
This is a repository copy of High-speed polynomials multiplication HW accelerator for
CRYSTALS-Kyber.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214995/

Version: Accepted Version

Article:

Alhassani, A. orcid.org/0009-0005-6641-8615 and Benaissa, M. orcid.org/0000-0001-
7524-9116 (2024) High-speed polynomials multiplication HW accelerator for CRYSTALS-
Kyber. IEEE Transactions on Circuits and Systems I: Regular Papers, 71 (12). pp. 6105-
6113. ISSN 1549-8328

https://doi.org/10.1109/tcsi.2024.3427011

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in IEEE Transactions on Circuits and Systems I: Regular Papers is made
available via the University of Sheffield Research Publications and Copyright Policy under
the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0),
which permits unrestricted use, distribution and reproduction in any medium, provided the
original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abdullah Alhassani, Student Member, IEEE, and Mohammed Benaissa, Senior Member, IEEE

 Abstract— NIST has selected CRYSTALS-Kyber as the primary

Key Encapsulation Mechanism (KEM) algorithm for the

standardization process of post-quantum cryptography. This

paper proposes a high-speed hardware accelerator targeting the

polynomial multiplication of Kyber. The NTT-based algorithm is

employed in Kyber to perform polynomial multiplication, where

modular multiplication is the most time-consuming operation in

the computation of the NTT. This paper proposes a new Residue

Number System (RNS) methodology to perform the modular

multiplication in Kyber based on fast look-up tables with a novel

sub-moduli RNS decomposition of the operation into smaller

tables. A high-speed polynomial multiplier FPGA accelerator is

developed based on the proposed RNS modular multiplier for both

single and double butterfly modes. The resulting designs were

implemented on Xilinx Artix-7 FPGA, and post-place and route

hardware results obtained confirmed the significant

improvements over state-of-art.

Index Terms— CRYSTALS-Kyber, Post-Quantum Cryptography

(PQC), Number Theoretic Transform (NTT), Lattice-Based

Cryptography (LBC), FPGA, Hardware, RNS, High-Speed

I. INTRODUCTION

HE recent development of quantum computing poses a

severe threat to the current public key cryptography

primitives such as RSA and ECC. These primitives rely

on mathematically hard problems to secure communication

between two parties, and with the future availability of a

powerful quantum computer running Shor’s algorithm,

breaking these schemes will be accomplished in polynomial

time[1]. For this reason, in 2016[2], the National Institute of

Standards and Technology (NIST) started a competition for

Post-Quantum Cryptography (PQC) algorithms, which resist

quantum and classical attacks, and went on three rounds to

select the best candidates. NIST selected four schemes for the

standard in July 2022[3], and the competition will continue for

a fourth round to select from another four candidates.

CRYSTALS-Kyber[4] was chosen by NIST for

standardization as the primary key encapsulation mechanism

(KEM), which is a lattice-based cryptography scheme where its

security is based on solving the Module Learning With Errors

(MLWE) hard problem[5]. The scheme consists of three

algorithms: key generation, encryption, and decryption, where

polynomial multiplication dominates the computations in these

algorithms.

Abdullah Alhassani and Mohammed Benaissa are with the Department of

Electronic and Electrical Engineering, University of Sheffield, Sheffield S1

3JD, UK (e-mail: ahmalhassani1@sheffield.ac.uk;

m.benaissa@sheffield.ac.uk).

Hardware accelerators play a crucial role in cryptography as

they offer high-speed operations compared to software

implementation and aim for practical deployment of post-

quantum cryptography schemes for real-life applications.

Kyber adopted the NTT-based algorithm to perform polynomial

multiplication instead of the classical time domain techniques.

Several NTT architectures have been reported in the

literature often trading-off hardware complexity and

throughput. For example, a highly pipelined hardware

architecture based on the systolic array technique is adopted to

accelerate the Coefficient Wise Multiplication (CWM)

operation at the expense of increased hardware resources [6].

Similarly, memory-based iterative NTT designs based on a

small hardware module for performing the NTT operations are

deployed to reduce hardware usage [7, 8].

The intrinsic operation in the hardware structure of NTT is

the butterfly unit, which involves modular multiplication,

modular addition, and modular subtraction. While modular

addition and subtraction can be easily implemented, modular

multiplication is the most complex operation in the butterfly

and, therefore, received attention in most of the previous works.

The modular multiplication is computed in two steps:

multiplication of two numbers followed by a reduction to keep

the result in the same ring. The state-of-the-art works associated

with the hardware implementation of Kyber polynomial

multiplication involve both Montgomery reduction[9] and

Barret reduction[10]. The authors in [11] used Montgomery to

implement the modular reduction. A variant of Montgomery

reduction that includes KRED and KRED-2X functions was

presented in [12] and further improved in [13] to optimize the

reduction further for Kyber. However, most other works

focussed on Barrett reduction and its variants. In [14, 15],

Barret reduction is utilized directly for the modular reduction,

whereas [16-18] derived improved versions from the original

Barrett.

Most reported hardware implementations for Kyber have

been targeted at FPGA technology, where DSP slices were

favoured for the implementation of the modular multiplication

during the NTT/INTT computations and the CWM operation.

FPGA is a platform that allows hardware acceleration as well

as flexibility. It also allows hardware performance evaluation.

In this work, we first consider modular multiplication and

propose a new Residue Number System (RNS) methodology

High-Speed Polynomials Multiplication HW
accelerator for CRYSTALS-Kyber

T

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

based on look-up tables to compute the 𝑎. 𝑏 𝑚𝑜𝑑 𝑞 operation

that is optimized for Kyber. A ROM array architecture is

proposed based on judicious isomorphic mapping, optimal sub-

moduli decomposition, and efficient memory addressing. The

architecture exploits the use of BRAMs on FPGAs to accelerate

computations. The use of BRAMs to support computations can

free up the FPGA logic blocks and DSP resources for further

computational tasks thus enabling trade-offs to be made

between computation logic and memory resources.

A single butterfly unit (SBU) and a dual butterfly unit

(DBU) are proposed using the proposed modular multiplier in

single and dual mode, respectively, to build an NTT-based

polynomial multiplier for Kyber that is capable of computing

the whole operation without using DSP slices.

The resulting hardware accelerator performs the complete

polynomial multiplication, including computing NTT, INTT

and CWM. The implementation results on the NIST-

recommended FPGA Xilinx Artix-7 show that the proposed

design can compute the entire polynomial multiplication in 9.6 µ𝑠 with one SBU, 5 𝜇𝑠 with one DBU, and in 2.6 𝜇𝑠 with

two DBUs hence outperforming similar previous works by

46%, 17%, and 36% respectively.

Research in Side Channel and Fault injection Analysis

countermeasures in NTT designs has received increasing

interest in recent years due to their importance in securing

lattice-based PQC implementations such as the error detection

schemes introduced in [19, 20]. The use of look-up tables in this

work can offer the advantage of constant time implementation

and, hence, better resistance to timing attacks [21].

The rest of the paper is organized as follows: Section II

provides background on the Kyber protocol and the NTT-based

polynomial multiplication algorithm. Section III details our

contributions in this paper, including our design methodology

and the proposed designs. The implementation results and

comparisons with the existing work are presented in section IV.

Finally, the conclusion is given in section V.

II. BACKGROUND

A. Notation

Let ℤ𝑞 denotes the ring of integers {0, 1, … , 𝑞 − 1} with

the modulus 𝑞, and ℝ𝑞 = ℤ𝑞[𝑥]/(𝑥𝑛 + 1) represents the

quotient ring of polynomials where the polynomials are reduced

by cyclotomic polynomial 𝑥𝑛 + 1, and the coefficients are

integers in ℤ𝑞. The degree of a polynomial 𝑓 ∈ ℝ𝑞 is at most 𝑛 − 1.

A polynomial in the normal domain is written with regular

lower-case letters as 𝑎, and its transformation to the NTT

domain is defined as 𝑎̂ ← 𝑁𝑇𝑇(𝑎) where 𝑎̂ represents the

polynomial in the NTT domain. The inverse of the NTT

transform is defined as 𝑎 ← 𝐼𝑁𝑇𝑇(𝑎̂).

A 𝑘-dimensional polynomial vector is written with bold

lower-case letters, e.g., 𝒔 and a 𝑘 × 𝑘 dimensional polynomial

matrix is written with bold upper-case letters, e.g., 𝑨. The

transpose of a vector 𝐚 (or matrix 𝐀) is represented as 𝒂𝑇 (or 𝑨𝑇). Multiplication in the NTT domain, i.e., CWM denoted as

* where · indicates integer multiplication and matrix

multiplication is represented as °.

B. CRYSTALS-Kyber (Kyber)

Kyber[4] is the primary KEM selected by NIST for the

PQC standard. The scheme first encrypts a 32-bytes message

using the conventional method to build an indistinguishability

under the Chosen-Plaintext Attack (IND-CPA) secure public-

key encryption scheme. Next, a modified Fujisaki-Okamoto

(FO) transform[22] is used to construct an indistinguishability

under adaptive Chosen Ciphertext Attack (IND CCA2) secure

KEM.

Elements in Kyber are represented as polynomials in ℝ𝑞 = ℤ𝑞[𝑥]/(𝑥𝑛 + 1). The degree of the polynomials 𝑛 = 256 and 𝑞 = 3329. Kyber provides three NIST security levels: 1, 3, and

5 as Kyber-512, Kyber-768, and Kyber-1024, respectively. This

can be adjusted according to the module lattice dimension 𝑘,
which can take the values of 2, 3, and 4 for the three security

levels in order. The Kyber IND-CPA consists of three

algorithms: key generation, encryption, and decryption. The

simplified version of these algorithms is presented as follows,

and for further details, please refer to the protocol specification

in[4]:

• Keygen(): at Allice’s side, firstly, a public matrix 𝑨̂ ∈ ℝ𝑞𝑘×𝑘 is sampled from a uniform distribution in the

NTT domain using a random seed 𝜌. Then, a secret 𝒔

and an error 𝒆 ∈ ℝ𝑞𝑘 are sampled from a cantered

binomial distribution (CBD) and computing 𝒔̂ =𝑁𝑇𝑇(𝒔) and 𝒆̂ = 𝑁𝑇𝑇(𝒆). Finally, the public key is

generated as 𝑝𝑘 = (𝜌, 𝒕̂) where 𝒕̂ = 𝑨̂ ° 𝒔̂ + 𝒆̂, and the

secret key as 𝑠𝑘 = 𝒔̂.

• Encryption(𝑝𝑘, 𝑚): at Bob’s side again, the public

matrix 𝑨̂ is sampled from uniform distribution using

the same seed 𝜌. Then, 𝒓, 𝒆𝟏 ∈ ℝ𝑞𝑘 and 𝑒2 ∈ ℝ𝑞 are

sampled from CBD and computing 𝒓̂ = 𝑁𝑇𝑇(𝒓). The

message 𝑚 is encoded, and then the ciphertext is

constructed as 𝑐𝑡 = (𝒖, 𝑣) where 𝒖 = 𝐼𝑁𝑇𝑇(𝑨̂𝑇 ° 𝒓̂) + 𝒆𝟏 and 𝑣 = 𝐼𝑁𝑇𝑇(𝒕̂𝑇 ° 𝒓̂) + 𝑒2 +𝑚.

• Decryption(𝑐𝑡, 𝑠𝑘): Allice recovers the message from

the received ciphertext as 𝑚 = 𝑣 −𝐼𝑁𝑇𝑇(𝒔̂𝑇 ° 𝑁𝑇𝑇(𝒖)).

C. Polynomials multiplication based on NTT

The bottleneck operation in Kyber is polynomial

multiplication, where the NTT-based algorithm is used in the

scheme instead of the traditional time domain approach.

Multiplication using the NTT can perform the operation in 𝑂(𝑛(log 𝑛)) time complexity. The NTT transform is a

generalization of the Discrete Fourier Transform and is defined

over the ring ℤ𝑞 . Let a polynomial 𝑎(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 … . . 𝑎𝑛−1𝑥𝑛−1, its forward NTT transformation into 𝑎̂(𝑥)

can be written as [23]:

𝑎̂(𝑥) = ∑ 𝑎𝑗𝑛−1
𝑗=0 𝜔𝑛𝑖𝑗𝑚𝑜𝑑 𝑞, 𝑖 ∈ [0, 𝑛 − 1] (1)

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Where 𝜔, i.e., the twiddle factor constant represents the 𝑛-th

root of unity satisfying the two conditions: 𝜔𝑛 ≡ 1(𝑚𝑜𝑑 𝑞)

and 𝜔𝑛 ≠ 1(𝑚𝑜𝑑 𝑞) ∀𝑖 < 𝑛. The modulus 𝑞 also must be a

prime number that satisfies the condition 𝑞 ≡ 1 (𝑚𝑜𝑑 𝑛).

Converting a polynomial back to the normal domain is

accomplished using INTT transform, where 𝜔−1 (𝑚𝑜𝑑 𝑞)

utilized as twiddle factors instead of 𝜔, and scaling the result

with 𝑛−1.

Algorithm 1: Forward NTT based on CT butterfly

Input 𝑎(𝑥) ∈ ℝ𝑞 in normal order, 𝜔 ∈ ℤ𝑞 and 𝑛 = 2𝑙
Output 𝑎̂(𝑥) ∈ ℝ𝑞 in bit-reversed order

1: 𝑘 = 1

2: for (𝑖 = 1; 𝑖 < 𝑙 − 1; 𝑖 = 𝑖 + 1) do

3: 𝑚 = 2𝑙−𝑖
4: for (𝑠 = 0; 𝑠 = 𝑛; 𝑠 = 𝑠 + 𝑚) do

5: for (𝑗 = 𝑠; 𝑠 = 𝑠 + 𝑚; 𝑗 = 𝑗 + 1) do

6: 𝑊 = 𝜔𝑏𝑟7(𝑘) 𝑚𝑜𝑑 𝑞

7: 𝑋 = 𝑎[𝑗], 𝑌 = 𝑎[𝑗 + 𝑚]
8: 𝑇 = (𝑊 · 𝑌)𝑚𝑜𝑑 𝑞

9: 𝑎[𝑗] = (𝑋 + 𝑇) 𝑚𝑜𝑑 𝑞

10: 𝑎[𝑗 + 𝑚] = (𝑋 − 𝑇) 𝑚𝑜𝑑 𝑞

11: end for

12: 𝑘 = 𝑘 + 1

13: end for

14: end for

 Since polynomials multiplication in Kyber is performed

over the ring ℝ𝑞 = ℤ𝑞[𝑥]/(𝑥𝑛 + 1), the negative wrapped

convolution can be utilized to eliminate the need for doubling

the inputs and the extra polynomial reduction by 𝑥𝑛 + 1. If this

case is considered, inputs need pre-processing by scaling the

coefficients with powers of the 2𝑛-th root of unity. Similarly,

the outputs require post-processing operation by scaling the

coefficients with powers of the inverse 2𝑛-th root of unity.

However, in [24], a new method is presented to perform

polynomial multiplication using the NTT without the pre-

processing and post-processing operations. The new method

only restricts the modulus to have the 𝑛-th root of unity 𝑞 ≡1 (𝑚𝑜𝑑 𝑛) without requiring the 2𝑛-th root of unity to exist.

This variant is called incomplete-NTT and produces 𝑛 2⁄

polynomials of degree 1 and the definitions of NTT and INTT

have been modified accordingly as presented in algorithms 1

and 2, respectively, where 𝑏𝑟7(𝑘) is the bit reversal function of

an unsigned 7-bit integer 𝑘. Furthermore, the Cooley-Tukey

(CT) [25] butterfly structure for NTT and Gentleman-Sande

(GS) [26] butterfly for the INTT are proposed to avoid bit-

reversal operations [18].

 In the incomplete-NTT, Coefficients Wise Multiplication

(CWM) is performed differently. The operation is performed by

multiplying the two 128 degree-1 polynomials in the ring ℤ𝑞[𝑥]/(𝑥2 − 𝜔2𝑏𝑟7(𝑖)+1) for 𝑖 = 0, … ,127. For example, for

two polynomials 𝑎̂ and 𝑏̂, their CWM is computed as:

 𝑐̂ = 𝐶𝑊𝑀(𝑎̂ , 𝑏̂) = 𝑎̂ ∗ 𝑏̂ = (𝑎̂2𝑖+1𝑋 + 𝑎̂2𝑖) · (𝑏̂2𝑖+1𝑋 + 𝑏̂2𝑖) 𝑀𝑜𝑑 (𝑥2 − 𝜔2𝑏𝑟7(𝑖)+1) = (𝑎̂2𝑖+1 · 𝑏̂2𝑖 + 𝑎̂2𝑖 · 𝑏̂2𝑖+1)𝑋 + 𝑎̂2𝑖 · 𝑏2𝑖 + 𝑎̂2𝑖+1 · 𝑏̂2𝑖+1 · 𝜔2𝑏𝑟7(𝑖)+1 (2)

 This requires five modular multiplications and two modular

additions for each pair of coefficients, and for the 128 pairs, it

costs 640 modular multiplications and 256 modular additions.

Algorithm 2: Inverse NTT based on GS butterfly

Input 𝑎̂(𝑥) ∈ ℝ𝑞 in bit-reversed order, 𝜔−1 ∈ ℤ𝑞 and 𝑛 = 2𝑙
Output 𝑎(𝑥) ∈ ℝ𝑞 normal in order

1: 𝑘 = 0

2: for (𝑖 = 𝑙 − 1; 𝑖 < 1; 𝑖 = 𝑖 − 1) do

3: 𝑚 = 2𝑙−𝑖
4: for (𝑠 = 0; 𝑠 = 𝑛; 𝑠 = 𝑠 + 2𝑚) do

5: for (𝑗 = 𝑠; 𝑠 = 𝑠 + 𝑚; 𝑗 = 𝑗 + 1) do

6: 𝑊 = 𝜔𝑏𝑟7(𝑘)+1 𝑚𝑜𝑑 𝑞

7: 𝑋 = 𝑎̂[𝑗], 𝑌 = 𝑎̂[𝑗 + 𝑚]
8: 𝑎̂[𝑗] = (𝑋 + 𝑌) ÷ 2 𝑚𝑜𝑑 𝑞

9: 𝑎̂[𝑗 + 𝑚] = (𝑋 − 𝑌) · 𝑊 ÷ 2 𝑚𝑜𝑑 𝑞

10: end for

11: 𝑘 = 𝑘 + 1

12: end for

13: end for

III. THE PROPOSED DESIGN

A. Modular multiplier

The proposed multiplier adopts an RNS methodology based

on a look-up tables approach. This requires the design of an

efficient ROM array architecture based on judicious isomorphic

mapping, sub-moduli decomposition, and memory addressing,

as explained below.

The operation of multiplication modulo 𝑞 can be computed

using look-up tables, and for Kyber, the modulus is 3329, which

can be represented as a 12-bit unsigned number. However,

direct implementation is not efficient as it requires storing 224

of 12-bit records in the look-up tables, which consumes large

memory. The isomorphism between a multiplicative group 𝑔

having elements 𝑔𝑛 = {1, 2, … , 𝑞 − 1}with the multiplication

modulo 𝑞, and the additive group 𝑘 having elements 𝑘𝑛 ={0, 1, … , 𝑞 − 2} with the addition, modulo 𝑞 − 1 can be used

to improve modular multiplication using the mapping 𝑔𝑛 =∝𝑘𝑛

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

where ∝ is a primitive root of 𝑞. In this case, the multiplication

is replaced by addition and can be computed as follows[27]:

 |𝑔𝑛 · 𝑔𝑗|𝑞 = 𝛼|𝑘𝑛+𝑘𝑗|𝑞−1 (3)

Where |𝑎|𝑞 represents the least positive residue of 𝑎 modulo 𝑞.

 The modular multiplication can be performed by finding the

index 𝑘𝑖 for the two multiplied numbers. Then, performing the

addition of the two indexes modulo 𝑞 − 1 and, finally,

inversing the index operation to find the correct result. The

merit of replacing multiplication with addition is that addition

can be computed in a modulus other than the prime modulo of

Kyber, i.e., 3329, with only restricting the new modulus to be

at least twice as the original one.

 Since the only restriction on the new modulus is its

minimum size, a composite modulus with an adder tree can be

used to improve the implementation efficiency. In this work, an

RNS submodular ROM array adder is proposed where the

modulus is decomposed into three relatively prime moduli and

the addition is performed in these three submodules. Finally,

the result is reconstructed using a look-up table, and it involves

submodular reconstruction, modulus overflow correction and

inverse index look-up.

Now we explain how to generate look-up tables ROM

entries.

1- Submodular index tables:

The primitive root ∝= 3 is selected considering the

modulus of Kyber 𝑞 = 3329, and {7, 31 𝑎𝑛𝑑 32} as our three

submodular system satisfying the following condition: 2𝑞 < 7 · 31 · 32. Firstly, the following table is generated from the

mapping: 𝑔 = |3𝑘|3329 for 𝑘 = 0, 1, … , 𝑞 − 2

Then, the contents and the addresses of the table are

interchanged and then taking the modulo of the three sub-

moduli to generate the index table for each sub-moduli as in the

following table: 𝑔 1 2 3 … 370 371 … 3327 3328 𝑘 0 1134 1 … 3326 2306 … 2798 1664 |𝑘|7 0 0 0 … 1 3 … 5 5 |𝑘|31 0 18 1 .. 9 12 … 8 21 |𝑘|32 0 14 1 … 30 2 … 14 0

2- Submodular addition tables:

For each of the sub-moduli, a table is generated that contains

the sub-modulo residue of the addition of the two input

residues. The addresses of these tables are determined by

concatenating the two to be added sub-modulo residues.

3- Reconstruction table

This table is represented in a three-dimensional way to recover

the correct result of the modular multiplication given the use of

three sub-moduli. The addresses of this table are formed by

concatenating the output from the previous three submodular

addition tables; 𝑞1 determines the page address and 𝑞2 and 𝑞3

both give the column and row addresses, respectively. The

contents of this table are calculated in the following three steps:

i- Submodular reconstruction:

For our sub-moduli system 𝑞1, 𝑞2 and 𝑞3, the corresponding

residues are 𝑟1, 𝑟2 and 𝑟3, and using the Chinese Remainder

Theorem (CRT), a number can be constructed back as follows:

 𝑟 = |∑ 𝑞̂𝑗 · |𝑟𝑗𝑞̂𝑗|𝑞𝑗3𝑗=1 |𝑞1· 𝑞2·𝑞3 (4)

where 𝑞̂𝑗 = 𝑞1·𝑞2·𝑞3𝑞𝑗

This can be written as:

 𝑟 = |𝑟1 · 𝑞̂1 · | 1𝑞̂1|𝑞1 + 𝑟2 · 𝑞̂2 · | 1𝑞̂2|𝑞2 + 𝑟3 · 𝑞̂3 · | 1𝑞̂3|𝑞3
|

𝑞1· 𝑞2·𝑞3
 (5)

This can be simplified further as follows:

𝑟 = ||
 𝑟1 · 𝑞2 · 𝑞3 · | 1𝑞2·𝑞3|𝑞1 + 𝑟2 · 𝑞1 · 𝑞3 · | 1𝑞1·𝑞3|𝑞2 + 𝑟3 · 𝑞1 · 𝑞2 · | 1𝑞1·𝑞2|𝑞3

||
𝑞1· 𝑞2·𝑞3

 (6)

Given our chosen sub-moduli system and computing the

following modular inverse:

 | 1𝑞2 · 𝑞3|𝑞1 = | 1992|7 = 3

| 1𝑞1 · 𝑞3|𝑞2 = | 1224|31 = 9

| 1𝑞1 · 𝑞2|𝑞3 = | 1217|32 = 9 (7)

The equation now is written as:

 𝑟 = |𝑟1 · 2976 + 𝑟2 · 2016 + 𝑟3 · 1953|6944 (8)

ii- Modulus overflow correction:

The sub-moduli 𝑞1, 𝑞2 and 𝑞3 have no overflow, and only the

modulus 𝑞 − 1 needs overflow correction as follows:

𝑘 0 1 2 3 … 200 201 .. 3326 3327 𝑔 1 3 9 27 … 1242 397 .. 370 1110

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

 𝑟𝑖 = |𝑟|𝑞−1 (9)

iii- Inverse index look-up:

The following mapping is used to inverse the operation and

recover the modular multiplication result:

 𝑥𝑖 = |∝𝑟𝑖|𝑞 (10)

Following these three steps, the whole reconstruction table

contents are generated.

Algorithm 3 summarises the proposed modular

multiplication procedure.

B. Modular multiplier interconnections and architecture

The proposed architecture of the modular multiplier is shown

in Fig. 1. It shows the interconnections of the ROMs with some

of the table’s content. In theory, multiplication by zero is not
allowed; therefore, this particular case is coded manually. The

sub-moduli 𝑞2 = 31 route is chosen to detect the multiplication

by zero by storing 31 in index zero as this number is not a valid

result of sub-modulo 31. Then, the addition table corresponding

to the row and column of 31 will also contain 31, and this will

lead to the result of zero output from the reconstruction table as

column address 31 contains all zeros.

Algorithm 3: The proposed Modular multiplication

Input Two integers 𝑥 𝑎𝑛𝑑 𝑦

 Modulus 𝑞 , Primitive root of the modulus ∝

Sub-moduli set 𝑞1, 𝑞2, 𝑞3

Output 𝑧 = |𝑥 ∙ 𝑦|𝑞

1: Find index 𝑘 𝑓𝑜𝑟 𝑥 𝑎𝑛𝑑 𝑦 using 𝑔 = |∝𝑘|𝑞

2: Compute submodular residues for 𝑘(𝑥), 𝑘(𝑦):

3: 𝑥1 = |𝑘(𝑥)|𝑞1, 𝑥2 = |𝑘(𝑥)|𝑞2, 𝑥3 = |𝑘(𝑥)|𝑞3

4: 𝑦1 = |𝑘(𝑦)|𝑞1 , 𝑦2 = |𝑘(𝑦)|𝑞2 , 𝑦3 = |𝑘(𝑦)|𝑞3

5: Compute residues additions:

6: 𝑟1 = |𝑥1 + 𝑦1|𝑞1

7: 𝑟2 = |𝑥2 + 𝑦2|𝑞2

8: 𝑟3 = |𝑥3 + 𝑦3|𝑞3

9: Compute CRT: 𝑟 = 𝐶𝑅𝑇(𝑟1, 𝑟2, 𝑟3)
10: Correct modulus overflow: 𝑟𝑖 = |𝑟|𝑞−1

11: Inverse index look-up: 𝑧 = |∝𝑟𝑖|𝑞

Fig. 1: Multiplier tables interconnections

 -
 -
 -

 -
- - - - -

 -

...

...

... ...

...

...
...

...

...

...

...
...

... ...

...

...

...

-

...

...

 -

... ...

...

...
...

...

...

...

...
...

... ...

...

... ...

...

...
...

...

...

...

...
...

... ...

...

Addition tables

Reconstruction table

Inde tables

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The sub-moduli systems have been carefully selected as this

will lead to an efficient implementation. Sub-moduli 7 is

represented with 3-bit, and both sub-moduli 31 and 32 are

represented with 5-bit. There is an unused address pattern in the

addition tables of these sub-moduli and the reconstruction table;

however, we believe this is the minimal for Kyber modulus.

Implementing the multiplier on FPGA requires only storing

the tables in Read Only Memory (ROM). In this work, we chose

to implement the tables in the FPGA BRAMs configured as

ROM. Multiplying two numbers requires 3 ROMs for each

input to store the index tables. The size of the first ROM is 3-

bit × 3329, while the other two are 5-bit × 3329. These three

ROMs are concatenated together to form a 13-bit × 3329 ROM

for an efficient FPGA BRAM utilization, which is equivalent to

1.5 36K BRAM. Then, addition tables are stored in 3 ROMs

where the first one is 3-bit × 64, and the other two are 5-bit ×

1024. These small tables are equivalent to half of a 36k BRAM.

Finally, a 12-bit × 7168 ROM is required to store the

reconstruction table and is taking 2.5 36k BRAM. In total, a 6

36k BRAMs are needed to perform the modular multiplication

of two numbers. A dual-port ROM is available in most FPGAs,

which can be utilized to implement two modular multiplications

with the same resources, and in this work, we call it a dual

modular multiplier (DMM). The operation is completed in three

clock cycles for both single and dual modes.

C. Dual butterfly

The proposed dual butterfly unit is shown in Fig. 2. It

employs our dual modular multiplier to perform two butterfly

operations simultaneously with the same modular multiplier

resources. The butterfly is designed to be configurable to

perform NTT, INTT or CWM butterfly operations. As

presented in algorithm 1, the NTT utilizes CT butterfly, while

GS butterfly architecture is used for the INTT operations, as

shown in algorithm 2. INTT requires multiplying the

coefficients by 𝑛−1, which results in an extra 256 modular

multiplication for each polynomial. However, a method

presented in[28] eliminates this extra multiplication by dividing

by two the outputs of the GS butterfly operation at each INTT

stage. This work follows this approach and creates a special

hardware unit for modular division by 2 for each output. The

butterfly also performs the CWM as in (2), which needs five

modular multiplications and two modular additions. The

butterfly comprises of one dual modular multiplier, two

modular additions, two modular subtractions, and four modular

divisions by two.

The single butterfly unit is similar to the dual one except that

it processes one pair of the input coefficients at a time instead

of two pairs and uses the proposed multiplier in single mode.

Both butterfly structures require 6 clock cycles to execute the

butterfly operations. The delay registers are placed to

synchronize the operations and allow pipeline execution.

Modular addition is implemented by addition followed by

reduction and is implemented in two clock cycles to minimize

the critical delay path—similarly, modular subtraction is

implemented. Modular division by 2, i.e., (𝑎 2⁄ 𝑚𝑜𝑑 𝑞) is

implemented by only shifting the input right by one if the input

is even. In case the input is odd, then the shifting right of the

input by one followed by addition with the precomputed

constant 𝑞 + 1 2⁄ .

Fig. 2: Dual Butterfly Unit (DBU)

D. Top-level design

The top-level design of the proposed accelerator with one

dual butterfly unit is shown in Fig. 3. The engine consists of 4

main components: BRAMs, ROM, DBU, and control unit. The

twiddle factors are precomputed and stored in the ROM. The

control logic generates the appropriate read-and-write

addresses and initiates the desired state machine for NTT, INTT

or CWM operations.

Memory access is a challenging aspect of designing NTT

accelerators. A flexible design presented in[16] which requires

4 BRAMs for each butterfly, resulting in a total of 8 BRAMs

used to store the two multiplied polynomials. In this work an

efficient memory organization is proposed as shown in Fig. 4

where only a single memory bank is used for both operands but

with opposite orders to allow efficient access during the CWM

process. This lowers the BRAM usage to by half in comparison

with the work in [16]. Second, for multiple PE configurations

as in the one DBU and two DBU cases, the coefficients are

packed together to form a 24-bit and 48-bit data paths,

respectively, and stored in one memory bank. As a result, 2

BRAMs are enough to store the two polynomials for the three

versions of the accelerator which is equivalent to one 36k

BRAM.

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 3: Top-level design with one Dual Butterfly Unit

(DBU)

Fig. 4: Memory Organization

The CWM operations schedule is shown in Fig. 5. The

schedule starts with 𝑎1𝑏1 multiplication since it is the longest

path to calculate the term 𝑎1𝑏1𝜔 and allows an efficient use of

the modular multiplier. The first result of the CWM is available

after 9 clock cycles, and then it takes 5 clock cycles after filling

the pipeline. The proposed accelerator first computes the NTT

for both input polynomials, then executes coefficient-wise

multiplication and finally, inverses the NTT to obtain the

multiplication result. Since the NTT in Kyber is incomplete, it

requires 7 stages to perform both the NTT and INTT. This

requires 128 operations in each stage, and with one DBU

design, the NTT and INTT can be computed in 458 clock

cycles. The CWM is performed in 328 clock cycles with the

same butterfly configuration.

Fig. 5: The CWM operations schedule

IV. RESULTS AND COMPARISON

In this section, we present the results of the FPGA

implementation of the proposed design. The design is written in

VHDL language, and we used Xilinx Artix-7 XC7A200 FPGA

to allow a fair comparison with the existing works. We used

the Xilinx Vivado 2022 tool to synthesize and implement the

design, and we recorded the result after place and route for a

more accurate result. To explore the performance of our design,

we implemented three versions of our NTT-based polynomial

multiplier: SBU design, one DBU-based design, and two DBU-

based. For a fair comparison, we compare each version with its

counterpart in the literature, as shown in Table I.

The proposed modular multiplier shortens the critical data

path to compute the modular multiplication into FPGA routing

between the device BRAMs, as the entire modular

multiplication is now performed in look-up tables, reducing the

time complexity significantly. Therefore, the accelerator

performance of our three versions outperforms the related

existing works. The proposed multiplier is evaluated with

complete polynomial multiplication, which comprises two NTT

operations, one CWM and one INTT. The SBU design

computes the polynomial multiplication in 9.6 µ𝑠,
outperforming the work in[16] by 46%, while our design with

one DBU achieves 17% improvement compared to the work

in[29] to compute the multiplication in 5 𝜇𝑠. Finally, with a

36% improvement compared to the design in[30], the 2 DBU

design computes the NTT in 2.6 𝜇𝑠.

 To investigate the design efficiency, the Area-Time Product

with relation to LUT (ATP-LUT) and with relation to the

Equivalent Number of Slices (ATP-ENS) are compared against

previous works. The ATP-LUT shows a significant

improvement compared to previous works with the SBU and

two DBU cases. Our design with SBU is 71 % better than the

work in[31], while the two DBU gives a 61% improvement in

comparison with the work in[30]. With one DBU design, our

proposed design contributes to nearly 37% improvement in

comparison with the work in[29]. Although the proposed

methodology consumes higher BRAM usage, the ATP-ENS

points to the efficiency of the proposed methodology with SBU

and two DBU designs showing a slight improvement against

Twiddle
 actors
R M

w

w

M M

M M

Control
 nit

y
y

y
y

a a

a a

... ...

a a

b b

b b

... ...

b b

 st Poly

 nd Poly

Mem Mem

a a a a

a a a a

... ...

a a a a

b b b b

b b b b

... ...

b b b b

 st Poly

 nd Poly

Mem Mem

a a a a a a a a

a a a a a a a a

... ...

a a a a a a a a

b b b b b b b b

b b b b b b b b

... ...

b b b b b b b b

Mem Mem

 st Poly

 nd Poly

 S

Clock Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 𝑎1𝑏1

𝑎0𝑏1

𝑎1𝑏0 𝑎1𝑏0 + 𝑎0𝑏1

𝑎0𝑏0

𝑎1𝑏1𝜔 𝑎1𝑏1𝜔 + 𝑎0𝑏0

𝑎1𝑏1

𝑎0𝑏1

𝑎1𝑏0 𝑎1𝑏0 + 𝑎0𝑏1

𝑎0𝑏0

 𝑎1𝑏1𝜔 𝑎1𝑏1𝜔 + 𝑎0𝑏0

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

TABLE I

FPGA IMPLEMENTATION RESULTS WITH COMPARISON TO RELATED WORK

Work BU†
AREA

LUT FF Slices DSP BRAM

Freq.

(MHz)

Latency (CC)

NTT/INTT/CWM

PMUL

Time‡

ATP-

LUT§

ATP-

ENS¶

[16]

1

948 352 281 1 2.5 190 904/904/647 17.7 16.8 15.8

[31] 360 145 187 3 2 115 940/1203/1289 38 13.7 35.7

This Work -

1 SBU
407 411 153 0 7.5 350 906/906/649

9.6

(46%)

3.9

(71%)

 15.6

 (1%)

[29]

2

784 441 259 2 3 200 313/313/256 6.0 4.7 6.5

[31] 737 290 371 6 4 115 474/602/1289 24.7 18.2 46.3

[17] 1579 1058 527 2 3 161 448/448/256 9.9 15.7 13.5

[18] 880 999 345 2 1.5 229 448/448/256 7.0 6.1 6.1

This Work -

1 DBU
590 671 210 0 7.5 342 458/458/328

5.0

(17%)

2.9

(37%)

8.4

(-28%)

[16]

4

2543 792 735 4 9 182 232/233/167 4.7 12.1 14.1

[32] 1549 788 635 4 16 159 457/457/140 6.61 10.3 28.2

[30] 1740 643 575 4 5 200 225/225/140 4.1 7.1 8.3

This Work -

2 DBU
1052 1058 395 0 13.5 334 234/235/169

2.6

(36%)

2.7

(61%)

7.9

(4%)

† The number of butterflies in the design
‡ The time in µs of complete polynomial multiplication i.e., INTT(NTT(X) * NTT(Y)).
§ Area-Time Product (ATP-LUT) = Total Time of computing polynomial multiplication in 𝑚𝑠 × number of LUT.
¶ Area-Time Product (ATP-ENS) = Total Time of computing polynomial multiplication in 𝑚𝑠 × Equivalent Number of Slices

(ENS). ENS = Slices + DSP × 120 + BRAM × 196
1 1 NTT operation is considered in total time instead of 2 because 2 polynomials are computed in parallel.

 the previous work in[16] and[30] by 1% and 4%, respectively

and the one DBU design has ATP-ENS lower than the work

in[18] by 28%.

 Fig. 6 compares the three proposed accelerators in terms of

time required to compute the polynomial multiplication (delay),

ATP-LUT and ATP-ENS. As expected, more resources (from

one SBU towards 2 DBUs) result in a shorter delay, but

interestingly, the ATP-LUT and ATP-ENS improve gradually

and then remain almost steady from one DBU to 2 DBUs

designs. This is because, in the SBU design, the modular

multiplier is used with single mode configuration, whereas in

the other two designs, the multiplier is used efficiently in dual

mode.

 Our design does not consume any DSP slices as we

implemented the entire modular multiplication in ROM look-

up tables using BRAMs instead of the device-distributed

memory. This enables reduced LUT resource usage on the

FPGA while still achieving high clock frequencies of 350 MHz,

342 MHz, and 330 MHz for the three design versions,

respectively, the highest in the literature to date to our best

knowledge.

Fig. 6: Performance comparison of the three proposed

accelerator

V. CONCLUSION

 This paper presented a high-speed hardware accelerator for

the polynomial multiplication of CRYSTALS-Kyber based on

NTT. A new look-up tables approach is proposed with

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

corresponding hardware architecture to compute the modular

multiplication efficiently. A new sub-moduli system is

developed to decompose the operation in the Kyber modulus

into smaller sub-moduli for efficient implementation. On top of

this modular multiplier, single and dual butterfly NTT units are

built to evaluate the performance of the proposed design. The

designs were implemented, placed, and routed on Xilinx Artix-

7 FPGA. The accelerator with SBU computes the entire

polynomial multiplication in 9.6 µ𝑠 faster than the previous

works by 46%.

The methodology presented enables trade-off to be made

between computing logic and memory resources. Although the

presented designs were targeted to FPGA fabrics, it is expected

that similar conclusions to be drawn in terms of results for ASIC

implementation as demonstrated with the presented Area-Time

Product (ATP) metric. Furthermore, the ATP results could be

used as indicative of energy performance, however, further

investigation would be required for power/energy optimization.

Finally, further research is required into understanding issues

around compatibility of current hardware technologies for post-

quantum cryptography with potential future quantum

computing hardware platforms to ensure that the advances

made maintain their efficiencies when deployed in practice in

future. There are already ongoing efforts into the challenges

involved in migrating to PQC for cybersecurity in the quantum

era as exemplified by the ongoing work under the National

Cybersecurity Centre of Excellence (NCCo)’s Migration to
PQC project [33].

REFERENCES

[1] P. W. Shor, "Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer," SIAM J. Comput., vol. 26,

no. 5, pp. 1484–1509, 1997.

[2] L. Chen et al., "Report on post-quantum cryptography," The National

Institute of Standards and Technology, 2016. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

[3] G. Alagic et al., "Status Report on the Third Round of the NIST Post-

Quantum Cryptography Standardization Process," The National Institute

of Standards and Technology, July 2022. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

[4] R. Avanzi et al., "CRYSTALS-Kyber: Algorithm Specifications And

Supporting Documentation," 2021. [Online]. Available: https://pq-

crystals.org/kyber/data/kyber-specification-round3-20210131.pdf.

[5] A. Langlois and D. Stehle, "Worst-case to average-case reductions for

module lattices," Designs, Codes and Cryptography, vol. 75, no. 3, pp.

565-599, 2015.

[6] W. Tan, Y. Lao, and K. K. Parhi, "KyberMat: Efficient Accelerator for

Matrix-Vector Polynomial Multiplication in CRYSTALS-Kyber Scheme

via NTT and Polyphase Decomposition," in 2023 IEEE/ACM

International Conference on Computer Aided Design (ICCAD), 2023, pp.

1-9.

[7] M. Li, J. Tian, X. Hu, and Z. Wang, "Reconfigurable and High-Efficiency

Polynomial Multiplication Accelerator for CRYSTALS-Kyber," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 42, pp. 2540-2551, 2023.

[8] J. Mu et al., "Scalable and Conflict-Free NTT Hardware Accelerator

Design: Methodology, Proof, and Implementation," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no.

5, pp. 1504-1517, 2023.

[9] P. L. Montgomery, "Modular Multiplication Without Trial Division,"

Mathematics of computation, vol. 44, no. 170, pp. 519-521, 1985.

[10] P. Barrett, "Implementing the Rivest Shamir and Adleman public key

encryption algorithm on a standard digital signal processor," presented at

the Proceedings on Advances in cryptology---CRYPTO '86, Santa

Barbara, California, USA, 1986.

[11] Y. Huang, M. Huang, Z. Lei, and J. Wu, "A pure hardware implementation

of CRYSTALS-KYBER PQC algorithm through resource reuse," IEICE

Electron. Express, vol. 17, 2020.

[12] P. Longa and M. Naehrig, "Speeding up the Number Theoretic Transform

for Faster Ideal Lattice-Based Cryptography," in International Conference

on Cryptology and Network Security, 2016: Springer, pp. 124-139.

[13] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, "High-

Speed NTT-based Polynomial Multiplication Accelerator for Post-

Quantum Cryptography," in 2021 IEEE 28th Symposium on Computer

Arithmetic (ARITH), June 2021, pp. 94-101.

[14] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, "High-performance area-

efficient polynomial ring processor for CRYSTALS-Kyber on FPGAs,"

Integration, vol. 78, pp. 25-35, 2021.

[15] L. Ma, X. Wu, and G. Bai, "Parallel polynomial multiplication optimized

scheme for CRYSTALS-KYBER Post-Quantum Cryptosystem based on

FPGA," in 2021 International Conference on Communications,

Information System and Computer Engineering (CISCE), 2021: IEEE, pp.

361-365.

[16] F. Yaman, A. C. Mert, E. Ozturk, and E. Savas, "A Hardware Accelerator

for Polynomial Multiplication Operation of CRYSTALS-KYBER PQC

Scheme," in 2021 Design, Automation & Test in Europe Conference &

Exhibition (DATE), Grenoble, France, 2021: IEEE, pp. 1020-1025.

[17] X. Yufei and L. Shuguo, "A Compact Hardware Implementation of CCA-

Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA,"

IACR Transactions on Cryptographic Hardware and Embedded Systems,

vol. 2021, no. 2, pp. 328–356, 2021.

[18] V. B. Dang, K. Mohajerani, and K. Gaj, "High-Speed Hardware

Architectures and FPGA Benchmarking of CRYSTALS-Kyber, NTRU,

and Saber," IEEE transactions on computers, vol. 72, no. 2, pp. 306-320,

2023.

[19] A. Sarker, M. Mozaffari-Kermani, and R. Azarderakhsh, "Hardware

Constructions for Error Detection of Number-Theoretic Transform

Utilized in Secure Cryptographic Architectures," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 27, no. 3, pp. 738-741,

2019.

[20] A. Sarker, A. C. Canto, M. M. Kermani, and R. Azarderakhsh, "Error

Detection Architectures for Hardware/Software Co-Design Approaches of

Number-Theoretic Transform," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 42, no. 7, pp. 2418-2422,

2023.

[21] T. Pöppelmann and T. Güneysu, "Towards Practical Lattice-Based Public-

Key Encryption on Reconfigurable Hardware," in 20th International

Conference on Selected Areas in Cryptography, SAC 2013, 2013, pp. 68-

85.

[22] E. Fujisaki and T. Okamoto, "Secure Integration of Asymmetric and

Symmetric Encryption Schemes," in 19th Annual International

Cryptology Conference, 1999, vol. 1666: Springer, pp. 537-554.

[23] H. J. Nussbaumer, Fast Fourier transform and convolution algorithms, 2

ed. Springer, 1982.

[24] V. Lyubashevsky and G. Seiler, "NTTRU: Truly Fast NTRU Using NTT,"

IACR Transactions on Cryptographic Hardware and Embedded Systems,

no. 3, pp. 180-201, 2019.

[25] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation

of complex fourier series," Mathematics of computation, vol. 19, no. 90,

pp. 249-259, 1965.

[26] W. M. Gentleman and G. Sande, "Fast fourier transforms—For fun and

profit," in AFIPS Conference Proceedings - 1966 Fall Joint Computer

Conference, AFIPS 1966, 1966, pp. 563-578.

[27] G. A. Jullien, "Implementation of Multiplication, Modulo a Prime

Number, with Applications to Number Theoretic Transforms," IEEE

Transactions on Computers, vol. C-29, no. 10, pp. 899-905, 1980.

[28] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, "Highly Efficient

Architecture of NewHope-NIST on FPGA using Low-Complexity

NTT/INTT," IACR transactions on cryptographic hardware and

embedded systems, pp. 49-72, 2020.

[29] W. Guo and S. Li, "Split-Radix Based Compact Hardware Architecture

for CRYSTALS-Kyber," IEEE Transactions on Computers, vol. 73, no.

1, pp. 97-108, 2024.

[30] W. Guo and S. Li, "Highly-Efficient Hardware Architecture for

CRYSTALS-Kyber With a Novel Conflict-Free Memory Access Pattern,"

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70,

no. 11, pp. 4505-4515, 2023.

https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[31] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,

"Instruction-Set Accelerated Implementation of CRYSTALS-Kyber,"

IEEE transactions on circuits and systems. I, Regular papers, vol. 68, no.

11, pp. 4648-4659, 2021.

[32] W. Guo, S. Li, and L. Kong, "An Efficient Implementation of KYBER,"

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no.

3, pp. 1562-1566, 2022.

[33] C. Paquin, J. Goodman, J. Gray, and V. Krummel, "PANEL: NIST SP

1800-38C, Quantum Readiness: Testing Draft Standards for

Interoperability and Performance," presented at the 5th NIST PQC

Standardization Conference, Rockville, USA, April 2024. [Online].

Available: https://csrc.nist.gov/csrc/media/Presentations/2024/panel-

nccoe-interoperability-and-performance/images-media/panel-nccoe-

interoperability-pqc2024.pdf.

Abdullah Alhassani received his bachelor's degree in

computer engineering from Umm Al-Qura

University, Saudi Arabia, in 2008 and his master's

degree in computer engineering from RMIT

University, Australia, in 2011. He is currently

pursuing his Ph.D. with the Department of Electronic

and Electrical Engineering at University of Sheffield,

UK. His research interests include post-quantum

cryptography and the secure design and efficient

implementation of cryptographic algorithms.

Mohammed Benaissa is currently a Professor of

information engineering in the Department of

Electronic and Electrical Engineering, University of

Sheffield, Sheffield, UK. His research interests

include finite number systems, signal processing and

electronic system design. He has published over 200

papers on contributions in these areas and their

application to security, communications and

healthcare.

https://csrc.nist.gov/csrc/media/Presentations/2024/panel-nccoe-interoperability-and-performance/images-media/panel-nccoe-interoperability-pqc2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/panel-nccoe-interoperability-and-performance/images-media/panel-nccoe-interoperability-pqc2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/panel-nccoe-interoperability-and-performance/images-media/panel-nccoe-interoperability-pqc2024.pdf

