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Abstract. The pseudo-labelling algorithm is highly effective across var-
ious tasks, particularly in semi-supervised learning, yet its vulnerabilities
are not always apparent on benchmark datasets, leading to suboptimal
real-world performance. In this paper, we identiőed some channel activa-
tions in pseudo-labelling methods, termed disguising channel activa-
tions (abbreviated as disguising activations in the following sections),
which exacerbate the conőrmation bias issue when the training data dis-
tribution is inconsistent. Even state-of-the-art semi-supervised learning
models exhibit signiőcantly different levels of activation on some chan-
nels for data in different distributions, impeding the full potential of
pseudo labelling. We take a novel perspective to address this issue by
analysing the components of each channel’s activation. Speciőcally, we
model the activation of each channel as the mixture of two independent
components. The mixture proportion enables us to identify the disguising
activations, making it possible to employ our straightforward yet effective
regularisation to attenuate the correlation between pseudo labels and dis-
guising activations. This mitigation reduces the error risk of pseudo-label
inference, leading to more robust optimization. The regularisation intro-
duces no additional computing costs during the inference phase and can
be seamlessly integrated as a plug-in into pseudo-labelling algorithms
in various downstream tasks. Our experiments demonstrate that the
proposed method achieves state-of-the-art results across 6 benchmark
datasets in diverse vision tasks, including image classiőcation, semantic
segmentation, and object detection.

Keywords: Semi-supervised Learning · Pseudo-labelling

1 Introduction

Semi-supervised learning reduces the need for large amounts of labels, which is
a pervasive challenge in data-driven algorithms for practical applications. Re-
cently, methods employing pseudo-labelling [22] achieve state-of-the-art in nu-
merous scenarios with incomplete labelling [17,26,47]. Nevertheless, we discover
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Fig. 1: The average activation (Act.) distribution of a layer in a model for the labelled
and unlabelled set. We show the distribution of one category here. We sample once
every 32 channels. The black bar is the difference between the two distributions. left) the
distribution of the unlabelled set is different from the labelled set. right) the distribution
of the unlabelled set is the same as the labelled set.

a noticeable channel activation discrepancy when the training data distribution
consistency is not guaranteed. It misleads the pseudo-labeling algorithm to make
decisions based on wrong features, causing the entire optimisation to fall into a
‘confirmation bias’ [2] loop. In this paper, we investigate this phenomenon and
propose a straightforward and effective method to address it.

Most semi-supervised learning algorithms are evaluated on benchmark datasets
such as CIFAR [21], MSCOCO [25] etc. These datasets are inherited from
fully supervised learning tasks and are organised by manually splitting into la-
belled/unlabelled sets with various label ratios. As a result, the labelled data and
unlabelled data are drawn from one source with the same distribution. However,
such a strong assumption is hard to uphold in practice. For example, labelled
data is meticulously collected with high-quality cameras, while unlabelled data
often comprises images from diverse sources, captured under different conditions
or obtained from the internet. By analysing the activation of feature channels to
the data of labelled and unlabelled sets in different distributions, we find that
even the state-of-the-art methods [17] exhibit significantly different activation
strengths on some channels for the same category. As shown in the left figure
of Fig. 1, we collect images of a category and plot the channel activations of a
well-trained model [17] dealing with the labelled and unlabelled set in different
distributions. A longer black bar indicates a significant difference in the activa-
tion level. Some highly activated channels to labelled data, such as the channel
#1760 in Fig. 1, are less sensitive to the unlabelled set. Such a phenomenon
is invisible when the labelled and unlabelled data are in the same distribution
(shown in the right of Fig. 1).

We attribute the phenomenon of channel activation discrepancy to the over-
representation of information unique to either the labelled or unlabelled set, i.e.,
the set-private information. For example, in Fig. 1, assume that the channel
#1760 encodes the body-related information for recognising dogs. The high ac-
tivation level of the channel #1760 for the labelled image indicates a very strong
representation of the ‘fluffy texture’ and the ‘4 legs’. However, there is no texture
information in the unlabelled image, thereby resulting in a significant lower ac-
tivation level of the channel #1760. We refer to the intense activation caused by
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the set-private information as disguising channel activations (abbreviated
as disguising activations in the following sections). Once the decision-making
process of the task-related module (e.g ., the linear classifier at the final layer
in an image classification model) is overfitted to these disguising activations, it
poses a high risk of poor performance for the pseudo-labelling algorithm on the
unlabelled set as the channel activation values drop dramatically without the
labelled-set-private information. Pseudo-labels with poor quality inevitably lead
to the so-called ‘confirmation bias’ issue.

To address this problem, we propose to identify the disguising activations and
mitigate the correlation between task-related modules’ decisions and them. To
recognise disguising activations, we first consider what constitutes a disguising
activation. The key principle is that the disguising activations should contain suf-

ficient one-set-private information while being relevant to the task-related layer’s

output. Satisfying only one of the two conditions is insufficient. With a certain
information capacity of a channel, if the activation is primarily contributed by
the representation of the set-private information, enforcing the model to neglect
this channel will not significantly improve the performance as this channel en-
codes limited task-related discriminative information. On the other hand, if the
activation is dominated by crucial task-related information, neglecting it will
confuse the model when learning a clear decision boundary as the model cannot
converge without sufficient category discriminative features.

We propose a straightforward but effective strategy to highlight disguising
activations with the above principle. Specifically, we model the activation of
each channel as a mixture of two independent components — the set-private
component and the task-related component. For example, in the training of a
semi-supervised image classification algorithm, the first component encodes the
information that exclusively exists in the labelled/unlabelled set, which should
be useful for discriminating the set of the input image, while the second com-
ponent is for the category attributes, which is crucial for classification. Such a
modelling approach is more feasible than finding a one-to-one correspondence of
channel activations and specific information. The mixture proportion indicates
the contribution of these two components to the channel activation value in each
channel and, most importantly, serves as the metric to discover disguising ac-
tivations. Notably, comparing activations directly for each category to identify
disguising activations statistically, as illustrated in Fig. 1, is not feasible since we
lack access to the groundtruth labels of the unlabelled data. To lead the model
to rely minimally on the disguising activations, we introduce channel mask-
ing regularisation guided by a mixture proportion. By doing so, the model will
be encouraged to neglect disguising activations when making decisions, thereby
yielding a better quality of pseudo-labels.

Extensive experiments are conducted on 36 settings of six benchmark datasets
in three tasks — image classification, semantic segmentation, and object detec-
tion. The results show that the proposed method can improve the performance of
the baseline pseudo-labelling based model by a significant margin. Moreover, our
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method is not invasive and can be easily integrated into existing pseudo-labelling
algorithms on various semi-supervised tasks without overhead.

Our contributions are summarised as follows:

– We discover and investigate the disguising activations problem in pseudo-
labelling algorithms, as it exacerbates the confirmation bias issue in appli-
cation scenarios.

– We identify disguising activations by modelling the activation of each channel
as a mixture of two independent components. The mixture proportion guides
us in regulating models to neglect such representations, thereby enhancing
the quality of pseudo labels.

– We demonstrate how the baseline model equipped with the proposed method
surpasses state-of-the-art by a significant margin on six benchmark datasets
and three mainstream tasks, which reveals the effectiveness and generalis-
ability of our method.

2 Related works

Semi-supervised Learning has been proposed to solve the problem of using a
set of labelled data with a large amount of unlabelled data to optimise a model.
Usually, algorithms in this topic are developed and evaluated on several bench-
mark datasets. The mainstream evaluation protocols are manually splitting the
datasets inherited from the fully-supervised datasets with different label ratios
into two sets. One set serves as the labelled set while the other one is the unla-
belled set. Learning recognition patterns with limited labels and making the best
use of the unlabelled data are crucial in solving this problem. There are three
main categories of algorithms within this topic: a) generative models, b) graph-
based methods, and c) pseudo-labelling models. Kingma et al . [20] proposed
a stacked semi-supervised generative model, which appends a generative classi-
fier to the latent representation produced by the encoder. Generative Adversarial
Networks (GANs) [11] have also been explored as semi-supervised learning meth-
ods [30]. Apart from the generative models, graph-based models are introduced
to model the data relationships to facilitate semi-supervised learning [29].
Pseudo Labelling permits predictions of an annotator model to be the pseudo-
labels for optimising the model-self or a student model. Lee [22] first propose
pseudo labelling with the prior of the low-density separation between classes. The
form of the annotator model is implemented in a variety of ways. An exponential
moving averaged (EMA) version [42] or even the student itself [41] was investi-
gated to play the role of the teacher annotator. Several following works [3,26,41]
achieved better performance by requiring models to produce consistent outputs
when the inputs are perturbed. Image augmentations, such as flipping, cutout [9],
or Gaussian Blurring, are usually applied to perturb input images. This tech-
nique was widely used by algorithms in the semi-supervised learning field, such
as FixMatch [41] and achieved state-of-the-art performance [26,41]. Within this
framework, several works explored how to filter out low-quality pseudo labels
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by using different policies. FlexMatch [47] dynamically adjust the threshold of
the filtering threshold in a curriculum learning manner. SoftMatch [4] intro-
duced a Gaussian distribution to assign weights for different unlabelled samples
to solve the trade-off between the quality and quantity of the pseudo labels.
Different from previous works, in this paper, we found that the channel activa-
tion discrepancy to data in different distributions hinders pseudo-labelling based
methods from yielding high-quality pseudo labels. We propose a channel masking
regularisation algorithm to solve this problem. Although domain adaptation has
been explored for several years to solve the distribution shifting problems, most
of domain adaptation methods make an application of pseudo-labelling without
further studies [17,44]. A state-of-the-art pseudo-labelling algorithm — MIC [17]
— which is used as the baseline in this paper, is inspired by several effective ideas
in semi-supervised learning and domain adaptation. Even this state-of-the-art
model still remains troubled by the disguising activations issue, which leads to
potential risks for real-world application scenarios.
Channel Activation Analysis is not well-discussed in pseudo-labelling solu-
tions. However, it is very popular in the network pruning area [10, 14]. Convo-
lutional kernels are discarded if the activations are not relevant to the model’s
output to compress the model. Abbasi-Asl and Yu [1] adopted the most intuitive
metric — accuracy reduction w/ and w/o the feature channels — to measure the
channel importance. Some works [23] use the magnitude of the channel weight
as the indicator of important filters. DomainDrop [12] analysed the channel ac-
tivations in the domain generalisation scenario and proposed a channel dropout
method to solve the domain private information issue. The proposed principle
can only highlight the channels of great importance to the data set discrimina-
tion. In comparison, we propose a straightforward but effective method to find
the activations which is of great importance to the model’s decisions AND the
data set discrimination.

3 Methodology

In this section, we first define the research problem of this paper. We then intro-
duce the overall framework of our method. The proposed activation components
modelling and the estimation of the mixture proportion follow. Finally, we de-
scribe the channel masking regularisation.

3.1 Problem definition

In the problem of semi-supervised learning, two data subsets Dl, and Du are

given for model optimisation, where Dl = {(xl
n, y

l
n)|

N l

n=0} is the subset with
available ground truth label yl, and Du = {xu

n|
Nu

n=0} is the unlabelled subset.
N l and Nu are the data numbers of these two sets respectively. The pseudo
labelling algorithm is using a so-called teacher (i.e. the annotator) to predict
the pseudo labels {y′un } to get D′u = {(xu

n, y
′u
n )|N

u

n=0} for the student (i.e. the
model)’s optimisation with Dl. In this paper, we introduce an additional common
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Fig. 2: bottom) The overall framework of our method. The original features, i.e., the
output of the convolutional layer i, are modelled as a mixture of two components. The
mixture proportion is used to mask the original features to replace the original features
in the forward-propagation of the following layers. top) The details of the component
modeller. The gradient backpropagation is stopped at the beginning of the component
modeller (represented by the dot bars). The proportion estimator consists of 4 linear
layers with the LeakyReLU activation function. The output layer is a sigmoid function.
We use two individual linear layers as the classiőer P and the set discriminator D.

condition in application scenarios that there is a data distribution discrepancy
between Dl and Du.

3.2 Overall

As we cannot access the groundtruth labels of the unlabelled data, it’s impracti-
cal to highlight disguising activations statistically. Thus, we propose a learnable
manner in this paper. Our method exclusively resides within the model (stu-
dent)’s training with both labelled and unlabelled data, whereby the pseudo-
labelling process is akin to other methods. We use a typical convolutional neural
network for image classification, such as ResNet [13], as an example to demon-
strate our overall framework.

As shown in the bottom of Fig. 2, for a convolution layer of index i with
an activation function, the output feature tensor is processed by a Component

Modeller before it is forwarded to the next layer. In the component modeller, we
first model the original feature map as a mixture of two independent components
with a mixture proportion. Then, we use the mixture proportion as guidance to
mask the original feature map based on the principles proposed in Sec. 1. The
masked feature map is then used to replace the original feature map in the
following layers for the optimisation of the model.
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3.3 Activation Components Modelling

Neural networks embed the information of input data, such as various attributes,
into a high-dimensional feature space. In this paper, the feature tensor is rep-
resented by F (i) ∈ R

B×Ci×Hi×Wi , where i is the layer index, B is the batch
size, Ci is the channel number, Hi and Wi are the height and width of the fea-
ture map. For simplicity, we ignore the index term i, the size H, W , and the
batch size B in the following, i.e., F ∈ R

C is a feature map with a shape of
H × W and C channels. Even though some research [46] claims that different
channels of the feature map may represent different attributes, it is still hard
to interpret the exact meaning of each channel. The reason is that channels
and individual attributes do not have a one-to-one correspondence. Multiple
different attributes may contribute to the activation of the same channel, with
varying degrees of contribution. Therefore, in this paper, we model the mixture
of activation components in each channel rather than enforce a one-to-one cor-
respondence between channel activations and attributes. We consider two main
components — the set-private one and the task-related one: F = Fs +Ft, where
Fs and Ft are the set-private and task-related components of the feature map F ,
respectively. As the distribution of Fs and Ft are complicated, we cannot adopt
a simple distribution, such as a Gaussian, to model them. Instead, we use a small
neural network to learn how to model them as shown at the top part of Fig. 2.
A learnable neural network E (called Proportion Estimator in Fig. 2) learns to
produce a mixture proportion vector α = [α0, ..., αC−1] = σ(E(F )), where C is
the number of channels, σ is the sigmoid function, α ∈ [0, 1]. Thus, Fs and Ft

can be calculated as:

Fs = α⊙ F, Ft = (1−α)⊙ F, (1)

where ⊙ is the element-wise multiplication. We use a binary set indicator yset

and the classification labels yclass to penalise the proportion estimator with these
two components jointly:

min
θD,θP,θE

Lcm(F ; θD, θP, θE) = min(LBCE
s (D(Fs), yset) + LCE

t (P(Ft), yclass)),

(2)
where D is a set discriminator, P is a linear classifier. We use the ground truth
yl as yclasss for labelled data, and the pseudo labels y′u for unlabelled data.
θD, θP, θE indicate the learnable parameters in D, P, and the proportion esti-
mator E. The loss functions are binary cross entropy loss LBCE

d and the cross
entropy loss LCE

c . To prevent the backbone model from being affected by Lcm, we
stop the gradient backpropagation at the beginning of the components modeller.

The optimisation objective of the components’ modelling is to ensure that
the error risk of the set discrimination with set-private components Fs is low,
while the task-related component Ft yields a high classification accuracy.
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3.4 Mixture Portion Guided Masking

By performing the above-mentioned joint optimisation, Fs and Ft are playing
an adversarial game as they are yielded by splitting the original feature F based
on the mixture proportion ratio α. There are three main cases for α:

1. For a certain channel, if the activation is mainly contributed by the represen-
tation of the set-private information which should be vital in distinguishing
the data’s set, α should be large to get a large Fs according to Eq. (1).
Otherwise, it is not guaranteed that the LBCE

s can converge.
2. Conversely, if α is small, the value of the channel in Ft should be large. It

indicates that this activation is crucial for the classifier P to make a correct
decision, ensuring a low LCE

t .
3. α approaching a value close to 0.5 shows a neck-to-neck competition between

Fs and Ft. In this case, the channel activation is contributed by both set-
private and task-related information. This activation is referred to as the
disguising channel activation in this paper. Upon altering the input data
distribution, if the model expects a high activation value of this channel when
making decisions, error risks arise as the activation undergoes a substantial
decrease due to the absence of the set-private information.

Based on the above analysis, we propose a channel masking regularisation to
decrease the importance of activations with α close to 0.5 for the model. We first
calculate a ranking score S for each channel’s activation and collect the indices
of the top k with the highest ranking scores:

S = −|α− 0.5|, I = argsort(S)[: k], (3)

where I is the channel index set of the activations with top k ranking scores. k
is determined by a hyperparameter — the regularisation ratio. Then, we mask
the feature map F with the index set I:

F̂ = F ⊙ mask(I), (4)

where mask(I) is a binary mask with 0 at the indices in I and 1 at the other
indices. Finally, the masked feature map F̂ is used to replace the original feature
map F in the following layers for the optimisation of the model. The overall loss
function of the model with our method is:

L = Lcm + Ltask(G(F̂ ); ytask), (5)

where Ltask is the loss function of the task module G (i.e., the linear classifier
in the classification model here) and ytask is the ground truth labels yl or the
pseudo-labels y′u.

By doing so, the model will be forced to neglect the disguising activations
with α close to 0.5 when making decisions, thereby resulting in a better quality
of pseudo labels.
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4 Experiments

In this section, we first employ image classification as the main task to evaluate
our proposed method. Then, we conduct experiments on semantic segmentation
and object detection — to show how our method generalises. Finally, we conduct
ablation studies to analyse the effectiveness of our method.

4.1 Datasets and Metrics

In contrast to the mainstream semi-supervised learning evaluation protocol,
which manually splits fully labelled datasets into labelled and unlabelled sets
for training, we employ several datasets with diverse data distributions from the
domain adaptation community to evaluate our method. Specifically, we conduct
experiments on six benchmark datasets: Office-Home [43], VisDA-2017 [32], Do-
mainNet [31], Cityscapes/Foggy [8, 39], Synthia [36], and GTA [35]. We choose
data in different distributions as the labelled and unlabelled set respectively.
The detailed information and how we use these datasets is discribed in the sup-
plementary material. For image classification, we report the top-1 accuracy. For
semantic segmentation, the metric is the mean Intersection over Union(mIoU).
For object detection, we report the mean average precision (mAP, i.e., the AP50
of the COCO evaluation style [25]).

4.2 Implementation

The source code can be found in github.com/GeoffreyChen777/plda. The train-
ing of each experiment was conducted on a signle Tesla V100.

MIC [17] is adopted as the baseline. To ensure fairness, we use the official
source code with the recommended hyperparameters to train the baseline model
on our hardware with 3 random seeds. By doing so, we can ensure that disabling
our method in our source code can yield the same performance as the baseline
reported in the following tables. The experimental results are the average of 3
runs with different random seeds (i.e., 0, 1, 2).

4.3 Performance

Image Classification The backbone we used for image classification is ResNet-
50 [13] for Office-Home, and ResNet-101 for VisDA-2017 and DomainNet. The
regularisation ratio (top k ratio) is set to 0.2. The proposed mixture proportion-
guided masking regularisation is injected after each residual block. All other
hyperparameters are exactly the same as the baseline’s.

Office-Home We use the data in different distributions from Office-Home to
create 12 semi-supervised settings. The results are shown in Tab. 1. Our method
outperforms the baseline model (MIC) by 1.3% on average. The improvement
is significant in most of the settings. For example, our method improves the
baseline model by 2.3% on the setting Real-Clp.
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Table 1: The performance on Office-Home with ResNet-50 backbone. The best results
in each algorithm group are highlighted in bold. The second-best results are underlined.
We compare our method with pseudo-labelling based methods and other methods
proposed in the domain adaptation topic.

Labelled Set Art Art Art Clp. Clp. Clp. Prd. Prd. Prd. Real Real Real
Avg

Unlabelled Set Clp. Prd. Real Art Prd. Real Art Clp. Real Art Clp. Prd.

R-50 [13] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
CDAN [27] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
MDD [48] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MCC [19] 57.0 76.0 81.6 64.9 75.9 75.4 63.7 56.1 81.2 74.2 63.9 85.4 71.3
SDAT [33] 58.4 77.4 81.6 66.4 76.5 76.5 63.5 56.3 82.0 75.0 64.5 85.4 71.9
Ours(SDAT) 59.6 77.7 82.0 66.5 77.0 77.2 64.5 57.7 82.3 75.6 65.5 85.7 72.6

↓ Pseudo-labelling based Methods ↓

FixMatch [41] 51.8 74.2 80.1 63.5 73.8 61.3 64.7 51.4 80.0 73.3 56.8 81.7 67.7
CKP [28] 54.2 74.1 77.5 64.6 72.2 71.0 64.5 53.4 78.7 72.6 58.4 82.8 68.7
IA [18] 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
CAPLS [44] 56.2 78.3 80.2 66.0 75.4 78.4 66.4 53.2 81.1 71.6 56.1 84.3 70.6
MIC [17] 60.8 76.2 80.4 65.6 73.7 74.6 63.6 57.5 80.8 74.3 65.1 84.8 71.5
Ours(MIC) 62.2 77.6 81.0 67.6 75.5 76.5 65.2 59.1 81.8 75.0 67.4 85.2 72.8

Table 2: The performance on VisDA2017 with ResNet-101 backbone. The best results
are highlighted in bold. The second-best results are underlined.

Categories plane bcycl bus car horse knife mcyle persn plant sktb train truck Avg

R-101 [13] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MCD [38] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
CDAN [27] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
MCC [19] 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
SDAT [33] 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3

↓ Pseudo-labelling based Methods ↓

IA [18](R-50) - - - - - - - - - - - - 76.7
MIC [17] 96.7 81.9 82.4 66.8 94.2 97.9 89.5 81.4 92.3 92.9 89.5 51.8 86.5
Ours (MIC) 97.0 90.1 83.6 70.8 95.7 96.2 90.4 83.1 92.3 95.3 89.5 54.3 87.4

In addition, we integrate our method with SDAT [33], which is not a pseudo-
labelling framework. Our method can also boost the performance of SDAT by
0.7% on average. The reason is that the proposed regularisation enforces the
model to neglect channel activations caused by the set-private information of the
labelled set, which misleads the model’s prediction on unseen data. As pseudo-
labelling methods such as MIC are suffering from the confirmation bias issue,
more improvement is expected when using our method.

VisDA2017 Tab. 2 shows the results on VisDA2017 dataset. Even though the
baseline model has already achieved high accuracy, our method still improves it
by 0.9% on average. For some categories such as the bicycle, our method improves
the baseline model by 8.2%.

DomainNet We report the results on DomainNet in Tab. 3. Similarly, our method
achieves the best in most settings. The average improvement is 1.3%. For this
dataset, we observed a training collapse of the baseline model on the Infograph-
Sketch setting. Thus, we ignore the performance of this setting for all methods
when calculating the average performance.

Mix-Office-Home These results on the 32 semi-supervised image classification
settings demonstrate the effectiveness of our method. In addition, we create a
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Table 3: The performance on DomainNet with ResNet-101 backbone. The best results
are highlighted in bold. The second-best results are underlined. *As the baseline model
cannot converge on the Infograph-Sketch labelled/unlabelled set pair, we ignore this
setting in the calculation of the averaged accuracy for all methods.

Labelled Set Unlabelled Set CDAN [27] SDAT [33]

↓
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↓

MIC [17] Ours (MIC)

Clipart

Sketch 44.9 47.2 49.0 49.7
Product 38.9 41.5 40.5 44.1
Real 56.0 57.5 61.5 61.6
Infograph 20.6 22.0 19.9 21.2

Sketch

Clipart 56.0 58.7 65.1 65.3
Product 45.3 48.1 53.6 54.4
Real 54.9 57.1 62.6 63.1
Infograph 20.7 21.8 22.9 23.2

Product

Clipart 44.1 47.5 48.3 49.6
Sketch 40.0 41.8 43.8 44.2
Real 57.2 58.0 58.4 58.8
Infograph 19.8 20.7 21.2 21.2

Real

Clipart 55.8 56.7 60.1 61.1
Sketch 42.3 43.9 43.6 44.6
Product 53.2 53.6 57.5 57.8
Infograph 24.4 25.1 24.3 23.0

Infograph

Clipart 31.6 33.9 37.0 39.2
Sketch* 26.4 27.9 - -
Product 29.3 30.3 35.5 39.6
Real 43.6 48.1 49.0 55.4

Average 41.0 42.8 44.9 46.2

Table 4: The clas-
siőcation accuracy on
the mix-distribution
OfficeHome.

Methods Avg Acc.

MIC [17] 77.4
Ours(MIC) 78.5

Table 5: The semantic
segmentation mIoU with
GTA/Cityscapes as the
labelled/unlabelled set.

Methods mIoU

DAFormer [15] 68.3
HRDA [16] 73.8
MIC [17] 74.8
Ours(MIC) 75.9

Table 6: The object de-
tection mAP on Cityscapes
(labelled) and Foggy
Cityscapes (unlabelled).

Methods mAP

DAFaster [6] 32.0
SWDA [37] 35.3
SIGMA [24] 44.2
SADA [7] 44.0

↓ PL based Methods ↓

MTOR [49] 35.1
MIC [17] 47.6
Ours(MIC) 48.4

mix-distribution dataset based on Office-Home. As the distribution of unlabelled
images in application scenarios is usually unknown, we use data from two dis-
tributions to create the unlabelled data. The accuracies of our method and the
baseline mode are shown in Tab. 4. Our method boosts the baseline by 1.1%.
More results are shown in the supplementary material.

Semantic Segmentation The backbone in semantic segmentation is a Vision
Transformer (MiT) [45]. The experiments on semantic segmentation demonstrate
the good generalisation ability of our method. The proposed mixture proportion-
guided masking regularisation is injected in the ASPP module [5]. The regular-
isation ratio is set to 0.3 for Synthia and 0.1 for GTA.

GTA We use GTA as the labelled set, and Cityscapes as the unlabelled set to
conduct the semantic segmentation experiment. The results of the Cityscapes
validation data are shown in Tab. 5. Our method improves the baseline model
by 1.1% on mIoU.
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Table 7: The semantic segmentation performance on the setting of Synthia as the
labelled set while Cityscapes as the unlabelled set. All methods are based on pseudo-
labelling algorithms.

Methods Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Sky Person Rider Car Bus M.bike Bike mIoU

DAFormer [15] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9
HRDA [16] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 65.8
MIC [17] 87.3 52.9 89.8 49.1 8.7 58.9 66.8 61.3 86.4 94.5 81.2 58.6 89.2 57.3 67.3 64.1 67.0
Ours(MIC) 87.5 54.8 89.2 48.1 10.5 60.7 65.9 65.5 84.4 93.5 80.2 57.3 89.9 65.5 66.4 66.4 67.9
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Fig. 3: a) The accuracy of the baseline
model and the model with our method
on the validation set. b) The accuracy of
the pseudo-labels during training.
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Fig. 4: The ablation study of the random
masking strategy.

Synthia We conduct additional experiments on the Synthia dataset. The results
are shown in Tab. 7. Our method improves the baseline model by 0.9% on mIoU.

Object Detection The backbone in object detection is ResNet-50 and Faster-
RCNN [34]. The proposed mixture proportion-guided masking regularisation is
injected before the RCNN head. The regularisation ratio is set to 0.3.

Foggy Cityscapes We show the experimental results on the object detection
task in Tab. 6 to further demonstrate generalisation. Our method improves the
mAP of the baseline model by 0.8%. The improvement is significant in various
categories in this dataset, as shown in the supplementary material.

4.4 Ablation Studies and Discussion

By comparing the performance of ‘Ours’ in Tabs. 1 to 7 with the results of
the corresonding baseline well demonstrates the effectiveness of our method. In
addition, we ablate and discuss our method in image classification on the Office-
Home dataset for further analysis by answering a few questions that may arise.
A. Does our method really improve the quality of pseudo-labels?

To answer this question, we record the accuracy of the pseudo-labels calcu-
lated by the ground truth during the training process and plot the curves in
Fig. 3. The accuracy of the pseudo-labels of our method is significantly higher
than the baseline model (MIC). More figures can be found in the supplementary.
B. Can we randomly mask the channels?

As shown in Fig. 4 (also in Tab. 8), the performance of the model with random
masking (the red curve) is worse than our method (the dark blue curve). This
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Table 8: The Ablation studies of dif-
ferent masking strategies (seed 0).

Prd.(l) Art(u) Art(l) Clp.(u) Prd.(l) Real(u)

Baseline 64.6 61.0 81.2

Random 65.1 61.3 81.9
Task-related 64.7 61.8 82.0
Set-private 64.8 61.0 82.0

Ours 65.6 62.1 82.5

Table 9: Ablation study of different
masking ratios (Prd.(l) Art(u), seed 0).

Top-K Ratio
0.0 0.1 0.2 0.3 0.4 0.5

(Baseline)

Acc. 64.6 65.3 65.6 64.5 63.3 62.9

demonstrates that the masking strategy is crucial to the performance of the
model. Random masking exceeds the baseline model revealing that disguising
activations exist in no doubt. In Fig. 4, at the beginning of the training, the
performance of the random strategy is comparable with our mixture proportion
guided masking strategy as our component modeller is still under-fitted. After
some iterations, the performance of the random strategy drops significantly,
while our method continues to improve. This demonstrates that the mixture
proportion estimation network can guide us to regularise the model effectively.

C. What kind of masking strategy is better? Can we mask the activa-

tions of the most set-private information or task-related information?

As previously discussed, the experiment employing a random masking strat-
egy has revealed that some activations should be masked while others should
not. Through the estimation of the mixture proportion, we are able to ablate
our model by masking channel activations dominated by different components
to answer this question. As reported in Tab. 8, the performance is scarcely en-
hanced when masking activations contributed by a great proportion of the task-
related component. This is because such masking confounds the task-related
layer, hindering its ability to learn an accurate decision boundary in the absence
of sufficient category discriminative information. Similarly, the accuracy is not
significantly improved by masking activations with a large proportion of the set-
private component. This can be attributed to the inefficiency of masking policy
as these channels do not dominate the model’s decision.

D. What will happen if we change the masking ratio?

We ablate our method with different masking ratios and report the results
in Tab. 9. The one we adopted in this paper, i.e., 0.2, achieves the best.

E. Can we confirm that the correlation between the disguising activa-

tions and the model’s prediction is minimised?

Inspired by the Grad-CAM [40], we propose a metric — Grad-CAM Impor-
tance score (GCAM-I) — to measure and compare the importance of the disguis-
ing activations and other activations to the model’s predictions. For a feature
vector F , we perform a channel-wise Grad-CAM by calculating the gradient of
the output w.r.t. the feature F to get the GCAM-I for activations of each chan-
nel. By employing our component modeller and the regularisation ratio (e.g .,
0.2 here), we choose 20% channel activations guided by the mixture proportion
as the disguising activation to calculate the average GCAM-I as the disguising
activations’ GCAM-I(Disguising A. GCAM-I in Fig. 5). For other channels, we
average the top 20% GCAM-I as the other crucial activations’ GCAM-I (Other
A. GCAM-I in Fig. 5). As shown in Fig. 5, the GCAM-I of the disguising activa-
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Class #0 #10 #20 #30 #40 #50 #60

0.2

0.0

0.2

Disguising A. GCAM-I
Other A. GCAM-I
Difference

Fig. 5: The class-wise average Grad-
CAM Importance (GCAM-I) of dis-
guising activations and other crucial
activations.
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Fig. 6: The visualisation of activations
masked by different strategies. ‘M.P.
guided’ means the mixture proportion
guided masking strategy.

tions is significantly lower than the one of other channels across all classes, which
confirms that the predictions of the model are mainly based on other activations
rather than the disguising activations. In other words, the correlation between
the disguising activations and the model’s prediction is mitigated.

F. Can we visualise the masked activations?

In Fig. 6, we visualise the feature maps of activations masked by the var-
ious strategies we discussed earlier via Grad-CAM. The initial row shows the
activations containing a substantial proportion of the task-related component,
while the second row is for the set-private component. The task-related compo-
nent typically resides within objects of interest, exemplified by the ham in the
first row. In contrast, the set-private component extends beyond the regions of
specific objects and can be identified not only in object-related areas but also
in numerous task-irrelevant regions, such as the background in the second row.
Consequently, masking such activations is inefficient. The activations masked by
the proposed mixture proportion guided strategy are shown in the third row.
Our strategy concentrates on activations that are pertinent to the task while
concurrently containing a considerable amount of set-private information.

5 Conclusions

This paper introduced and discussed the disguising activations in pseudo-labelling
algorithms, which are a potential risk for a semi-supervised learning model as
they exacerbate the confirmation bias issue in practice. By modelling the chan-
nel activation with two independent components, we successfully identified such
disguising activations. Moreover, A straightforward but effective masking regu-
larisation guided by the activation modelling results was proposed in this paper.
It allows the model to learn how to make decisions without disguising activations
to increase the robustness when dealing with data in different distributions. To
the best of our knowledge, this paper is the first to identify, discuss and provide
a solution to the disguising activations issue.
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