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Exploring Multi-modal Spatial-Temporal Contexts

for High-performance RGB-T Tracking

Tianlu Zhang , Qiang Jiao , Qiang Zhang ∗ and Jungong Han ∗, Senior Member, IEEE

Abstract—In RGB-T tracking, there exist rich spatial relation-
ships between the target and backgrounds within multi-modal
data as well as sound consistencies of spatial relationships among
successive frames, which are crucial for boosting the tracking
performance. However, most existing RGB-T trackers overlook
such multi-modal spatial relationships and temporal consistencies
within RGB-T videos, hindering them from robust tracking and
practical applications in complex scenarios. In this paper, we
propose a novel Multi-modal Spatial-Temporal Context (MM-
STC) network for RGB-T tracking, which employs a Transformer
architecture for the construction of reliable multi-modal spatial
context information and the effective propagation of temporal
context information. Specifically, a Multi-modal Transformer
Encoder (MMTE) is designed to achieve the encoding of reliable
multi-modal spatial contexts as well as the fusion of multi-modal
features. Furthermore, a Quality-aware Transformer Decoder
(QATD) is proposed to effectively propagate the tracking cues
from historical frames to the current frame, which facilitates
the object searching process. Moreover, the proposed MMSTC
network can be easily extended to various tracking frameworks.
New state-of-the-art results on five prevalent RGB-T tracking
benchmarks demonstrate the superiorities of our proposed track-
ers over existing ones.

Index Terms—RGB-T tracking, Multi-modal spatial context,
Temporal context, Transformer

I. INTRODUCTION

RGB-T tracking is one of the fundamental computer vision

tasks, which aims to estimate the state of an arbitrary target

object in each frame of an RGB-T video sequence, given only

its initial appearance [1]. Due to the all-weather and all-day

working capability, RGB-T tracking has attracted increasing

attention. Despite the recent significant efforts in RGB-T track-

ing, there still exist great gaps for practical applications due

to some challenging factors, such as occlusions, fast motions

and appearance changes. This urges us to develop advanced

RGB-T trackers with strong adaptiveness and robustness.

Since RGB and thermal information are strongly comple-

mentary to each other, most current RGB-T trackers study
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Fig. 1. Illustration of different pipelines of RGB-T trackers. (a) Siamese
based RGB-T trackers. (b) MDNet or DCF based RGB-T trackers. (c) The
proposed MMSTC framework.

how to integrate cross-modality features to improve the re-

liability of appearance information, and tackle the task of

RGB-T tracking by learning an appearance model about the

target. Over the past few years, plenty of RGB-T tracking

methods [2]–[9] have been developed and have shown great

performance in various challenges, such as low illumination

and thermal crossover. According to their types of baseline

trackers, recent RGB-T tracking methods based on Convec-

tional Neural Networks (CNNs) can be mainly divided into

Siamese network based RGB-T trackers, Multi-Domain net-

work (MDNet) based trackers and Discriminative Correlation

Filter (DCF) based trackers. Especially, such Siamese network

based RGB-T trackers [2]–[4] address object tracking as a

similarity matching problem between the target template and

the search frames in an offline trained manner. But their

usually used temporal information just contains some certain

motion priors (e.g., cosine window), as shown in Fig. 1 (a).

Differently, as shown in Fig. 1 (b), those MDNet based trackers

[5]–[7] and DCF based trackers [8]–[10] train a classifier to

distinguish targets from their surrounding backgrounds in an

online way. Benefiting from the utilization of historical frames,

these online-trained trackers are usually more discriminative

than those offline-trained ones. While these online-trained

trackers update the target appearance information by simply

using some previously tracked frames. Such a strategy cannot

effectively capture the spatial relationships between the target

and other objects as well as the temporal consistencies in the

scene. Recently, several RGB-T trackers based on Transform-

ers [11] have been introduced and show excellent tracking

performance. But they [12]–[18] train their models in an

offline trained manner and only rely on dynamic templates to

exploit appearance information within the temporal domain.
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Fig. 2. Illustration of the scene information within an RGB-T video. (a)
Most existing RGB-T trackers only utilize the target appearance information
to track the target. However, such a strategy fails in this example. Here,
the presence of distractors makes it almost impossible to correctly localize
the target based on the appearance only, even if the appearance model is
continuously updated by using previous frames. (b) In contrast, the scene
information propagated through the sequence greatly simplifies the target
localization problem, allowing us to confidently localize the target.

As a result, both those offline-trained trackers and online-

trained trackers are hard to confidently locate the targets

just according to their appearance information in some cases,

especially with the presence of distractor objects, as shown in

Fig. 2 (a).

In fact, humans usually exploit much richer scene in-

formation and maintain temporal continuity in a constantly

changing environment when tracking an object. For instance,

considering the example in Fig. 2(a), if we record the re-

lationships between targets and distractors in each historical

frame, and transfer such historical relationships to the current

frame, we can easily detect the presence of distractors and

determine the location of the target. According to the above

analysis, there are two types of information that are crucial

for improving the adaptive and discriminative abilities of an

RGB-T tracker: multi-modal spatial contexts and temporal

contexts. Especially, multi-modal spatial contexts refer to the

relationships among different spatial positions within a pair

of RGB-T images, which can reflect the associations between

targets and backgrounds (including distractors). Meanwhile,

the temporal contexts refer to the temporal consistencies of

spatial relationships among different frames in an RGB-T

video pair, as shown in Fig. 2 (b).

However, effectively exploiting multi-modal spatial contexts

and temporal contexts within RGB-T videos for tracking is

an arduous task. To accomplish this purpose, we propose

a Multi-modal Spatial-Temporal Context (MMSTC) network,

which employs a Transformer architecture for the construction

of multi-modal spatial context information and the propa-

gation of temporal context information, as shown in Fig.

1 (c). Especially, in MMSTC, we first propose a Multi-

modal Transformer Encoder (MMTE) to obtain the encoded

features of each frame, which simultaneously explores the

reliable spatial context information within multi-modal data

and integrate multi-modal features. Then, the encoded features

of several historical frames as well as their corresponding

historical tracking results will be deposited into a memory

pool for the subsequent propagation of temporal information.

After that, we adopt a proposed Quality-aware Transformer

Decoder (QATD) to obtain the decoded features of the current

frame, which enables the effective propagation of temporal

contexts with the help of the memory pool constructed above.

Doing so will assist the prediction of the current frame by

virtue of multi-modal spatial contexts and temporal contexts.

In addition, the proposed MMSTC framework does not depend

on any tracking framework and can be easily integrated into

different tracking frameworks, such as Siamese based trackers,

DCF based trackers and Transformer based trackers.

Specifically, to exploit the spatial contexts within multi-

modal data, the most straightforward way is to first model

the spatial contexts of each modality independently and then

aggregate them together. However, there may exist some

unreliable spatial relationships within each unimodal data.

Directly utilizing all of these spatial relationships within each

modality data may reduce the validity of spatial context infor-

mation within the entire scenario. In fact, such spatial contexts

within the same scenarios across different modalities tend to

be potentially consistent. It may be reasonable to introduce

some reliable spatial contexts from one modality data to

the other modality data to improve the reliability of spatial

contexts. Therefore, in the proposed MMTE, the unimodal

spatial contexts, which are modeled by using a self-attention

mechanism, will be first enhanced by using some cross-

modal spatial contexts to improve their effectiveness. Then, the

enhanced unimodal spatial contexts will be embedded into the

unimodal RGB and thermal features, respectively. After that,

these unimodal features embedded with spatial contexts will

be aggregated together to obtain the final encoded features.

By using the proposed MMTE module, we can obtain

the encoded features of each frame. On top of that, the

encoded features of several historical frames as well as their

corresponding tracking results will be employed to construct a

memory pool. With the assistance of the constructed memory

pool, valuable temporal information across frames can be

conveyed to enhance the encoded features of the current frame.

However, propagating the whole temporal context information

stored in the memory pool to the encoded features of the

current frame is not always feasible, since there may still

exist some unreliable temporal contexts in the backgrounds.

For instance, when the background scenes change drastically

in a video, there may exist some interference information

within the backgrounds, which may reduce the effectiveness

of temporal contexts and further deteriorate the tracking per-

formance.

Considering that, in the proposed QATD, according to

the locations of targets, those temporal contexts within the

memory pool will be divided into target-related contexts

and background-related contexts. Such target-related contexts

mainly reflect the relationships between targets and back-

grounds (including distractor objects), and will be fully de-

livered to distinguish targets and distractors. In contrast, such

background-related contexts mainly reflect the relationships

between backgrounds and backgrounds as well as the rela-

tionships between backgrounds and targets. Considering the

existence of some interference information within the back-

grounds, those background-related contexts will be selectively

delivered according to their qualities to alleviate the influence

of interference information.
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To sum up, our work improves an RGB-T tracker dramati-

cally because of the following four contributions:

• A novel RGB-T tracking framework based on Trans-

former, i.e., MMSTC, is presented to model multi-modal

spatial contexts and temporal contexts for robust RGB-

T tracking. Especially, the proposed MMSTC framework

can be easily integrated into various tracking frameworks.

• We propose a Multi-modal Transformer Encoder

(MMTE) to simultaneously explore the reliable spatial

context information within multi-modal data and integrate

multi-modal features by using some cross-modal spatial

contexts to enhance the intra-modal spatial contexts.

• We propose a Quality-aware Transformer Decoder

(QATD) to enable the effective propagation of temporal

context information by using such reliable multi-modal

spatial contexts stored in the memory pool to enhance

the encoded features of the current frame.

• Our proposed tracker achieves new state-of-the-art results

on five prevalent RGB-T tracking benchmarks, including

GTOT [19], RGBT210 [20], RGBT234 [21], LasHeR

[22] and VTUAV [23].

II. RELATED WORK

RGB-T Tracking Methods based on CNNs: In the past

few years, numerous RGB-T tracking algorithms based on

CNNs have been proposed to boost tracking performance,

which can be categorized into three main types based on

the employed tracking framework: MDNet [24] based meth-

ods, Siamese network [25] based methods and DCF [26]

based methods. These MDNet-based RGB-T trackers mainly

improve tracking performance by mining multi-modal com-

plementary information [6], [27]–[30] and enhancing feature

representation capabilities [5], [31]. For instance, Lu et al. [6]

proposed a duality-gated mutual condition network to exploit

the discriminative information of all modalities and suppress

noise interference. Zhu et al. [27] designed a feature aggrega-

tion network to progressively aggregate hierarchical features

and eliminate redundant information through a pruning mod-

ule. Li et al. [5] introduced a multi-adapter architecture to

learn modality-shared, modality-specific and instance-aware

target representations, respectively. Besides, some MDNet

based methods [7], [32]–[34] try to explore attribute-based

target representation for improving tracking robustness. In

addition, several methods [9], [23], [35] introduced DiMP

[26] as their baseline tracker and achieved promising tracking

performance. Meanwhile, aiming to speed up the tracking,

some works [3], [36]–[38] introduce the Siamese networks to

RGB-T tracking, where their classifiers are trained in an offline

manner. In contrast to those online-trained trackers, offline-

trained trackers are faster by sacrificing the discriminability.

RGB-T Tracking Methods based on Transformer: Re-

cently, with the rapid development of the Transformer archi-

tecture, more and more RGB-T tracking methods based on

Transformers [11] have been introduced. Currently, there are

three main paths followed by RGB-T tracking methods based

on Transformer. The first type of methods [39]–[41] employed

the Transformer block to match the template and search

features after performing multi-modal feature fusion within

the Siamese architecture. However, these methods failed to

establish the global correlations between different multi-modal

data. Differently, the second type of methods [12], [14], [42],

[43] utilized the one-stream structure [44] for the unimodal

feature extraction and designed various kinds of multi-modal

feature fusion strategies based on Transformer. The third

type of method [16]–[18], [45]–[47] aims to adapt the RGB

tracking model to RGB-T tracking in the prompt learning

manner. Although the existing methods based on Transformer

achieved high accuracy, the temporal information within the

RGB-T videos has not been fully studied.

Spatial Information Exploitation in Object Tracking:

In the field of RGB tracking, some approaches have been

proposed to model the spatial context information for object

tracking. Particularly, the early methods [25] usually utilize

non-local blocks to model spatial contexts. Recently, some

algorithms [48] attempt to introduce the Transformer archi-

tecture into the object tracking community to explore spatial

context information. For example, TransT [48] designed a

feature fusion network based on Transformer to combine the

template and search region features, which consists of an ego-

context augment module with self-attention as well as a cross-

feature augment module with cross-attention. More recently,

several one-stream tracking frameworks [44], [49], [50] have

been proposed to embed the feature correlation learning in the

feature extraction network, which achieve promising results

on multiple benchmarks. In the field of RGB-T tracking,

some methods [4], [29], [34] also consider the spatial context

information or temporal context information for improving

tracking robustness. Especially in CMPP [51], a cross-modal

pattern-propagation framework was presented to build the

inter-modal pattern-propagation and the interaction across

modalities within local regions. In AGMINet [52], a global

mining module was proposed to explore the global spatial

context information as well as the global correlation between

modalities. However, these existing RGB-T trackers usually

pay less attention to such unreliable spatial relationships within

multi-modal spatial contexts, which may deteriorate the feature

representations.

Temporal Information Exploitation in Object Tracking:

The utilization of temporal information plays a crucial role

in the tracking task. Numerous tracking frameworks [53]–

[56] focus on adaptively updating the tracking model by

leveraging the accumulated tracking results from historical

frames. Additionally, several trackers [13], [57] dynamically

update the target template to enhance adaptability. Meanwhile,

some methods [58]–[62] attempt to propagate scene infor-

mation through the temporal domain to explicitly eliminate

interference from distractor objects. For instance, KYS [58]

first exploited the scene information to generate some dense

localized state vectors, and then propagated such valuable

scene information through the sequence via a state propagation

module. Those scene knowledge, along with the target appear-

ance model, are used to predict the target state in each frame.

TrDiMP [59] bridged the relationships of individual video

frames and explored the temporal contexts across them via a

Transformer architecture for robust object tracking. However,
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the rich temporal information within the global scene has not

been fully exploited to enhance the tracking performance in

existing RGB-T trackers.

III. MMSTC FRAMEWORK

Given an RGB-T tracking sequence, the proposed Multi-

modal Spatial-Temporal Context (MMSTC) network aims to

model the multi-modal spatial contexts and temporal contexts

based on Transformer and exploits these contexts to perform

robust tracking. In this paper, we integrate the designed

MMSTC into a Siamese based RGB-T tracker. Fig. 3 shows

the architecture of the proposed tracker (denoted as Siam-

MMSTC), which consists of six modules, including feature

extraction, MMTE, memory pool construction, QATD, target

state estimation (TSE) module and memory update.

In the Siam-MMSTC network, the feature extraction module

extracts unimodal features of template images and search

images from each RGB-T frame, respectively (see Sec. III-A).

Given the unimodal (RGB and thermal) template features and

search features, the MMTE module simultaneously models the

spatial context information within multi-modal data as well as

integrates multi-modal features to obtain the encoded template

features and the encoded search features for each frame (see

Sec. III-B). On top of that, the historical encoded search

features and their corresponding tracking results are further

combined to form a memory pool (see Sec. III-C). After that,

the QATD module takes the current encoded search features

and the historical encoded search features within memory pool

as inputs and generates the decoded search features, which

are reinforced by the temporal contexts stored in the memory

pool (see Sec. III-D). Here, to make full use of the temporal

context information as well as the appearance information, the

encoded template features, the encoded search features and the

decoded search features will be simultaneously fed into the

TSE component to predict the final tracking results (see Sec.

III-E). After obtaining the tracking results, we continuously

update the memory pool (see Sec. III-F). In the following

contents, we will describe the proposed tracking framework

in detail.

A. Feature Extraction

Similar to the Siamese-based RGB-T trackers [2], our

proposed Siam-MMSTC tracker also takes a pair of RGB

image patches (the RGB template image and the RGB search

image) and a pair of thermal image patches (the thermal

template image and the thermal search image) as the inputs

of the two-stream Siamese networks, i.e., an RGB Siamese

network and a Thermal Siamese network, respectively. The

unimodal template features are cropped from the feature maps

of the template image according to its bounding box, and are

pooled by a PrPool layer [26]. Here, we employ a modified

ResNet-50 backbone [63] in both the RGB Siamese network

and the Thermal Siamese network, yielding four levels of

feature maps. Specifically, we remove the down-sampling

operations and replace the traditional 3× 3 convolutions with

the 3× 3 atrous convolutions of atrous rate 2 to increase the

receptive fields in the fourth stage of ResNet-50. Meanwhile,

the last stage of ResNet-50 is cut off. The two-stream Siamese

networks take the third stage and the fourth stage as the final

outputs of template features ( RGB template features denoted

as Zr
3 and Zr

4, and thermal template features denoted as Zt
3

and Zt
4) and the final outputs of search features (RGB search

features denoted as Xr
3 and Xr

4, and thermal search features

denoted as Xt
3 and Xt

4), respectively.

B. Multi-modal Transformer Encoder

Given unimodal template features and search features from

the RGB and Thermal Siamese networks for each frame,

the next step is to fully explore the reliable spatial context

information within multi-modal data and obtain the encoded
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template features and search features. For that, we design a

Multi-modal Transformer Encoder (MMTE) in the template

branch and the search branch, respectively.

Fig. 4 details the data-flow process of MMTE. First, con-

sidering the fact that unreliable local regions may affect

the effectiveness of spatial context information, we predict

the relative reliability of each spatial position between RGB

features and thermal features, and determine those regions

where both modalities are reliable. Secondly, we compute

the intra-modal context information within RGB modality and

thermal modality by the self-attention mechanism in Trans-

former [64], respectively, and select such reliable intra-modal

contexts within each modality according to the above relative

reliabilities. Thirdly, due to the fact that those spatial contexts

within the same scenarios across different modalities tend to be

potentially consistent, we conduct the context communication

among spatial contexts of different modalities within such

regions, where both modalities are reliable, to generate the

cross-modal contexts. After that, such cross-modal contexts

will be further employed to enhance those reliable intra-modal

contexts. The final encoded features will be obtained by first

embedding those enhanced contexts into the unimodal features

and then integrating them together. In the following contents,

we will take the computation in the search branch as an

example to describe the MMTE module.

1) Cross-modal reliability: Due to the different imaging

mechanisms of RGB and thermal images, their reliability

degrees may be different in various tracking scenarios. Con-

sidering that, the proposed MMTE module first predicts the

relative reliability of each spatial position between multi-

modal images and then selects the common reliable regions.

For that, we first concatenate unimodal RGB features

Xr ∈ R
Cx×Hx×Wx and unimodal thermal features Xt ∈

R
Cx×Hx×Wx . Here, Cx, Hx and Wx denotes the channel

dimension, height and width of the unimodal features. Then,

we use a convolution layer of kernel size 1× 1 and a softmax

layer to get a two-channel cross-modal spatial reliability map

CSR ∈ R
2×Hx×Wx . The two-channel weight map CSR

is split into two reliability weight maps, i.e., one weight

map αr ∈ R
1×Hx×Wx from the first channel of CSR for

selecting the features extracted from RGB images, and the

other weight map αt ∈ R
1×Hx×Wx from the second channel of

CSR for selecting the features extracted from thermal images.

Mathematically, these steps are expressed by:

αr, αt = split(softmax(conv(cat(Xr,Xt), θ1))), (1)

where cat(∗) denotes the concatenation operation and

conv(∗, θ1) denotes the convolution layer with kernel size 1×1
and parameters θ1. split(∗) denotes splitting the two-channel

feature map into two reliability weight maps.

Moreover, in the subsequent spatial context information

modeling stage, αr and αt will be used to measure the reliabil-

ity of spatial context information and determine those reliable

spatial context information. As well, in order to facilitate

subsequent matrix operations, the two reliability weight maps

are first reshaped to the size of 1×Nx with Nx = HxWx, and

then expanded as two matrices αr and αt of sizes Nx × Nx

by copying the original matrix Nx times.

Meanwhile, with αr and αt available, we get the common

reliable regions within the two modalities as follows:

αc = αr ⊙ αt, (2)

where ⊙ denotes the Hadamard matrix product. Similarly, for

the subsequent matrix operations, αc will be also reshaped

and expanded as a matrix αc of sizes Nx × Nx. αc reflects

the reliable regions simultaneously existing in RGB modality

and thermal modality.

2) Intra-modal context information: The fundamental com-

ponent in a classic Transformer model is the attention mech-

anism. Following [64], given the query Q ∈ R
Nq×C , key

K ∈ R
Nk×C and value V ∈ R

Nk×C , the attention mecha-

nism adopts the dot-product to compute the similarity matrix

AK→Q ∈ R
Nq×Nk between the query and key as follows:

AK→Q = Atten(Q,K) = softmax
(

Q̂ K̂⊤/τ
)

, (3)
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where Q̂ and K̂ are ℓ2-normalized features of Q and K across

the channel dimension, respectively, and τ is a temperature pa-

rameter to control the softmax distribution. With the similarity

matrix AK→Q from key to query, we can transform the value

via AK→QV ∈ R
Nq×C .

Inspired by the Transformer model [64], we employ the at-

tention mechanism to model spatial context information within

RGB modality and thermal modality, respectively. For that, the

RGB features Xr and thermal features Xt are first reshaped to

X
r

and X
t
∈ R

Nx×Cx with Nx = HxWx. After that, we com-

pute the self-attention maps Ar
S = Atten(φ(X

r
), φ(X

r
)) ∈

R
Nx×Nx and At

S = Atten(φ(X
t
), φ(X

t
)) ∈ R

Nx×Nx ,

where φ(∗) is a linear projection layer that reduces the

embedding channel from Cx to C = Cx/4.

The self-attention maps Ar
S and At

S reflect the spatial

context information within the input RGB image and thermal

image, respectively. With the reliability weight maps αr and αt

obtained by Eq. 1, their corresponding reliable spatial context

information is thus obtained by

Ar
R = Ar

S ⊙ αr,
At

R = At
S ⊙ αt.

(4)

Ar
R ∈ R

Nx×Nx reflects the reliable relationships among

different spatial positions within RGB modality data. Simi-

larly, At
R ∈ R

Nx×Nx reflects the reliable relationships among

different spatial positions within thermal modality data.

3) Cross-modal context information: The cross-modal con-

texts reflect the relationships among different spatial locations

of different modality features, which may be simply obtained

by multiplying two intra-modal contexts. The spatial contexts

within the same scenarios across different modalities tend to

be potentially consistent. Therefore, the intra-modal spatial

contexts can be enhanced by the cross-modal contexts to

improve the reliability of spatial contexts. However, we need to

pay attention to the fact that the unreliable information of one

modality data may cause the invalidation of the cross-modal

context information. Therefore, in MMTE, we just consider the

interaction of such intra-modal context information within the

common reliable regions αc determined by Eq.2. Accordingly,

the cross-modal context information AC can be calculated by

multiplying two intra-modal spatial relationships:

AC = αc ⊙ (Ar
S ⊙At

S). (5)

The cross-attention maps AC ∈ R
Nx×Nx reflects the

reliable relationships among different spatial positions within

multi-modal data, which can be further employed to enhance

the intra-modal context information via,

Ar
F = Ar

R +AC,
At

F = At
R +AC.

(6)

Compared with the intra-modal contexts in Eq. 4, the enhanced

attention maps Ar
F and At

F further improve the effectiveness

of spatial contexts via the interaction of common reliable

context information.

4) Spatial contexts embedding: Based on the attention maps

Ar
F and At

F, we transform the RGB features and thermal

features through Ar
Fς(X

r
) and At

Fς(X
t
), respectively, which

are then added to the original RGB features and thermal

features via a residual term. Here ς(∗) is a linear projection

layer. The formulations are as follows:

X
r

E = Ins. Norm (Ar
Fς(X

r
) +X

r
),

X
t

E = Ins. Norm (At
Fς(X

t
) +X

t
),

(7)

where Ins. Norm(∗) denotes the instance normalization. As

in [59], the proposed MMTE module slims the classic Trans-

former by omitting the fully connected feed-forward layers and

adopting the single-head attention to achieve a good balance

between speed and performance.

The encoded unimodal RGB features Xr
E ∈ R

Cx×Hx×Wx

and thermal features Xt
E ∈ R

Cx×Hx×Wx are then obtained by

reshaping X
r

E and X
t

E back to their original sizes, respectively.

Finally, the encoded features Xf are obtained by performing

concatenation and convolution operations on those encoded

unimodal features Xr
E and Xt

E, i.e.,

Xf = conv(cat(Xr
E,X

t
E), θ2). (8)

Here, conv(∗, θ2) denotes the convolution layer with kernel

size 1× 1 and parameters θ2.

By performing the proposed MMTE modules on the multi-

modal search features from the third and fourth stages of

ResNet50, we obtain two levels of encoded search features

X
f
3 and X

f
4 , respectively. Similarly, we obtain two levels of

encoded template features Z
f
3 and Z

f
4 by using the proposed

MMTE modules.

C. Memory Pool Construction

Although the above MMTE module explores the multi-

modal context information within each RGB-T frame, it is still

hard to locate the target confidently in case of the presence

of similar objects (also called distractors), when the tracker

overlooks the temporal relationships among successive frames.

To bridge the spatial context information among different

frames and convey such rich temporal cues across them, we

need to collect the features of historical frames to build a

memory feature pool for the subsequent transformation of

temporal context information. It is also meaningful to record

the position information of the target in the historical frames

for the distinction between the target and the backgrounds.

Therefore, we also collect the target position information of

historical frames to build a memory position pool. The whole

memory pool is thus constructed by the memory feature pool

and the memory position pool.

1) Memory feature pool: In our proposed framework, we

use the encoded search features X
f
4 from the historical frames

as historical encoded features Xh for convenience. Specif-

ically, for n historical frames, a set of historical encoded

features Xh
i , i ∈ (1, n) are concatenated to form the memory

feature pool MF = cat(Xh
1 , ...X

h
n) ∈ R

n×Cx×Hx×Wx .

2) Memory position pool: According to the temporal loca-

tions of the target, we construct a series of location masks

mi ∈ R
Hx×Wx , i ∈ (1, n) from the memory features by

setting a Gaussian function [26] centered at the location of

the target. Similar to the memory feature pool MF, we also

concatenate these masks to form a memory position pool
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Fig. 5. The proposed quality-aware Transformer decoder.

MP
′

= cat(m1, · · · ,mn) ∈ R
n×Hx×Wx , which is expanded

into MP ∈ R
n×Cx×Hx×Wx .

Finally, the memory pool is constructed by the memory

feature pool MF and the memory position pool MP as

M = {MF,MP}.

D. Quality-aware Transformer Decoder

Thanks to the proposed MMTE module, we obtain high-

quality encoded features, which simultaneously explore the

effective spatial context information within multi-modal data

and integrate multi-modal features. And the memory pool col-

lects the encoded search features as well as their corresponding

tracking results of the historical frames. The constructed mem-

ory pool M = {MF,MP} in III-C and the current encoded

search feature in Sec. III-B are further fed into a decoder block

to reinforce the encoded search features of the current frame.

The encoded search features of each frame not only contain the

spatial context relationships between targets and backgrounds

(called the target-related context information here), but also

the spatial context relationships between backgrounds and

backgrounds as well as the relationships between backgrounds

and targets (called the background-related context information

here). Considering the existence of some interference infor-

mation within the background-related contexts, we design a

Quality-aware Transformer Decoder (QATD) in our proposed

tracker, in which the target-related context information and the

background-related context information are treated differently,

to make full use of such valid temporal cues and reduce the

introduction of those noise interferences. In QATD, we also

use the encoded search features X
f
4 of the current frame as

the current encoded features Xc. Fig. 5 details the data-flow

process of QATD.

1) Determining different types of contexts: We divide the

historical encoded features MF into the target-related context

information and the background-related context information

according to the target’s historical positions MF. Specifically,

the target-related context information is computed via:

MT = MF⊙MP. (9)

Accordingly, the background-related context information is

computed by:

MB = MF⊙ (I−MP). (10)

Here, I denotes a tensor of the same size as MF, in which

all elements are 1.

2) Target-related context transformation: Here, we will

take the current encoded features Xc as inputs, and convey the

temporal cues from such two types of context information to

enhance the feature representation of current frame. Especially,

to facilitate the attention computation, we reshape MF, MT

and MB to MF, MT and MB ∈ R
Nm×Cx , respectively.

Here, Nm = n × Hx × Wx. For the target-related context

information, their cross-attention matrix is first computed by

AXc→MF = Atten(ϕ(X
c
), ϕ(MF)) ∈ R

Nx×Nm , where

ϕ(∗) is a linear projection layer and is similar to φ(∗).
The cross-attention matrix AXc→MF reflects the pixel-to-

pixel correspondences among frames. Then, with the cross-

attention matrix AXc→MF, the transformed features related to

the targets are computed by AXc→MFMT and are added to

the reshaped X
c
∈ R

Nx×Cx via a residual term, thus obtaining

the target-related decode features TX, i.e.,

TX = Ins. Norm
(

AXc→MFMT+X
c
)

. (11)

By virtue of the transformed target-related features, the de-

coded features TX temporally aggregate diverse target rep-

resentations from a series of historical features to promote

themselves.

3) Background-related context transformation: Besides the

target-related context information, it is also feasible to prop-

agate those effective background-related context information

from historical frames to distinguish distractors. With the

cross attention map AXc→MF obtained above, we selectively

propagate those background-related context information to

the encoded features of the current frame. Specifically, the

transformed features related to backgrounds are computed

by AXc→MFMB, and are selected via a channel attention
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module to filter those unreliable background-related contexts,

i.e.,

cw = sigmoid(fc(gmp(reshape(AXc→MFMB)))),

SX = (AXc→MFMB)⊛ cw,
(12)

where gmp(∗) and fc(∗) denote the global max pooling layer

and the fully connected layer, respectively. ⊛ denotes channel-

wise multiplication. reshape(∗) denotes reshaping features to

their original shapes. cw ∈ R
1×Cx is the learned weight vector

to guide the features to focus on those effective channels. SX

are the selected reinforced features.

After that, these selected transformed features SX are also

added to X
c

via a residual term, obtaining background-related

decoded features BX by

BX = Ins. Norm
(

SX+X
c
)

. (13)

Finally, we equally combine the aforementioned features

TX and BX together, and further normalize them as follows:

FX = Ins. Norm
(

TX+BX
)

. (14)

The final output feature FX ∈ R
Nx×Cx is reshaped back to

the original size for visual tracking. We denote the reshaped

version of FX as Xm ∈ R
Cx×Hx×Wx . By performing the

proposed QATD module on the encoded search features X
f
4 of

the current frame, we obtain the decoded search features Xm
4 .

The decoded search features will be fed to the TSE module

to predict the target location.

E. Target State Estimation

With the encoded features (i.e., Z
f
3 , Z

f
4 , X

f
3 and X

f
4 , ) and

the decoded search features Xm
4 , the tracking problem can

be decomposed into a classification task and an estimation

task. For the classification task, directly performing an online

trained classifiers on the decoded search features Xm
4 may

usually achieve good tracking results. However, when the

target object is occluded or invisible, the cross attention

maps between the current frame and historical frames may

be inaccurate, which will deteriorate the representation ability

of the decoded features. Therefore, in addition to the online

trained classifier, which utilizes the decoded features, we also

design an offline trained classifier to utilize the appearance

information for tacking.

Specifically, for the online-trained classier, following the

end-to-end DCF optimization in DiMP [26], we also generate a

discriminative CNN kernel and convolve it with the decoded

search features Xm
4 for generating the online response map

clson. Meanwhile, for the offline-trained classier, as that in a

typical anchor-free Siamese tracker [63], we input the encoded

template features (i.e.,Z
f
3 , Z

f
4 ) and the encoded search features

(i.e.,X
f
3 and X

f
4 ) into the saliency mining module [63] to

generate their correlation representations Fcorr. The output

correlation representations will be fed into a classification head

for predicting the offline response map clsoff .

After that, we conduct the ensemble of the offline classifica-

tion model and the online prediction model, yielding a fusion

score map with high accuracy and robustness. Given the online

and offline score maps clson and clsoff , the final score map

clsen can be formulated as:

clsen = βclson + (1− β)clsoff , (15)

where β is a balance weight between the online and offline

score maps and is experimentally set to 0.8 in this paper.

For the regression task, the correlation representations Fcorr

are also fed into a regression head for predicting the bounding

box of the target. Here, the classification head in the offline-

trained classifier and the regression head in the regression task

are both designed as those in SAOT [63]. After obtaining the

final score map clsen, the target bounding box is estimated

based on the regressed box corresponding to the maximum

fusion score.

F. Memory Update

During the online tracking process, in order to better exploit

the temporal cues after obtaining the tracking results, we

dynamically update the memory feature pool MF and the

corresponding memory position pool MP. To be specific,

considering the small differences between densely consecutive

frames, we drop the oldest memory in M and add the currently

collected features together with their corresponding position

masks to MF and MP every 5 frames, respectively. The

memory pool maintains a maximal size of 20 frames. Besides,

to avoid noisy information introduced by low-quality historical

frames, we only update the memory pool when the classifi-

cation score clson is greater than 0.7. The QATD module is

leveraged in each frame, which generates per-frame decoded

search features Xm
4 by propagating the representations and

attention cues from the previous memories to the current

search images.

G. Implementation Details

In this section, we present the details of the proposed Siam-

MMSTC, and illustrate the offline and online training of our

Siam-MMSTC model and the online tracking process.

Model setting: In Sec. III-A, we used the modified ResNet-

50 [63] in both RGB Siamese network and Thermal Siamese

network. The search image is with an area 52 times that of

the target and is resized to 288 × 288. The template features

is cropped from the feature maps of the first image according

to its bounding box and pooled by a PrPool [63] layer to

obtain its precise representation of size 8 × 8. In Sec. III-C,

as that in DiMP [26]the maximal size of the memory pool M

is set to be 50 historical frames, and we update the memory

pool every 5 frames by replacing the oldest one. In Sec. III-E,

the online classifier employs the same structure as the DiMP

classifier [26], including a convolution layer with kernel size of

1 and a convolution layer with kernel size of 4. For the offline

classification and regression task, both the classification and

regression heads are designed following FCOS [65], where

each branch consists of 4 convolutional layers with kernel size

of 3 and 1 convolutional layer with kernel size of 1.

Off-line Training: The whole Siam-MMSTC model is

trained in an end-to-end manner. Specifically, we employ

generalized IoU loss and binary cross-entropy loss for the
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offline-trained regression and classification tasks. And the

training for the online-trained classifier follows DiMP [26].

The proposed model is trained in two stages. Specifically,

in the first stage, we disable the thermal branch, the MMTE

modules, the memory pool and the QATD module to construct

an unimodal tracking network. Here, we adopt some RGB

tracking datasets, including COCO [66], GOT10k [67] and

LaSOT [68], as our basic training datasets. The backbone

ResNet-50 network is initialized by the pre-trained model

on the ImageNet [69]. During training, the parameters in

ResNet are frozen. Other parameters, except for those of the

online discriminative filters, are optimized using ADAM with

a learning rate decayed from 1 × 10−3 to 8 × 10−6 and a

weight decay of 1× 10−4. The training settings of the online

discriminative filers follow DiMP [26]. In the second stage,

we adopt the training dataset in LasHeR [22], which contains

979 pairs of RGB-T videos, to train the whole model. As well,

we fix all the parameters in the RGB feature extractor in this

stage. The MMTE and QATD modules are trained with an

initial learning rate of 2× 10−4 and a decay factor of 0.2 for

every 15 epochs. Other components are trained with the default

learning rates collaboratively multiplied by 0.01. Our whole

model is trained for 20 epochs by sampling 26,000 videos per

epoch.

Online Training: For online tuning, we use the first frame

to pre-train the online classifier. Similar to [26], we also

perform data augmentation on the first frame with translation,

rotation and blurring, yielding in total 30 initial training

samples. Considering the tracking efficiency, we adopt the

steepest descent method [26] for fast online optimization.

Online Tracking: During the tracking phase, the proposed

Siam-MMSTC aims to predict a bounding box for the target

in the current frame. Only the target object in the first frame

is adopted as the template patch and is continuously matched

with subsequent search images for tracking. Siam-MMSTC

performs prediction in the search region to get the classifi-

cation score map clsen and the regression map Areg . After

that, we select the bounding box with the highest classification

score as the final tracking one.

IV. EXTENSION TO THE TRANSFORMER BASED

FRAMEWORK

It should be noted that the proposed framework can be

quickly extended to the Transformer RGB-T tracker to achieve

excellent tracking performance. In this paper, we use the one-

stream structure [44] to build a Transformer based tacker,

referred to as Trans-MMSTC, as shown in Fig. 6. Specifically,

the input RGB and TIR search region from each RGB-T

frame and template images from the initial RGB-T frame

are first split and flattened as sequences of patches, and then

fed into the vanilla ViT [11] for joint feature extraction and

search-template matching within each modality. After that,

the extracted search features from the RGB branch as well

as the thermal branch will be fed into our proposed MMTE

module to obtain the encoded search features. On top of that,

the historical encoded search features and their corresponding

tracking results are further combined to form a memory pool
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Fig. 6. An overview of the designed Trans-MMSTC.

as that in Siam-MMSTC. After that, the QATD module takes

the current encoded search features and the historical encoded

search features within the memory pool as inputs and generates

the decoded search features, which are reinforced by the

temporal contexts stored in the memory pool. Finally, the

tracking head, which uses the same structure in OStrack [44],

takes the decoded search features as input to predict the

tracking results.

As in OStrack [44], the weighted focal loss is employed for

classification, and the L1 Loss and the generalized IoU loss

are employed for regression. We explore temporal information

from 5 historical frames and employ another one frame for

training, which are randomly selected from the same video.

Our network is optimized by the AdamW optimizer with the

weight decay of 10−4 for 15 epochs. The initial learning rate

for the backbone and other parameters are set to 4×10−5 and

4×10−4, respectively. The sizes of template patches and search

patches are set to 127 pixels and 255 pixels, respectively.

During inference, we dynamically update the memory pool

ensemble M. Specifically, the oldest historical tokens as well

as their corresponding location masks in M will be dropped

and replaced by the current collected tokens and location

masks every 5 frames. The maximal size of the memory pool

is set to be 20 historical frames. In addition, in order to avoid

noisy information introduced by low-quality historical frames,

we only update the memory pool when the classification

score is greater than 0.7. The designed QATD is leveraged

in each frame to obtain the decoded tokens, which will be

fed into the tracking head to obtain the classification map and

regression results. Following the common practice [44], we

simply multiply the classification map by the Hanning window

with the same size, and select the box with the highest score

after multiplication as the final tracking result.

V. EXPERIMENTS

This section presents the results of our Siam-MMSTC and

Trans-MMSTC on five tracking benchmark datasets, with

comparisons to some state-of-the-art algorithms. Some exper-

imental analysis is also provided to verify the effectiveness of

each proposed component on RGBT234 [21]. Our tracker is

implemented by using Pytorch on a personal computer with

Intel-Xeon(R) 4214 CPU (2.2GHz), 64 GB RAM and Nvidia

RTX-3090 GPUs.
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TABLE I
QUANTITATIVE COMPARISONS OF OUR METHOD WITH SOME STATE-OF-THE-ART METHODS ON DIFFERENT BENCHMARK DATASETS. HIGHER VALUES

INDICATE BETTER PERFORMANCE. THE NUMBERS WITH RED AND BLUE COLORS INDICATE THE BEST AND THE SECOND BEST RESULTS, RESPECTIVELY.

Method Source Baseline Backbone
GTOT RGBT210 RGBT234 LasHeR VTUAV-S VTUAV-L

MSR MPR MSR MPR MSR MPR SR NPR PR MSR MPR MSR MPR

FANet† [27] TIV21 MDNet VGG-M 72.1 90.1 - - 53.9 79.4 34.3 42.5 48.2 - - - -
ADRNet [33] IJCV21 MDNet VGG-M 73.9 90.4 56.5 80.3 57.1 80.9 - - - 46.6 62.2 17.5 23.5
MANet++ [5] TIP21 MDNet VGG-M 70.7 88.2 55.3 78.5 55.4 80.0 31.7 40.8 46.7 - - - -
TFNet [28] TCSVT22 MDNet VGG-M 72.4 88.6 52.9 77.7 56.0 80.6 - - - - - - -
M5L [31] TIP22 MDNet VGG-M 71.0 89.6 - - 54.2 79.5 - - - - - - -
APFNet [34] AAAI22 MDNet VGG-M 73.7 90.5 57.1 82.1 57.9 82.7 36.2 - 50.0 - - - -
DMCNet [6] TNNLS22 MDNet VGG-M 73.8 90.9 55.5 79.7 59.3 83.9 35.5 43.1 49.0 - - - -
DRGCNet [29] IEEE SENS J23 MDNet VGG-M 73.9 91.0 - - 58.1 82.5 33.8 42.3 48.3 - - - -
CAT++ [7] TIP24 MDNet VGG-M 73.3 91.5 56.1 82.2 59.2 84.0 35.6 44.4 50.9 - - - -
JMMAC [8] TIP21 DCF VGG-16 73.2 90.2 57.5 79.2 57.3 79.0 - - - - - - -
HMFT* [23] CVPR22 DCF Res-50 74.9 91.2 53.5 78.6 56.8 78.8 - - - 62.7 75.8 35.5 41.4
MFNet† [35] IVC22 DCF Res-50 73.5 90.7 - - 60.1 84.4 46.7 55.4 59.7 - - - -
CMD† [9] CVPR23 DCF Res-18 73.4 89.2 59.3 83.4 58.4 82.4 46.4 54.6 59.0 - - - -
SiamCDA* [2] TCSVT22 Siamese Res-50 73.2 87.7 55.3 78.5 56.9 76.0 - - - - - - -
SiamTDR* [3] TICPS23 Siamese VGG-M 71.4 88.5 - - 55.1 77.2 - - - - - - -
DFAT [37] IF23 Siamese Res-50 72.3 89.3 55.0 75.4 55.2 75.8 - - - - - - -
SiamMLAA† [36] TMM24 Siamese Res-50 75.1 91.3 56.7 75.6 58.4 78.6 - - - - - - -

Siam-MMSTC† 2024 Siamese Res-50 76.6 91.2 60.1 85.5 59.9 85.5 47.3 56.4 62.1 63.5 77.6 37.1 43.2

ViPT† [45] CVPR23 Transformer ViT-B - - 60.3 82.1 61.7 83.5 52.5 61.7 65.1 - - - -
MACFT* [42] Sensors23 Transformer ViT-B - - - - 62.2 85.7 52.5 - 65.3 66.8 80.1 46.7 54.1
RSFNet† [70] ISPL23 Transformer ViT-B 75.3 92.1 - - 62.2 86.3 52.6 - 65.9 - - - -
SiamFEA† [40] JVCIP23 Transformer Res-50 76.6 92.0 - - 61.7 83.7 50.9 - 64.5 - - - -
SiamAFTS* [41] SR23 Transformer Res-50 77.7 84.9 - - 56.4 87.3 - - - - - - -
TBSI† [12] CVPR23 Transformer ViT-B 73.4 89.1 62.5 85.3 63.7 87.1 55.6 65.7 69.2 - - - -
MPLT† [47] ArXiv23 Transformer ViT-B 75.1 90.0 63.0 86.2 65.7 88.4 57.1 68.0 72.0 65.4 79.7 43.9 50.9
QueryTrack† [15] TIP24 Transformer JQF 75.9 92.6 - - 60.0 84.1 52.0 - 66.0 - - - -
GMMT† [43] AAAI24 Transformer ViT-B - - - - 64.7 87.9 56.6 67.0 70.7 - - - -
TATrack† [13] AAAI24 Transformer ViT-B - - 61.8 85.3 64.4 87.2 56.1 66.7 70.2 - - - -
BAT† [46] AAAI24 Transformer ViT-B 73.3 88.5 63.2 86.0 64.1 86.8 56.3 66.4 70.2 64.1 79.4 42.5 51.5
OneTrack† [16] CVPR24 Transformer ViT-B - - - - - - 53.8 - 67.2 - - - -
SDSTrack† [18] CVPR24 Transformer ViT-B - - 61.4 83.7 62.5 84.8 53.1 62.7 66.5 - - - -
UnTrack† [18] CVPR24 Transformer ViT-B - - 61.1 82.9 61.7 83.7 53.6 60.1 66.7 - - - -

Trans-MMSTC† 2024 Transformer ViT-B 77.9 94.1 65.7 88.6 67.3 89.8 57.4 68.6 72.3 67.7 83.9 45.5 54.4

A. Evaluation datasets and metrics

We conduct extensive experiments on five benchmark

datasets, i.e., GTOT [19], RGBT210 [20], RGBT234 [21],

LasHeR [22] and VTUAV [23], to verify the validity of our

proposed tracker. Next, we introduce these datasets and their

metrics in detail.

1) Evaluation datasets: We conduct extensive experiments

on five benchmark datasets, i.e., GTOT [19], RGBT210 [20],

RGBT234 [21], LasHeR [22] and VTUAV [23], to verify the

validity of our proposed tracker. GTOT [19] is the first stan-

dard dataset for RGB-T tracking, including 50 RGB-T video

sequences. RGBT210 [20] consists of 210 sequences with

approximately 104.8K frames. RGBT234 [21] is a large-scale

RGB-T tracking dataset. It contains 12 challenge attribute

labels, including no occlusion (NO), partial occlusion (PO),

heavy occlusion (HO), low illumination (LI), low resolution

(LR), thermal crossover (TC), deformation (DEF), fast motion

(FM), scale variation (SV), motion blur (MB), camera moving

(CM) and background clutter (BC). VTUAV [23] is a large-

scale benchmark for RGB-T UAV tracking (VTUAV), which

includes 176 test sequences to evaluate short-term tracking and

74 sequences to evaluate long-term tracking. LasHeR [22] is

currently the largest RGB-T tracking dataset, which consists

of 1244 RGB-T videos with more than 730K frame pairs in

total. Among them, 245 videos are used as the testing set, and

979 videos are used as the training set.

2) Evaluation Metrics: As that in [5], [7], to mitigate small

alignment errors, we utilize two widely used metrics, i.e.,

maximum precision rate (MPR) and maximum success rate

(MSR), to evaluate the tracking performance on GTOT [19],

RGBT210 [20], RGBT234 [21] and VTUAV [23]. Specifically,

precision rate (PR) is the percentage of frames whose output

location is within a threshold distance of the ground truth.

Success rate (SR) is the percentage of the frames whose

overlap ratio between the output bounding box and the ground

truth bounding box is larger than the threshold, and we

calculate the representative SR score by the area under the

curve. Owing to the modality-level displacement, we adopt

the MPR and MSR to measure the tracker results. Differently,

since LasHeR [22] employs a better alignment, it directly uses

the PR and SR metrics to evaluate different trackers. As well,

it adds an additional Normalized Precision Rate (NPR) metric

to normalize the precision rate over the size of the ground

truth bounding box.

B. Comparisons with State-of-the-art Methods

We quantitatively evaluate the proposed method on the

above five benchmark datasets.

1) Comparison methods: To evaluate the superiority of our

proposed method, we first compare our Siam-MMSTC with

9 RGB-T trackers based on MDNet [24] network, includ-

ing FANet [27], MANet++ [5], ADRNet [33], TFNet [28],

APFNet [34], M5L [31] and DMCNet [6], DRGCNet [29],

and CAT++ [7], 4 RGB-T trackers based Siamese network,

including SiamCDA [2], SiamMLAA [36], SiamTDR [3] and

DFAT [71], and 4 RGB-T trackers based DCF, including

JMMAC [8], HMFT [23], MFNet [35], and CMD [9]. Then,

we compare our Trans-MMSTC with 14 recent Transformer

based trackers, including ViPT [45], MACFT [42], SiamFEA

[40], SiamAFTS [41], RSFNet [70], TBSI [12], MPLT [47],
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GMMT [43], TATrack [13], QueryTrack [15], SDSTrack [18],

OneTrack [16], UnTrack [17] and BAT [46]. For fair compar-

isons, we illustrate the training data used by different methods.

Here, † denotes that the model is trained on the training split

of LasHeR [22]. While ∗ denotes that the model is trained on

different data. For instance, SiamCDA [2] uses the generated

synthetic RGB-T dataset for training. MACFT [42] is trained

by using the full LasHeR dataset when testing the RGBT234

dataset. Please find more details in their corresponding papers.

Besides, other unlabeled methods employ the GTOT dataset

for training when tested on RGBT210 and RGBT234, and use

the RGBT234 dataset for training when tested on the GTOT,

VTUAV and LasHeR.

2) GTOT dataset: From Table I, we can see that our method

obtains the state-of-the-art performance on GTOT dataset with

76.1% and 91.2% in MSR and MPR scores, respectively.

Compared with the most recent tracker (also the second best

one in this experiment), i.e., SiamMLAA [36], our algorithm

achieves 1.5% improvements in MSR score. Besides, our

Trans-MMSTC further improves the tracking performance

and significantly outperforms all RGB-T trackers in MPR

score. The exciting performance and significant promotion

demonstrate the effectiveness of our proposed framework.

3) RGBT210 dataset: As shown in Table I, compared with

these CNN based trackers, Siam-MMSTC achieves the best

results with 60.1% and 85.5% in MSR and MPR scores,

respectively. Siam-MMSTC outperforms APFNet by 3.4% and

3.0% in MPR and MSR, respectively. What’s more, Trans-

MMSTC achieves new state-of-the-art tracking performance

with 65.7% and 88.6% in MSR and MPR scores, respectively.

Compared the the second best tracker MPLT [47], Trans-

MMTSC obtains 2.4%/2.7% gainsin MPR and MSR, respec-

tively.

4) RGBT234 dataset: Table I reports the MPR and MSR

scores of these trackers. The proposed Siam-MMSTC still

achieves promising performance with the best MPR score of

85.5% and the second best MSR score of 59.9% among these

CNN based trackers. In comparison with the MFNet [35],

Siam-MMSTC achieves performance gains of 1.1% in MPR.

Additionally, compared with recent RGB-T trackers based on

Transformer, our proposed Trans-MMTSC achieves the best

performance with 89.8% and 67.3% in MPR and MSR scores,

respectively. Trans-MMTSC achieves 6.3%/5.6%, 2.7%/3.6%

and 1.4%/1.6% improvements against ViPT [11], TBSI [12]

and MPLT [47] in MPR/MSR, respectively. The favorable

performance against these state-of-the-art trackers validates the

effectiveness of our proposed MMSTC framework.

5) LasHeR dataset: From Table I, we can also see that

our tracker achieves excellent performance on LasHeR. Siam-

MMSTC’s PR/SR is 3.1%/0.9% higher than those of CMD

[9]. Compared with APFNet [34] and FANet [27], Siam-

MMSTC advances them with 12.1%/11.1% and 13.9%/13.0%

in PR/SR, respectively, which proves the huge performance

advantage of our method. Compared with trackers based on

Transformer, such as SiamFEA [40], RSFNet [70], ViPT

[45] and TBSI [12], which have already achieved outstand-

ing tracking performance, our method achieves performance

gains of 7.8%/6.5%, 6.4%/4.8%, 7.2%/4.9% and 3.1%/1.8%
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Fig. 7. The MPR and MSR scores of the proposed Siam-MMSTC and other
CNN based trackers under different attributes on RGBT234.

70

75

80

85

90

95

100
NO

PO

HO

LI

LR

TC

DEFFM

SV

MB

CM

BC

ALL

40

50

60

70

80
NO

PO

HO

LI

LR

TC

DEFFM

SV

MB

CM

BC

ALL

ViPT MACFT MTNet Trans-MMSTC

(b) The MSR scores of different attributes.(a) The MPR scores of different attributes.

Fig. 8. The MPR and MSR scores of the proposed Trans-MMSTC and other
Transformer based trackers under different attributes on RGBT234.

in PR/SR, respectively. The excellent tracking results achieved

on LasHeR also demonstrate that our proposed tracker has

better generalization ability than others.

6) VTUAV dataset: As shown in Table I, we evaluated our

Siam-MMSTC and Trans-MMTC on both short-term and long-

term tracking subsets of the VTUAV dataset. In the short-

term subset of VTUAV, compared with HMFT, which employs

the training subset in VTUAV for model training, our Siam-

MMSTC still obtains the competitive results. Compared with

trackers based on Transformer, such as MACFT [42], BAT

[46] and MPLT [47], which have already achieved outstanding

tracking performance, our method achieves performance gains

of 0.9%/3.8%, 3.6%/4.5% and 2.3%/4.2% in MPR/MSR,

respectively. In the long-term subset of VTUAV, without any

additional re-detection mechanism, our Trans-MMSTC shows

excellent tracking performance with 54.4% and 45.5% in MPR

and MSR scores, respectively.

7) Attribute-based performance: To further demonstrate the

effectiveness of our proposed method, we plot the attribute-

based performance on RGBT234 [21], which contains 12 chal-

lenging attribute labels. As shown in Fig. 7, our Siam-MMSTC

achieves the best performance on most challenges, e.g., NO,

PO, HO, LI, FM, TC and DEF. Additionally, our Siam-

MMSTC shows very competitive results under the challenges

of SV, CM and BC. Besides, regarding the LR challenge,

superior results are attained by CAT and MANe++ due to their

utilization of multi-scale feature fusion. In contrast, our Siam-

MMSTC relies solely on a simple concatenation operation

to fuse features from the last two levels, which restricts its

effectiveness in low-resolution scenarios. From Fig. 8, we can

see that with a more powerful baseline tracker, our Trans-

MMSTC obtains the best performance in the challenges of

PO, HO, LI, LR, TC, SV, MB and CM. Under the challenges

of NO, DEF, FM and BC, our proposed Trans-MMSTC

obtains competitive results compared with those state-of-the-
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Fig. 9. Visual comparisons of our proposed tracker with another four state-
of-the-art trackers.
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Fig. 10. The running speeds and parameters of several RGB-T tracking
methods on RGBT234 dataset.

art trackers.

8) Qualitative performance: The visual comparisons be-

tween our proposed Trans-MMSTC and some state-of-the-art

trackers, including ViPT [45], MPLT [47], CMD [9] and BAT

[46], are illustrated in Fig. 9. Our approach performs obviously

better than other methods in various complex scenarios, such

as similar appearance, occlusion and motion blur. Thanks

to the multi-modal spatial contexts as well as the temporal

contexts, our Trans-MMSTC can track the targets accurately

in these cases.

9) Tracking Speed and parameters: We compare the run-

ning speed and parameters of the proposed approach with

those of state-of-the-art algorithms on GTX 3090 GPU. Fig.10

reports the running speeds and parameters of these methods.

Compared with the transformer-based trackers, our Trans-

MMSTC improves tracking performance while using 46%

fewer parameters than TBSI [12]. Compared with the CNN-

based trackers, although our Siam-MMSTC has more param-

eters, its running speed is still faster than most CNN-based

trackers and obtains significant improvements on all datasets.

C. Ablation study

We conduct some ablation studies on RGB-T234 [21] to

discuss the impacts of different components in our Siam-

MMSTC tracker.

TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT VARIANTS OF MMTE ON

RGBT234 DATASET, SIAM-BASELINE DENOTES THE BASELINE TRACKER

BASED ON SIAMESE NETWORK.

Siam-Baseline
Intra-modal

Context
Cross-modal

Context
MPR ↑ MSR ↑

✓ 80.1 57.5

✓ ✓ 83.4 58.9

✓ ✓ 83.7 59.3

✓ ✓ ✓ 84.0 59.5

1) Effectiveness of MMTE: Here, in order to discuss the

effectiveness of MMTE, we merely utilize a Transformer

encoder to promote the feature fusion of RGB features and

thermal features without using the QATD module in this

subsection. For that, we first take the variant as the baseline,

where the intra-modal context information and the cross-

modal context information are not considered, and the multi-

modal features from the RGB and thermal images are directly

fused by using the summation operation for tracking. Then

we construct two variants that only model the intra-modal

contexts or the cross-modal contexts. Especially, the former

just directly calculates the reliable context information within

RGB modality and thermal modality, respectively, and the

latter only embeds the cross-modal context information into

RGB and thermal features. Table II shows the performance of

the three counterparts (the first three rows) and our proposed

MMTE module (the fourth row) on the RGBT234 dataset.

Compared with the baseline, the variants only modeling intra-

modal or cross-modal contexts achieve performance gains of

3.3%/1.4% and 3.6%/1.8% in MPR/MSR on the RGBT234

dataset, respectively, which demonstrates that modeling the

intra-modal or cross-modal contexts alone can also improve

the tracking performance to some extent. In comparison with

the variants only modeling the intra-modal or cross-modal

contexts, our proposed MMTE module further improves the

performance by 3.9%/2.0% in MPR/MSR on the RGBT234

dataset. These performance gains validate the effectiveness of

jointly modeling the intra-modal and cross-modal contexts.

In addition, as shown in Fig. 11, we also obviously observe

that the proposed MMTE module can enhance the effective-

ness of unimodal spatial contexts by virtue of the cross-

modal contexts, thus fully exploring reliable spatial context

information within multi-modal data.
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Fig. 11. Visualization of some attention maps for the intra-modal contexts,
cross-modal contexts and enhanced unimodal contexts.

2) Comparisons with different methods for exploring multi-

modal spatial contexts: To further validate the effectiveness

of our proposed MMTE, we employ another 2 methods to

explore multi-modal spatial contexts in our tracker, including

1) the inter-modal pattern-propagation module (IMPP) in

CMPP [51]; 2) the global mining module (GMM) in AGMINet

[52]. We use the two modules to replace the MMTE in
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TABLE III
EXPERIMENT RESULTS OF DIFFERENT METHODS FOR EXPLORING

MULTI-MODAL SPATIAL CONTEXTS, SIAM-BASELINE DENOTES THE

BASELINE TRACKER BASED ON SIAMESE NETWORK.

Siam-Baseline IMPP GMM MMTE MPR ↑ MSR ↑

✓ ✓ 81.3 58.0

✓ ✓ 82.4 58.1

✓ ✓ 84.0 59.5

TABLE IV
EXPERIMENT RESULTS OF DIFFERENT VARIANTS OF QATD ON RGBT234

DATASET, SIAM-MMTE DENOTES THE BASELINE TRACKER BASED ON

SIAMESE NETWORK EQUIPPED WITH THE PROPOSED MMTE MODULE.

Siam-MMTE
Target
context

Background
context

Target context
+ QSM

Background context
+ QSM

MPR ↑ MSR ↑

✓ 84.0 59.5

✓ ✓ 84.3 59.6

✓ ✓ 81.2 57.0

✓ ✓ ✓ 83.8 58.9

✓ ✓ ✓ 85.1 59.6

✓ ✓ ✓ 85.5 59.9

Siam-MMSTC, respectively. According to the experimental

data in Table III, it can be seen that our proposed MMTE

outperforms the other two fusion modules significantly. This

may be attributed to the fact that the proposed MMTE can

better suppress such unreliable spatial relationships within

multi-modal data by using cross-modal reliability and cross-

modal contexts, while IMPP and GMM ignore the influence

of such unreliable spatial context information on the tracking

results. By virtue of MMTE, those reliable spatial contexts

within multi-modal data can be well captured for tracking.

3) Effectiveness of QATD: To analyze the effectiveness of

our proposed QATD module, we evaluate two variants that

only use target-related contexts or background-related contexts

to propagate temporal information among different frames.

Table IV shows the performance of the two counterparts (the

first two rows) and our proposed QATD module (the 3rd row)

on the RGBT234 dataset. The comparison between the variant

using target-related context information and the baseline with

the MMTE modules shows that the temporal target information

can slightly improve the tracking performance. However, the

variant that only propagates background-related context infor-

mation temporally obtains performance drops of 2.8%/2.5% in

MPR/MSR on the RGBT234 dataset. This may be due to the

fact that the background scenes usually change drastically in

a video, which is unreasonable to totally propagate all of the

background-related contexts across frames. With the quality-

aware select module (QSM) in the QATD block, the baseline

method obtains a notable performance gain of 1.5%/0.4% in

MPR/MSR on the RGBT234 dataset. When we transfer all of

the background-related contexts, tracking performance drops

significantly. And when we further select the target-related

contexts, the tracking accuracy does not improve.

Additionally, as shown in Fig. 12, these background-related

contexts with noisy information negatively affect the represen-

tation ability of decoded features. With the proposed quality-

aware select module, the decoded features can better distin-

guish between foregrounds and backgrounds. This indicates

that our proposed QATD module is crucial for effectively

modeling the temporal context information since it mainly

RGB images Decoded features 

w/o QSM

TIR images Decoded features 

w/ QSM

Fig. 12. Illustration of the effectiveness of the proposed quality-aware select
module.

TABLE V
EXPERIMENT RESULTS OF DIFFERENT VARIANTS OF TSE ON RGBT234

DATASET.

Baseline Online Cls Offline Cls MPR ↑ MSR ↑

✓ ✓ 84.0 58.9

✓ ✓ 79.8 56.8

✓ ✓ ✓ 85.5 59.9

delivers reliable context information across frames.

4) Effectiveness of TSE: In order to evaluate the effec-

tiveness of our proposed TSE module, we only consider the

utilization of multi-modal spatial-temporal context information

as well as appearance information here. For that, we construct

another two variants of our proposed model that only use an

online-trained classifier or an offline-trained classifier. Table

V shows the results of the two variants and the Siam-

MMSTC model on the RGBT234 dataset. We observe that

the online-trained classifier is superior to the simple offline-

trained classifier. Nevertheless, in the experiments, we show

that with the help of appearance information within the offline-

trained classifier, our proposed tracker is able to achieve more

performance improvements.

RGB image Thermal image w/o Transformer w/ Transformer

Fig. 13. Visualization of some tracking response maps of the Siam-MMSTC
tracker. The ’w/o Transformer’ denotes the baseline approach without MMTE
and QATD modules. The ’w/ Transformer’ denotes the baseline with MMTE
as well as QATD modules.

5) Response Visualization: In Fig. 13, we exhibit more

detailed visualization results of our tracking framework. From

Fig. 13, we can observe that our baseline (the 3rd column)

tends to be misled by such distracting objects in the challeng-

ing scenarios. By adopting the proposed MMTE and QATD

modules (the 4th column), the target representations in the

search region are effectively reinforced, which facilitates the

object searching process. Therefore, the response values of

background regions are largely suppressed.

6) Generality of MMSTC: To verify the generality of our

proposed MMSTC framework, we further construct an RGB-T

tracker based on a typical DCF tracker DiMP [26], denoted as
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TABLE VI
PERFORMANCE IMPROVEMENTS OF OUR MMSTC FRAMEWORK ON THE

BASELINE TRACKER DIMP.

DiMP MMTE QATD MPR ↑ MSR ↑

✓ 82.6 58.5

✓ ✓ 83.4 59.1

✓ ✓ ✓ 84.4 59.4

DiMP-MMSTC. Following DiMP, RGB images and thermal

images will be fed to two separated feature extractors (i.e.

an RGB feature extractor and a Thermal feature extractor),

respectively. Then, the encoded features are obtained by

performing the MMTE module on the extracted RGB and

thermal features. After that, the encoded features of the current

frame are enhanced by using the proposed QATD module.

Finally, the decoded features will be fed into the classification

head of DiMP, thus obtaining the final tracking results. The

experiment results on RGBT234 are shown in Table VI.

MMTE and QATD consistently improve the baseline tracker in

terms of MPR and MSR. Compared with some state-of-the-art

trackers, DiMP-MMSTC also achieves more excellent tracking

performance. This fully demonstrates the effectiveness of our

proposed MMSTC framework on various types of trackers.

TABLE VII
ANALYSIS OF THE MODEL SIZE AND RUNNING SPEED OF THE PROPOSED

MMSTC FRAMEWORK. SIAM-BASELINE AND TRANS-BASELINE DENOTE

THE BASELINE TRACKER BASED ON SIAMESE NETWORK AND

TRANSFORMER FRAMEWORK, RESPECTIVELY.

MPR(%) MSR(%) FPS Model size (MB)

Siam-Baseline 80.1 57.5 42 60.4
Siam-MMSTC 85.5 59.9 34 66.5

Trans-Baseline 85.0 63.0 36 92.5
Trans-MMSTC 89.8 67.3 27 106.5

7) Model size and running speed: As shown in Table VII,

compared with the baseline method, which only employs the

concatenation operation for multi-modal feature fusion, our

proposed MMSTC framework introduces fewer parameters

while maintaining real-time running speed.

(a) (b)

Fig. 14. Failure cases on two sequences.

8) Failure cases: Fig. 14 presents several tracking failure

cases encountered by our Siam-MMSTC. In Fig. 14 (a), we

noticed that our Siam-MMSTC fails to re-locate the target

when it is out of view or occlusion. Since our tracker lacks

a re-detection module, accurately relocating the target after

occlusion or out of view poses a significant challenge. This

issue is exacerbated by the presence of distractors within the

scene, which often leads the proposed tracker to mistakenly

select a distractor as the new target post-occlusion, thereby

generating an erroneous tracking trajectory. In Fig. 14 (b),

when the movement trajectories of the target and distractors

intersect, our tracker struggles to accurately locate the target.

In the future, we intend to delve deeper into enhancing tracking

performance in these aforementioned scenarios.

VI. CONCLUSION

In this paper, we have presented a multi-modal spatial-

temporal context network for RGB-T tracking, in which

the encoder-decoder Transformer architecture is used for the

construction of multi-modal spatial context information and

the effective propagation of temporal context information.

By virtue of the proposed MMTE module, we obtain high-

quality encoded features, which simultaneously explore the

reliable spatial context information within multi-modal data

and integrate multi-modal features. Besides, by employing

the proposed QATD module, the encoded search features of

the current frame can be enhanced by selectively propagat-

ing the temporal context information stored in the memory

pool. Such two types of contexts enhance the discriminative

ability of a tracker, contributing to more accurate and robust

tracking results. The comprehensive ablation studies validate

the effectiveness of each component, and the favorable per-

formance against some state-of-the-art trackers on five bench-

mark datasets demonstrates the effectiveness of our proposed

algorithm.

In the future, we aim to advance our research on effi-

cient multi-modal long-term tracking strategies to address the

challenge of target relocation after occlusion, out-of-view and

intersect of the target and distractor trajectories. Specifically,

we propose that these challenges can be effectively addressed

through the implementation of two additional strategies. First,

the integration of a global re-detection module would facilitate

the relocation of the target following occlusion. Second, the

adoption of a multi-object tracking paradigm would enhance

the differentiation of the movement trajectories of other dis-

tractors in the scene. The two approaches are expected to

mitigate the risk of the tracker drifting towards distractors

after the target has been occluded. Additionally, we plan to

expand our multi-modal tracking framework to incorporate

more modalities, including text, point clouds, and event data,

to enhance overall tracking performance.
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