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 Abstract— NIST has selected CRYSTALS-Kyber as the primary 

Key Encapsulation Mechanism (KEM) algorithm for the 

standardization process of post-quantum cryptography. This 

paper proposes a high-speed hardware accelerator targeting the 

polynomial multiplication of Kyber. The NTT-based algorithm is 

employed in Kyber to perform polynomial multiplication, where 

modular multiplication is the most time-consuming operation in 

the computation of the NTT. This paper proposes a new Residue 

Number System (RNS) methodology to perform the modular 

multiplication in Kyber based on fast look-up tables with a novel 

sub-moduli RNS decomposition of the operation into smaller 

tables. A high-speed polynomial multiplier FPGA accelerator is 

developed based on the proposed RNS modular multiplier for both 

single and double butterfly modes.  The resulting designs were 

implemented on Xilinx Artix-7 FPGA, and post-place and route 

hardware results obtained confirmed the significant 

improvements over state-of-art.  

 
Index Terms— CRYSTALS-Kyber, Post-Quantum Cryptography 

(PQC), Number Theoretic Transform (NTT), Lattice-Based 

Cryptography (LBC), FPGA, Hardware, RNS, High-Speed   

I. INTRODUCTION 

HE recent development of quantum computing poses a 

severe threat to the current public key cryptography 

primitives such as  RSA and ECC. These primitives rely 

on mathematically hard problems to secure communication 

between two parties, and with the future availability of a 

powerful quantum computer running Shor’s algorithm, 

breaking these schemes will be accomplished in polynomial 

time[1]. For this reason, in 2016[2], the National Institute of 

Standards and Technology (NIST) started a competition for 

Post-Quantum Cryptography (PQC) algorithms, which resist 

quantum and classical attacks, and went on three rounds to 

select the best candidates. NIST selected four schemes for the 

standard in July 2022[3], and the competition will continue for 

a fourth round to select from another four candidates. 

CRYSTALS-Kyber[4] was chosen by NIST for 

standardization as the primary key encapsulation mechanism 

(KEM), which is a lattice-based cryptography scheme where its 

security is based on solving the Module Learning With Errors 

(MLWE) hard problem[5]. The scheme consists of three 

algorithms: key generation, encryption, and decryption, where 

polynomial multiplication dominates the computations in these 

algorithms.  
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Hardware accelerators play a crucial role in cryptography as 

they offer high-speed operations compared to software 

implementation and aim for practical deployment of post-

quantum cryptography schemes for real-life applications. 

Kyber adopted the NTT-based algorithm to perform polynomial 

multiplication instead of the classical time domain techniques.  

Several NTT architectures have been reported in the 

literature often trading-off hardware complexity and 

throughput. For example, a highly pipelined hardware 

architecture based on the systolic array technique is adopted to 

accelerate the Coefficient Wise Multiplication (CWM) 

operation at the expense of increased hardware resources [6]. 

Similarly, memory-based iterative NTT designs based on a 

small hardware module for performing the NTT operations are 

deployed to reduce hardware usage [7, 8]. 

The intrinsic operation in the hardware structure of NTT is 

the butterfly unit, which involves modular multiplication, 

modular addition, and modular subtraction. While modular 

addition and subtraction can be easily implemented, modular 

multiplication is the most complex operation in the butterfly 

and, therefore, received attention in most of the previous works.  

The modular multiplication is computed in two steps: 

multiplication of two numbers followed by a reduction to keep 

the result in the same ring. The state-of-the-art works associated 

with the hardware implementation of Kyber polynomial 

multiplication involve both Montgomery reduction[9] and 

Barret reduction[10]. The authors in [11] used Montgomery to 

implement the modular reduction. A variant of Montgomery 

reduction that includes KRED and KRED-2X functions was 

presented in [12] and further improved in [13] to optimize the 

reduction further for Kyber. However, most other works 

focussed on Barrett reduction and its variants. In [14, 15], 

Barret reduction is utilized directly for the modular reduction, 

whereas [16-18] derived improved versions from the original 

Barrett.  

Most reported hardware implementations for Kyber have 

been targeted at FPGA technology, where DSP slices were 

favoured for the implementation of the modular multiplication 

during the NTT/INTT computations and the CWM operation. 

FPGA is a platform that allows hardware acceleration as well 

as flexibility. It also allows hardware performance evaluation.  

In this work, we first consider modular multiplication and 

propose a new Residue Number System (RNS) methodology 
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based on look-up tables to compute the 𝑎. 𝑏 𝑚𝑜𝑑 𝑞 operation 

that is optimized for Kyber. A ROM array architecture is 

proposed based on judicious isomorphic mapping, optimal sub-

moduli decomposition, and efficient memory addressing. The 

architecture exploits the use of BRAMs on FPGAs to accelerate 

computations. The use of BRAMs to support computations can 

free up the FPGA logic blocks and DSP resources for further 

computational tasks thus enabling trade-offs to be made 

between computation logic and memory resources. 

A single butterfly unit (SBU) and a dual butterfly unit 

(DBU) are proposed using the proposed modular multiplier in 

single and dual mode, respectively, to build an NTT-based 

polynomial multiplier for Kyber that is capable of computing 

the whole operation without using DSP slices.  

The resulting hardware accelerator performs the complete 

polynomial multiplication, including computing NTT, INTT 

and CWM. The implementation results on the NIST-

recommended FPGA Xilinx Artix-7 show that the proposed 

design can compute the entire polynomial multiplication in 9.6 µ𝑠 with one SBU, 5 𝜇𝑠 with one DBU, and in  2.6 𝜇𝑠 with 

two DBUs hence outperforming similar previous works by 

46%, 17%, and 36% respectively.   

Research in Side Channel and Fault injection Analysis 

countermeasures in NTT designs has received increasing 

interest in recent years due to their importance in securing 

lattice-based PQC implementations such as the error detection 

schemes introduced in [19, 20]. The use of look-up tables in this 

work can offer the advantage of constant time implementation 

and, hence, better resistance to timing attacks [21].  

The rest of the paper is organized as follows: Section II 

provides background on the Kyber protocol and the NTT-based 

polynomial multiplication algorithm. Section III details our 

contributions in this paper, including our design methodology 

and the proposed designs. The implementation results and 

comparisons with the existing work are presented in section IV. 

Finally, the conclusion is given in section V. 

II. BACKGROUND 

A. Notation 

Let ℤ𝑞 denotes the ring of integers {0, 1, … , 𝑞 − 1} with 

the modulus 𝑞, and ℝ𝑞 =  ℤ𝑞[𝑥]/(𝑥𝑛 + 1) represents the 

quotient ring of polynomials where the polynomials are reduced 

by cyclotomic polynomial 𝑥𝑛 + 1, and the coefficients are 

integers in ℤ𝑞. The degree of a polynomial 𝑓 ∈  ℝ𝑞 is at most 𝑛 − 1.  

A polynomial in the normal domain is written with regular 

lower-case letters as  𝑎, and its transformation to the NTT 

domain is defined as 𝑎̂ ← 𝑁𝑇𝑇(𝑎) where 𝑎̂ represents the 

polynomial in the NTT domain. The inverse of the NTT 

transform is defined as  𝑎 ← 𝐼𝑁𝑇𝑇(𝑎̂).  

A 𝑘-dimensional polynomial vector is written with bold 

lower-case letters, e.g., 𝒔 and a 𝑘 ×  𝑘 dimensional polynomial 

matrix is written with bold upper-case letters, e.g., 𝑨. The 

transpose of a vector 𝐚 (or matrix 𝐀) is represented as 𝒂𝑇 (or 𝑨𝑇). Multiplication in the NTT domain, i.e., CWM denoted as 

* where ·  indicates integer multiplication and matrix 

multiplication is represented as °. 

B. CRYSTALS-Kyber (Kyber) 

Kyber[4] is the primary KEM selected by NIST for the 

PQC standard. The scheme first encrypts a 32-bytes message 

using the conventional method to build an indistinguishability 

under the Chosen-Plaintext Attack (IND-CPA) secure public-

key encryption scheme. Next, a modified Fujisaki-Okamoto 

(FO) transform[22] is used to construct an indistinguishability 

under adaptive Chosen Ciphertext Attack (IND CCA2) secure 

KEM. 

Elements in Kyber are represented as polynomials in ℝ𝑞 = ℤ𝑞[𝑥]/(𝑥𝑛 + 1). The degree of the polynomials 𝑛 = 256 and 𝑞 = 3329. Kyber provides three NIST security levels: 1, 3, and 

5 as Kyber-512, Kyber-768, and Kyber-1024, respectively. This 

can be adjusted according to the module lattice dimension 𝑘, 
which can take the values of 2, 3, and 4 for the three security 

levels in order. The Kyber IND-CPA consists of three 

algorithms: key generation, encryption, and decryption. The 

simplified version of these algorithms is presented as follows, 

and for further details, please refer to the protocol specification 

in[4]: 

• Keygen(): at Allice’s side, firstly, a public matrix 𝑨̂  ∈ ℝ𝑞𝑘×𝑘 is sampled from a uniform distribution in the 

NTT domain using a random seed 𝜌. Then, a secret 𝒔 

and an error 𝒆 ∈  ℝ𝑞𝑘 are sampled from a cantered 

binomial distribution (CBD) and computing 𝒔̂ =𝑁𝑇𝑇(𝒔) and 𝒆̂ = 𝑁𝑇𝑇(𝒆). Finally, the public key is 

generated as 𝑝𝑘 = (𝜌, 𝒕̂) where 𝒕̂ = 𝑨̂ ° 𝒔̂ + 𝒆̂, and the 

secret key as 𝑠𝑘 = 𝒔̂. 

• Encryption(𝑝𝑘, 𝑚): at Bob’s side again, the public 

matrix 𝑨̂ is sampled from uniform distribution using 

the same seed 𝜌. Then, 𝒓, 𝒆𝟏  ∈ ℝ𝑞𝑘 and 𝑒2 ∈ ℝ𝑞  are 

sampled from CBD and computing 𝒓̂ = 𝑁𝑇𝑇(𝒓). The 

message 𝑚 is encoded, and then the ciphertext is 

constructed as 𝑐𝑡 = (𝒖, 𝑣) where 𝒖 = 𝐼𝑁𝑇𝑇(𝑨̂𝑇 ° 𝒓̂) +  𝒆𝟏 and 𝑣 = 𝐼𝑁𝑇𝑇(𝒕̂𝑇 ° 𝒓̂) + 𝑒2 +𝑚. 

•  Decryption(𝑐𝑡, 𝑠𝑘): Allice recovers the message from 

the received ciphertext as 𝑚 = 𝑣 −𝐼𝑁𝑇𝑇(𝒔̂𝑇 ° 𝑁𝑇𝑇(𝒖)). 

 

C. Polynomials multiplication based on NTT 

The bottleneck operation in Kyber is polynomial 

multiplication, where the NTT-based algorithm is used in the 

scheme instead of the traditional time domain approach. 

Multiplication using the NTT can perform the operation in 𝑂(𝑛(log 𝑛)) time complexity. The NTT transform is a 

generalization of the Discrete Fourier Transform and is defined 

over the ring ℤ𝑞 . Let a polynomial 𝑎(𝑥) = 𝑎0 +  𝑎1𝑥 + 𝑎2𝑥2 … . . 𝑎𝑛−1𝑥𝑛−1, its forward NTT transformation into 𝑎̂(𝑥) 

can be written as [23]: 

𝑎̂(𝑥) = ∑ 𝑎𝑗𝑛−1
𝑗=0 𝜔𝑛𝑖𝑗𝑚𝑜𝑑 𝑞, 𝑖 ∈ [0, 𝑛 − 1] (1) 
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Where 𝜔, i.e., the twiddle factor constant represents the 𝑛-th 

root of unity satisfying the two conditions: 𝜔𝑛 ≡ 1(𝑚𝑜𝑑 𝑞) 

and 𝜔𝑛 ≠ 1(𝑚𝑜𝑑 𝑞) ∀𝑖 < 𝑛. The modulus 𝑞 also must be a 

prime number that satisfies the condition 𝑞 ≡ 1 (𝑚𝑜𝑑 𝑛). 

Converting a polynomial back to the normal domain is 

accomplished using INTT transform, where 𝜔−1 (𝑚𝑜𝑑 𝑞) 

utilized as twiddle factors instead of 𝜔, and scaling the result 

with 𝑛−1. 

 

Algorithm 1: Forward NTT based on CT butterfly 

Input 𝑎(𝑥) ∈ ℝ𝑞 in normal order, 𝜔 ∈  ℤ𝑞 and 𝑛 = 2𝑙 
Output 𝑎̂(𝑥) ∈ ℝ𝑞 in bit-reversed order 

1: 𝑘 = 1 

2: for (𝑖 = 1;   𝑖 < 𝑙 − 1;   𝑖 = 𝑖 + 1) do   

3:  𝑚 =  2𝑙−𝑖 
4:  for (𝑠 = 0;  𝑠 = 𝑛;  𝑠 = 𝑠 + 𝑚) do 

5:   for (𝑗 = 𝑠;  𝑠 = 𝑠 + 𝑚;  𝑗 = 𝑗 + 1) do 

6:    𝑊 =  𝜔𝑏𝑟7(𝑘) 𝑚𝑜𝑑 𝑞 

7:    𝑋 =  𝑎[𝑗], 𝑌 = 𝑎[𝑗 + 𝑚] 
8:    𝑇 =  (𝑊 · 𝑌)𝑚𝑜𝑑 𝑞 

9:    𝑎[𝑗]          = (𝑋 + 𝑇) 𝑚𝑜𝑑 𝑞 

10:    𝑎[𝑗 + 𝑚] = (𝑋 − 𝑇) 𝑚𝑜𝑑 𝑞 

11:   end for 

12:   𝑘 = 𝑘 + 1 

13:  end for 

14: end for 

 

     Since polynomials multiplication in Kyber is performed 

over the ring ℝ𝑞 =  ℤ𝑞[𝑥]/(𝑥𝑛 + 1), the negative wrapped 

convolution can be utilized to eliminate the need for doubling 

the inputs and the extra polynomial reduction by 𝑥𝑛 + 1. If this 

case is considered, inputs need pre-processing by scaling the 

coefficients with powers of the 2𝑛-th root of unity. Similarly, 

the outputs require post-processing operation by scaling the 

coefficients with powers of the inverse 2𝑛-th root of unity. 

However, in [24], a new method is presented to perform 

polynomial multiplication using the NTT without the pre-

processing and post-processing operations. The new method 

only restricts the modulus to have the 𝑛-th root of unity 𝑞 ≡1 (𝑚𝑜𝑑 𝑛) without requiring the 2𝑛-th root of unity to exist. 

This variant is called incomplete-NTT and produces 𝑛 2⁄  

polynomials of degree 1 and the definitions of NTT and INTT 

have been modified accordingly as presented in algorithms 1 

and 2, respectively, where 𝑏𝑟7(𝑘) is the bit reversal function of 

an unsigned 7-bit integer 𝑘. Furthermore, the Cooley-Tukey 

(CT) [25] butterfly structure for NTT and Gentleman-Sande 

(GS) [26] butterfly for the INTT are proposed to avoid bit-

reversal operations [18].   

     In the incomplete-NTT, Coefficients Wise Multiplication 

(CWM) is performed differently. The operation is performed by 

multiplying the two 128 degree-1 polynomials in the ring ℤ𝑞[𝑥]/(𝑥2 − 𝜔2𝑏𝑟7(𝑖)+1) for 𝑖 = 0, … ,127. For example, for 

two polynomials 𝑎̂ and 𝑏̂, their CWM is computed as: 

 𝑐̂ = 𝐶𝑊𝑀(𝑎̂ , 𝑏̂)    = 𝑎̂ ∗ 𝑏̂   = (𝑎̂2𝑖+1𝑋 +  𝑎̂2𝑖) · (𝑏̂2𝑖+1𝑋 + 𝑏̂2𝑖) 𝑀𝑜𝑑 (𝑥2 − 𝜔2𝑏𝑟7(𝑖)+1)    =  (𝑎̂2𝑖+1 · 𝑏̂2𝑖 +  𝑎̂2𝑖 · 𝑏̂2𝑖+1)𝑋 +          𝑎̂2𝑖 · 𝑏2𝑖 +  𝑎̂2𝑖+1 · 𝑏̂2𝑖+1 · 𝜔2𝑏𝑟7(𝑖)+1                            (2) 

      

    This requires five modular multiplications and two modular 

additions for each pair of coefficients, and for the 128 pairs, it 

costs 640 modular multiplications and 256 modular additions.  

 

Algorithm 2: Inverse NTT based on GS butterfly  

Input 𝑎̂(𝑥) ∈ ℝ𝑞 in bit-reversed order, 𝜔−1 ∈  ℤ𝑞  and 𝑛 = 2𝑙 
Output 𝑎(𝑥) ∈ ℝ𝑞 normal in order 

1: 𝑘 = 0 

2: for (𝑖 = 𝑙 − 1;   𝑖 < 1;   𝑖 = 𝑖 − 1) do   

3:  𝑚 =  2𝑙−𝑖 
4:  for (𝑠 = 0;  𝑠 = 𝑛;  𝑠 = 𝑠 + 2𝑚) do 

5:   for (𝑗 = 𝑠;  𝑠 = 𝑠 + 𝑚;  𝑗 = 𝑗 + 1) do 

6:    𝑊 =  𝜔𝑏𝑟7(𝑘)+1 𝑚𝑜𝑑 𝑞 

7:    𝑋 =  𝑎̂[𝑗], 𝑌 = 𝑎̂[𝑗 + 𝑚] 
8:    𝑎̂[𝑗]          = (𝑋 + 𝑌)       ÷ 2 𝑚𝑜𝑑 𝑞 

9:    𝑎̂[𝑗 + 𝑚] = (𝑋 − 𝑌) · 𝑊 ÷ 2 𝑚𝑜𝑑 𝑞 

10:   end for 

11:   𝑘 = 𝑘 + 1 

12:  end for 

13: end for 

 

III. THE PROPOSED DESIGN 

A. Modular multiplier  

The proposed multiplier adopts an RNS methodology based 

on a look-up tables approach. This requires the design of an 

efficient ROM array architecture based on judicious isomorphic 

mapping, sub-moduli decomposition, and memory addressing, 

as explained below.   

The operation of multiplication modulo 𝑞 can be computed 

using look-up tables, and for Kyber, the modulus is 3329, which 

can be represented as a 12-bit unsigned number. However, 

direct implementation is not efficient as it requires storing 224 

of 12-bit records in the look-up tables, which consumes large 

memory. The isomorphism between a multiplicative group 𝑔 

having elements 𝑔𝑛 = {1, 2, … , 𝑞 − 1}with the multiplication 

modulo 𝑞, and the additive group 𝑘 having elements 𝑘𝑛 ={0, 1, … , 𝑞 − 2} with the addition,  modulo 𝑞 − 1 can be used 

to improve modular multiplication using the mapping 𝑔𝑛 =∝𝑘𝑛 
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where ∝ is a primitive root of 𝑞. In this case, the multiplication 

is replaced by addition and can be computed as follows[27]: 

 |𝑔𝑛 · 𝑔𝑗|𝑞 = 𝛼|𝑘𝑛+𝑘𝑗|𝑞−1                         (3) 

 

Where |𝑎|𝑞 represents the least positive residue of 𝑎 modulo 𝑞.  

     The modular multiplication can be performed by finding the 

index 𝑘𝑖 for the two multiplied numbers. Then, performing the 

addition of the two indexes modulo 𝑞 − 1 and, finally, 

inversing the index operation to find the correct result. The 

merit of replacing multiplication with addition is that addition 

can be computed in a modulus other than the prime modulo of 

Kyber, i.e., 3329, with only restricting the new modulus to be 

at least twice as the original one.  

     Since the only restriction on the new modulus is its 

minimum size, a composite modulus with an adder tree can be 

used to improve the implementation efficiency. In this work, an 

RNS submodular ROM array adder is proposed where the 

modulus is decomposed into three relatively prime moduli and 

the addition is performed in these three submodules. Finally, 

the result is reconstructed using a look-up table, and it involves 

submodular reconstruction, modulus overflow correction and 

inverse index look-up. 

Now we explain how to generate look-up tables ROM 

entries. 

 

1- Submodular index tables: 

The primitive root ∝= 3 is selected considering the 

modulus of Kyber 𝑞 = 3329, and {7, 31 𝑎𝑛𝑑 32} as our three 

submodular system satisfying the following condition: 2𝑞 < 7 · 31 · 32. Firstly, the following table is generated from the 

mapping: 𝑔 =  |3𝑘|3329 for 𝑘 = 0, 1, … , 𝑞 − 2 

Then, the contents and the addresses of the table are 

interchanged and then taking the modulo of the three sub-

moduli to generate the index table for each sub-moduli as in the 

following table: 𝑔 1 2 3 … 370 371 … 3327 3328 𝑘 0 1134 1 … 3326 2306 … 2798 1664 |𝑘|7 0 0 0 … 1 3 … 5 5 |𝑘|31 0 18 1 .. 9 12 … 8 21 |𝑘|32 0 14 1 … 30 2 … 14 0 

2- Submodular addition tables:   

For each of the sub-moduli, a table is generated that contains 

the sub-modulo residue of the addition of the two input 

residues. The addresses of these tables are determined by 

concatenating the two to be added sub-modulo residues. 

 

3- Reconstruction table  

This table is represented in a three-dimensional way to recover 

the correct result of the modular multiplication given the use of 

three sub-moduli. The addresses of this table are formed by 

concatenating the output from the previous three submodular 

addition tables; 𝑞1 determines the page address and 𝑞2 and 𝑞3 

both give the column and row addresses, respectively. The 

contents of this table are calculated in the following three steps: 

 

i- Submodular reconstruction: 

For our sub-moduli system 𝑞1, 𝑞2 and 𝑞3, the corresponding 

residues are 𝑟1, 𝑟2 and 𝑟3, and using the Chinese Remainder 

Theorem (CRT), a number can be constructed back as follows:  

 𝑟 = |∑  𝑞̂𝑗 ·   |𝑟𝑗𝑞̂𝑗|𝑞𝑗3𝑗=1 |𝑞1·  𝑞2·𝑞3                                         (4) 

 

where 𝑞̂𝑗 = 𝑞1·𝑞2·𝑞3𝑞𝑗  

 

This can be written as: 

 

 𝑟 = |𝑟1 ·  𝑞̂1 ·   | 1𝑞̂1|𝑞1 +  𝑟2  ·  𝑞̂2  ·  | 1𝑞̂2|𝑞2  +    𝑟3 ·  𝑞̂3  ·  | 1𝑞̂3|𝑞3
|

𝑞1· 𝑞2·𝑞3
         (5) 

 

This can be simplified further as follows: 

 

𝑟 = ||
     𝑟1  ·  𝑞2 · 𝑞3  ·   | 1𝑞2·𝑞3|𝑞1  +        𝑟2  ·  𝑞1 · 𝑞3  ·  | 1𝑞1·𝑞3|𝑞2  +   𝑟3 ·  𝑞1 · 𝑞2  ·  | 1𝑞1·𝑞2|𝑞3

||
𝑞1· 𝑞2·𝑞3

                  (6) 

 

Given our chosen sub-moduli system and computing the 

following modular inverse:  

 | 1𝑞2 · 𝑞3|𝑞1 = | 1992|7  = 3 

| 1𝑞1 · 𝑞3|𝑞2 = | 1224|31 = 9 

| 1𝑞1 · 𝑞2|𝑞3 = | 1217|32 = 9                                                           (7) 

       

The equation now is written as:   

 𝑟 = |𝑟1 · 2976 + 𝑟2 · 2016 +  𝑟3 · 1953|6944          (8) 

  

ii- Modulus overflow correction: 

The sub-moduli 𝑞1, 𝑞2 and 𝑞3 have no overflow, and only the 

modulus 𝑞 − 1 needs overflow correction as follows: 

𝑘 0 1 2 3 … 200 201 .. 3326 3327 𝑔 1 3 9 27 … 1242 397 .. 370 1110 
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 𝑟𝑖 =  |𝑟|𝑞−1                                                                      (9) 

 

iii- Inverse index look-up:  

The following mapping is used to inverse the operation and 

recover the modular multiplication result: 

 

 𝑥𝑖 =  |∝𝑟𝑖|𝑞                                                                     (10) 

 

Following these three steps, the whole reconstruction table 

contents are generated.  

Algorithm 3 summarises the proposed modular 

multiplication procedure.  

 

B. Modular multiplier interconnections and architecture 

The proposed architecture of the modular multiplier is shown 

in Fig. 1. It shows the interconnections of the ROMs with some 

of the table’s content. In theory, multiplication by zero is not 
allowed; therefore, this particular case is coded manually. The 

sub-moduli 𝑞2 = 31 route is chosen to detect the multiplication 

by zero by storing 31 in index zero as this number is not a valid 

result of sub-modulo 31. Then, the addition table corresponding 

to the row and column of 31 will also contain 31, and this will 

lead to the result of zero output from the reconstruction table as 

column address 31 contains all zeros. 

Algorithm 3: The proposed Modular multiplication  

Input Two integers 𝑥 𝑎𝑛𝑑 𝑦   

 Modulus 𝑞 , Primitive root of the modulus ∝ 

Sub-moduli set 𝑞1, 𝑞2, 𝑞3 

Output 𝑧 = |𝑥 ∙ 𝑦|𝑞  

1: Find index 𝑘 𝑓𝑜𝑟 𝑥 𝑎𝑛𝑑 𝑦 using 𝑔 =  |∝𝑘|𝑞 

2: Compute submodular residues for 𝑘(𝑥), 𝑘(𝑦):  

3:  𝑥1 = |𝑘(𝑥)|𝑞1, 𝑥2 = |𝑘(𝑥)|𝑞2, 𝑥3 = |𝑘(𝑥)|𝑞3  

4:  𝑦1 = |𝑘(𝑦)|𝑞1 , 𝑦2 = |𝑘(𝑦)|𝑞2 , 𝑦3 = |𝑘(𝑦)|𝑞3 

5: Compute residues additions: 

6:  𝑟1 = |𝑥1 +  𝑦1|𝑞1 

7:  𝑟2 = |𝑥2 + 𝑦2|𝑞2 

8:  𝑟3 = |𝑥3 + 𝑦3|𝑞3 

9: Compute CRT:  𝑟 = 𝐶𝑅𝑇(𝑟1, 𝑟2, 𝑟3) 
10: Correct modulus overflow:  𝑟𝑖 =  |𝑟|𝑞−1 

11: Inverse index look-up:  𝑧 =  |∝𝑟𝑖|𝑞 

 

 

 
 

Fig. 1: Multiplier tables interconnections 
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The sub-moduli systems have been carefully selected as this 

will lead to an efficient implementation. Sub-moduli 7 is 

represented with 3-bit, and both sub-moduli 31 and 32 are 

represented with 5-bit. There is an unused address pattern in the 

addition tables of these sub-moduli and the reconstruction table; 

however, we believe this is the minimal for Kyber modulus. 

Implementing the multiplier on FPGA requires only storing 

the tables in Read Only Memory (ROM). In this work, we chose 

to implement the tables in the FPGA BRAMs configured as 

ROM. Multiplying two numbers requires 3 ROMs for each 

input to store the index tables. The size of the first ROM is 3-

bit × 3329, while the other two are 5-bit × 3329. These three 

ROMs are concatenated together to form a 13-bit × 3329 ROM 

for an efficient FPGA BRAM utilization, which is equivalent to 

1.5 36K BRAM. Then, addition tables are stored in 3 ROMs 

where the first one is 3-bit × 64, and the other two are 5-bit × 

1024. These small tables are equivalent to half of a 36k BRAM. 

Finally, a 12-bit × 7168 ROM is required to store the 

reconstruction table and is taking 2.5 36k BRAM. In total, a 6 

36k BRAMs are needed to perform the modular multiplication 

of two numbers. A dual-port ROM is available in most FPGAs, 

which can be utilized to implement two modular multiplications 

with the same resources, and in this work, we call it a dual 

modular multiplier (DMM). The operation is completed in three 

clock cycles for both single and dual modes. 

 

C. Dual butterfly  

The proposed dual butterfly unit is shown in Fig. 2. It 

employs our dual modular multiplier to perform two butterfly 

operations simultaneously with the same modular multiplier 

resources. The butterfly is designed to be configurable to 

perform NTT, INTT or CWM butterfly operations. As 

presented in algorithm 1, the NTT utilizes CT butterfly, while 

GS butterfly architecture is used for the INTT operations, as 

shown in algorithm 2. INTT requires multiplying the 

coefficients by 𝑛−1, which results in an extra 256 modular 

multiplication for each polynomial. However, a method 

presented in[28] eliminates this extra multiplication by dividing 

by two the outputs of the GS butterfly operation at each INTT 

stage. This work follows this approach and creates a special 

hardware unit for modular division by 2 for each output. The 

butterfly also performs the CWM as in (2), which needs five 

modular multiplications and two modular additions. The 

butterfly comprises of one dual modular multiplier, two 

modular additions, two modular subtractions, and four modular 

divisions by two.  

The single butterfly unit is similar to the dual one except that 

it processes one pair of the input coefficients at a time instead 

of two pairs and uses the proposed multiplier in single mode. 

Both butterfly structures require 6 clock cycles to execute the 

butterfly operations. The delay registers are placed to 

synchronize the operations and allow pipeline execution. 

Modular addition is implemented by addition followed by 

reduction and is implemented in two clock cycles to minimize 

the critical delay path—similarly, modular subtraction is 

implemented. Modular division by 2, i.e., (𝑎 2⁄  𝑚𝑜𝑑 𝑞) is 

implemented by only shifting the input right by one if the input 

is even. In case the input is odd, then the shifting right of the 

input by one followed by addition with the precomputed 

constant 𝑞 + 1 2⁄ . 

 

 
 

Fig. 2: Dual Butterfly Unit (DBU) 

 

D. Top-level design 

The top-level design of the proposed accelerator with one 

dual butterfly unit is shown in Fig. 3. The engine consists of 4 

main components: BRAMs, ROM, DBU, and control unit. The 

twiddle factors are precomputed and stored in the ROM. The 

control logic generates the appropriate read-and-write 

addresses and initiates the desired state machine for NTT, INTT 

or CWM operations. 

Memory access is a challenging aspect of designing NTT 

accelerators. A flexible design presented in[16] which requires 

4 BRAMs for each butterfly, resulting in a total of 8 BRAMs 

used to store the two multiplied polynomials. In this work an 

efficient memory organization is proposed as shown in Fig. 4 

where only a single memory bank is used for both operands but 

with opposite orders to allow efficient access during the CWM 

process. This lowers the BRAM usage to by half in comparison 

with the work in [16]. Second, for multiple PE configurations 

as in the one DBU and two DBU cases, the coefficients are 

packed together to form a 24-bit and 48-bit data paths, 

respectively, and stored in one memory bank.  As a result, 2 

BRAMs are enough to store the two polynomials for the three 

versions of the accelerator which is equivalent to one 36k 

BRAM. 
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Fig. 3: Top-level design with one Dual Butterfly Unit 

(DBU) 

 

 

 

 
 

Fig. 4: Memory Organization 

 

The CWM operations schedule is shown in Fig. 5. The 

schedule starts with 𝑎1𝑏1 multiplication since it is the longest 

path to calculate the term 𝑎1𝑏1𝜔 and allows an efficient use of 

the modular multiplier. The first result of the CWM is available 

after 9 clock cycles, and then it takes 5 clock cycles after filling 

the pipeline. The proposed accelerator first computes the NTT 

for both input polynomials, then executes coefficient-wise 

multiplication and finally, inverses the NTT to obtain the 

multiplication result. Since the NTT in Kyber is incomplete, it 

requires 7 stages to perform both the NTT and INTT. This 

requires 128 operations in each stage, and with one DBU 

design, the NTT and INTT can be computed in 458 clock 

cycles. The CWM is performed in 328 clock cycles with the 

same butterfly configuration. 

 

 
 

Fig. 5: The CWM operations schedule 

 

IV. RESULTS AND COMPARISON 

In this section, we present the results of the FPGA 

implementation of the proposed design. The design is written in 

VHDL language, and we used Xilinx Artix-7 XC7A200 FPGA 

to allow a fair comparison with the existing works.  We used 

the Xilinx Vivado 2022 tool to synthesize and implement the 

design, and we recorded the result after place and route for a 

more accurate result.  To explore the performance of our design, 

we implemented three versions of our NTT-based polynomial 

multiplier: SBU design, one DBU-based design, and two DBU-

based.  For a fair comparison, we compare each version with its 

counterpart in the literature, as shown in Table I. 

The proposed modular multiplier shortens the critical data 

path to compute the modular multiplication into FPGA routing 

between the device BRAMs, as the entire modular 

multiplication is now performed in look-up tables, reducing the 

time complexity significantly. Therefore, the accelerator 

performance of our three versions outperforms the related 

existing works. The proposed multiplier is evaluated with 

complete polynomial multiplication, which comprises two NTT 

operations, one CWM and one INTT. The SBU design 

computes the polynomial multiplication in 9.6 µ𝑠, 
outperforming the work in[16] by 46%, while our design with 

one DBU achieves 17% improvement compared to the work 

in[29] to compute the multiplication in 5 𝜇𝑠. Finally, with a 

36% improvement compared to the design in[30], the 2 DBU 

design computes the NTT in 2.6 𝜇𝑠.  

     To investigate the design efficiency, the Area-Time Product 

with relation to LUT (ATP-LUT) and with relation to the 

Equivalent Number of Slices (ATP-ENS) are compared against 

previous works.  The ATP-LUT shows a significant 

improvement compared to previous works with the SBU and 

two DBU cases. Our design with SBU is 71 % better than the 

work in[31], while the two DBU gives a 61% improvement in 

comparison with the work in[30]. With one DBU design, our 

proposed design contributes to nearly 37% improvement in 

comparison with the work in[29]. Although the proposed 

methodology consumes higher BRAM usage, the ATP-ENS 

points to the efficiency of the proposed methodology with SBU 

and two DBU designs showing a slight improvement against  
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TABLE I 

FPGA IMPLEMENTATION RESULTS WITH COMPARISON TO RELATED WORK 

Work BU† 
AREA 

LUT    FF    Slices   DSP BRAM 

Freq. 

(MHz) 

Latency (CC) 

NTT/INTT/CWM 

PMUL 

Time‡ 

ATP-

LUT§ 

ATP-

ENS¶ 

[16] 

1 

948      352     281        1          2.5 190 904/904/647 17.7 16.8 15.8 

[31] 360      145     187        3           2 115 940/1203/1289 38 13.7 35.7 

This Work - 

1 SBU 
407      411      153       0          7.5  350 906/906/649 

9.6 

(46%) 

3.9 

(71%) 

  15.6 

  (1%) 

[29] 

2 

784      441       259      2           3 200 313/313/256 6.0 4.7 6.5 

[31] 737      290       371      6           4  115 474/602/1289 24.7 18.2 46.3 

[17] 1579    1058     527      2           3 161 448/448/256 9.9 15.7 13.5 

[18] 880      999       345      2          1.5 229 448/448/256 7.0 6.1 6.1 

This Work - 

1 DBU 
590      671       210      0          7.5 342 458/458/328 

5.0 

(17%) 

2.9 

(37%) 

8.4 

(-28%) 

[16] 

4 

2543    792       735      4           9 182 232/233/167 4.7 12.1 14.1 

[32] 1549    788       635      4          16 159 457/457/140 6.61 10.3 28.2 

[30] 1740    643       575      4           5 200 225/225/140 4.1 7.1 8.3 

This Work - 

2 DBU 
1052    1058     395      0         13.5  334 234/235/169 

2.6 

(36%) 

2.7 

(61%) 

7.9 

(4%) 
 

† The number of butterflies in the design 
‡ The time in µs of complete polynomial multiplication i.e., INTT(NTT(X) * NTT(Y)).  
§ Area-Time Product (ATP-LUT) = Total Time of computing polynomial multiplication in  𝑚𝑠 × number of LUT. 
¶ Area-Time Product (ATP-ENS) = Total Time of computing polynomial multiplication in  𝑚𝑠 × Equivalent Number of Slices 

(ENS). ENS = Slices + DSP × 120 + BRAM × 196  
1 1 NTT operation is considered in total time instead of 2 because 2 polynomials are computed in parallel.  

 

 the previous work in[16] and[30] by 1% and 4%, respectively 

and the one DBU design has ATP-ENS lower than the work 

in[18] by 28%. 

     Fig. 6 compares the three proposed accelerators in terms of 

time required to compute the polynomial multiplication (delay), 

ATP-LUT and ATP-ENS. As expected, more resources (from 

one SBU towards 2 DBUs) result in a shorter delay, but 

interestingly, the ATP-LUT and ATP-ENS improve gradually 

and then remain almost steady from one DBU to 2 DBUs 

designs. This is because, in the SBU design, the modular 

multiplier is used with single mode configuration, whereas in 

the other two designs, the multiplier is used efficiently in dual 

mode.    

     Our design does not consume any DSP slices as we 

implemented the entire modular multiplication in ROM look-

up tables using BRAMs instead of the device-distributed 

memory. This enables reduced LUT resource usage on the 

FPGA while still achieving high clock frequencies of 350 MHz, 

342 MHz, and 330 MHz for the three design versions, 

respectively, the highest in the literature to date to our best 

knowledge. 

 
Fig. 6: Performance comparison of the three proposed 

accelerator     

 

V. CONCLUSION 

     This paper presented a high-speed hardware accelerator for 

the polynomial multiplication of CRYSTALS-Kyber based on 

NTT. A new look-up tables approach is proposed with 
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corresponding hardware architecture to compute the modular 

multiplication efficiently. A new sub-moduli system is 

developed to decompose the operation in the Kyber modulus 

into smaller sub-moduli for efficient implementation. On top of 

this modular multiplier, single and dual butterfly NTT units are 

built to evaluate the performance of the proposed design. The 

designs were implemented, placed, and routed on Xilinx Artix-

7 FPGA. The accelerator with SBU computes the entire 

polynomial multiplication in 9.6 µ𝑠 faster than the previous 

works by 46%.  

The methodology presented enables trade-off to be made 

between computing logic and memory resources. Although the 

presented designs were targeted to FPGA fabrics, it is expected 

that similar conclusions to be drawn in terms of results for ASIC 

implementation as demonstrated with the presented Area-Time 

Product (ATP) metric. Furthermore, the ATP results could be 

used as indicative of energy performance, however, further 

investigation would be required for power/energy optimization. 

Finally, further research is required into understanding issues 

around compatibility of current hardware technologies for post-

quantum cryptography with potential future quantum 

computing hardware platforms to ensure that the advances 

made maintain their efficiencies when deployed in practice in 

future. There are already ongoing efforts into the challenges 

involved in migrating to PQC for cybersecurity in the quantum 

era as exemplified by the ongoing work under the National 

Cybersecurity Centre of Excellence (NCCo )’s Migration to 
PQC  project [33]. 
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