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Abstract

Planar graphs can be represented as the intersection graphs of different types of ge-

ometric objects in the plane, e.g., circles (Koebe, 1936), line segments (Chalopin &

Gonçalves, SODA 2009), L-shapes (Gonçalves et al., SODA 2018). For general graphs,

however, even deciding whether such representations exist is often NP-hard. We con-

sider apex graphs, i.e. , graphs that can be made planar by removing one vertex from

them. We show, somewhat surprisingly, that deciding whether geometric representations

exist for apex graphs is NP-hard as well.

More precisely, we show that for every fixed positive integer g and every graph class

G such that PURE-2-DIR ⊆ G ⊆ 1-STRING, it is NP-hard to decide whether an input

graph belongs to the graph class G , even when the inputs are restricted to apex graphs

of girth g. Here, PURE-2-DIR is the class of intersection graphs of axis-parallel line

segments (where horizontal segments intersect only vertical segments), and 1-STRING

is the class of intersection graphs of simple curves (where two intersecting curves cross

each other exactly once) in the plane. This partially answers an open question raised by

Kratochvı́l & Pergel (COCOON, 2007).

Most known reductions for earlier proofs of NP-hardness for these problems are

from variants of 3-SAT (mainly PLANAR 3-CONNECTED 3-SAT). We reduce from the

PLANAR HAMILTONIAN PATH COMPLETION problem, which uses the more intuitive

notion of planarity. As a result, our proof is much simpler and encapsulates several

classes of geometric intersection graphs.

1A preliminary version of this paper appeared in the proceedings of WALCOM 2022 [1]
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1. Introduction

The recognition of a graph class is the decision problem of determining whether a

given simple, undirected, unweighted graph belongs to the graph class. Recognition of

graph classes is a fundamental problem in graph theory with a wide range of applications.

In particular, when the graph class relates to intersection patterns of geometric objects,

the corresponding recognition problem finds usage in disparate areas like VLSI design [2,

3, 4], map labelling [5], wireless networks [6], and computational biology [7].

The study of graphs that arise out of intersection patterns of geometric objects began

with the celebrated circle packing theorem in 1936 [8] (also see [9, 10]), which states that

all planar graphs can be expressed as intersection graphs2 of touching disks3. Since then,

there has been a long line of research on finding representations of planar graphs using

other types of geometric objects. In his PhD thesis, Scheinerman [11] conjectured that all

planar graphs can be expressed as intersection graphs of line segments. Scheinerman’s

conjecture has motivated researchers to study representations of planar graphs using

many different types of geometric objects, mostly of them culminating in elegant results.

Hartman et al. [12] proved that planar bipartite graphs are contained into 2-DIR i.e.

they are intersection graphs of orthogonal segments on the plane. This result contrasts

the fact that deciding whether a bipartite graph is in 2-DIR is NP-hard [13]. Chalopin &

Gonçalves [14] proved Scheinerman’s conjecture [11] by showing that all planar graphs

are in SEGMENTS i.e. they are intersection graphs of line segments on the plane. This

result contrasts the fact that recognising the class of SEGMENTS is ∃R-complete [15]. In

fact, there are many more results that imply representing planar graphs as intersection

graphs of “certain” geometric is “easy” whereas even deciding if a general graph admits

the same representation is difficult [16, 17, 18, 19, 20, 21, 22, 23].

The contrasting phenomenon (as evident from the results mentioned above) moti-

vated us to investigate the following question in this paper: If an input graph is “almost

planar”, then is it possible to decide in polynomial time whether the input graph can

be represented as the intersection graph of geometric objects on the plane? A natural

notion of “ almost planarity” is the following.

2For a set of geometric objects C , its intersection graph, I(C ), has C as the vertex set and two vertices are

adjacent if and only if the corresponding geometric objects intersect.
3Formally, two closed disks are said to touch each other if they share exactly one point.
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Definition 1 (Apex number). The apex number of a graph G is the minimum positive

integer k for which G contains a set of k vertices whose removal makes it planar. A

graph whose apex number is one is simply called an apex graph.

Given this definition, we reformulate our earlier question as follows: For which

classes of geometric intersection graphs G does there exist a function f such that the

recognition problem for G admits an n f (a)-time algorithm (here, n and a denote the

number of vertices and the apex number of the input graph, respectively)? Before we

proceed, we recall some definitions.

Definition 2 ([24]). A parameterized problem is a language L⊆ Σ∗×N, where Σ is a

fixed, finite alphabet. For an instance (x,k) ∈ Σ∗×N, k is called the parameter.

Definition 3 ([24]). A parameterized problem L⊆ Σ∗×N is called slice-wise polyno-

mial (XP) if there exists an algorithm A and two computable functions f ,g:N→N such

that, given (x,k) ∈ Σ∗×N, the algorithm A correctly decides whether (x,k) ∈ L in time

bounded by f (k)|(x,k)|g(k). The complexity class containing all slice-wise polynomial

problems is called XP.

Definition 4 ([24]). A parameterized problem L ⊆ Σ∗×N is called fixed parameter

tractable (FPT) if there exists an algorithm A (called a fixed parameter algorithm), a

computable function f :N→ N, and a constant c such that, given (x,k) ∈ Σ∗×N, the

algorithm A correctly decides whether (x,k) ∈ L in time bounded by f (k) · |(x,k)|c. The

complexity class containing all fixed-parameter tractable problems is called FPT.

Given the above definitions, we again reformulate our earlier question as follows:

for which geometric intersection graphs G does the recognition of G admit an XP-time

algorithm or even a FPT algorithm (with respect to the apex number)? As our main

contribution, we show that recognizing various classes of geometric intersection graphs

remains NP-hard even when the input graphs are both bipartite and apex (Theorem 1).

This is surprising, given the fact that an apex graph is simply a planar graph with one

additional vertex.

Definition 5. A parameterised problem is PARA-NP-hard if it is already NP-hard for a

fixed value of the parameter.

Hence, our result implies that the recognition problem for various classes of geomet-

ric intersection graphs is PARA-NP-hard with respect to apex number.

Our proof technique deviates significantly from that of Kratochvı́l [25] and other sim-

ilar NP-hardness proofs that reduce from PLANAR 3-CONNECTED 3-SAT. We reduce

3



PURE-2-DIR G 1-STRING

Figure 1: A visual depiction of Theorem 1 (this figure is for representational purposes only)

from a different NP-hard problem called PLANAR HAMILTONIAN PATH COMPLETION,

which uses the more intuitive notion of planarity, making our proof easier to understand.

Organisation of the paper: In Section 2, we state our main result and its significance.

We describe our proof techniques in Section 3, and prove our main result in Section 4.

Finally, we conclude in Section 6.

2. Main Result

For our main result, we are particularly interested in two natural and well-studied

classes of geometric intersection graphs called PURE-2-DIR and 1-STRING.

Definition 6. PURE-2-DIR is the class of all graphs G, such that G is the intersection

graph of axis-parallel line segments in the plane, where horizontal segments intersect

only vertical segments (Figure 1 (Left)).

Definition 7. 1-STRING is the class of all graphs G, such that G is the intersection

graph of simple curves in the plane, where two intersecting curves share exactly one

point, at which they cross each other (Figure 1 (Right)).

It is known that recognizing PURE-2-DIR and 1-STRING are both NP-hard [13, 25].

Theorem 1 (Main Result). Let g be a fixed positive integer and G be a graph class

such that

PURE-2-DIR ⊆ G ⊆ 1-STRING.

Then it is NP-hard to decide whether an input graph belongs to G , even when the

input graphs are restricted to bipartite apex graphs of girth at least g.
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2.1. Significance of the Main Result

Our main result has several corollaries, obtained by substituting different values for

the graph class G . Recall that the recognition of a graph class G asks if a given graph G

is a member of G .

STRING is the class of intersection graphs of simple curves in the plane. Kratochvı́l

& Pergel [26] posed the question of determining the complexity of recognizing STRING

when the inputs are restricted to graphs of large girth. The above question was answered

by Mustaţă & Pergel [27], where they showed that recognizing STRING is NP-hard,

even when the inputs are restricted to graphs of arbitrarily large girth. However, the

graphs they constructed were far from planar. Since 1-STRING ( STRING, the following

corollary of our main result partially answers Kratochvı́l & Pergel’s [26] question.

Corollary 1. For every positive integer g, recognizing 1-STRING is NP-hard, even for

bipartite apex graphs with girth at least g.

Chalopin & Gonçalves [14] showed that every planar graph can be represented as an

intersection graph of line segments in polynomial time. The following corollary shows

that a similar result does not hold for apex graphs.

Corollary 2. For every positive integer g, recognizing intersection graphs of line

segments is NP-hard, even for bipartite apex graphs with girth at least g.

Gonçalves, Isenmann & Pennarun [17] showed that every planar graph can be

represented as an intersection graph of L-shapes in polynomial time. The following

corollary shows that a similar result does not hold for apex graphs.

Corollary 3. For every positive integer g, recognizing intersection graphs of L-shapes

is NP-hard, even for bipartite apex graphs with girth at least g.

Our main result also has a connection to a graph invariant called boxicity. The

boxicity of a graph is the minimum integer d such that the graph can be represented as

an intersection graph of d-dimensional axis-parallel boxes. Thomassen showed three

decades ago that the boxicity of every planar graph is either one, two or three [28]. It is

easy to check if the boxicity of a planar graph is one [29]. However, the complexity of

determining whether a planar graph has boxicity two or three is not yet known. A result

of Hartman, Newman & Ziv [12] states that the class of bipartite graphs with boxicity 2

is precisely PURE-2-DIR. Combined with our main result, this implies that determining

the boxicity of apex graphs is NP-hard.

Corollary 4. For every positive integer g, recognizing graphs with boxicity 2 is NP-hard,

even for bipartite apex graphs with girth at least g.
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CONV is the class of intersection graphs of convex objects in the plane. Kratochvı́l &

Pergel [26] asked if recognizing CONV remains NP-hard when the inputs are restricted

to graphs of large girth. Note that the class of graphs with boxicity 2 (alternatively, inter-

section graphs of rectangles) is a subclass of CONV. Similarly, intersection graphs of line

segments on the plane is also a subclass of CONV. Hence, Corollary 2 and Corollary 4

also partially address the aforementioned open question of Kratochvı́l & Pergel [26].

Our main result implies that no graph class G satisfying PURE-2-DIR ⊆ G ⊆

1-STRING can be recognized in n f (c) time, where c is the apex number and f is a

computable function depending only on c. This means recognizing G is PARA-NP-hard

and most likely, not fixed-parameter tractable, with respect to the apex number.

Corollary 5. Let g be a positive integer and G be a graph class such that

PURE-2-DIR ⊆ G ⊆ 1-STRING.

Then assuming P 6=NP, it is PARA-NP-hard with respect to the apex number even when

the inputs are bipartite graphs with girth at least g.

Owing to a long line of work involving Robertson & Seymour [30], several graph

classes can be characterized by a finite set of forbidden minors. For example, planar

graphs are {K5,K3,3}-minor free graphs. Interestingly, the set of forbidden minors is

not known for apex graphs, although it is known that the set is finite [31]. However, it is

easy to see that apex graphs are K6-minor free, which means that our main result has

the following implication.

Corollary 6. Let g be a positive integer and G be a graph class such that

PURE-2-DIR ⊆ G ⊆ 1-STRING.

Then it is NP-hard to decide whether an input graph belongs to G , even for bipartite

K6-minor free graphs with girth at least g.

Finally, using techniques different from ours, Kratochvı́l & Matoušek [32] had

shown that recognizing PURE-2-DIR is NP-hard, and so is the recognition of line

segment intersection graphs. Theorem 1 and Corollary 2 show that these recognition

problems remain NP-hard even when the inputs are restricted to bipartite apex graphs

of arbitrarily large girth, thereby strengthening their results.
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Gapex ∈ G

G ∈ PLANAR HAMILTONIAN PATH COMPLETION

Gapex ∈ 1-STRINGGapex ∈ PURE-2-DIR −−−−−−−→−−−−−→

←−−−−−−−−−−

−−−→

Figure 2: An illustration of our proof strategy of Theorem 3

3. Proof Techniques

We reduce from the NP-complete PLANAR HAMILTONIAN PATH COMPLETION

problem [33], which in turn was inspired by another NP-complete problem known as

the PLANAR HAMILTONIAN CYCLE COMPLETION problem [34]. Let us now describe

the PLANAR HAMILTONIAN PATH COMPLETION problem [33]. A Hamiltonian path

in a graph is a path that visits each vertex of the graph exactly once.

Definition 8. PLANAR HAMILTONIAN PATH COMPLETION is the following decision

problem.

Input: A planar graph G.

Output: Yes, if G is a subgraph of a planar graph with a Hamiltonian path; no,

otherwise.

Theorem 2 (Auer & Gleißner [33]). PLANAR HAMILTONIAN PATH COMPLETION is

NP-hard.

We will use Theorem 2 to show Theorem 1. Similar to Mustaţă & Pergel [27], we

show NP-hardness for graph classes “sandwiched” between two classes of geometric

intersection graphs. A more technical formulation of Theorem 1 is as follows.

Theorem 3. For every planar graph G and positive integer g, there exists a bipartite

apex graph Gapex of girth at least g, which can be obtained in polynomial time from G,

satisfying the following properties.

(a) If Gapex is in 1-STRING, then G is a yes-instance of PLANAR HAMILTONIAN

PATH COMPLETION.

(b) If G is a yes-instance of PLANAR HAMILTONIAN PATH COMPLETION, then

Gapex is in PURE-2-DIR.

Proof of Theorem 1 from Theorem 3. See Figure 2 for an outline of our proof strategy.

Let G be a graph class such that PURE-2-DIR ⊆ G ⊆ 1-STRING, and let G be a planar
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graph. If G is a yes-instance of PLANAR HAMILTONIAN PATH COMPLETION, then

using Theorem 3 (b), we obtain that Gapex ∈ PURE-2-DIR ⊆ G . And if Gapex ∈ G ⊆

1-STRING, then by Theorem 3 (a), G is a yes-instance of PLANAR HAMILTONIAN

PATH COMPLETION.

Thus, Gapex ∈ G if and only if G is a yes-instance of PLANAR HAMILTONIAN

PATH COMPLETION. Since PLANAR HAMILTONIAN PATH COMPLETION is NP-hard

(Theorem 2) and Gapex can be obtained in polynomial time from G, this implies that

deciding whether the bipartite apex graph Gapex belongs to G is NP-hard.

Therefore, as Theorem 3 implies our main result (Theorem 1), the rest of this paper

is devoted to the proof of Theorem 3.

4. Proof of the Main Result

In this section, we will prove our main result (Theorem 3). First, given a planar graph

G on n vertices, we will construct a bipartite apex graph Gapex in poly(n) time (Subsec-

tion 4.1). Then, we will show that Gapex ∈ 1-STRING ⇒ G∈ PLANAR HAMILTONIAN

PATH COMPLETION, proving Theorem 3 (a) (Subsection 4.2). Finally, we will show that

G ∈ PLANAR HAMILTONIAN PATH COMPLETION ⇒ Gapex ∈ PURE-2-DIR, prov-

ing Theorem 3 (b) (Subsection 4.3).

4.1. Construction of the Apex Graph

We begin our proof of Theorem 3 by describing the construction of Gapex. Let G be

a planar graph. Gapex is constructed in two steps.

G→ Gk -div→ Gapex.

Let g≥ 6 be a positive integer constant, and k ≥ 3 be the minimum odd integer greater

or equal to g− 3. Let Gk -div be the full k-subdivision of G, i.e. , Gk -div is the graph

obtained by replacing each edge of G by a path with k+1 edges. Figure 3 (a) shows

an example graph G, and Figure 3 (b) shows the full 3-subdivision of G. Formally, we

replace each e = (x,y) ∈ E(G) by the path (x,u1
e ,u

2
e ,u

3
e , . . . ,u

k
e,y).

V (Gk -div) =V (G)∪{u1
e ,u

2
e ,u

3
e , . . . ,u

k
e | e ∈ E(G)};

E(Gk -div) = {xu1
e ,u

1
eu2

e ,u
2
eu3

e , . . . ,u
k−1
e uk

e,u
k
ey | e = xy ∈ E(G)}.

We call the vertices of V (G) ⊆ V (Gk -div) as the original vertices of Gk -div and the

remaining vertices as the subdivision vertices of Gk -div. Finally, we construct Gapex by

8



v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

a

(a) (b) (c)

left(v1)

left(v2)

left(v3)

left(v4)

left(v5)

left(v6)

left(v7)

left(v8)

right(v1)

right(v2)

right(v3)

right(v4)

right(v5)

right(v6)

right(v7)

right(v8)

c(v8)

c(v7)

c(v6)

c(v5)

c(v4)

c(v3)

c(v2)

c(v1)

c(a)

(d) (e)

Figure 3: (a) G, a yes-instance of PLANAR HAMILTONIAN PATH COMPLETION; (b) Gk -div for

k = 3; (c) Gapex; (d) left and right semi-disks representing the vertices of G; (e) C, a PURE-2-DIR

representation of Gapex. (See Subsection 4.1 for detailed explanations of (a), (b) and (c).)

9



adding a new vertex a to Gk -div and making it adjacent to all the original vertices of

Gk -div (Figure 3 (c)). Formally, Gapex is defined as follows.

V (Gapex) =V (Gk -div)∪{a};

E(Gapex) = E(Gk -div)∪{av | v ∈V (G)}.

Observation A. If G is planar, then Gapex is a bipartite apex graph of girth at least g.

Proof. G is a planar graph and subdivision does not affect planarity, so Gk -div is also

planar, implying that Gapex is an apex graph. The vertex set of Gapex can be expressed

as the disjoint union of two sets A and B, where

A = {x | x ∈V (G)}∪{ui
e | e ∈ E(G), i is even};

B = {a}∪{ui
e | e ∈ E(G), i is odd}.

Note that A induces an independent set in Gapex, and so does B. Thus, Gapex is a bipartite

apex graph. As for the girth, note that every cycle in Gapex contains at least k+2 vertices

x,u1
e ,u

2
e ,u

3
e , . . . ,u

k
e,y, for some e = (x,y) ∈ E(G). At least one more vertex is needed to

complete the cycle, implying that the girth of Gapex is at least k+3≥ g.

It is easy to see that this entire construction of Gapex from G can be carried out in

polynomial time.

4.2. Proof of Theorem 3 (a)

In this section, we will show that if Gapex is in 1-STRING, then G is a yes-instance of

PLANAR HAMILTONIAN PATH COMPLETION. In other words, if Gapex has a 1-STRING

representation, then G is a subgraph of a planar graph with a Hamiltonian path.

In our proofs, we will demonstrate the planarity of our graphs by embedding them in

the plane. Typically, a planar graph is defined as a graph whose vertices are points in the

plane and edges are strings connecting pairs of points such that no two strings intersect

(except possibly at their end points). The same definition holds in more generality,

i.e. , if the vertices are also allowed to be strings (see Figure 4). Let us now state this

formally.

Definition 9 (Planarizable representation of a graph). A graph G on n vertices and m

edges is said to admit a planarizable representation if there are two mutually disjoint

sets of strings V and E (with |V |= n and |E|= m) in the plane such that

• the strings of V correspond to the vertices of G, and those of E correspond to the

edges of G;

10



v5

v2

v4

v1v3

v5

v2

v4

v1v3

Figure 4: (Left) A standard representation of a planar graph with n = 5 vertices and m = 9 edges,

where the vertices are points and the edges are strings. (Right) A planarizable representation

(Definition 9) of the same graph, where the vertices as well as the edges are strings.

• no two strings of V intersect;

• no two strings of E intersect, except possibly at their end points;

• apart from its two end points, a string of E does not intersect any string of V ;

• for every vertex v and every edge e = (x,y) of G, an end point of the string

corresponding to e intersects the string corresponding to v if and only if v = x or

v = y.

Figure 4 illustrates a planar graph and a planarizable representation of it.

Lemma 4. A graph admits a planarizable representation if and only if it is planar.

Lemma 4 may seem obvious. For completeness, we provide a formal proof of it

in Section 5. We now use this lemma to prove Theorem 3 (a).

Proof of Theorem 3 (a). Given Gapex ∈ 1-STRING, we will show that the planar graph

G is a yes-instance of the PLANAR HAMILTONIAN PATH COMPLETION problem. Let

C be a 1-STRING representation of Gapex in the plane. It is helpful to follow Figure 5

while reading this proof. We will use C to construct a graph Gpl with the following

properties.

(a) Gpl is a supergraph of G on the same vertex set as G.

(b) Gpl is planar.

11



v5

v2

v4

v1
v3

c(a)

c(v4)

c(v5) c(v1)

c(v2)

c(v3)

p1

p2

p3

p4

p5

Figure 5: (Left) Gk -div (k = 3) for a planar graph G on n = 5 vertices. (Right) C, a planarizable

representation of Gapex. The thickest string denotes c(a), the apex vertex of Gapex. The bold

strings denote the original vertices of G. The thin dashed strings denote c(u1
e), c(u

2
e) and c(u3

e).

(c) Gpl has a Hamiltonian path.

Note that (a), (b), (c) together imply that G is a subgraph of a planar graph with a Hamil-

tonian path (i.e. , G is a yes-instance of PLANAR HAMILTONIAN PATH COMPLETION).

Let n = |V (G)| and assume that n≥ 4. Along with our construction of Gpl, we will also

describe DRAW(Gpl), a planarizable representation (Definition 9) of Gpl in the plane.

In C, consider the strings corresponding to the n original vertices (the large vertices

in Figure 5 (Left)) of G. Since the original vertices form an independent set in Gapex,

the bold strings are pairwise disjoint. We add these n strings to DRAW(Gpl), which

correspond to the n vertices of Gpl.

Proof of (c): So far, Gpl has no edge. We will now add n−1 edges to Gpl to connect

these vertices via a Hamiltonian path. Recall that all n original vertices are adjacent

to the apex vertex a in Gapex, implying that each of the n bold strings intersects c(a)

at exactly one point (as C is a 1-STRING representation). Starting from one end point

of c(a) and travelling along the curve c(a) until we reach its other end point, we

encounter these n points one-by-one. Let (v1,v2, . . . ,vn) be the order in which they are

encountered.

For each i∈ [n], let pi be the point at which c(vi) intersects c(a). For each i∈ [n−1],

let si be the substring of c(a) between pi and pi+1. Add the strings s1,s2, . . . ,sn−1

as edges to DRAW(Gpl), where si represents the edge between vi and vi+1. Thus the

edges corresponding to the n−1 strings s1,s2, . . . ,sn−1 constitute a Hamiltonian path

12



(v1,v2, . . . ,vn) in Gpl. This shows (c).

Proof of (a): To show (a), we need to add all the edges of G to Gpl (other than those

already added by the previous step), so that Gpl becomes a supergraph of G. For each

edge e = viv j ∈ E(G), there are k strings c(u1
e),c(u

2
e), . . . ,c(u

k
e) (corresponding to the

subdivision vertices u1
e ,u

2
e , . . . ,u

k
e in Gapex) in C. Note that for each t ∈ {1,2, . . . ,k}, the

string c(ut
e) intersects exactly two other strings. Let s(ut

e) be the substring of c(ut
e)

between those two intersection points. Let se be the string obtained by concatenating

the k substrings thus obtained.

se ,

k
⋃

t=1

s(ut
e). (1)

If the edge e = viv j is not already present in Gpl, then add the string se to DRAW(Gpl),

where se represents the edge between vi and v j (one end point of se lies on c(vi) and

the other on c(v j)). This completes the construction of DRAW(Gpl), and shows (a).

Proof of (b): To show (b), it is enough to show that DRAW(Gpl) is a planarizable repre-

sentation of Gpl (Lemma 4). Note that there are three types of strings in DRAW(Gpl):

(i) substrings of c(a), (ii) strings of the type se, for some e = viv j ∈ E(G), and (iii) n

strings corresponding to the original vertices of G.

Two strings of type (i) are either disjoint or intersect at their end points, since c(a)

is non-self-intersecting. More precisely, for each i ∈ [n−1], the point pi+1 (the unique

intersection point of si and si+1) lies on c(vi+1), which denotes a vertex in DRAW(Gpl).

A string of type (ii) intersects exactly two strings, c(vi) and c(v j), which denote vertices

in DRAW(Gpl). Finally, strings of type (iii) are mutually disjoint. This shows (b).

4.3. Proof of Theorem 3 (b)

In this section, we will show that if G is a yes-instance of PLANAR HAMILTONIAN

PATH COMPLETION, then Gapex is in PURE-2-DIR. In other words, if G is a subgraph

of a planar graph with a Hamiltonian path, then Gapex has a PURE-2-DIR representation.

Before we jump in to our proof, let us elucidate the main idea behind it. We are

given a plane drawing of G in which its vertices are placed in a collinear fashion on

a vertical line, respecting their ordering on the Hamiltonian path (Figure 3 (a)). Our

construction, in essence, makes use of this plane drawing and tweaks it to obtain a

PURE-2-DIR representation of Gapex (Figure 3 (e)).

The apex segment c(a) is placed on the vertical line. The vertices of the original

graph within Gapex are represented using horizontal segments (of appropriate length).

The edges of G, which were strings in the plane drawing, are now replaced by rectilinear
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piecewise linear curves where each individual orthogonal segment represents a subdi-

vided vertex of Gapex. If we were allowed a large (unbounded) number of rectilinear

pieces for each edge, then this construction is trivial, since every curve can be viewed as

a series of infinitesimally small vertical and horizontal segments. Our proof formally

justifies that this can always be done even when the number of allowed rectilinear pieces

is a fixed odd integer greater than or equal to three.

We achieve this through a slightly modified version of a folklore observation con-

cerning book embeddings of graphs [35]: if a graph is embedded in a book and a,b,c,d

are four vertices on the spine of the book arranged in the order a < b < c < d, then (a,c)

and (b,d) cannot both be edges on the same page of the book.4 Also note that Figure 3

(a) is for representational purposes only. Owing to the observation above, our construc-

tion does not rely on the topology of the strings representing the edges of G in Figure 3

(a). Now we provide a formal proof below.

Proof of Theorem 3 (b). Given a graph G, a yes-instance of PLANAR HAMILTONIAN

PATH COMPLETION, we will construct C, a PURE-2-DIR representation of Gapex. Re-

call that the construction of Gapex from G uses an intermediate graph Gk -div, where

k ≥ 3 is an odd integer.

G→ Gk -div→ Gapex.

Our proof is by induction on k. For almost the entirety of this proof, we will work

with k = 3. At the end, we will show that if the proof works for k, then it also works for

k+2, and therefore for all odd integers k.

Base case (k = 3). G is a subgraph of a planar graph with a Hamiltonian path (say Gpl),

as G is a yes-instance of PLANAR HAMILTONIAN PATH COMPLETION (Definition 8).

Let n = |V (G)| and assume that n ≥ 4. Let (v1,v2, . . . ,vn) be a Hamiltonian path

in Gpl. Consider a plane drawing D(Gpl) of Gpl in which its vertices are represented

by points on a vertical line, ordered (v1,v2, . . . ,vn) from bottom to top, and the edges

v1v2,v2v3, . . . ,vn−1vn (called Hamiltonian edges) are represented by vertical segments

(Figure 3 (a)). All other edges of Gpl are called non-Hamiltonian edges. In D(Gpl), we

4In order to see how book embeddings are applicable to our proof, it is helpful to think of the regular

|-shaped spine generally used in book embeddings a bit differently. In Figure 3 (d), imagine that the |-shaped

spine has a minuscule but non-zero thickness. “Cut” the |-shaped spine vertically down its middle from the

top, stopping just before the bottom of the |-shape. Open up and spread out the two parts of the spine. Since

the two parts are only connected to each other at the bottom, the new shape thus obtained looks like a ∨-shape.

Now, the vertices, represented by tiny disks in the standard |-shaped spine become semi-disks in the ∨-shaped

spine, each left semi-disk on the left arm of the ∨-shape, and each right semi-disk on its right arm. This now

resembles a standard book embedding on one side of a ∨-shaped spine instead of on a straight-line spine.
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retain all Hamiltonian edges of Gpl, but only those non-Hamiltonian edges of Gpl that

are also present in G. The set of non-Hamiltonian edges of G is denoted by Enon.

The points representing the vertices of G (or Gpl) are slightly expanded (similar to

the proof of Lemma 4) so that they are tiny circular disks. Each Hamiltonian edge vivi+1

is represented by a vertical line segment connecting the top of the lower disk vi to the

bottom of the upper disk vi+1. Thus, the line segments vi−1vi and vivi+1 divide the disk

vi into two: a left semi-disk (left(vi)) and a right semi-disk (right(vi)) (Figure 3 (d)).

Now, each viv j ∈ Enon is a string that connects a semi-disk of vi to a semi-disk of

v j. The edge is relabelled accordingly. In Figure 3 (a), v1v3 becomes (left(v1), left(v3)),

v2v5 becomes (right(v2), right(v5)), v5v7 becomes (left(v5), right(v7)), and v2v4 be-

comes (right(v2), left(v4)). For simplicity of exposition, we denote each Hamiltonian

edge vivi+1 of Gpl that is also present in G as (right(vi), right(vi+1)).

We refer to this new updated plane drawing as D(G). Note that the edges of E(D(G))

have 2n possible end points. We define a relation “<” on these end points, as follows.

left(vn)< left(vn−1)< · · ·< left(v1)< right(v1)< right(v2)< · · ·< right(vn). (2)

For two end points a and b, we say that a≤ b if and only if a< b or a= b. The following

observation is easy to see, as it is a direct consequence of the planarity of D(G).

Observation B. Let (a,c) and (b,d) be two edges in the plane drawing D(G). Then,

under the ordering given by Equation 2, the following is not possible.

left(vn)≤ a < b < c < d ≤ right(vn).

We define a partial order “⊆” on E(D(G)). Let e1 = (b,c),e2 = (a,d) ∈ E(D(G))

such that b < c and a < d according to the ordering given by Equation 3. Then,

e1 ⊆ e2 ⇐⇒ left(vn)≤ a≤ b < c≤ d ≤ right(vn). (3)

For example, (right(v2), right(v5)) ⊆ (right(v2), right(v7)) and (left(v4), right(v2)) ⊆

(left(v5), right(v7)) in Figure 3 (a). It is easy to see that ⊆ is reflexive, anti-symmetric

and transitive. Thus (E(D(G)),⊆) is a poset. Consider the Hasse diagram of this poset,

where the minimal elements are placed at the bottom and the maximal elements at the top.

For an edge e ∈ E(D(G)), let rank(e) be the number of elements (including e) on the

longest downward chain starting from e. For example, rank((right(v2), right(v7))) = 3,

as

(right(v2), right(v5))⊆ (right(v2), right(v6))⊆ (right(v2), right(v7))

15



is the longest downward chain starting from (right(v2), right(v7)) in Figure 3 (a). All

Hamiltonian edges of G are minimal elements in this poset, and thus their rank is one.

We partition the edge set of E(D(G)) into three: an edge of E(D(G)) belongs to

Eleft if both its end points are left(), to Eright if both its end points are right(), and to

Ecross if one of its end points is left() and the other is right(). Therefore,

E(D(G)) = Eleft ∪ Eright ∪ Ecross.

We are now set to construct C (Figure 3 (e)), our PURE-2-DIR representation of Gapex

for k = 3 (see next page for details).
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The Construction of C (Figure 3 (e))

The apex vertex a: Let c(a) be the vertical segment ((0,0.5),(0,n+0.5)).

The vertices {v1,v2, . . . ,vn}: For each i ∈ [n], let c(vi) be the horizontal segment

((−ai−0.1, i),(bi +0.1, i)), where ai and bi are defined as follows.

ai = max({0}∪{rank(e) | e is incident to left(vi)}); (4)

bi = max({0}∪{rank(e) | e is incident to right(vi)}). (5)

The {0} set is included to ensure that the argument for max is not an empty set.

The vertices {u1
e ,u

2
e ,u

3
e}: For each edge e ∈ E(G), we define a set of four points

ℓe = (αe,βe,γe,δe), such that

c(u1
e) is a vertical line segment connecting αe and βe;

c(u2
e) is a horizontal line segment connecting βe and γe;

c(u3
e) is a vertical line segment connecting γe and δe.

We may think of ℓe as a piecewise linear curve with three pieces. Let ζ : E →

{1,2, . . . ,n2} be an injective functiona, i.e. , ζ maps each edge e of G to a distinct

number from the set {1,2, . . . ,n2}. For each edge e ∈ E(G), let

xpos(e) = rank(e)+
ζ (e)

n4
. (6)

Let εk = 1/(k2n5) (for this construction, k = 3). For each e = viv j ∈ E(G) (where

1≤ i < j ≤ n), we define ℓe as follows.

ℓe =























































((−xpos(e), i) ,
(

−xpos(e), i+ j
2

)

,
(

−xpos(e)− εk,
i+ j

2

)

,(−xpos(e)− εk, j)) if e ∈ Eleft;

((xpos(e), i) ,
(

xpos(e), i+ j
2

)

,
(

xpos(e)+ εk,
i+ j

2

)

,(xpos(e)+ εk, j)) if e ∈ Eright;

((−xpos(e), i) ,(−xpos(e),−rank(e)) ,

(xpos(e),−rank(e)) ,(xpos(e), j)) if e ∈ Ecross.
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aOne such function is ζ (e) = ni+ j for each e = viv j ∈ E(G), where 1≤ i < j ≤ n.

Let Grep be the intersection graph of C. To complete our proof, we need to show

that Gapex = Grep. First, let us understand the idea behind our construction of C.

Think of each ℓe as a single (piecewise linear) segment. Note that ℓe always consists

of two vertical segments
(

c(u1
e),c(u

3
e)
)

and one horizontal segment
(

c(u2
e)
)

. Also,

the x-coordinate of the vertical segments of ℓe is essentially the rank (or the negation

of the rank) of e (Equation 6). The ζ (e)/n4 term (and also the εk term) is simply a

tiny perturbation added to its x-coordinate to ensure that the vertical parts of ℓe do not

intersect the vertical parts of any other ℓe′ . (In fact, ζ was chosen to be an injection for

precisely this reason.)

Since Gapex and Grep are graphs on the same vertex set, it is sufficient to show that

e ∈ E(Gapex)⇔ e ∈ E(Grep) in order to demonstrate their equality.

Proof of e ∈ E(Gapex)⇒ e ∈ E(Grep): The c(vi)’s are horizontal segments, all inter-

secting the vertical apex segment c(a). Further, the c(vi)’s are made to extend as far

(to the left and right of c(a)) as the maximum rank (plus an additional ±0.1) of their

incident edges (Equation 4, Equation 5). This ensures that they intersect the vertical

segments of all their corresponding ℓe’s. The fact that the c(u1
e)’s and c(u3

e)’s intersect

their corresponding c(u2
e)’s is implicit from the definition of ℓe.

Proof of e /∈ E(Gapex)⇒ e /∈ E(Grep): Note that C has three types of segments, namely

(i) the apex segment c(a);

(ii) the horizontal segments c(vi);

(iii) the piecewise linear segments ℓe.

We will consider all pairs of non-adjacent vertices (p,q) of Gapex, and show that

their respective segments c(p) and c(q) do not intersect in C. We have three cases.

Case 1: one of c(p) or c(q) is of type (i). Let us say c(p) is of type (i), i.e. , p is the

apex vertex a. Then c(p) = ((0,0.5),(0,n + 0.5)), and c(q) must be of type (iii)

(since all type (ii) vertices are adjacent to a, and we are only considering q’s such that

(p,q) /∈ E(Gapex)). Note that the x-coordinates of the vertical pieces of all the ℓe’s in

Eleft∪Eright are either less than −0.1 or greater than 0.1, and the y-coordinates of the

horizontal pieces of all the ℓe’s in Ecross are less than 0. Therefore, c(p) intersects none

of the ℓe’s.
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Case 2: one of c(p) or c(q) is of type (ii). Let us say c(p) is of type (ii). If c(q) is

also of type (ii), then we are done, since all the c(vi)’s are mutually disjoint (Equa-

tion 4, Equation 5). If c(q) is of type (iii), then let c(q) be a piece of ℓeq for some edge

eq, and let p = vip for some ip ∈ [n] such that eq is not incident to vip .

Note that all the horizontal pieces of ℓeq of non-εk length belong to edges of Ecross,

which lie below c(a), and none of them can intersect c(vip).

Now, assume to contrary that c(p) and c(q) do intersect. Then c(q) must be a

vertical segment. Let x(c(p),c(q)) be the x-coordinate of their point of intersection.

If x(c(p),c(q)) < 0, then let ep be an edge of maximum rank incident to left(vip). If

x(c(p),c(q)) > 0, then let ep be an edge of maximum rank incident to right(vip). (If

no such edge exists, then the {0} set (Equation 4, Equation 5) comes into play, and we

are done, as c(vip) falls short of ℓeq .)

Let eq = (a,c) and ep = (b,d) such that a < c. Furthermore, let b be the end point

of ep that is incident to vip (i.e. , b = left(vip) or b = right(vip)), where the relation “<”

is defined by Equation 2. Then, it is easy to see that a < b < c (otherwise c(p) and c(q)

can never intersect). Applying Observation B to this, we get a < d < c. This implies

that ep ⊆ eq (Equation 3). Thus (since ep 6= eq),

ep ⊆ eq ⇒ rank(ep)< rank(eq) ⇒ rank(ep)+1≤ rank(eq).

Note that the vertical pieces of ℓeq are at least rank(eq) units away from the apex segment

c(a). However, the horizontal segment c(vip) only reaches as far as rank(ep)+0.1 <

rank(eq) units away from c(a) on the same side (left/right) of c(a) as ℓeq . Hence,

c(vip) = c(p) and c(q) (which is a piece of ℓeq) do not intersect, contradicting our

assumption.

Case 3: both c(p) and c(q) are of type (iii). Let c(p) be a piece of ℓep and c(q) be a

piece of ℓeq , for some edges ep and eq of G. If they are both vertical pieces or one of

them is a horizontal piece of length εk, then the ζ function guarantees that they do not

intersect.

The only remaining case is if one of them (say c(p)) is a horizontal piece of

non-εk length. Let ep ∈ Ecross. Then, the y-coordinate of c(p) is less than 0. If

eq ∈ Eleft ∪Eright, then the y-coordinate of each end point of each segment of ℓeq is

greater than 0, and we are done. If eq ∈ Ecross, then note that the all the edges contained

in Ecross constitute a total order (or chain) in the poset (E(D(G)),⊆) (Equation 3). Thus

either rank(ep)< rank(eq) or rank(eq)< rank(ep). Let rank(ep)< rank(eq) (the proof

for rank(eq)< rank(ep) is similar). Then, rank(ep)+1≤ rank(eq). All the pieces of

ℓeq are at least rank(ep)+0.5 units away from the apex segment c(a), and all the pieces
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of ℓeq reach less than rank(ep)+0.1 units away from c(a). Hence, ℓep and ℓeq do not

intersect.

This completes the proof of the base case (k = 3) of our induction. A crucial feature

of our construction, which we will use in our proof of the inductive case, is that for all

edges e ∈ E(D(G)), the segment c(u3
e) is a vertical segment.

Induction hypothesis. Let k ≥ 3 be an odd integer. Then there exists a PURE-2-DIR

representation of Gapex in which c(uk
e) is a vertical segment for all edges e of G.

Induction step. Given a PURE-2-DIR representation of Gapex where c(uk
e) is a vertical

segment, we will slightly modify it to include two new segments c(uk+1
e ) and c(uk+2

e )

for each e, such that c(uk+2
e ) is a vertical segment. Let

c(uk
e) = ((λ k

e ,µ
k
e ),(λ

k
e ,π

k
e ));

σ k+2
e =







−1 if λ k
e < 0;

+1 if λ k
e > 0.

Recall that εk = 1/(k2n5). Now for each edge e of G, we replace the segment c(uk
e) by

the following three segments.

c(uk
e) =

(

(

λ k
e ,µ

k
e

)

,

(

λ k
e ,

µk
e +πk

e

2

))

;

c(uk+1
e ) =

((

λ k
e ,

µk
e +πk

e

2

)

,

(

λ k
e +σ k+2

e εk+2,
µk

e +πk
e

2

))

;

c(uk+2
e ) =

((

λ k
e +σ k+2

e εk+2,
µk

e +πk
e

2

)

,
(

λ k
e +σ k+2

e εk+2,π
k
e

)

)

.

Note that these three new segments roughly coincide with the segment that they replaced,

with a tiny perturbation of σ k+2
e εk+2 made to the x-coordinates of c(uk+1

e ) and c(uk+2
e ).

Using the induction hypothesis, it is easy to see that c(uk
e), c(u

k+1
e ) and c(uk+2

e ) intersect

the segments that they are adjacent to in Gapex. The following calculation shows that

the σ k+2
e εk+2 perturbation is so minuscule that c(uk+1

e ) and c(uk+2
e ) do not intersect any

additional segments.
∣

∣

∣

∣

∣

k+2

∑
i=3

σ i
eεi

∣

∣

∣

∣

∣

≤
1

n5

(

k+2

∑
i=3

1

i2

)

<
1

n5
.

Note that for every e′ 6= e and every odd k′ such that 1≤ k′ ≤ k+2, the x-coordinates of

c(uk′

e′
) and c(uk

e) differ by roughly 1/n4, which is much larger than 1/n5. Finally, note

that c(uk+2
e ) is a vertical segment, as promised. This completes the proof.
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pv pv

c(v) Rv Rv

(i)
−−→

(ii)
−−→

(iii)
−−−→

Figure 6: Initially, the vertex v is denoted by the bold string c(v), and the edges incident to it are

the thinner strings. (i) c(v) is “thickened” to form a region Rv around it. (ii) The end points of the

edges on the boundary of Rv are connected to a single point pv in the interior of Rv. (iii) Strings

sharing end points on the boundary of Rv are fused, and the region Rv is “shrunk” to the point pv.

5. Planarizable Representations of Planar Graphs

In this section, we will show Lemma 4, i.e. , a graph admits a planarizable represen-

tation (Definition 9) if and only if the graph is planar.

Proof of Lemma 4. It is easy to see that every planar graph admits a planarizable rep-

resentation. We will show the other direction: every graph that admits a planarizable

representation is planar. Let G be a graph with a planarizable representation. Let v be

a vertex of G, and c(v) be its corresponding string. Figure 6 illustrates our proof for a

given c(v). Let

Rv = {p | p ∈ R2,d(p,c(v))≤ ε}

be the set of points within a closed ε-neighbourhood of c(v), choosing ε small enough

so that c(v) does not intersect any additional strings. Delete all substrings lying in

the interior of Rv. Thus all strings that intersected c(v) now have one end point on

the boundary of Rv. Connect all these boundary end points to a common point (say

pv) in the interior of Rv via pairwise disjoint substrings (intersecting only at pv) in the

interior of Rv, effectively “shrinking” the region Rv to a single point pv. (This last step

is possible because Rv is a simply connected region.) Now the point pv corresponds to

the vertex v.

Do this for all the vertices of G. Since the vertices are now points, and the edges are

strings connecting them, the representation thus obtained is a planar drawing of G.

6. Conclusion

Corollary 4 states that recognizing rectangle intersection graphs is NP-hard, even

when the inputs are bipartite apex graphs. This raises the following question. Can we
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recognize planar rectangle intersection graphs in polynomial time? Corollary 5 states

that for all graph classes G such that PURE-2-DIR ⊆ G ⊆ 1-STRING, the recognition

of G is not even in XP, when parameterized by the apex number of the graph. As our

construction produces graphs of large degree, the sum of maximum degree and apex

number of the graph might be a parameter for which the recognition of G is XP or even

FPT. Corollary 6 states that recognizing several geometric intersection graph classes is

NP-hard, even when the inputs are restricted to K6-minor free graphs. On the other hand,

the complexity of finding geometric representations of K5-minor free graphs is unknown.

Is it possible to use Wagner’s Theorem [36] to decide in polynomial time whether a

K5-minor free graph is in 1-STRING (or STRING)? It would also be interesting to study

the complexity of recognizing STRING when the inputs are restricted to apex graphs.

The crossing number of a graph is the minimum number of edge crossings possible

in a plane drawing of the graph. Planar graphs are precisely the graphs with crossing

number zero. Schaefer showed that apex graphs can have arbitrarily high crossing

number, and also exhibited several graphs with crossing number one [37]. Graph

classes with a small crossing number, like k-planar graphs [38], have also been studied.

Therefore, the complexity of recognizing 1-STRING (or STRING) when the inputs are

restricted to graphs with a small crossing number is another potential direction of

research.

Finally, it would be interesting to see if our techniques can be used to prove NP-

hardness of recognizing other classes of geometric intersection graphs, like outerstring

graphs [39] and intersection graphs of grounded L-shapes [40]. Also, the graph classes

we study in this paper are for objects embedded in the plane. The complexity of

finding geometric intersection representations of apex graphs (appropriately defined)

using curves on other surfaces (e.g., torus, projective plane) is another avenue open for

exploration.
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