, (5.22)

where G1/q(x) is the distribution function of Gamma(1/q) (see (4.1)). In particular, for 
q = 1 the definition (5.22) is reduced to

ω∗
1(x) = e−x, x ≥ 0.

Specifically, set

A := q 〈N〉/〈M〉, B = 〈M〉, (5.23)

and consider a scaled Young diagram with upper boundary

Ỹλ(x) = B−1Yλ(Ax), x ≥ 0, (5.24)

where (see (2.2))

Yλ(x) =
∑
�≥x

ν�, x ≥ 0. (5.25)

Remark 5.2. The area under the scaled Young diagram is given by

∞∫
Ỹλ(x) dx = B−1

∞∫
Yλ(Ax) dx = 〈N〉

AB
= 1

q
.

0 0
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Naturally, this condition is preserved by the limit shape; indeed, integrating by parts we 
get

∞∫
0

ω∗
q (x) dx = 1

Γ(1/q)

∞∫
0

x1/q e−x dx = Γ(1 + 1/q)
Γ(1/q) = 1

q
.

First, we obtain the expected limit shape result.

Theorem 5.4. Under Assumptions 3.2 and 5.1, uniformly in x ≥ 0

Ez

(
Ỹλ(x)

)
→ ω∗

q (x), (5.26)

where the limit shape x 	→ ω∗
q (x) is defined in (5.22).

Proof. We first show that for each x ≥ 0, the convergence (5.26) holds. By Lemma 3.1,

Ez

(
Yλ(Ax)

)
=

∑
�≥Ax

Ez(ν�) =
∑
�≥Ax

z�1z2

1 + z�1z2
=

∑
�≥Ax

z�1z2 − R̃1(z), (5.27)

where (cf. (3.27) and (3.28))

0 ≤ R̃1(z) =
∑
�≥Ax

z2�
1 z2

2
1 + z�1z2

≤
∑
�∈Nq

z2�
1 z2

2 = 〈M〉O(κ1/q), (5.28)

by virtue of (3.41) (with r = 2). Furthermore, applying Lemma 3.4 (with γ = − log z1
and s = 0) and noting that γA → 1, we obtain

∑
�≥Ax

z�1z2 ∼ z2

q γ1/q

∞∫
γAx

u1/q−1 e−u du ∼ 〈M〉
Γ(1/q)

∞∫
x

u1/q−1 e−u du, (5.29)

using the asymptotic formula (3.35), Thus, substituting (5.28) and (5.29) into (5.27)
gives

Ez

(
Ỹλ(x)

)
= 1

〈M〉 Ez

(
Yλ(Ax)

)
∼ 1

Γ(1/q)

∞∫
x

u1/q−1 e−u du = ω∗
q (x),

as claimed. Finally, the uniform convergence in formula (5.26) follows by Lemma 3.6, 
noting that the function x 	→ ω∗

q (x) is continuous, bounded, and decreasing on [0, ∞). �
Now, we are ready to state and prove the main result of this section.
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Theorem 5.5. Under Assumptions 3.2 and 5.1, the rescaled Young diagrams converge to 
the limit shape y = ω∗

q (x) in Pz-probability uniformly for x ≥ 0, that is,

Pz

(
λ ∈ Λ̌q : sup

x≥0

∣∣Ỹλ(x) − ω∗
q (x)

∣∣ > ε

)
→ 0,

where Ỹλ(x) is defined in (5.24) with the aid of (5.23).

Proof. By virtue of Theorem 5.4, letting Y 0
λ (x) := Yλ(x) −Ez

(
Yλ(x)

)
it suffices to check 

that

Pz

(
sup
x≥0

∣∣Y 0
λ (Ax)

∣∣ > Bε

)
→ 0. (5.30)

Put Zλ(x) := Yλ(x−1) for 0 ≤ x ≤ ∞; in particular, Zλ(0) = Yλ(∞) = 0, Zλ(∞) =
Yλ(0) = Mλ. By the definition (2.2), for any 0 < s < t ≤ ∞ we have

Zλ(t) − Zλ(s) = Yλ(t−1) − Yλ(s−1) =
∑

t−1≤�<s−1

ν� ,

which implies that the random process Zλ(x) (x ≥ 0) has independent increments. Hence, 
Z0
λ(x) := Zλ(x) −Ez

(
Zλ(x)

)
is a martingale with respect to the filtration Fx = σ{ν� , � ≥

x−1}. From (2.2) it is also evident that Z0
λ(x) is càdlàg (i.e., its paths are everywhere 

right-continuous and have left limits, cf. Fig. 3). Therefore, by the Doob–Kolmogorov 
submartingale inequality (see, e.g., [90, Theorem 6.16, p.101]) we obtain

Pz

(
sup
x≥0

∣∣Y 0
λ (Ax)

∣∣ > Bε

)
≡ Pz

(
sup
y≤∞

|Z0
λ(yA−1)| > Bε

)

≤
Varz

(
Zλ(∞)

)
B2ε2 =

Varz
(
Yλ(0)

)
B2ε2 . (5.31)

Recalling that Yλ(0) = Mλ and using Theorem 3.9, the right-hand side of (5.31) is 
estimated by O(〈M〉−1). Thus, the claim (5.30) follows and the proof of Theorem 5.5 is 
complete. �

Convergence of normalized Young diagrams to their limits shape is illustrated in Fig. 3
for q = 1 and q = 2. Random partitions were simulated using a suitable Boltzmann 
sampler implemented as Algorithm 1 (see Section 6.1).

Finally, we can analyze asymptotic fluctuations of scaled Young diagrams. Recall that 
Ỹλ(x) is defined in (5.24) with the aid of (5.23).

Theorem 5.6. Under Assumptions 3.2 and 5.1, for any x > 0 the random value Ỹλ(x) is 
asymptotically normal with variance ω∗

q (x)/〈M〉, that is,



J.C. Peyen et al. / Advances in Applied Mathematics 159 (2024) 102739 51
Fig. 3. Illustration of convergence to the limit shape for q = 1 and q = 2 (in the online version shown in blue 
and red, respectively). The step plots depict the upper boundary of the scaled Young diagrams (see (5.24)), 
while the smooth lines represent the limit shape ω∗

q (x) = 1 − G1/q(x) (see (5.22)). The corresponding 
partitions λ ∈ Λ̌q were sampled using Algorithm 1 with hyper-parameters 〈M〉 = 50 and 〈N〉 = 2.5 · 105

(q = 1) or 〈N〉 = 1.25 · 107 (q = 2); in both cases, κ = 0.01 (cf. Assumption 3.2). The respective sample 
weight and length are Nλ = 236,369, Mλ = 52 (q = 1) and Nλ = 12,733,323, Mλ = 45 (q = 2).

Ỹ ∗
λ (x) :=

√
〈M〉

(
Ỹλ(x) − Ez

(
Ỹλ(x)

)) d−→ N
(
0, ω∗

q (x)
)
. (5.32)

Proof. Consider the characteristic function of Ỹ ∗
λ (x),

ϕz(t;x) := Ez

[
exp

(
i t Ỹ ∗

λ (x)
)]
, t ∈ R. (5.33)

Substituting the definition (5.32) and using (5.23), (5.24) and (5.25), this is transformed 
as

ϕz(t;x) = exp
{
−i t̃Ez

(
Yλ(Ax)

)}
Ez

[
exp

(
i t̃ Yλ(Ax)

)]
, t̃ := t√

〈M〉
, (5.34)

and furthermore (see (5.27))

Ez

(
Yλ(Ax)

)
=

∑
�≥Ax

z�1z2

1 + z�1z2
. (5.35)

Next, similarly to (5.6) and (5.7) the last expectation in (5.34) is expressed as

Ez

⎡⎣exp

⎛⎝i t̃
∑
�≥Ax

ν�

⎞⎠⎤⎦ =
∏

�≥Ax

1 + z�1z2 e i t̃

1 + z�1z2
=

∏
�≥Ax

(
1 + w�(t̃)

)
, (5.36)

where
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w�(t) := z�1z2

1 + z�1z2
(e it − 1). (5.37)

Choosing the principal branch of the logarithm and using (5.35) and (5.36), from (5.34)
we get

logϕz(t;x) = −i t̃
∑
�≥Ax

z�1z2

1 + z�1z2
+

∑
�≥Ax

log
(
1 + w�(t̃)

)
. (5.38)

In turn, similarly to (5.12) we obtain

∑
�≥Ax

log
(
1+w�(t̃)

)
=

(
i t̃− 1

2 t̃
2 +O(t̃3)

) ∑
�≥Ax

z�1z2

1 + z�1z2
+O(t̃2)

∑
�≥Ax

z2�
1 z2

2
(1 + z�1z2)2

. (5.39)

As was shown in the proof of Theorem 5.4 (see (5.27), (5.28)) and (5.29)),

∑
�≥Ax

z�1z2

1 + z�1z2
∼ 〈M〉ω∗

q (x),
∑
�≥Ax

z2�
1 z2

2
(1 + z�1z2)2

= 〈M〉O(κ1/q) = 〈M〉 o(1). (5.40)

Using (5.40) and recalling the notation of t̃ in (5.34), from (5.39) we get

∑
�≥Ax

log
(
1 + w�(t̃)

)
= i t̃

∑
�≥Ax

z�1z2

1 + z�1z2
− 1

2 t
2ω∗

q (x) + o(1).

Finally, returning to (5.38), we see that logϕz(t; x) → −1
2 t

2ω∗
q (x), which proves the 

theorem. �
Remark 5.3. The reason for using in (5.32) the intrinsic centering Ez

(
Ỹλ(x)

)
rather than 

the limit shape value ω∗
q (x) is that the error terms in the asymptotic estimates (5.40) are 

of order 〈M〉κ1/q, where κ = 〈M〉q+1/〈N〉 = o(1) (see Assumption 5.1). Combined with 
the factor t̃ = O

(
〈M〉−1/2), this produces the error bound of order 〈M〉1/2κ1/q, which is 

not guaranteed to be small. Thus, a stronger assumption to this end is 〈M〉1/2κ1/q = o(1), 
that is, 〈M〉1+3q/2/〈N〉 = o(1). On the other hand, lifting any control over the length 
may restore the limit-shape centering; for example, for q = 1 (ordinary strict partitions), 
a central theorem of that kind was proved in [81].

Theorem 5.6 can be extended to incorporate convergence of finite-dimensional distri-
butions.

Theorem 5.7. Under Assumptions 3.2 and 5.1, the random process 
(
Ỹ ∗
λ (x), x > 0

)
de-

fined in (5.32) converges, in the sense of convergence of finite-dimensional distributions, 
to a Gaussian random process (Ξ(x), x > 0) with zero mean and the covariance function

K(x, x′) := Cov
(
Ξ(x), Ξ(x′)

)
= min{ω∗

q (x), ω∗
q (x′)}, x, x′ > 0. (5.41)
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In turn, the process (Ξ(x)) has the same distribution as the Brownian motion (Bω∗
q (x)), 

where (Bt) is a standard Brownian motion, i.e. with mean zero and covariance function 
Cov(Bt, Bt′) = min{t, t′}.

Proof. Like in the proof of Theorem 5.5, observe that for 0 < x1 < x2 < · · · < xm the 
increments

Ỹ ∗
λ (x1) − Ỹ ∗

λ (x2), . . . , Ỹ ∗
λ (xm−1) − Ỹ ∗

λ (xm), Ỹ ∗
λ (xm)

are mutually independent due to independence of the multiplicities (ν�) under the Boltz-
mann measure Pz (see (5.25)). In particular, noting that for each k ≥ 1(

Ỹ ∗
λ (xk) − Ỹ ∗

λ (xk+1)
)

+ Ỹ ∗
λ (xk+1) = Ỹ ∗

λ (xk),

independence implies that the characteristic function of Ỹ ∗
λ (xk) − Ỹ ∗

λ (xk+1) is given by 
the ratio ϕz(t; xk)/ϕz(t; xk+1) (see the notation (5.33)), and by Theorem 5.6 it follows 
that

Ỹ ∗
λ (xk) − Ỹ ∗

λ (xk+1)
d−→ N

(
0, ω∗

q (xk) − ω∗
q (xk+1)

)
(k ≥ 1).

Applying a suitable linear transformation, we conclude that the vector 
(
Ỹ ∗
λ (x1), . . . ,

Ỹ ∗
λ (xm)

)
converges in distribution to a normal vector 

(
Ξ(x1), . . . , Ξ(xm)

)
, such that 

E
(
Ξ(xk)

)
= 0 (k = 1, . . . , m) and, for 1 ≤ j ≤ k ≤ m,

Cov
(
Ξ(xj), Ξ(xk)

)
= Var

(
Ξ(xk)

)
= ω∗

q (xk) = min{ω∗
q (xj), ω∗

q (xk)}

(cf. (5.41)), because x 	→ ω∗
q (x) is a decreasing function.

Finally, notice that the process 
(
Bω∗

q (x)
)

has zero mean and the same covariance 
function,

Cov
(
Bω∗

q (x), Bω∗
q (x′)

)
= min{ω∗

q (x), ω∗
q (x′)}, x, x′ > 0,

which completes the proof. �
5.3. A joint limit theorem for the extreme parts (growing expected length)

We use the notation λmin and λmax (cf. Section 4.3).

Theorem 5.8. Under Assumptions 3.2 and 5.1, set

bq :=
(

q 〈M〉
Γ(1/q)

)q

, Bq := log 〈M〉 −
(
1 − 1

q

)
log log 〈M〉 − log Γ(1/q), (5.42)

and consider the normalized versions of λmin and λmax defined as follows,
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λ∗
min := γ bq λmin, λ∗

max := γλmax −Bq . (5.43)

Then λ∗
min and λ∗

max are asymptotically independent under the measure Pz as 〈N〉 → ∞
and their marginal limiting laws are given, respectively, by a Weibull distribution with 
shape parameter 1/q and the standard double-exponential (Gumbel) distribution,

Pz(λ∗
min > x1) → exp

(
−x

1/q
1

)
, x1 ≥ 0, (5.44)

Pz(λ∗
max ≤ x2) → exp

(
−e−x2

)
, x2 ∈ R. (5.45)

Proof. For x1 ≥ 0 and x2 ∈ R, set

�∗1(x1) := min{� ∈ Nq : � > x1/(γ bq)}, �∗2(x2) := min{� ∈ Nq : � > (Bq + x2)γ−1}.

Recalling the asymptotic relations (3.25) and (3.22), observe that

γ �∗1(x1) = x1

bq
+ O(γ) ∼ x1

(
Γ(1/q)
q 〈M〉

)q

, (5.46)

γ �∗2(x2) = Bq + x2 + O(γ) ∼ log 〈M〉. (5.47)

Like in the proof of Theorem 4.4, we have

Pz(λ∗
min > x1, λ

∗
max ≤ x2) = exp

{
−
( ∞∑

�∈Nq

−
∞∑

�≥�∗1(x1)

+
∞∑

�≥�∗2(x2)

)
log

(
1 + z�1z2

)}
.

Applying Lemmas 3.3 and 3.5 (with γ = − log z1 and η = z2) and using the asymptotic 
relation (3.35), we obtain

− log Pz(λ∗
min > x1, λ

∗
max ≤ x2) ∼

〈M〉
Γ(1/q)

⎛⎜⎝ γ�∗1(x1)∫
0

+
∞∫

γ�∗2(x2)

⎞⎟⎠u1/q−1 e−u du. (5.48)

Integrating by parts and using the asymptotic relation (5.46), we obtain

γ�∗1(x1)∫
0

u1/q−1 e−u du = q

γ�∗1(x1)∫
0

e−u d(u1/q) ∼ q
(
γ �∗1(x1)

)1/q ∼ Γ(1/q)x1/q
1

〈M〉 . (5.49)

Next, using (5.47) we get

∞∫
γ�∗2(x2)

u1/q−1 eu du ∼
(
γ �∗2(x2)

)1/q−1 e−γ�∗2(x2)

∼ B1/q−1
q e−(Bq+x2) ∼ Γ(1/q) e−x2

〈M〉 . (5.50)
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Hence, substituting (5.49) and (5.50) into (5.48) yields

− log Pz(λ∗
min > x1, λ

∗
max ≤ x2) ∼ x

1/q
1 + e−x2 ,

which completes the proof of the theorem. �
Remark 5.4. The necessary use of the intrinsic calibration parameter γ = − log z1 in 
Theorem 5.8 may be a little disappointing. This can be easily improved under a slightly 
stronger condition on slow growth of 〈M〉 than in Assumption 5.1; namely, κ1/q log〈M〉 =
o(1), that is, 〈M〉q+1 (log〈M〉)q/〈N〉 = o(1). In this case, the normalization (5.43) can 
be written more explicitly by replacing γ with γ0 = 〈M〉/(q 〈N〉) (see (3.34)).

Corollary 5.9. Under the hypotheses of Theorem 5.8, the following law of large numbers 
holds,

〈M〉λmax

q 〈N〉 log〈M〉
p−→ 1, (5.51)

where the symbol p−→ indicates convergence in Pz-probability.

Proof. Theorem 5.8 implies that γλmax/Bq
p−→ 1, and the claim (5.51) follows by noting 

that γ ∼ γ0 = 〈M〉/(q 〈N〉) and Bq ∼ log〈M〉. �
Remark 5.5. Theorem 5.8 indicates that, under the condition of slow growth of 〈M〉, the 
smallest part λmin of a Pz-typical partition λ ∈ Λ̌q “lives” on the scale A∗ = (γ bq)−1 ∝
〈N〉/〈M〉q+1 = κ−1. On the other hand, Corollary 5.9 shows that the scale of variation 
of the largest part λmax is given by A∗ = Bq γ

−1 ∝ 〈N〉 log〈M〉/〈M〉. This is to be 
compared with the typical behavior in the bulk of the partition “spectrum”, where the 
scale of variation is given by A ∼ γ−1 ∝ 〈N〉/〈M〉.

Remark 5.6. Continuing an asymptotic linkage between the cases of fixed or slowly 
growing parameter 〈M〉, observed above in Remark 5.1, the limiting distributions of 
Theorem 4.4 formally conform to Theorem 5.8 in the limit as 〈M〉 → ∞. Indeed, using 
(4.43) we have

− logGmax(x + Bq) = 〈M〉 Γ(1/q, x + Bq)
Γ(1/q)

∼ 〈M〉
Γ(1/q) (x + Bq)1/q−1 e−x−Bq

∼ 〈M〉
Γ(1/q) (log〈M〉)1−1/q e−x · e−Bq = e−x,

according to the definition of Bq in (5.42). Similarly, using (4.44) and (5.49) we have
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− logGc
min(x/bq) = 〈M〉

(
1 − Γ(1/q, x/bq)

Γ(1/q)

)

∼ 〈M〉q
Γ(1/q)

(
x

bq

)1/q

= x1/q,

by the definition of bq in (5.42).

Remark 5.7 (Possible generalization to non-integral powers). The reader may have ob-
served that our main results (including Theorems 4.1 and 5.1 about joint limiting laws of 
weight Nλ and length Mλ; Theorems 4.4 and 5.8 about the joint asymptotics of extreme 
parts; the limit shape Theorems 5.5 and 5.6; and the cardinality Theorem 4.3) continue 
to make sense for any real power q > 0, although our proofs proceed from the assump-
tion that q is integer, which makes the partition model combinatorically well defined. 
The interest in non-integral powers is not new but was mostly motivated by applications 
in statistical physics [1,19,67]. A mathematically meaningful interpretation of partitions 
with non-integral power parts may be based on the idea recently proposed by Lipnik 
et al. [54], whereby the multiplicative Boltzmann structure is introduced on the hidden 
“substrate” N = {k}, from which the q-power parts of the random partition λ = (�i) are 
formed as � = �kq�, with any q ∈ R+. We will review and extend our results under this 
approach in a separate paper.

6. Application to random sampling

Boltzmann sampling is a powerful technique conceptualized, streamlined and popu-
larized by Duchon et al. [25] in the context of single-parameter combinatorial structures 
(for multi-parametric extensions, see Bendkowski et al. [9] and the references therein). 
Random integer partitions with controlled expected weight and length provide an “ex-
actly soluble” instance of a two-parametric combinatorial structure, where the issues of 
Boltzmann sampling implementation and efficiency can be analyzed in some depth.

Specifically, in this section we discuss sampling from the Boltzmann distribution on 
partition spaces Λ̌q (i.e., into distinct q-power parts), calibrated under the predefined 
hyper-parameters 〈N〉 and 〈M〉, which have the meaning of the expected weight and 
length, respectively. The two controlling parameters in question are z1 and z2, which are 
amenable to asymptotic analysis as was shown in Section 3.3. Once these parameters are 
fixed, due to the mutual independence of the multiplicities (ν�) (see Proposition 2.1 and 
Lemma 3.1), the Boltzmann sampling is essentially reduced to an iterated independent 
testing of potential parts � = jq via dichotomous (Bernoulli) random trials with success 
probabilities Pz(ν� = 1) = z�1z2 (1 + z�1z2)−1. The practical implementation of such 
sampling algorithms thus relies on a random number generator Ber(p), in each call 
producing an independent pseudo-random value 1 or 0 with probabilities p and 1 − p, 
respectively.
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It is convenient to distinguish between the free samplers and the rejection samplers, 
with the former just producing independent random realizations of partitions under the 
said Boltzmann distribution, and the latter comprising one or more rejection loops that 
iterate a free Boltzmann sampler until the desired targets are met. We discuss these two 
versions in Sections 6.1 and 6.2, respectively.

Computer codes were implemented using the programming language C and Intel®
oneAPI DPC++ compiler, and run on a desktop CPU Intel® CoreTM i5-10600 (processor 
base frequency 3.30 GHz, turbo boost frequency 4.80 GHz). Numerical calculations were 
carried out using MapleTM (Release 2022.1, licensed to the University of Leeds).

6.1. Free sampler

In this subsection, we delineate a free Boltzmann sampler (see Algorithm 1 below) 
under the calibration through the hyper-parameters 〈N〉 and 〈M〉. It should be noted 
that, despite an intuitive appeal of iterated Bernoulli-type tests, there are some imple-
mentation concern that have to be addressed. We discuss them below before presenting 
the algorithm.

6.1.1. Correcting the bias
The first issue to consider is that of choosing the control parameters z1 and z2 to ensure 

that the sampler is unbiased, that is, Ez(Nλ) = 〈N〉 and Ez(Mλ) = 〈M〉. Unfortunately, 
we can solve this set of equations only asymptotically (see Lemma 3.1). In a “crude” 
version of Algorithm 1, we use the leading terms in the asymptotics by setting (cf. (3.25)
and (3.26))

z1 = e−γ0 , z2 = 〈M〉 γ1/q
0

Γ(1 + 1/q) , (6.1)

where γ0 = 〈M〉/(q 〈N〉). Inevitably, this causes a bias in the resulting expectations. More 
precisely, the first source of this bias clearly comes from dropping the (positive) remainder 
terms R1(z) and R2(z) in the approximate series representations of the aforementioned 
expected values (see equations (3.27) and (3.30)). A further error occurs when replacing 
the resulting series with the corresponding integrals, using Lemma 3.2.

In fact, one can show that the overall bias due to (6.1) is always negative. Indeed, 
recalling that Δ0(γ) < 0 (see (3.11)11), we have

Ez(Mλ) =
∑
�∈Nq

z�1z2

1 + z�1z2
< z2

∑
�∈Nq

z�1 = z2

∞∑
j=1

e−γ0 j
q

< z2

∞∫
0

e−γ0x
q

dx = z2 Γ(1/q)
q γ

1/q
0

= 〈M〉,

11 The inequality Δ0(γ) < 0 can also be seen directly by monotonicity of the function x �→ e−γxq

.
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Table 1
Expected values of Nλ and Mλ for q = 1 and q = 2 under two choices of the calibrating parameters: 
using the leading asymptotic terms (6.1) and after a heuristic correction (6.3).
q = 1 q = 2
〈N〉 = 106 〈Ñ〉 .= 1,002,499.50 〈N〉 = 107 〈Ñ〉 .= 10,315,391.57

〈M〉 = 100 〈M̃〉 .= 100.4999 〈M〉 = 50 〈M̃〉 .= 53.1539
z1

.= 0.9999000 z̃1 = 0.9998998 z1
.= 0.9999975 z̃1

.= 0.9999974
z2

.= 0.010000 z̃2
.= 0.0100750 z2

.= 0.0892062 z̃2
.= 0.0962720

Ez(Nλ) .= 997,510.70 Ez̃(Nλ) .= 999,985.73 Ez(Nλ) .= 9,699,070.63 Ez̃(Nλ) .= 9,981,802.71
Ez(Mλ) .= 99.498326 Ez̃(Mλ) .= 99.992019 Ez(Mλ) .= 47.018388 Ez̃(Mλ) .= 49.754495

according to the parameter choice (6.1). Turning to Ez(Nλ), recall from (3.31) that the 
error term −R2(z) is negative, and furthermore,

R2(z) ∼ z2
2

∑
�∈Nq

�z2�
1 ∼ z2 q 〈M〉γ1/q

0
Γ(1/q) · Γ(1 + 1/q)

q γ
1+1/q
0

= z2 〈M〉
q γ0

. (6.2)

On the other hand, the error due to replacing the sum 
∑

� �z
�
1 in (3.30) by the correspond-

ing integral is bounded, according to (3.16), by z2 O
(
γ
−1+1/q
0

)
. Since 〈M〉 is bounded 

away from zero, it follows that the R2-term (6.2) is dominant and, therefore, the overall 
bias in targeting 〈N〉 is negative.

A practical recipe towards correcting the bias may be to move the error terms R1(z)
and R2(z) to the left-hand side of equations in (3.27) and (3.30), for simplicity using their 
integral approximations. Effectively, this amounts to redefining the hyper-parameters,

〈Ñ〉 := 〈N〉 + z2
2

∑
�∈Nq

�z2�
1 ≈ 〈N〉 + z2

2

∞∫
0

xq e−2γ0x
q

dx = 〈N〉 + 〈M〉2 γ1/q
0

21/q Γ(1/q)
,

〈M̃〉 := 〈M〉 + z2
2

∑
�∈Nq

z2�
1 ≈ 〈M〉 + z2

2

∞∫
0

e−2γ0x
q

dx = 〈N〉 + q 〈M〉2 γ1/q
0

21/q Γ(1/q)
.

Accordingly, we redefine γ̃0 = 〈M̃〉/(q 〈Ñ〉) and (cf. (6.1))

z̃1 = e−γ̃0 , z̃2 = q 〈M̃〉 γ̃0
1/q

Γ(1/q) . (6.3)

A numerical illustration of the proposed modification is presented in Table 1, showing a 
significant reduction of bias. The expected values were computed from the exact series 
expansions (3.27) and (3.30) using Maple.

If the remaining (small) bias is still an issue, a further recalibration can be carried 
out by a suitable refinement of the solution z = (z1, z2) to the equations (3.27) and 
(3.30), for instance, by using a two-dimensional Newton–Raphson method. For a general 
approach to the multidimensional tuning of parameters based on convex optimization, 
see Bendkowski et al. [9].
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6.1.2. Truncation of the parts pipeline
We deal with a finitary computation, so should rule out the risk of indefinite pro-

cessing. That is to say, the algorithm must have a well-defined stopping rule that would 
guarantee a finite-time termination. In a free sampler, the sequence of productive out-
comes in successive Bernoulli trials (i.e., with sample multiplicities ν� = 1 corresponding 
to non-zero parts) is Pz-a.s. finite (see Lemma 2.2). More precisely, the last successful 
trial selects the largest part λmax, after which the testing settles down to pure idling. 
The Pz-distribution of λmax is given by (cf. Sections 4.3 and 5.3)

Pz(λmax ≤ L) = Pz(ν� ≡ 0 for all � > L)

=
∏
�>L

1
1 + z�1z2

= 1
F (z)

∏
�≤L

(1 + z�1z2), (6.4)

where F (z) =
∏

�∈Nq (1 + z�1z2) is the generating function of the partition space Λ̌p

(see (3.2)). It is also easy to see that conditioning on λmax = jq0 does not change the 
distribution of the preceding multiplicities {νjq , 1 ≤ j ≤ j0 − 1}, that is, they remain 
mutually independent and with Bernoulli distributions (3.1). Thus, if the numerical 
value of F (z) can be calculated in advance, which is a common convention in computing 
known as an oracle (see, e.g., [25,31,9]), then we can sample the random value λmax
using formula (6.4) and then sample independently the preceding candidate parts via 
the respective Bernoulli trials. Unfortunately, this approach embeds a computational 
error through the numerical calculation of F (z), so it is not quite “exact”; besides, 
convergence of the infinite product may not be fast, given that the parameter z1 is close 
to 1 (see (3.25)). Specifically, using Lemma 3.5 one can check that the truncation error 
arising from a partial product up to �∗ is of order 〈M〉 (γ�∗)1/q−1e−γ�∗ , which dictates 
that �∗ be chosen much bigger than γ−1 ∼ q 〈N〉/〈M〉.

An alternative idea is to truncate the pipeline of potential parts � ∈ Nq subject to 
testing at an appropriate threshold L (see Section 2.5), so that the Bernoulli testing only 
runs over � ≤ L. A simple pragmatic solution is to choose the threshold L so that the 
probability of exceeding it in an indefinite free sampler is small enough, that is,

Pz(λmax > L) ≤ δ, (6.5)

where the confidence tolerance δ > 0 can be chosen in advance to be as small as desired. 
Then the corresponding threshold L = L(δ) can be determined from a suitable limit 
theorem for the largest part, namely, Theorem 4.4 if 〈M〉 > 0 is fixed, or Theorem 5.8
for slow growth of 〈M〉. In the former case, threshold L is determined by the asymptotic 
equation (see (4.43))

Γ(1/q, γ0L) = Γ(1/q)
〈M〉 · log 1

1 − δ
, (6.6)

where, as before, γ0 = 〈M〉/(q 〈N〉). In the latter case, we obtain from (5.45)
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Table 2
Threshold L for the largest part λmax with confidence probability 1 − δ, calculated 
from expressions (6.8) (q = 1) and (6.6) or (6.7) (q = 2) and rounded down to the 
nearest q-th power.

q = 1, 〈N〉 = 106, 〈M〉 = 100 q = 2, 〈N〉 = 107, 〈M〉 = 50
δ L (6.8) δ L (6.6) L (6.7)
0.1 68,555 0.1 1,890,625 = 13752 1,962,801 = 14012

0.01 92,053 0.01 2,762,244 = 16622 2,900,209 = 17032

0.001 115,124 0.001 3,636,649 = 19072 3,825,936 = 19562

0.0001 138,154 0.0001 4,515,625 = 21252 4,743,684 = 21782

L = 1
γ0

(
Bq − log log 1

1 − δ

)
, (6.7)

where (see (5.42))

Bq = log 〈M〉 −
(
1 − 1

q

)
log log 〈M〉 − log Γ(1/q).

Note that for q = 1 the bounds (6.6) and (6.7) coincide, reducing to

L = 1
γ0

(
log 〈M〉 − log log 1

1 − δ

)
. (6.8)

An illustration of evaluation of the threshold L is presented in Table 2 for q = 1 and 
q = 2. The equation (6.6) was solved numerically using Maple. One can observe from 
the table that while the value δ = 10−k (k = 1, 2, . . . ) is decreasing geometrically, the 
growth of threshold L is only about linear. Intuitively, this is explained by the fact that 
the confidence probability 1 − δ enters expressions (6.6) and (6.7) under the logarithm, 
that is, as log (1 − δ). More precisely, it readily follows from (6.7) that

L− Bq

γ0
∼ 1

γ0
log 1

δ
(δ → 0+).

Likewise, equation (6.6) asymptotically solves to yield

L− log 〈M〉
γ0 Γ(1/q) ∼ 1

γ0
log 1

δ
(δ → 0+).

According to Lemma 2.3 (with Λ̃† = Λ̌L), the output of a truncated sampling algo-
rithm follows the Boltzmann distribution with a smaller source set AL = {� ∈ Nq : � ≤
L}, which nonetheless approximates well the target Boltzmann distribution Pz (see 
Lemma 2.6). One should be wary though that truncation contributes to the negative 
bias (see (2.31) and (2.32)), which may require a refined calibration through the param-
eters z1 and z2.

Note that the confidence guarantee 1 − δ as discussed above is valid only in the 
case of a single output instance. If the purpose of the free algorithm is to produce an 
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independent sample of, say, k random Boltzmann partitions, then the overall confidence 
probability is approximately given by (1 − δ)k, which may be exponentially small if k is 
large while δ stays fixed. A simple upper bound for the error probability is based on the 
Bernoulli inequality, yielding 1 −(1 −δ)k ≤ kδ. This motivates the well-known Bonferroni 
correction, which amounts to choosing the individual error probability δ0 = δ/k in order 
to ensure the overall error probability not exceeding δ. As an example, if k = 1000
and we would like to guarantee the overall error probability bound δ = 0.1, then the 
individual error probability should be taken as δ0 = 0.0001. The approximation is quite 
accurate here, as the exact solution is δ0

.= 0.000105355. Clearly, switching from δ to 
δ0 leads to a higher threshold L. For instance, Table 2 shows that in the case q = 1
the suitable threshold L needs to double. In general, the increase of L due to multiple 
errors is not really dramatic because of the logarithmic dependence on δ mentioned 
above.

Another unwelcome outcome of the Bernoulli testing is that it may not return any 
parts at all, which has a positive Pz-probability even in the infinite sequence of tests 
(see Remark 3.3). This is not critical, as the sampling cycle can be repeated if nec-
essary. However, it may be wasteful and can be easily rectified by adopting a similar 
approach based on confidence. Specifically, one can set a lower cutoff L0 such that the 
run of the sampler is terminated, and the cycle is repeated, if the Bernoulli tests fail 
to select at least one (non-zero) part � ≤ L0. To this end, we choose L0 in such a 
way that Pz(λmin > L0) ≤ δ, where δ > 0 is small enough (cf. (6.5)). Again refer-
ring to the limit theorems regarding the smallest part, we obtain from Theorem 4.4 (cf. 
(6.6))

Γ(1/q) − Γ(1/q, γ0L0) = Γ(1/q)
〈M〉 log 1

δ
, (6.9)

and from Theorem 5.8 (cf. (6.7))

L0 = 1
γ0

(
Γ(1/q)
q 〈M〉 log 1

δ

)q

. (6.10)

A numerical illustration of the confident lower threshold L0 is presented in Table 3
for q = 1 and q = 2. The equation (6.9) was solved numerically using Maple. The match 
between the results produced via equations (6.9) and (6.10) is quite close, especially for 
q = 2. One should also observe a significant difference between the thresholds L0 and L, 
which underpins a considerable computational saving due to the lower cutoff, activated 
whenever the sampler fails to produce at least one positive part up to L0.

Finally, if both cutoffs L and L0 are exercised as described above then, due to the 
asymptotic independence of λmax and λmin, the overall confidence probability is (asymp-
totically) given by (1 −δ)2 = 1 −2δ+δ2, hence the resulting error probability is bounded 
by 2δ.
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Table 3
Asymptotic threshold L0 for the smallest part λmin with confidence probability 
1 − δ, calculated from expressions (6.9) or (6.10), and rounded down to the 
nearest q-th power.

q = 1, 〈N〉 = 106, 〈M〉 = 100 q = 2, 〈N〉 = 107, 〈M〉 = 50
δ L0 (6.9) L0 (6.10) δ L0 (6.9) L0 (6.10)
0.1 232 230 0.1 625 = 252 625 = 252

0.01 471 460 0.01 2,601 = 512 2,601 = 512

0.001 715 690 0.001 5,929 = 772 5,929 = 772

0.0001 966 921 0.0001 10,816 = 1042 10,609 = 1032

6.1.3. Free sampling algorithm
A free Boltzmann sampler is presented below in pseudocode as Algorithm 1. For 

simplicity, the algorithm incorporates only the upper threshold L selected in advance 
for a given confidence probability 1 − δ. As discussed in Section 6.1.2, this is essential 
to ensure termination of the code, but for the sake of optimization a lower cutoff L0
can also be included without difficulty. As explained above, the confidence probability 
should be chosen carefully to match a possibly multiple output.

Algorithm 1: FreeSampler(q, 〈N〉, 〈M〉, L).

Input: integer q, real 〈N〉, 〈M〉, L
Output: partition λ ∈ Λ̌q

L, weight Nλ, length Mλ

1 integer array λ[ ];
2 real z1, z2, γ0, q ;
3 γ0 ← 〈M〉/(q 〈N〉);
4 z1 ← e−γ0 , z2 ← q 〈M〉γ1/q

0 /Γ(1/q);
5 integer j∗, j, N , M ;
6 j∗ ← �L1/q�;
7 N ← 0, M ← 0;
8 for j from j∗ to 1 by −1 do
9 p ← zjq

1 z2 (1 + zjq

1 z2)−1;
10 if Ber(p) = 1 then
11 N ← N + jq;
12 M ← M + 1;
13 λM ← jq;
14 end
15 end
16 Nλ ← N , Mλ ← M ;
17 return (λ, Nλ, Mλ)

The code structure is fairly straightforward and consists in a single cycle of sequential 
Bernoulli tests over potential parts � ∈ Nq. It is convenient to do this via downward 
scoping in view of our convention to enumerate the partition parts in decreasing order. 
Because the resulting length of the output partition λ = (λi) is unknown in advance, 
the space for the corresponding integer array is defined in the code as λ[ ], that is, 
through a dynamically allocated memory. Finally, the calibration parameters z1 and z2
are specified using the leading-term formulas (6.1); if desired, these can be replaced by 
the bias-correcting values (6.3) or by any other, more refined choices.
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By design, the output of Algorithm 1 is a random partition λ ∈ Λ̌q
L = Λ̌q ∩

{(λi) : λmax ≤ L}. It has a Boltzmann distribution on the space Λ̌q
L, with expected 

values of weight Nλ and length Mλ close to the predefined hyper-parameters 〈N〉 and 
〈M〉, respectively. As discussed in Section 2.5, this distribution approximates (in to-
tal variation) the Boltzmann distribution on the infinite partition space Λ̌q, which may 
suffice for the sampling purposes at hand.

6.1.4. Validation of Algorithm 1
The output performance of the code in Algorithm 1 was visually monitored via the 

marginal histograms for the sample weight Nλ and length Mλ (Fig. 4), as well as by 
the bivariate histograms and frequency level plots of the sample pairs (Nλ, Mλ) (Fig. 5). 
The numerical illustration was carried out in the case of square parts, q = 2 (selected for 
computational convenience in order to reduce the completion time), and in two different 
regimes with regard to the hyper-parameter 〈M〉, that is, “fixed” and “slow growth”, illus-
trated by 〈M〉 = 5 (〈N〉 = 12,500) and 〈M〉 = 50 (〈N〉 = 107), yielding for the parameter 
κ = 〈M〉3/〈N〉 values κ = 0.01 and κ = 0.0125, respectively (cf. Assumption 5.1). The 
algorithm was run at a very low confidence tolerance (error probability) δ = 10−8 and 
with the corresponding truncation value L calculated using formulas (6.6) or (6.7) ac-
cording to the regime at hand, yielding L = 2992 = 89, 401 and L = 2,9032 = 8,427,409, 
respectively (cf. Table 2).

The empirical results (with 105 output partitions in both cases) were compared with 
the theoretical predictions from Theorems 4.1 and 5.1. The marginal histogram plots for 
Nλ and Mλ shown in Fig. 4 depict bell-shaped unimodal empirical distributions with 
the sample modes noticeably shifted to the left of the calibration hyper-parameters 〈N〉
and 〈M〉, respectively. The discrepancy between the modes and the means is observed 
especially well in the weight plots (the more so for smaller 〈M〉), which is essentially due 
to the fact that the underlying gamma and Poisson distributions are right-skewed; for 
example, the mode of Gamma(α) is given by max{α− 1, 0} whereas the mean is α. An-
other (minor) reason for a negative bias is due to a certain miscalibration, as was pointed 
out in Section 6.1.1. In line with theoretical predictions, this mismatch is vanishing with 
the growth of the hyper-parameters 〈N〉 and 〈M〉, together with the improving accuracy 
of the normal approximations, both for Nλ and Mλ. It is also interesting to note that the 
mean-gamma approximation Gamma(〈M〉) (see Section 4.1) nearly perfectly matches 
the exact compound Poisson-Gamma distribution for 〈M〉 = 50 (see Fig. 4(b), left); for 
smaller values of 〈M〉, this approximates is rather crude, however it still captures well 
the mode of the Poisson-Gamma distribution and also its right shoulder (see Fig. 4(a), 
left).

A remarkable exception to the unimodality of the plots in Fig. 4 is the compound 
Poisson-Gamma plot for the weight Nλ, with a relatively small value of 〈M〉 = 5 (see 
Fig. 4(a), left), where one can clearly see a singularity at zero (cf. Section 4.1). This 
theoretical prediction is supported by the empirical results, with an obvious excess of 
smaller weights. With 〈M〉 = 5 and 〈N〉 = 12,500, the local minimum of the theoretical 
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Fig. 4. Marginal histograms for the weight Nλ (left) and length Mλ (right) for random samples (of size 
105 each) from the partition space Λ̌q (q = 2), simulated using a free Boltzmann sampler as set out 
in Algorithm 1. Color coding (online version): blue designates the limiting distributions under the “fixed” 
regime, that is, compound Poisson-Gamma (left) and Poisson (right); red indicates a normal approximation; 
magenta depicts a mean-gamma approximation (see Section 4.1). In the black-and-white version, the normal 
curves on the left are identifiable by a noticeable positive shift.

density g(x) defined in (4.17) occurs at x0
.= 0.10340 with value12 g(x0) 

.= 0.19632, which 
corresponds to weight n0 = �x0/γ0� = 517. If the density g(x) continued to decay to 
the left of x0, this would predict the (asymptotic) probability of getting weights smaller 
than n0 (together with an empty partition) loosely bounded by x0 g(x0) +π0

.= 0.02704. 
But the actual compound Poisson-Gamma probability is higher, G(x0) 

.= 0.03120 (see 
(4.15)). The excess of “small” partitions is reminiscent of a partition interpretation of 
the Bose–Einstein condensation (see [80]). As already mentioned in Section 4.1, this is 
a truly finite-length phenomenon, which vanishes as 〈M〉 → ∞ (cf. Fig. 4(b), where 
〈M〉 = 50).

12 Note that the asymptotic formula (4.18) gives a pretty accurate approximation g(x0) ≈ 0.14334.
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Fig. 5. Joint sampling distribution of weight Nλ and length Mλ for q = 2, 〈M〉 = 50 and 〈N〉 = 107 (cf. 
marginal plots in Fig. 4(b)). A random Boltzmann sample of partitions λ ∈ Λ̌q (of size 105) was simulated 
using Algorithm 1.

The bivariate plots in Fig. 5 (for 〈M〉 = 50) appear to be approximately consistent 
with the asymptotically predicted (standardized) confidence ellipses of the form

Lα = {x ∈ R2 : xK−1
q x� ≤ χ2

2(1 − α)}, (6.11)

where K−1
q is the inverse covariance matrix (5.2), and χ2

2(1 −α) is the quantile of the chi-
squared distribution with two degrees of freedom, corresponding to confidence probability 
1 −α. The latter distribution simplifies to an exponential distribution with mean 2, hence 
χ2

2(1 −α) = 2 log (1/α). According to Theorem 5.1, a sample point (N∗
λ , M

∗
λ) belongs to 

the ellipse (6.11) approximately with probability 1 − α, where the standardized values 
N∗

λ , M
∗
λ are defined in (5.1). The inverse of Kq is easily computed,

K−1
q = q + 1

q

⎛⎜⎝ 1 −1√
q + 1

−1√
q + 1

1

⎞⎟⎠,

and the confidence ellipse (6.11) specializes as follows,

N∗2
λ − 2N∗

λM
∗
λ√

q + 1
+ M∗2

λ ≤ 2q
q + 1 log 1

α
.

A closer inspection of the level plots in Fig. 5(b) reveals some elongation of the 
frequency level sets towards bigger values of the weight Nλ, thus indicating a bit of 
discrepancy with the predicted elliptical shape. This observation is confirmed by com-
parison of the marginal histograms of Nλ and Mλ in Fig. 4, where the latter is reasonably 
symmetric while the former is noticeably skewed to the right. A heuristic explanation of 
such an effect may be based on noticing from formulas (2.7) that, while the length Mλ

is built by summation of multiplicities ν�, the weight Nλ involves size-biased terms �ν�, 
which pinpoint skewing the distribution to the right.
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A well-localized unimodal nature of the distributions behind the outputs Nλ and Mλ

is sometimes referred to as a bumpy type [25], characterized by an asymptotically large 
signal-to-noise ratio (SNR) in response to a large signal,13

SNR(X) := [E(X)]2

Var(X) → ∞, E(X) → ∞. (6.12)

Here, the notation X designates a random output in question (such as the size), which 
has a large expected value. Following definition (6.12) and applying Theorem 3.9, we 
readily get

SNR(Nλ) ∼ 〈N〉2

(q + 1) 〈N〉2/〈M〉
= 〈M〉

q + 1 , SNR(Mλ) ∼ 〈M〉2

〈M〉 = 〈M〉 ,

so that under Assumption 5.1 (slow growth of 〈M〉) each of the marginal SNRs tends to 
infinity.

In the multivariate case, the SNR is usually defined in the literature as a scalar value,

SNR(X) := μK−1μ�, μ := E(X), K := Cov(X,X) (6.13)

(see, e.g., [64, Eq. (1), p. 511]). Again using Theorem 3.9, we find the asymptotic inverse 
of the covariance matrix,

K−1(z) ∼ 1
q 〈N〉2

⎛⎝ 〈M〉 − 〈N〉

− 〈N〉 (q + 1)〈N〉2

〈M〉

⎞⎠,

and hence

SNR(Nλ,Mλ) ∼ (〈N〉, 〈M〉)
q 〈N〉2

⎛⎝ 〈M〉 − 〈N〉

− 〈N〉 (q + 1)〈N〉2

〈M〉

⎞⎠( 〈N〉
〈M〉

)
= 〈M〉 → ∞.

However, a scalar definition (6.13) is not entirely satisfactory — for instance, it cannot 
detect whether the individual components of X are of bumpy type. As an alternative, 
we propose the following matrix definition,

SNR(X) := (μK−1/2)�(μK−1/2) = K−1/2(μ�μ)K−1/2, (6.14)

where K−1/2 is the (unique) positive definite square root of the inverse covariance matrix 
K−1, that is, K−1/2K−1/2 = K−1 [42, Theorem 7.2.6, p. 439]. In our case, the exact 

13 The “bumpy” property is especially helpful for sampling with rejection designed to achieve certain targets 
for weight and length, due to a guaranteed asymptotically fast delivery of the output (see Section 6.2).
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expression for K−1/2(z) is cumbersome (although available), but its asymptotic version 
under Assumption 5.1 simplifies to

K−1/2(z) ∼
√
〈M〉√

q (q + 1) 〈N〉

⎛⎝
√
q −1

−1 (q + 1) 〈N〉
〈M〉

⎞⎠.

Hence, after straightforward calculations we obtain from (6.14)

SNR(Nλ,Mλ) ∼ 〈M〉
q + 1

( 1 √
q

√
q q

)
,

which tends to infinity in matrix sense.

6.2. Rejection sampler

The idea of a rejection sampler discussed in this section is to run a free sampler in 
a loop until a prescribed target is met. For example, if the target is set in terms of the 
required partition length as Mλ = m, with a fixed m ∈ N, then the free sampler is 
iterated until a partition of exact length m is obtained. Likewise, if the target is set 
for the partition weight, Nλ = n, with a fixed n ∈ N, then the free sampling loop 
runs until a partition of exact weight n is found. These two targets can be imposed 
simultaneously, Mλ = m and Nλ = n; here, it is natural to design the rejection algorithm 
as a juxtaposition of two loops of the free sampler, such that the internal loop runs until 
the length target is met and, every time this happens, the resulting partition is checked 
with regards to the weight target and is either rejected, whereby the internal loop starts 
afresh, or accepted, in which case the algorithm stops.

A more general approach, leading to the so-called approximate algorithms, is to relax 
the exact targets to suitable intervals (brackets). In Algorithm 2 presented below in 
Section 6.2.3, we give an example of a Boltzmann rejection sampler aiming to sample 
a partition λ ∈ Λ̌q satisfying two conditions, Mλ = m and n ≤ Nλ ≤ θ n, for some 
predefined tolerance factor θ ≥ 1. Of course, if θ = 1, the approximate algorithm is 
reduced to an exact one. An approximate target can also be considered for length, m ≤
Mλ ≤ θ′m, and furthermore, such approximate targets can be combined if desired.

Before delineating Algorithm 2, we discuss a few implementation issues arising therein.

6.2.1. Parameter calibration and truncation of parts
To start with, the choice of the calibrating parameters z1 and z2 now follows a slightly 

different logic as compared to the case of a free sampler. If only one target is set, 
such as Mλ = m, then according to formula (2.25) the conditional Boltzmann mea-
sure Pz(· | Λ̌q(•, m)) does not depend on the parameter z2, whereas the other parameter, 
z1, can be chosen with a view on a desired expected value 〈N〉 of the output weight 
Nλ, as was the case with the free sampler. Nonetheless, in order to maximize efficiency 
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of the sampling algorithm, the “free” parameter z2 should still be chosen in line with 
the mean conditions (3.21) subject to the specification 〈M〉 = m, thus aiming to benefit 
from the bumpy nature of the distribution Pz(· | Λ̌q(•, m)) (cf. Section 6.1.3). Similarly, if 
the condition Nλ = n is targeted then the conditional Boltzmann measure Pz(· | Λ̌q(n, •))
does not depend on z1, however both parameters z1 and z2 are chosen to match the mean 
conditions (3.21) with 〈N〉 = n. Furthermore, if both targets are imposed, Nλ = n and 
Mλ = m, then by Lemma 2.4 the measure Pz(· |Λ̌q(n, m)) is reduced to the uniform distri-
bution on Λ̌q(n, m) regardless of the parameters z1 and z2. But, as explained above, it is 
worthwhile to calibrate them in line with the mean conditions (3.21). With these targets 
in mind, in what follows (including Algorithm 2) we use the specific hyper-parameters 
〈N〉 = n and 〈M〉 = m. Moreover, since avoiding bias is no longer a concern (unlike 
in the case of the free sampler), using the leading-term expressions (6.1) is a perfectly 
satisfactory option. Of course, the same recipe applies to the approximate sampling.

Another issue to be addressed is whether any truncation of the source of parts is 
needed in the algorithm (cf. Section 6.1.2). As long as the weight target is involved, 
Nλ = n, one can use a natural majorant L∗ = n as a call parameter L in Algorithm 1
(see Section 6.1.3), which clearly causes no loss in confidence (i.e., δ = 0, see (6.5)). 
The same is true in the case of an approximate target, Nλ ∈ [n, θ n], by choosing the 
majorant L∗ = θ n. However, if only the length target is in place then no such majorant 
is available and, therefore, confidence considerations must be deployed, as discussed in 
Section 6.1.2.

6.2.2. Censoring of iterations
As was pointed out in the Introduction, in contrast to the special value q = 1, in the 

general case with q ≥ 2 and arbitrary m ≥ 1 there is no guarantee for a given natural 
number n ∈ N to be partitionable into a required number m of q-power parts (unless it 
is covered by a solution of the Waring problem [77]). The requirement that the parts be 
distinct adds to the complexity of the question. Therefore, the space Λ̌q(n, m) may well 
be empty and, not knowing this in advance, the task of sampling from such a space may 
be “mission impossible”.

To be specific, consider sampling subject to the joint targets Mλ = m and Nλ = n. 
As already indicated at the beginning of Section 6, a general design of the corresponding 
sampling algorithm is based on the two nested loops according to the separated targets, 
internal for Mλ and external for Nλ. While the internal loop is certain to produce a 
random partition in Λ̌q with exactly m parts (see more about this below), the external 
loop contains an inherent loose end due to its potential failure to satisfy the weight 
requirement, simply because there may be no such partitions. That is to say, although 
the successful completion of the external loop will take some time by repeatedly querying 
the internal loop, it may be pointless to wait for too long as there is no certainty if that 
is not wasteful.

We propose to resolve this difficulty by an appropriate “censoring” of processing time, 
that is, by setting a limit t∗ on the waiting time, chosen to ensure sufficiently high con-
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fidence in the algorithm’s ability to deliver a successful completion within the allocated 
time limit, of course provided that the task is feasible (i.e., required partitions exist). 
More precisely, given a confidence tolerance (significance level) δ ∈ (0, 1), the threshold t∗

should be such that, if the target space is non-empty, the probability that the algorithm 
would not succeed by time t∗ does not exceed δ. Such an approach is akin to statistical 
testing of the null hypothesis “the target is non-empty”. Under this hypothesis, the test 
(implemented as a sampling algorithm) fails to produce a required partition (Type I 
error) with rate bounded by δ.

The choice of threshold t∗ is determined by the sampling task at hand. A few examples 
of interest are as follows (assuming the number of parts m to be fixed):

(T1) Exact sampling: For a given n, attempt to sample λ ∈ Λ̌q(n, m) (in other words, 
check partitionability of n).

(T2) Multiple exact sampling: For a given n and some θ > 1, attempt to sample λ ∈
Λ̌q(k, m) for each integer k in the range k ∈ [n, θ n] (that is, test partitionability 
of each of these numbers).

(T3) Approximate sampling: Same as in task (T2) but attempting to sample λ ∈⋃
n≤k≤θ n Λ̌

q(k, m) (that is, to find at least one partitionable number in the said 
range).

Remark 6.1. If required, tasks (T2) and (T3) could be modified to a two-sided version, 
such as θ−1n ≤ k ≤ θ n or, more generally, θ1n ≤ k ≤ θ2n, with some 0 < θ1 < 1 < θ2.

First, let us look at how the internal loop performs towards its task of sampling a 
partition λ ∈ Λ̌q

L(•, m) = Λ̌q(•, m) ∩ {λ : λmax ≤ L} (i.e., the source of parts is truncated 
to {� ≤ L}, see Section 2.5). According to Theorem 4.2(a), if 〈M〉 > 0 is fixed and 
L ∼ θ〈N〉 then the distribution of Mλ conditional on λmax ≤ L converges to a Poisson 
law with mean μθ = 〈M〉G1/q(aθ), where aθ = θ〈M〉/q. A stronger result concerns 
a Poisson approximation (cf. Remark 4.1) under a suitable metric, such as the total 
variation distance between distributions. Namely, the said conditional distribution of 
Mλ can be replaced by a Poisson distribution with mean

Ez(Mλ |λmax ≤ L) =
∑
�≤L

z�1z2

1 + z�1z2
∼ μθ, (6.15)

with the error in total variation bounded by (see [7, Theorem 1, p. 474])

1
μθ

∑
�≤L

(
z�1z2

1 + z�1z2

)2

= O(z2) = O(κ1/q) → 0, (6.16)

according to (4.6). The advantage of such an approximation is that it holds true even if 
〈M〉 is slowly growing, whereby the error estimate (6.16) is still valid.
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Returning to the analysis of the internal loop, with 〈N〉 = n and 〈M〉 = m we have

Pz(Mλ = m |λmax ≤ θ n) ∼ μm
θ e−μθ

m! , μθ = mG1/q(θm/q). (6.17)

Hence, the probability (6.17) is bounded away from zero, and since the attempts within 
the internal loop are independent, the number of internal runs until success has geometric 
distribution, with the expected time to success being bounded by a constant (depending 
on m). If m → ∞ (with κ = mq+1/n = o(1)), then μθ ∼ m and, according to (6.15) and 
(6.16), we have

Pz(Mλ = m |λmax ≤ θ n) = μm
θ e−μθ

m! + O(κ1/q) ∼ mm e−m

m! ∼ 1√
2πm

, (6.18)

with the help of the Stirling formula. In turn, formula (6.18) implies that the expected 
number of runs of the internal loop is of order O

(√
m

)
, which is not particularly large 

for practical implementation.
Let us now turn to tasks (T1) – (T3) and focus on probabilistic analysis of runs of the 

external loop, taking for granted that Mλ = m and, automatically, λmax ≤ L∗, where 
L∗ = θ n is a majorant in 

⋃
n≤k≤θn Λ̌

q(k, m). As stipulated above, we use the hyper-
parameters 〈N〉 = n and 〈M〉 = m, and specify the calibrating parameters z1 and z2
according to the leading-term expressions (6.1). Denote for short

p∗k := Pz(Nλ = k |Mλ = m, λmax ≤ θ n), n ≤ k ≤ θ n. (6.19)

for simplicity omitting reference to n and m. Of course, if Λ̌q(k, m) = ∅ then p∗k = 0. 
The probability (6.19) can be interpreted as the probability of successfully sampling 
a partition of weight k in a single run of the external loop. Due to independence of 
successive runs, the number Tk of attempts until success for a targeted weight value k
follows geometric distribution,

Pz(Tk > t |Mλ = m,λmax ≤ n) = (1 − p∗k)
t
, t ∈ N0. (6.20)

This includes the case p∗k = 0, whereby Tk = ∞ (Pz-a.s.). Also note that (Tk) are 
mutually independent for different k.

(T1) Here, θ = 1, so L∗ = n. Suppose that Λ̌q(n, m) �= ∅ and let λ∗ ∈ Λ̌q(n, m), so that 
Nλ∗ = n and Mλ∗ = m. Then we can write

Pz(λ∗ |Mλ = m, λmax ≤ n) = Pz(λ∗ |λmax ≤ n)
Pz(Mλ = m |λmax ≤ n) . (6.21)

Starting with the numerator, we have
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Pz(λ∗ |λmax ≤ n) = zn1 z
m
2

∏
�≤n

1
1 + z�1z2

.

Substituting formulas (6.1), we obtain

zn1 z
m
2 ∼ e−m/q q2m(m/q)m+m/q(

Γ(1/q)
)m

nm/q
,

while Lemma 3.5, with the help of the asymptotic relation (3.35), yields

∏
�≤n

1
1 + z�1z2

∼ exp
(
−mG1/q(m/q)

)
.

Furthermore, by Theorem 4.2(a) the denominator in (6.21) is asymptotically given 
by

Pz(Mλ = m |λmax ≤ n) ∼
mm

(
G1/q(m/q)

)m exp
(
−mG1/q(m/q)

)
m! . (6.22)

Hence, returning to (6.21) we obtain

p∗n ≥ Pz(λ∗ |Mλ = m,λmax ≤ n) ∼ 1
C1(m, q)nm/q

, (6.23)

where

C1(m, q) := 1
m!

(
e1/q Γ(1/q)G1/q(m/q)

q1−1/qm1/q

)m

. (6.24)

Combining (6.20) and (6.23), we have, asymptotically,

Pz(Tn > t |Mλ = m,λmax ≤ n) = (1 − p∗n)t ≤
(

1 − 1 + o(1)
C1(m, q)nm/q

)t

. (6.25)

Thus, for the probability (6.25) not to exceed a predefined (small) confidence tol-
erance δ > 0, it suffices to choose the threshold t = t∗n as follows,

t∗n � log δ

log
(

1 − 1 + o(1)
C1(m, q)nm/q

) ∼ C1(m, q)nm/q log 1
δ
. (6.26)

Remark 6.2. The bound (6.26) is very conservative due to a crude estimate (6.23)
leveraging just one instance λ∗ ∈ Λ̌q(n, m). If more information was available about 
the size of the space Λ̌q(n, m), the bound (6.26) could be reduced accordingly. For 
example, if q = 1 then it is known that #Λ̌(n, m) ∼ nm−1(m! (m − 1)!)−1 (see 
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(4.40)). Hence, formula (6.26) for the time threshold in the case q = 1 is replaced 
by a much better and more realistic estimate,

t̃∗n � C1(m, 1)
#Λ̌(n,m)

nm log 1
δ
∼ em (1 − e−m)m (m− 1)!

mm
n log 1

δ
. (6.27)

Likewise, for q = 2 we get, using (4.42) (with Cm = 1),

t̃∗n � C1(m, 2)
#Λ̌2(n,m)

nm/2 log 1
δ
∼

(
2e
m

)m/2

Γ(m/2)
(
G1/2(m/2)

)m
n log 1

δ
, (6.28)

which again grows only linearly in n.

(T2) For the multiple exact sampling in the range k ∈ [n, θ n], we can just repeat the 
procedure in task (T1) for each k in that range. According to (6.20), the probability 
that the number of attempts until success, Tk, exceeds a threshold t∗k is given by 
(cf. (6.20))

Pz

(
Tk > t∗k |Mλ = m,λmax ≤ k

)
= (1 − p∗k)t

∗
k , n ≤ k ≤ θ n.

Taking into account only partitionable numbers k ∈ [n, θ n] (i.e., such that 
Λ̌q(k, m) �= ∅ and, therefore, p∗k > 0) and using a Bonferroni-type inequality, 
the probability of Type I error for task (T2) (i.e., that the external loop fails for 
at least one such k) is bounded as follows,

Pz

( �θn�⋃
k=n

{t∗k < Tk < ∞}
∣∣∣Mλ = m,λmax ≤ θ n

)
≤

∑
k : p∗

k>0

(1 − p∗k)t
∗
k . (6.29)

Motivated by formula (6.26), we can look for the time limits t∗k in the form

t∗k ∼ ckm/q. (6.30)

Then from (6.29) using (6.23) we get, asymptotically,

∑
k : p∗

k>0

(1 − p∗k)t
∗
k �

�θn�∑
k=n

(
1 − 1

C1(m, q) km/q

)ckm/q.

≤ (θ − 1)n exp
(
− c

C1(m, q)

)
≤ δ.

Solving this inequality for c and returning to (6.30) ultimately yields

t∗k � C1(m, q) km/q log (θ − 1)n
, n ≤ k ≤ θ n. (6.31)
δ
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Thus, the time bound (6.31) follows the same formula as in a single test (cf. (6.26)) 
but with a Bonferroni-type adjustment of the significance level in order to offset 
the multiple testing.

Remark 6.3. The same comment as in Remark 6.2 applies to task (T2). Specifi-
cally, for q = 1 and q = 2 the improved formulas for the thresholds t∗k are given, 
respectively, by

t̃∗k � em (1 − e−m)m (m− 1)!
mm

k log (θ − 1)n
δ

, (6.32)

t̃∗k �
(

2e
πm

)m/2

Γ(m/2)
( m/2∫

0

u−1/2 e−u du
)m

k log (θ − 1)n
δ

. (6.33)

(T3) In a single attempt, the external loop gets a partition λ ∈
⋃

n≤k≤θ n Λ̌
q(k, m) with 

probability

Pz

(
n ≤ Nλ ≤ θ n |Mλ = m,λmax ≤ θ n) =

�θn�∑
k=n

p∗k → G�m
1/q(aθ |aθ) −G�m

1/q(a1|aθ).

(6.34)

The limit (6.34) is due to Theorem 4.2(b), where aθ = θm/q and G�m
1/q(x |aθ) stands 

for the m-convolution of the aθ-truncated gamma distribution G1/q(x |aθ).
To circumvent the trouble of computing such a convolution, observe that in the 
range 0 ≤ x ≤ a the distribution function G�m

α (x |a) coincides with Gmα(x) up to 
the normalization factor Gα(a)m. This is obvious for m = 1, and the general case 
can be seen by induction over m using the convolution formula. Indeed, denoting 
the corresponding densities by g�mα (x |a) and gmα(x), respectively, we have by 
definition gα(x |a) = gα(x)/Gα(a) (0 ≤ x ≤ a), and the induction step is carried 
out as follows,

g�mα (x |a) =
x∫

0

g�(m−1)
α (u |a) gα(x− u |a) du

= 1
Gα(a)m

x∫
0

g(m−1)α(u) gα(x− u) du = gmα(x)(
Gα(a)

)m , 0 ≤ x ≤ a,

due to the convolution property of the gamma distribution. Thus, formula (6.34)
simplifies to

�θn�∑
p∗k →

Gm/q(θm/q) −Gm/q(m/q)(
G (θm/q)

)m =: C3(m, q, θ). (6.35)

k=n 1/q
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Now, since individual runs of the external loop are independent, the probability 
that the number of attempts until success, T , exceeds a threshold t is given by (cf. 
(6.20))

Pz(T > t |Mλ = m,λmax ≤ θ n) =
(

1 −
�θn�∑
k=n

p∗k

)t

�
(
1 − C3(m, q, θ)

)t
, (6.36)

on account of (6.35). Hence, in order that this probability be bounded by a confi-
dence tolerance δ > 0, we may choose the threshold t = t∗ as follows,

t∗ � log δ
log (1 − C3(m, q, θ)) . (6.37)

Remark 6.4. According to formula (6.37), the threshold t∗ does not depend on n. 
It is of interest to look at how it depends on the growth of the power q. To this 
end, by a direct analysis of the gamma distribution (see (4.1)) one can verify that

Gα(θα) = (θα)α
(
1 + O(α)

)
(α → 0+).

Hence, from formula (6.35) we get

C3(m, q, θ) ∼ 1 − θ−m/q ∼ m log θ
q

(q → ∞),

and then (6.37) gives

t∗ � q log(1/δ)
m log θ .

6.2.3. Rejection sampling algorithm
A stylized example of rejection sampler is presented below in pseudocode as Algo-

rithm 2. It is set out in a flexible way so as to be usable in exact and approximate 
sampling alike, as determined by the tasks (T1)–(T3) described in Section 6.2.2. In par-
ticular, the range parameter θ is allowed to take the value θ = 1, in which case the 
algorithm would work towards the exact sampling task (T1) (i.e., with a specific weight 
target Nλ = n). As explained in Section 6.2.1, the hyper-parameters are adapted to 
the desired targets, 〈N〉 = n and 〈M〉 = m, and the calibrating parameters z1 and z2
are set according to the simplified expressions (6.1). A predefined time bound t∗ for the 
external loop is selected according to the task at hand, as discussed in Section 6.2.2, and 
on account of the required confidence probability 1 − δ.

As briefly indicated at the start of Section 6.2, Algorithm 2 comprises an external loop 
that iterates the free sampler in an internal loop (i.e., Algorithm 1, with the majorant 
L = θ n), which delivers, in each productive cycle, a partition λ that meets the length 
target Mλ = m. This continues until the trial partition λ meets the weight target (e.g., 
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Nλ = n in task (T1) or n ≤ Nλ ≤ θ n in task (T3)). However, if the limit of attempts t∗
is reached with no success then the algorithm terminates, returning a message ‘VOID’. 
It remains to add that for task (T2) involving multiple exact sampling, the algorithm 
should be run in an additional loop to scan all weight values in the range k ∈ [n, θ n].

Algorithm 2: ReSampler(q, n, m, θ, t∗).

Input: integer q, n, m, real θ ≥ 1, t∗
Output: partition λ ∈ Λ̌q(•, m) with Nλ ∈ [n, θ n], otherwise ‘VOID’

1 integer array λ[ ];
2 integer N, M, t;
3 real L;
4 L ← θ n;
5 N ← 0, M ← 0, t ← 0;
6 while N /∈ [n, θ n] and t ≤ t∗ do
7 while M �= m do
8 (λ, N, M) ← FreeSampler(q, n, m, L)
9 end

10 t ← t + 1;
11 end
12 if t ≤ t∗ then
13 Nλ ← N ;
14 return (λ, Nλ)
15 else
16 return ‘VOID’
17 end

Algorithm 2 can be optimized in a number of ways. Since the weight of a valid output 
λ should not exceed θ n, it is clear that the run of the internal loop can be terminated 
prior to collecting the required number of parts m if the next candidate part is too large, 
so that the incremented weight will certainly exceed the majorant. Furthermore, if the 
number of collected parts has already reached the target value m then there is no need 
to keep scanning the remaining values in the range � ≤ L and the current run of the 
internal loop may be stopped without any loss. However, to avoid bias and maintain the 
Boltzmann distribution of the output, the corresponding proposal λ ∈ Λ̌q

L(•, m) must be 
accepted only if the remaining candidate parts in the range � ≤ L were to be rejected by 
the respective Bernoulli checks. Since individual such checks are mutually independent, 
their multitude can be replaced by a single Bernoulli trial with the corresponding product 
probability of failure. An additional benefit of such an aggregated Bernoulli check is that 
this will reduce the number of calls of the random number generator and hence improve 
the efficiency of the sampler.

Another improvement of the code implementation in the multiple testing task (T2) 
proceeds from the observation that the sequential procedure based on separate testing 
of each target in the range [n, θ n] (see Section 6.2.2) is apparently wasteful, because a 
partition of some k′ ∈ [n, θ n] obtained whilst looking for partitions of a different number 
k would be discarded in that cycle of the external loop, whereas keeping it would have 
helped to achieve success if an earlier search with target k′ failed, or to save time on a 
duplicate job when the algorithm moves to the new target k′. In practice, all partitions 
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(at least, the new ones) obtained in every run of the external loop should be stored as 
long as they fit into the range [n, θ n], thus leaving dynamically fewer targets to address.

For the sake of presentational clarity, Algorithm 2 embeds iterated calls of the free 
sampler (Algorithm 1), but this means that the calibrating parameters z1 and z2 are 
recalculated at every such call, which is of course wasteful. This drawback can be easily 
amended by writing out the code explicitly. Note, however, that such an improvement 
would have no significant bearing on the asymptotic estimation of the code complexity.

Remark 6.5. It would be interesting to explore if the performance of our sampling scheme 
can be improved via a probabilistic divide-and-conquer method proposed by Arratia and 
DeSalvo [4].

6.2.4. Complexity and performance
Building on the probabilistic analysis of the internal and external loops carried out 

in Section 6.2.2, it is straightforward to estimate the time complexity of Algorithm 2, 
understood as the expected number of elementary runs to completion.

Starting with the internal loop, in its crude (non-optimized) version each internal run 
comprises �(θ n)1/q� checks of available parts � ∈ Nq not exceeding L∗ = θ n. Combined 
with the estimate (6.17) of the probability to collect m parts in a single run and the 
corresponding geometric distribution of the number of attempts, the complexity of the 
internal loop is bounded by

μ−m
θ m! eμθ (θ n)1/q. (6.38)

As for the external loop, its complexity depends on the task at hand. If θ = 1 (which 
corresponds to task (T1) of exact sampling with the weight target Nλ = n), then the 
time to completion, Tn, has geometric distribution with parameter p∗n (see (6.20)). For 
simplicity dropping a time bound t∗ (but still assuming that the space Λ̌q(n, m) is non-
empty, so that p∗n > 0), the expected time to completion is given by Ez(Tn) = 1/p∗n. 
With a time bound t∗, the expectation is modified as follows,

Ez(Tn;Tn ≤ t∗) =
t∗∑

t=1
t(1 − p∗n)t−1p∗n + t∗(1 − p∗n)t

∗
= 1 − (1 − p∗n)t∗

p∗n
<

1
p∗n

. (6.39)

However, the reduction in (6.39) is not significant, because under our confidence-based 
choice of the time limit (see (6.23)), we always have (1 − p∗n)t∗ ≤ δ. Thus, combining 
formulas (6.38) and (6.39), the total complexity guarantee for task (T1) is estimated by

m! eμ1

μm
1

O
(
n1/q/p∗n

)
, μ1 = mG1/q(m/q). (6.40)

Further specification depends on the informative lower bound for the probability p∗n. For 
example, a crude estimate (6.23) gives a more explicit estimate for the complexity,
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Table 4
Confident time thresholds t∗ for the external loop in tasks (T1), (T2) and (T3), 
calculated for q = 1 and q = 2 with various values of confidence tolerance δ using 
formulas (6.26), (6.31) and (6.37). In both cases, the chosen values of n and m yield 
κ = mq+1/n = 0.01. For tasks (T2) and (T3), the testing range is set with the factor 
θ = 1.1. For comparison, corrected values t̃∗ for tasks (T1) and (T2) are calculated 
from formulas (6.27), (6.28) and (6.32), (6.33), respectively.

q = 1, n = 2,500, m = 5
δ t∗n (T1) t̃∗n (T1) t∗n (T2) t̃∗n (T2) t∗ (T3)
0.1 8.603518 · 1013 6,343.202 2.923424 · 1014 21,553.82 26.01955
0.01 1.720704 · 1014 12,686.40 3.783776 · 1014 27,897.02 52.03911
0.001 2.581056 · 1014 19,029.61 4.644128 · 1014 34,240.22 78.05866
0.0001 3.441407 · 1014 25,372.81 5.504479 · 1014 40,583.43 104.0782
q = 2, n = 12,500, m = 5
δ t∗n (T1) t̃∗n (T1) t∗n (T2) t̃∗n (T2) t∗ (T3)
0.1 198,687,146 41,485.61 814,003,357 169,962.8 34.94282
0.01 397,374,292 82,971.22 1,012,690,503 211,448.4 69.88564
0.001 596,061,438 124,456.8 1,211,377,649 252,934.0 104.8285
0.0001 794,748,583 165,942.4 1,410,064,795 294,419.7 139.7713

(
exp

(
G1/q(m/q) + 1/q

)
Γ(1/q)

q1−1/qm1+1/q

)m

O
(
n(m+1)/q). (6.41)

For q = 1 and q = 2, this estimate can be significantly improved by using asymptotically 
exact cardinalities (4.40) and (4.42), respectively, yielding the estimates

(m!)2 e2m

m2m+1 O(n2) = O(n2) (6.42)

and

2m/2m! Γ(m/2) e3m/2

m3m/2 O
(
n3/2) = O(n3/2). (6.43)

Interestingly, the asymptotic bounds (6.42) and (6.43) do not depend on the number of 
parts m.

For task (T2) (with some θ > 1), the above estimates just need to be multiplied by 
the number of targeted weights, �(θ − 1)n� + 1 = O(n). Finally, for task (T3) we can 
use formula (6.40), but with μ1 changed to μθ (see (6.38)) and with the probability p∗n
of success in a single attempt replaced by the (asymptotic) probability (6.35) of at least 
one success in the range [n, θ n], yielding

m! exp
(
mG1/q(θm/q)

)
mm

(
Gm/q(θm/q) −Gm/q(m/q)

) O(n1/q) = O
(
mn1/q).

To evaluate real time performance of the rejection sampler, we first need to take a 
practical look at the censoring time limits t∗ in tasks (T1)–(T3) proposed in Section 6.2.2. 
These are numerically illustrated in Table 4 for q = 1 and q = 2, with various values 
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of n and m. Observe that the crude bounds for tasks (T1) and (T2) calculated via 
formulas (6.26) and (6.31) appear to be very high, especially for q = 1 (of order 1014), 
casting doubt on whether such limits are usable. In real terms, since each run of the 
external loop is a simple check if Nλ = n (see line 6 in Algorithm 2), we can assume for 
simplicity that it needs a single tick of the CPU clock. If the algorithm is executed on 
a contemporary mid-range desktop PC (say, with processor base frequency 3.30 GHz, 
which we used) then, under the estimate (6.26) for task (T1) with q = 1 and a fairly 
low confidence tolerance δ = 0.001, the external loop alone may require up to 2.581056 ·
1014/(3.30 · 109 · 60 · 60) .= 21.72606 ≈ 22 hours until completion, which is unpleasantly 
long but not entirely unrealistic. This estimate drops dramatically for q = 2 to less than 
1 second. A steep decreasing trend continues with larger powers14; for example, for q = 3, 
n = 62,500, m = 5 and δ = 0.001, formula (6.26) gives t∗n = 3,358,531, leading to the 
maximum execution time of up to 0.001 second. Thus, the sampler becomes progressively 
more efficient for larger q, even under a crude time bound. On the other hand, as pointed 
out in Remarks 6.2 and 6.3, additional information about the size of the corresponding 
partition spaces would allow a significant reduction of the estimated bound as illustrated 
in Table 4 (by a factor 1010 for q = 1 and about 4,790 for q = 2).

Let us now look at the real time computational cost due to the internal loop. As men-
tioned before (cf. (6.38)), the expected number of internal runs until collecting exactly 
m parts is asymptotically given by μ−m

1 m! eμ1 (with θ = 1), where μ1 = m G1/q(m/q). 
Using for numerical illustration the same values of q, n and m as in Table 4, this formula 
yields 5.6993 (q = 1) and 5.7043 (q = 2). The average computing time for each of such 
attempts is inversely proportional to the CPU base frequency (such as 3.30 GHz), but 
it involves many other important aspects such as the operational efficiency of a random 
number generator, design of memory allocation and data storage, numerical precision, 
coding implementation and compiler used, and the overall architecture of the computer 
(e.g., the number of cores and whether or not parallel processing was utilized). Thus, it 
is impossible to estimate the actual computing time without real benchmarking.

To test the performance of the internal loop, we implemented the algorithm on a 
desktop CPU as described at the beginning of Section 6, for simplicity using a single 
core. Since internal runs are independent from each other and the computational costs 
due to the multi-core design are negligible, we can simply divide the average execution 
time on a single core by the number of cores at disposal.

With the same values of q, n and m used above and in Table 4 (and with θ = 1), the 
average number of sampling attempts (starting at line 7 of Algorithm 2) was 5.6956 for 
q = 1 and 5.6404 for q = 2; note that these sample averages match the expected values 
calculated above. Furthermore, the program took on average 2.1036 ·10−3 seconds (q = 1) 
and 0.9780 · 10−4 seconds (q = 2) per single successful completion of the internal loop. 

14 Keeping m and κ = mq+1/n fixed, from formulas (6.24) and (6.26) we find limq→∞ t∗n =
(mm/m!) log(1/δ). For example, for m = 5 as in Table 4 and δ = 0.001, this limiting value specializes 
to 179.8895.
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The corresponding number of ticks of the CPU clock per elementary check of a candidate 
part � ≤ n (see formula (6.38)) is evaluated as (2.1036 ·10−3/(5.6956 ·2500)) ·3.30 ·109 .=
487.5258 (q = 1) and (0.9780 · 10−4/(5.6404 

√
12500)) · 3.30 · 109 = 511.7854, so it stays 

in the range about 450 ÷ 550.
However, there is a problem: if we combine the physical times benchmarked for the 

internal loop with the time bounds t∗n for the external loop given in Table 4 (say, with 
tolerance δ = 0.001), then for q = 1 we obtain, by converting seconds to minutes, hours, 
days and years, 2.1036 · 10−3 · 2.581056 · 1014/(60 · 60 · 24 · 365) ≈ 17,217 years (!), which 
is clearly impractical. For q = 2, a similar calculation gives a more reasonable estimate, 
0.9780 · 10−4 · 596 061438/(60 · 60) ≈ 16 hours. But with the improved time bounds t̃∗n
(see Table 4), we obtain much more satisfactory estimates, 2.1036 · 10−3 · 19 029.61 ≈ 40
seconds (q = 1) and 0.9780 · 10−4 · 124 456.8 ≈ 12 seconds (q = 2).

As a concluding remark, Algorithm 2 could be used as an experimental tool for search-
ing satisfactory instances in additive problems of number theory such as variants of the 
Waring problem. Here, iterated sampling attempts to find a suitable instance subject 
to certain constraints — in the lack of prior knowledge if such instances even exist — 
may be interpreted as statistical testing of existence as the null hypothesis, under which 
a suitable confident time limit t∗ can be determined. The sampling approach based on 
bounded (although high) confidence bears similarity with primality testing procedure 
such as the Miller–Rabin algorithm [65]. It can also be helpful in verification of conjec-
tures about the density of representable numbers via an experimental analysis of the 
success rates. We will address such applications in another paper.
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