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A B S T R A C T

Can dirty incumbents leverage their existing knowhow to transition to clean technologies? To address this
question, we systematically measure direct and indirect knowledge spillovers between clean and dirty tech-
nologies using the patent citation network. We assume citations reflect pathways of learning and knowledge
proximity. We first examine the proportion of citations in clean patents that directly refer to dirty technologies.
Secondly, we investigate how clean and dirty technologies are indirectly linked in the citation network and
which sectors most frequently bridge these two fields. We find that less than one-tenth of clean patents contain a
direct citation to prior dirty patents, but nearly two-thirds are indirectly linked. Significant sectoral heteroge-
neity exists. Patents related to control technologies, data processing and optimization, and the management of
heat and waste, frequently serve as bridges between clean and dirty technologies in the citation network. Our
results have implications for: firm-level diversification strategies, green industrial policy, and the modelling of
directed technical change, where lower knowledge spillovers between clean and dirty technologies correspond to
higher path dependencies.

1. Introduction

Governments around the world have adopted net-zero emissions
targets in an effort to limit the impacts of anthropogenic climate change.
Achieving these targets and keeping the earth’s temperature within safe
bounds will require substantial amounts of innovation in clean tech-
nologies, particularly in hard-to-decarbonize sectors (Stern and Valero,
2021). However, pivoting to clean innovation comes with challenges.1

There are many reasons why clean innovation is likely not near its
socially optimal level. Clean innovation suffers from a double externality
problem, that is, environmental externalities and knowledge spillovers
(Jaffe et al., 2005). The policies to address these market failures, namely
carbon pricing and innovation subsidies, have been challenging to

implement in full measure (Klenert et al., 2018). Furthermore, access to
cost-effective financing has not been easy. Since clean sectors are rela-
tively new, investors face uncertainty over the distribution of risks and
returns, which often leads to a higher cost of capital (Egli et al., 2018).
Finally, there is path dependency: firms, governments, and buyers of
technology may simply continue producing, innovating and buying
technology that is familiar as opposed to switching to something new
(Aghion et al., 2016; Geels et al., 2016). Models of directed technical
change and the sustainability transition literature state that due to path
dependency and the larger market for dirty inputs, incumbents may be
locked-in (Acemoglu et al., 2012; Acemoglu et al., 2016, and Geels et al.,
2016).2

Despite substantial gains in clean innovation, such as the persistent
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1 We define “clean technologies” as those that mitigate greenhouse gas emissions, “dirty technologies” as those that contribute to emissions and “grey technologies”
as those that are energy-efficient versions of dirty technologies. While any classification scheme is subject to debate, the objective of this categorization is to draw a
distinction between technologies that contribute to GHG emissions reduction and those that exacerbate the problem; acknowledging that no one technology is
“perfectly clean”.
2 As this study focuses on exploring the knowledge space, the term ‘incumbents’ informed by our results may encompass not only firms but also inventors, regions,

and countries.
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cost reductions in solar panels, wind turbines and batteries (Way et al.,
2022), the direction of innovation moving forward is still uncertain. As
can be seen in Fig. 1, clean patenting accelerated in the early 2000s
partly due to rising energy prices (Newell et al., 1999; Popp, 2002, and
Verdolini and Galeotti, 2011) but in 2010, it peaked and has subse-
quently fallen. This decline is linked to the burst of the clean tech
bubble, challenges in venture capital as a source of finance, and the rise
of hydraulic fracturing (Dechezleprêtre, 2017; Gaddy et al., 2017, and
Popp et al., 2020) (see Supplementary Fig. 2). Advances in hydraulic
fracturing contributed to the price of natural gas falling so much that it
became the primary fuel for electricity generation in the USA and esti-
mates suggest that it might increase long-run emissions (Popp et al.,
2020; Acemoglu et al., 2019). This reversal of trends has raised concerns
that current progress is insufficient for reaching net-zero emissions by
2050 (IEA, 2020).

An understudied avenue towards overcoming some of these chal-
lenges is leveraging existing knowledge and competencies to transition
from dirty to clean technologies in order to reduce adjustment costs and
the risk of stranded labour, skills, and assets (Dugoua and Gerarden,
2023).

Given this background, this study has two main goals. First, many
existing models of directed technical change in the literature assume
that clean and dirty technologies are very different and that there is
limited shared knowhow (see Section 2.3). While empirical evidence
indicates limited knowledge spillovers between clean and dirty areas (e.
g. Aghion et al., 2016; Dugoua and Gerarden, 2023), it is crucial to better
account for sectoral heterogeneity in the path dependency argument. If
clean and dirty technologies do share significant overlaps in their
knowledge base, pivoting to clean may not be as costly as commonly
assumed or estimated. We test the assumption in the directed technical
change literature by analyzing knowledge spillovers between clean and
dirty technologies across various sectors, offering a better quantification
of potential path dependency.

Second, this study maps out potential pathways for the diversifica-
tion of carbon-intensive incumbent firms. Some examples suggest that
entities working on dirty and clean technologies indeed may “learn”

from each other (i.e., there are direct and indirect knowledge spillovers
from dirty to clean innovation). For example, firms engaged in offshore

oil have expertise in seabed engineering, floating platforms and mate-
rials that can withstand bio-fouling, which have direct applications for
innovation in offshore wind or marine energy (see Box 1. Companies like
British Petroleum that are deeply embedded within the dirty technology
paradigm also bid for seabed rights to build out new offshore wind farms
in the North Sea. More systematic empirical evidence is needed to
quantify the extent to which clean technologies learn from historical
progress in dirty innovation and thus the potential for such learning to
reduce the costs of pivoting.

To explore this question, we empirically measure the extent of direct
and indirect knowledge spillovers between clean and dirty technologies
using patent citation data from U.S. Patent and Trademark office
(USPTO) from 1976 to 2020. Prior work has shown that knowledge-
relatedness is often a key factor in firms’ diversification choices
because it can reduce switching costs (Breschi et al., 2003). Notwith-
standing some of the well-known issues with patent data and citations as
a measure of knowledge spillovers (e.g. OECD, 2009), direct citations
between clean and dirty technologies may indicate, at least on average,
intuitive pathways for transition by dirty firms while indirect linkages
may pinpoint skills that can bridge or better facilitate the transition
(Kivimaa et al., 2020). Given the diversity of skills and knowhow in both
the dirty and clean paradigms, specific pathways for transition have
often been regarded as a black box (Steen andWeaver, 2017). This study
addresses this gap by investigating which knowledge features connect
the dirty and clean technology paradigms.

We find that less than one-tenth of clean technologies directly cite
dirty patents. While the direct connection constitutes a small proportion
of all clean inventions, we find that most are indirectly connected via
intermediate technologies. Among clean sectors, geothermal energy,
clean metals/chemicals, carbon capture and storage (CCS), and long-
haul transportation have the highest direct links to dirty technologies.
Further investigation to understand indirect linkages exhibits key fea-
tures of bridging technologies. For example, fuel supply control tech-
nologies used in combustion have knowhow used in control
technologies for temperature and power, which in turn are used for
energy-efficient building technologies such as smart home appliances
and smart heating.

The sectoral investigation of these areas sheds light on possible
transition pathways for incumbent dirty firms. By mapping the direct
and indirect linkages between clean and dirty technologies and
exploring bridging solutions between these realms, we provide micro-
level insights into potential diversification routes for incumbents pur-
suing a low-carbon transition, while acknowledging that technological
aspects alone are insufficient to justify the direction of diversification. A
comprehensive understanding of stranded skills and knowledge can
significantly enhance firm-level decisions on the energy transition.

Our paper makes four contributions: First, we leverage the patent
citation network to map out the proximity of clean and dirty technolo-
gies in aggregate in the knowledge space. By doing this, we contribute to
the literature that explores how labour, scientific skills, and capital can
be re-purposed or re-deployed for the low-carbon transition. Second, we
provide a detailed sectoral breakdown of which clean technologies are
most proximate to their dirty counterparts to inform views on possible
transition pathways for dirty R&D incumbents by sector. Third, wemove
beyond direct citations and consider degrees of separation in the patent
citation network to detail which technologies frequently serve as in-
termediaries between clean and dirty technologies. Such technologies
may represent important bridges that could help in the pivot from dirty
to clean innovation. Finally, we pool together existing classifications of
“clean” and “dirty” that exist to date in the literature.

Studies that are most closely related to ours include: Dechezleprêtre
et al. (2014) and Noailly and Shestalova (2017) who use patent citations
to measure knowledge spillovers. They focus on how clean technology
spills over to general innovation and whether clean technology spill-
overs exceed those of dirty technologies. They find that on aggregate,
clean technologies have higher spillovers than dirty technologies,

Fig. 1. Number of patents as a share of all patents.
Notes: The number of clean (green line) and sum of dirty and grey (orange line)
patents as a share of all US patents by year. Patents are sorted by priority year
(i.e., earliest filing year) and counted at DOCDB family-level.
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thereby making a case for larger clean tech R&D subsidies. Our work
differs from theirs in two important ways: first, we consider knowledge
spillovers between clean and dirty technologies so as to inform views on
sustainability transition, and second, we focus not only on direct links
but also, indirect links adapting a method used by Ahmadpoor and Jones
(2017) which looks at the minimum distance in the citation network.
Another closely related paper is that of Mealy and Teytelboym (2022)
who use export data to document which areas of export specialization
frequently coincide with having a clean product specialization. This is
conceptually similar to our work as it tries to inform diversification
strategies for the low-carbon transition assuming that export data can
uncover manufacturing complementarities. Our work focuses on the
technological domain, leveraging patent citations to trace transition
opportunities for innovators. Our work differs from Mealy and Tey-
telboym (2022) since underlying data represents purposeful citation
decisions (either by the inventor or examiner) rather than co-
occurrences.

2. Literature review

2.1. Low-carbon transition and diversification

Transitioning to a net-zero economy requires innovation by new
entrants and diversification by existing firms, many of whom form the
base of the carbon-intensive economy. However, incumbents resist
changes due to the cost of deviating from familiar cognitive routines,
existing relationships, and infrastructure (Nelson and Winter, 1982).
Moreover, the incentive to transition is oftentimes too low due to the
absence of carbon pricing. Therefore, fossil-fuel based firms are typically
described as being locked into carbon-intensive regimes (Geels et al.,
2016; Aghion et al., 2016). Despite the path dependency, incumbents
are increasingly required to adapt. The sustainability transition has been
urged by a range of exogenous pressures including the proliferation of
net zero targets, new regulations and public awareness on climate
change. While these pressures can be a threat to the incumbents, they
can also offer windows of opportunity for creating and capturing value
from new markets (Geels, 2002; Farmer et al., 2019). How incumbents
respond to the change through diversification can critically affect the
rate and direction of change.

It is well established that diversification is easier when a firm, region
or country extends its capabilities into an area which shares knowhow or
preexisting capabilities. Diversification relies on the accumulated stock
of capabilities, aiming to maximally leverage the existing resources
(Neffke and Henning, 2013). Evolutionary economic geography has
highlighted how new development pathways are achieved when agents
jump from one area of expertise to another relatively proximate but
different area (Frenken and Boschma, 2007; Boschma and Frenken,
2011; Hausmann and Klinger, 2007; Hidalgo et al., 2007, and Martin
and Sunley, 2006). Strategy scholars have suggested that diversification
into adjacent emerging areas can lead to a competent variety in not only
technological but also business models and strategy dimensions
(Erlinghagen and Markard, 2012; Dolata, 2009).

Since there are costs linked with searching the knowledge space to
find new idea (Binswanger, 1974), understanding what is cognitively
closer as revealed measures such as cross-citations, can give a better
understanding of the available recombinant possibilities (Weitzman,
1998; Rigby, 2015). If incumbents can make novel recombination of
new skills and their existing capabilities through so-called creative
accumulation, they can competently survive under discontinuous tech-
nological changes (Bergek et al., 2013).

2.2. Measuring knowledge spillovers between clean and dirty technologies

Mapping the knowledge space in which clean and dirty technologies
exist can help empirically assess how related the carbon-intensive
paradigm and low-carbon innovation are, and consequently, inform
our views on the ease of diversification. Measures of relatedness can be
constructed on the basis of co-classifications in industrial codes (Frenken
et al., 2007; Boschma and Iammarino, 2009; Boschma et al., 2009;
Boschma et al., 2012, and Hartog et al., 2012), co-occurrences of
products in countries’ export baskets (Hidalgo et al., 2007), cross-
citation patterns in patent data (Rigby, 2015), similarity of references
or co-classification information in patent data (Yan and Luo, 2017), and
the mobility of labour in occupational networks (Neffke and Henning,
2013; del Rio-Chanona et al., 2021), which captures resource flows.

The choice of which measure to adopt depends on the researcher’s
goal. For example, using the occupational network may be most
appropriate for thinking about the mobility of human capital between

Box 1
Offshore oil & offshore wind firm diversification

Offshore oil and offshore wind have significant technological similarities. Offshore oil industries possess knowledge of i) manufacturing and
installation of electrical infrastructure ii) construction of seabed infrastructure, substation structures, and turbine foundations iii) mapping of
ocean floors iv) installation of support services, maintenance and information services. This know-how has been leveraged by oil companies to
diversify into offshore wind. Indeed, the first offshore wind structures were built based on offshore oil industry templates.
One of the most notable examples of diversification is Ørsted, which is today, one of the world’s largest developers of offshore wind but was
previously known as DONG Energy (Danish Oil and Natural Gas) and would manage such resources in the North Sea. DONG Energy undertook a
wholesale transition around 2017 to move from offshore oil and become a leader in offshore wind.
Many traditional oil companies are also opening up offshore wind operations. Shell, British Petroleum and TotalEnergies are acquiring seabed
rights to build their own offshore wind turbines.1 Some oil companies are also engaging in offshore wind to power traditional assets. 2 For
example, Equinor, a Norwegian petroleum company, is developing an 88 MW wind farm 140 km off the coast of Norway in the North Sea to
supply energy to five oil & gas platforms.3 Equinor is also expanding its operations in offshore wind significantly in Brazil.4
1Allan, Vicky. 2022. ‘Oil Companies Are Moving into Offshore Wind. Green Transition or Green Wash?’ HeraldScotland.
2 He, Wei, Gunnar Jacobsen, Tiit Anderson, Freydar Olsen, Tor D. Hanson, Magnus Korpås, Trond Toftevaag, Jarle Eek, Kjetil Uhlen, and Emil
Johansson. 2010. ‘The Potential of Integrating Wind Power with Offshore Oil and Gas Platforms’. Wind Engineering 34 (2): 125–37. He, Wei,
Kjetil Uhlen, Mahesh Hadiya, Zhe Chen, Gang Shi, and Emilio del Rio. 2013. ‘Case Study of Integrating an Offshore Wind Farmwith Offshore Oil
and Gas Platforms and with an Onshore Electrical Grid’. Journal of Renewable Energy 2013 (April): e607165.
3Banks, Jim. 2021. ‘Why Offshore Wind Is Proving so Attractive to Oil and Gas Companies’. N S Energy.
4Petrobras and Equinor Sign Agreement to Evaluate Seven Offshore Wind Projects in Brazil’. 2023. Equinor.
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clean and dirty sectors, while co-occurrences in the export basket may be
useful in unravelling complementarities in manufacturing processes.
Since our interest is in the direction of innovation, we focus on the
connectivity between clean and dirty sectors in the patent citation
network. Patents have the advantage that citations are active decisions
made by inventors and vetted by examiners to prove the invention’s
novelty over existing work. This means past work is often well cited and
provides a more robust measure of connectivity/relatedness than relying
on factors such as co-occurrence which may be linked with more
inherent randomness.

Several studies have used cross-citation patterns to infer knowledge
spillovers between sectors, with a key assumption that if a citation is
made, then the citing technology has learnt something from the cited
technology (e.g. Dechezleprêtre et al., 2014; Noailly and Shestalova,
2017, and Andres et al., 2022). We do not need to believe each citation is
reflective of learning, as long as we believe that on average, a citation
link is correlated with learning between those two nodes. As Jaffe et al.
(1993) state, “knowledge flows do sometimes leave a paper trail, in the
form of citations in patents”.

The study of knowledge spillovers between clean and dirty tech-
nologies can help determine the ease of pivoting from carbon-intensive
(“dirty”) innovation to low-carbon (“clean”) innovation (Breschi et al.,
2003). Given the path dependent and cumulative nature of knowledge
(Nelson and Winter, 1982), many assume that dirty technologies will
only beget more dirty innovation. Yet, since clean and dirty technologies
often have the same goals such as the provision of mobility, power, and
industrial growth, they may, in fact, learn from and build-upon each
other. This is reflected through models which allow for spillovers be-
tween the clean and dirty paradigm (Fried, 2018). Yet this parameter
requires careful calibration and the extent to which knowledge from the
dirty paradigm can spill over to the clean paradigm is fundamentally an
empirical question. The results of this paper will aim to bring more
evidence to inform future calibrations.

2.3. Relation to models of directed technical change

In modelling terms, Acemoglu et al. (2012) assume that clean and
dirty inputs (Yc and Yd, respectively) are made using labour and ma-
chinery (L and x respectively). Machines can be of different types, i. The
share of labour and machinery in the production function is determined
by α1,α2, α ∈ [0, 1] and α1 + α2 = α. Rt is the flow of exhaustible re-
sources over time which features in the production function for Yd.
There is also knowledge or quality, A, that augments the productivity of
machinery (see Eq. (1)).

Ydt = Rα2t L1−α1−α2
dt

∫ 1

0
A1−α1
dit xα1

ditdi (1)

Yct = L1−α
ct

∫ 1

0
A1−α
cit xα

cit

The average productivity in a clean or dirty sector is given by the
accumulation of past quality improvements (Eq. (2)) where j ∈ (c, d).
Further, as Eq. (3) shows, innovation builds on the existing quality of the
machine (“standing on the shoulders of giants”) where ηj represents the
probability that the subsequent innovation is successful and achieves
productivity increment, γ.

Aji ≡
∫ 1

0
Ajitdi (2)

Ajt =
(1+ γηj

)Ajt−1 (3)
But, crucially, in this specification, the “clean tech ladder” is distinct

from the “dirty tech ladder”. In other words, dirty innovation only helps
future dirty innovation and clean innovation only helps future clean
innovation. There are no cross-sectoral spillovers. Acemoglu et al.

(2012) note in a footnote that this is an assumption and justify it with a
claim that renewable energy developments do not build up from fossil
fuel innovation. However, this claim is not based on systematic empir-
ical evidence. Sectors such as offshore wind do build up from in-
novations in offshore oil, and there could be many other such examples.

A more general formulation, which takes into account the possibility
of cross-sectoral spillovers is given by Eq. (4) where ∼ j denotes the
other sector and ϕj is a linearly homogenous function.
Ajt =

(1+ γηj
)

ϕj
(Ajt−1,A∼jt−1

) (4)
The benefit of undertaking R&D investments in a clean sector rela-

tive to a dirty one in the absence of cross-sectoral spillovers is given by
Eq. (5a), which shows the relative benefit of clean vs. dirty innovation
(πct

πdt
) depends on relative prices (pctpdt ), the relative probabilities of suc-

cessful follow-on innovation (ηc
ηd
), the relative size of the markets (LctLdt )

and relative past productivities (Act−1
Adt−1

).
When cross sectoral spillovers are allowed, we get Eq. (5b), where in

the final term we can see how a history of dirty innovation can
contribute to the relative benefit of undertaking clean innovation and
vice versa. What this does to the standard result is that it attenuates the
degree of path dependency and lock-in, and creates multiple equilibria i.
e., dirty R&D firms can access the clean tech paradigm more easily but
crucially, are looking at what other firms may be doing, resulting in a
coordination problem between clean vs. dirty equilibria (see Andres
et al., 2022 and Zhou and Smulders, 2023 for a more detailed expla-
nation of coordination problems in expanded models of directed tech-
nical change). Cross-sectoral spillovers can also affect the speed of
convergence to an equilibrium.
πct
πdt

=

(pct
pdt

) 1
1−α ×

ηc
ηd

×
Lct
Ldt ×

Act−1
Adt−1

(5a)

πct
πdt

=

(pct
pdt

) 1
1−α ×

ηc
ηd

×
Lct
Ldt ×

ϕc
(Act−1,Adt−1

)

ϕd
(Adt−1,Act−1

) (5b)

The issue is that the extent of spillovers between clean and dirty
technologies is largely unknown and unquantified in empirical terms.
Such information would allow us to more precisely specify
ϕj
(Ajt−1,A∼jt−1

) which can be used to empirically validate crucial as-
sumptions made in the canonical paper by Acemoglu et al., 2012.

Lastly, in practice, diversification requires considering not only
knowledge spillovers (how Ac and Ad relate to each other) but also other
variables such as labour, machinery, access to raw materials, supply
chains, strategic fit, etc. (Altunay et al., 2021). Yet, since knowledge is a
key input into the production process and a driver of long-term growth,
we pay particular attention to it. Prior literature has adopted a similar
approach, with studies using patent specialisations in clean technologies
as an indicator of enhanced competitiveness in a future low-carbon
economy (Fankhauser et al., 2013) as well as studies looking at firms’
patenting activity to proxy their position in the product/technology
space to infer rivalries (Bloom et al., 2013).

3. Data

We map out the links between clean and dirty technologies in the
patent citation network, using patents granted in the USPTO from 1976
to 2020.3 Patents grant monopoly rights to inventors over inventions

3 The United States is the largest market in the world, and its intellectual
property regime is among the strongest globally. For these reasons, inventors
from all over the world, particularly those whose inventions have high value,
seek commercialisation of their products in the US market and relevant IP
protection. In the literature, patents granted by the USPTO are often considered
to represent the knowledge frontier (Granstrand, 2018).
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that are novel, non-obvious, and of commercial value. The patenting
also means that all of the details of the invention are released in the
public domain alongside information about the inventor, their
employer, and technology-class of the invention. To demonstrate nov-
elty, inventors must cite the technological antecedents of their invention
which are also reflected in citations made to prior art (Jaffe et al., 1993).

Since patents are legal instruments, there is a strict review process
linked to ensuring citations are relevant and meaningful. This is argu-
ably different from academic articles where the review process for ci-
tations is looser. The inventor has a legal duty to disclose all prior art
that they consulted in the development of the invention and the patent
examiner, who is a subject matter expert, vets these citations and adds
their own to reflect any missed or concealed prior art (Jaffe et al., 1993;
Berchicci and Van De Vrande, 2019). Jaffe et al. (2000) survey R&D
managers and find that citing inventors usually have direct communi-
cation with cited inventors, and that the reasons for patent citation
include using components of the cited technology and/or leveraging the
cited technology to demonstrate the feasibility or use-case of the new
invention.

Any study using patents, however, must acknowledge that patents
represent only a subset of all innovation (Griliches, 1990) and that
despite the citation-vetting process by examiners, references in patents
can still contain noise (Jaffe et al., 1993; Jaffe et al., 2000). Notwith-
standing various limitations including an incomplete coverage of in-
ventive activity and a bias towards frontier technologies (e.g., OECD,
2009), patents are used extensively in the study of innovation (Griliches
1990 and Jaffe et al., 1993), and in particular clean innovation thanks to
the introduction of classification codes that help identify technologies
that reduce or contribute to greenhouse gas emissions (e.g., Deche-
zleprêtre et al., 2014, Noailly and Shestalova, 2017). In our dataset, 62%
of citations in patents, are on average, added by the inventor rather than
the examiner. For our results we consider all citations regardless of who
added them as we are broadly interested in knowledge spillovers across
technological domains, rather than specifically, the inventor’s
perception.

4. Method

Our data contains approximately 6 million patents and 55 million
connections, from which we identify clean and dirty technologies (see
Supplementary Table 1). We leverage existing classifications schemes in
the literature and supplement these with our own tagging efforts to
come up with these classifications (Haščič and Migotto, 2015, Aghion
et al., 2016, Popp et al., 2020, Dechezleprêtre et al., 2021, and IEA
(International Energy Agency), 2021). As an indicative illustration:
renewable energy is “clean”, oil and gas are “dirty”, and energy-efficient
methods of making steel are “grey”. The tagging strategy gives 258,078
clean patents, 145,753 dirty patents and 98,224 grey patents which are
counted at DOCDB family level to avoid double counting the same in-
ventions.4 There are 31,053 patents that are classified as both clean and
dirty, which we exclude from our baseline analysis to focus on the cases
where the technologies are obviously clean or dirty (see Supplementary
Fig. 1). Supplementary Table 3 shows that the excluded patents are
mostly related to the pollution abatement technologies for carbon-
intensive practices, justifying our exclusion given our focus on radical
transition to clean.

We measure direct knowledge spillovers between clean and dirty
technologies by the proportion of backward citations in clean patents
that directly refer to dirty patents. This metric has been used widely in
the environmental innovation literature and we refer to it as the “in-
tensity of connection” (Dechezleprêtre et al., 2014; Noailly and Shes-
talova, 2017).

However, knowledge from a dirty patent may also feed into an in-

termediate technology which may in turn be cited by a clean patent.
These indirect links are often overlooked. To address this gap, we
calculate the degrees of separation between clean and dirty patents in
the citation network. We call this the “minimum distance metric (D)”.
The minimum distance reveals the incremental and indirect ways in
which dirty knowledge has fed into clean inventions (Ahmadpoor and
Jones, 2017). If our measure of minimum distance is 1 (Di = 1), it means
that the clean patent i directly cites a dirty patent, while if Di = n, where
n is larger than or equal to 2, a clean patent imust pass through at least n-
1 non-dirty patents within the citation network to reach prior dirty
patent(s) (see Fig. 2).5 Clean patents that cannot be connected to dirty
patents at any distance are deemed “unconnected.”6

Patent bibliography lengths are growing over time (Supplementary
Fig. 6), which could theoretically increase the chance of citing old hy-
drocarbon knowledge and consequently, decrease Di mechanically.
However, this does not happen. Despite the increasing lengths of bibli-
ography, we see the opposite: values of Di rise over time as the
composition of clean innovation shifts towards technologies that are
more distant from the hydrocarbon paradigm (Supplementary Fig. 7).
From the 1970s to the present day, the composition of clean patenting
has changed, with the share of patenting in electric/hybrid vehicles,
clean ICT and solar PV rising, and the share of patenting in nuclear
energy declining.

Fig. 2. A schematic diagram to explain “intellectual distance”.
Notes: This figure shows how the distance from a clean patent to prior dirty
patent is determined. Arrows indicate the citation direction (from citing to cited
patents). Intermediary patents can also include other (i.e. different) clean pat-
ents that serve as bridges.

4 DOCDB families are a cluster of patents that represent the same invention.

5 Measures of distance based on patents have been used to study various
questions. For example, Ahmadpoor and Jones (2017) use minimum distance to
assess the extent to which scientific knowledge feeds into patented technolo-
gies. Bloom et al. (2013) use a patent-based distance metric to assess compe-
tition and product market rivalries across firms.
6 The D metric is adapted to conduct additional analyses reported in sup-

plementary material. Supplementary Fig. 3 shows connectivity from dirty to
prior clean patents, and Supplementary Fig. 4 shows connectivity from clean to
prior dirty patents (Applicant citation only) and Supplementary Fig. 5 shows
connectivity from clean to grey patents. Supplementary Fig. 5 shows that grey
has a slightly higher proportion of direct connections to dirty, compared to
clean’s direct connection to dirty, which is an intuitive result. Since whether
dirty incumbents should diversify into grey technologies as a steppingstone for
the ultimate transition to clean is a controversial agenda (Stern and Valero,
2021), we have focused on radical transition to clean instead of discussing
diversification routes to grey areas.
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Di aims to measure the proximity of fields of knowledge. All else
equal, if Di is systematically very high between patents of two different
technology classes, then the “intellectual distance” between these fields
is large and there is less of a common language that can help facilitate
the diffusion of ideas. By the same token, weak ties at 2 degrees of
separation may represent a particularly fruitful direction for ideas ex-
change as they are not too similar to lead to cognitive lock-in and yet not
too different such that there is no practical room for knowledge ex-
change (Granovetter, 1973).

Fig. 2 illustrates our minimum distance calculation schematically.
Intermediate technologies in our analysis can be classified into two
cases. First, intermediate technologies can be non-dirty and non-clean i.
e., belonging to some third category. Second, the intermediate tech-
nologies can be clean technologies that feed into other clean technolo-
gies. For sectors where the intermediate technologies are mostly other
clean inventions, we can speculate that D = 2 represents an intuitively
closer link than in cases where the intermediate technology belongs to
some third category. Some of this may just be driven by the boundary of
clean classifications since boundaries have to be drawn.

5. Results

5.1. Aggregate and sectoral results

We find that nearly one in every ten clean patents contains some
reference to a dirty technology. The mode of clean patents’ distance to a
dirty patent is 3 and 53% of clean patents are within three degrees of

separation from dirty patents (Fig. 3). By comparison, the average dis-
tance between any two randomly selected patents in USPTO is 8.5
(Mostafavi et al., 2012). The relative proximity between clean and dirty
patents is partly attributable to the fact that many have common goals
such as generating electricity, mobility, etc. Yet the limited proportion
of direct connections (7.5%) and the relatively high proportion of un-
connected patents (27%) highlight that they are different technologies,
that often stem from cognitively dissimilar paradigms. However, these
aggregate results conceal significant heterogeneity at the sectoral level.

The average clean patent has 9 references in its bibliography (at the
DOCDB family-level, which clusters patents that cover a single inven-
tion), while the number varies across sectors and time (Supplementary
Fig. 6). Geothermal energy, clean metals and CCS patents have the
highest proportion of direct references to dirty inventions (Figs. 4, 5, and
Supplementary Fig. 8). Geothermal energy relies on geological
surveying, drilling techniques, field development, and the construction
of wells, pipelines, and other infrastructure, which requires knowledge
inputs that are commonly used by fossil fuel firms. Clean innovation in
metals is largely incremental in nature and consequently, still closely
connected to the dirty production paradigm.7 CCS is a complement to
coal-fired power plants, gas stations and other point-sources of carbon
emissions and has to be fitted to these.

Clean ICT and solar PV have negligible direct links to dirty tech-
nologies. In the case of solar PV, this may be reflective of just how
different the photovoltaic paradigm is from the hydrocarbon paradigm.
The former is based on the photovoltaic effect while the latter relies on
spinning a coil around a magnet to generate power (i.e., turbines). This
may explain why turbine-based technologies such as hydroelectric
power, wind energy, and some types of marine energy have more cita-
tions to dirty technologies than solar PV.

Marine energy, for example, requires knowledge inputs that are
common to dirty technologies such as offshore oil. This includes seabed
engineering, constructing offshore platforms, placing under-sea cables,
under-sea robots and materials that can withstand biofouling. This may
explain why offshore oil companies like British Petroleum put in bids for
seabed rights in the North Sea to develop offshore wind farms, as they
can leverage existing knowhow (King, 2021). For electric/hybrid vehi-
cles, some elements of innovation such as car design and a more efficient
internal combustion engine rely on dirty knowledge, while other ele-
ments, such as batteries are different.

5.2. Indirect connections and identifying the “bridging technologies”

The majority of the connections between clean and dirty technolo-
gies are indirect. The minimum distance at which clean patents are
connected to dirty patents differs largely by technology, as plotted in
Fig. 6. Nuclear has the largest share of completely disconnected patents
illustrating how distinct the nuclear paradigm is from dirty technologies.
Other relatively disconnected fields include solar thermal and clean
agriculture, where the share of direct connections is also on the lower
side.

For many sectors, there are a substantial proportion of patents that
are connected at D = 2. To give a sectoral understanding of the bridging
technologies, we extract features of intermediates that frequently con-
nect the clean to dirty technologies when D = 2. These intermediates
highlight how there may still be indirect pathways for diversification for
dirty sectors where there is no direct link to clean technologies. Litera-
ture has emphasized the importance of these indirect routes, which are

Fig. 3. Connectivity from clean to prior dirty patents.
Notes: Figures are made based on the directed graph of citation network from
clean to previous dirty patents.

7 There are some radical strands zero‑carbon innovation in metals such as
zero‑carbon steel made from hydrogen (e.g., the HYBRIT project). Such inno-
vation effort is still so nascent and rare that it is not reflected in patent data-
bases. As such, it is possible that future analyses find that clean metals rely less
on dirty knowledge because radical clean innovation becomes more common-
place and better documented.
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promising as they are different enough to be novel yet close enough to
still be accessible (Noteboom 2000). In addition, bridging technologies
can be understood as gatekeepers forming weak ties between the two
heterogeneous areas of clean and dirty (Granovetter, 1973).

As described in Section 4, there are two different types of interme-
diate technologies in D = 2: (1) one has weak relevance to clean or dirty
technologies but bridges the two areas and (2) another indicates clean

technologies themselves that inform other clean technologies. As the
former case is more relevant to our intention of understanding bridge
technologies, we present the results of the former case in Table 1 and the
latter case in the Supplementary Table 4.

Table 1 describes the most frequent intermediate technologies at D
= 2 in each clean sector.8 Box 2 describes some archetypical examples
using specific patents while Table 1 reviews all major clean sectors and
describes the high frequency indirect linkages these sectors have to dirty
sectors.9 Table 1 is the outcome of analysis which examines patent
documentation and indirect links to establish the scientific basis of the
connection.10 Sectoral description of representative bridging technolo-
gies reveals the routes via which dirty incumbents can jump to relevant
clean areas by understanding key bridging knowledge. The key bridging
technologies in each sector present the potential directions for dirty
incumbents to develop or acquire skills relatively easily to move towards
cleaner production, provided such a transition is also feasible in other
critical aspects, such as the difficulty of sourcing the required skills.

For example, geothermal collection and geothermal energy genera-
tion technologies draw on intermediary knowledge related to heat ex-
change or compression which in turn cite patents in the sub-field of
upstream fossil fuels, such as bore-holing. Hence, oil and gas companies
equipped with earth drilling technologies can intuitively build (or,
already have) capabilities related to heat pumps and exchanges, which
help them acquire clean skills needed for geothermal energy generation.
Wind energy supply and distribution technologies cite technologies
related to controlling electric motors, which connect back to dirty
technologies used to turn on motors in combustion engines. Therefore,
dirty incumbents that have used motors for combustion engines can
expand their electric motor-related technologies to leverage their

Fig. 4. The average proportion of dirty backward citations by clean technology (D = 1).

Fig. 5. Sectoral mapping of range and intensity of direct connections.
Notes. X-axis indicates the proportion of clean patents that are directly con-
nected to prior dirty patents among the clean patents in each sector (Range of
direct connection). Y-axis is the average of the proportion of dirty backward
citations among the total backward citations (Sectoral average of intensity
metric). Overall, the figure shows that the range and intensity of direct
connection tend to be positively correlated, confirming that our D metric well
represents the connectivity between clean and dirty technologies.

8 We found that a similar analysis for D = 3 (which should go through two
other bridging technologies) is less intuitive to interpret and difficult to be
translated into action in many cases. Given this, we interpret that D ≥ 3 is
distant enough in absolute term.
9 Supplementary Fig. 8 provides an overview of the patterns of sectoral

connections between clean and dirty technologies, with varying distances. This
figure comprehensively maps out the potential directions of diversification for
the dirty incumbents.
10 Supplementary data will be provided upon request.
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existing capabilities to perform new business in wind energy generation.
Smart grid technologies frequently rely on control technologies used in
power distribution, air conditioning, and temperature, which connect
back to combustion control technologies for fuel or air supply. There-
fore, if dirty incumbents with combustion control capabilities invest in
further development of a broader set of control technologies for air
conditioning, temperature and power control, they will be in a good
position to engage in smart grid or smart home-related new businesses.
Government interventions to encourage dirty incumbents’ investment in
such targeted bridging areas of each clean sector can facilitate sustain-
ability transition across the economy.

6. Discussion

Economic activity has an imperative to transition to a low-carbon
paradigm to limit the impacts of climate change. For carbon-intensive
(“dirty”) firms, the pivot towards clean industries is not only a matter
of honoring climate pledges but also of mitigating transitional risks since
regulation is expected to move in the direction of higher carbon prices,
mandatory disclosure of climate-related risks, and border carbon
adjustments.

As the fracking revolution revealed, the overall direction of inno-
vation is still uncertain and can move in directions that do not support
the clean energy transition. The target of net zero emissions by 2050
necessitates control over the amount, direction, and speed of innovation
(Stern and Valero, 2021), and in this regard, it is important to under-
stand areas where dirty knowledge spills over into clean technologies.

To what extent does society’s large history of dirty R&D lock it into
further dirty R&D? Models of directed technical change argue that there
is hysteresis in the innovation system (Acemoglu et al., 2012; Aghion
et al., 2016). Such models arrive at this conclusion by implicitly
assuming that clean and dirty technologies do not learn from each other.

We test this assumption empirically and find that 7.5% of clean
patents have a direct connection to dirty technologies. Around 27% of
clean patents cannot be connected to dirty patents at any distance in the

citation network. The remaining are indirectly linked (65%), with the
mode of connection being 3 degrees. We interpret this as indicative that
the pivot from dirty to clean, in many cases, may not be straightforward,
especially for the cases in which D≥3.

However, aggregate results conceal significant areas of relative
proximity, particularly at the sectoral level. In reality, the degree to
which clean technology learns from dirty technology is nuanced, sector-
specific and sometimes indirect. Clean sectors that draw significantly
from the hydrocarbon knowledge paradigm include geothermal, clean
metals, CCS, long-haul transport and clean chemicals. Others include
marine and wind energy where the learning largely is indirect rather
than direct. Our mapping of sector-level linkages between clean and
dirty technologies provides potential routes for diversification that dirty
incumbents could consider. This is an optimistic message that is often
ignored in studies that only focus on direct knowledge spillovers. Our
sectoral-level findings also align with previous studies that have
demonstrated a widespread interaction of technological knowledge
across seemingly distinct domains (e.g. Benson and Magee, 2015).

There is a rich literature on how external factors such as location
matter for innovation due to agglomeration benefits, complementarities,
and access to resources (Porter and Stern, 2001). We build upon the
thinking that even location in the knowledge space has a bearing on
innovation strategy. Insofar as technological capital has complemen-
tarities with labour, we can also infer that similar types of skilled labour
and scientists would be deployed. Proximity in the knowledge space
likely correlates with similarity across other dimensions.

The pivot to clean innovation is fundamental to the concept of “green
growth”, the idea that it is possible to respect planetary boundaries and
have an economically prosperous future (Ekins, 2002; Bowen et al.,
2016, and Bowen and Hepburn, 2014). Since innovation is a long-term
driver of growth, our investigation of how distinct the clean innovation
paradigm is from the dirty one is useful in terms conceptualizing how
difficult this shift may be. This in turn, may be useful for policymakers
contemplating green industrial policy or firms deciding on resource
allocation to become net zero compliant (Hafner et al., 2020).

Fig. 6. Sectoral details of direct and indirect connections.
Notes: Each clean sector’s direct and indirect connections to prior dirty technologies.
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In terms of limitations, we are constrained to a large extent by
existing classifications of clean and dirty patents. Future work could use
machine learning to better discern categories using information con-
tained within patents’ abstract, title, and claims. Additionally, while
patents represent a well-codified and accessible dataset for researchers,
not all forms of technological knowledge are captured in patents. Tacit

knowledge, including skills, knowhow, and systemic aspects of products
and systems, is often unpatentable and hard to document. Some
knowledge remains undisclosed, such as trade secrets (Roach and
Wesley, 2013). One could also use data on scientific publications,
categorise them as clean, dirty, or grey, and measure spillovers using
this dataset, and compare it to the results of this paper.

Table 1
Most frequent indirect links between clean and dirty technologies.
Clean
Technology

Intermediate Technology Dirty Technology Description of the Indirect Link
(Dirty ➔➔ Intermediate ➔➔ Clean)

Clean ICT Data processing (Program control,
memory systems and architecture)

Technologies used to control and
optimise the performance of internal
combustion engines

Technologies used to control and optimise the performance of internal
combustion engines (e.g. fuel injection, ignition timing) feed into data
processing technologies related to the program control, memory systems
and architecture, which are subsequently linked to the development of
energy-efficient computing (e.g. low power processors, power management
and thermal management).

PV Control and regulation of electric
motors

Technologies used to start combustion
engines

Technologies used to start combustion engines feed into control and
regulation technologies for electric motors (i.e. arrangements of electric
generators for optimum output), which subsequently inform PV circuit
arrangements for electric supply and distribution.

Clean
Agriculture

Material investigation (chemical or
physical properties)

Earth drilling technologies used to test
the nature of borehole walls

Earth drilling technologies used to test the nature of borehole walls (e.g.
obtain samples of soil) feed into technologies for investigating materials
(chemical or physical properties), which inform cleaner production
technologies related to agriculture or livestock.

Solar Thermal Power generation from renewables Using waste heat of combustion engines Technologies for using waste heat of combustion engines inform
technologies for energy generation from renewable sources (e.g. devices for
producing mechanical power from solar energy), which subsequently feed
into various types of solar heat collectors.

Clean Building Other general control technologies Control technologies used in combustion
(e.g. fuel or air supply control)

Technologies used to control the combustion process (e.g. fuel or air supply
control) feed into other control technologies (e.g. air condition control,
temperature control and power control), which are referenced by clean
building technologies such as energy-efficient heating of buildings,
ventilation or air conditioning of buildings, and end users’ power
consumption management technologies used in buildings (e.g. home
appliances and smart grid).

Clean Enabling Program control (monitoring and
testing)

Controlling or regulating the internal
combustion piston engines

Technologies for controlling or regulating the internal combustion piston
engines feed into technologies for program control (monitoring and
testing), which are used in sensors for clean enabling manufacturing (e.g.
sensors in EV charging stations).

Smart Grid Other general control technologies Combustion process control technologies
(e.g. fuel or air supply control)

Combustion process control technologies (e.g. fuel or air supply control)
feed into other control technologies such as power distribution control, air
conditioning control, and temperature control, which can be used to
develop smart grid technologies.

Thermal-PV
Hybrid

Semiconductors used in water-
intensive sectors

Distillation technologies used in the oil
and gas sector

Distillation technologies used in the oil and gas sector are linked to
semiconductor technologies used in water-intensive sectors, which in turn
informs power generation from solar energy and boilers (e.g. devices
sensitive to infra-red radiation).

Wind Control of electric motors Technologies used to start combustion
engines

Technologies used to start combustion engines inform technologies on
control of electric motors, which feed into optimal circuit arrangements for
supply and distribution of wind energy and controlling and adaptation of
wind motors.

Clean Consumer
Products

Machines for liquids and control/
regulation of electric motors

Control technologies used in hot gas
engine plants

Control technologies used in hot gas engine plants (e.g. temperature or air
supply control) inform machines for liquids and control/regulation of
electric motors, which inform arrangements for measuring electric/
magnetic variables related to clean manufacturing of consumer products.

Marine Adaptation of engines for special
use

Stirling type engines used in hot gas or
combustion plants

Stirling type engines used in hot gas or combustion plants inform the
adaptation of engines for special use, which feed into clean technologies on
energy generation through marine renewables sources such as ocean waves
and tides.

Hydro Indexing scheme technologies

Gravitational measurement
techniques

Hydraulic engineering technologies

Earth drilling technologies

Hydraulic engineering technologies such as construction methods for
floating platforms inform indexing scheme technologies used for various
purposes, that feed into energy generation through hydropower.

Earth drilling technologies, such as mining and quarrying, feed into
gravitational measurement techniques (e.g. acoustic prospecting or
detecting), which then inform machines for energy generation through
hydropower.

Geothermal Technologies related to heat pumps
and heat exchange

Earth drilling technologies used in the oil
and gas sector

Earth drilling technologies used in the oil and gas sector frequently inform
technologies related to heat pumps and heat exchange, which in turn are
relevant for subsequent innovation in the geothermal collection and
geothermal energy generation.

Waste
Management

Compositions of mortars, concrete,
or artificial stone

Material technologies used in
compositions for drilling/treating of
wells

Material technologies used in compositions for drilling/treating of wells
inform compositions of mortars, concrete, or artificial stone, which then
feed into technologies for solid waste management.
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An avenue for future research is to explore knowledge flows between
clean technologies and other general sectors of the economy. Further-
more, it would be interesting to more systematically test if knowledge
spillovers, as measured by patent citations, are positively correlated
with the use of similar types of capital and labour (e.g., seabed engi-
neers, floating platforms, and robots that work at sea, etc.). While this is
implicit from the contents of the patents, formal testing, which is beyond
the scope of this paper, would be valuable. Lastly, other measures of
technological distance (e.g. Yan and Luo, 2017) could be considered in
future studies to further extend and deepen the findings of this study.
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