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Abstract

Through our respiratory system, many viruses and diseases frequently spread and pass

from one person to another. Covid-19 served as an example of how crucial it is to track

down and cut back on contacts to stop its spread. There is a clear gap in finding automatic

methods that can detect hand-to-face contact in complex urban scenes or indoors. In this

paper, we introduce a computer vision framework, called FaceTouch, based on deep learn-

ing. It comprises deep sub-models to detect humans and analyse their actions. FaceTouch

seeks to detect hand-to-face touches in the wild, such as through video chats, bus footage,

or CCTV feeds. Despite partial occlusion of faces, the introduced system learns to detect

face touches from the RGB representation of a given scene by utilising the representation of

the body gestures such as arm movement. This has been demonstrated to be useful in com-

plex urban scenarios beyond simply identifying hand movement and its closeness to faces.

Relying on Supervised Contrastive Learning, the introduced model is trained on our col-

lected dataset, given the absence of other benchmark datasets. The framework shows a

strong validation in unseen datasets which opens the door for potential deployment.

Introduction

Humans have an innate habit of touching their faces [1, 2]. Touching sensitive/mucosal face

zones (eyes, nose, and mouth) frequently increases health risks by introducing microorgan-

isms into the body and spreading disease [3, 4]. In addition, reliable monitoring of facial touch

is required for behavioural intervention. Building an automated system that can understand

human behaviour in complex environments is crucial for many applications. In times of pan-

demics, detecting and tracing where our hand touches could lead to a better understanding of

how infectious viruses spread.

In recent years, computer vision and deep learning have made significant progress in com-

prehending numerous aspects related to human actions and their perception and interaction
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with the built environment [5–9]. While there is still a clear gap in finding real-world image

datasets for recognising hand-to-face touch [10], there are some works that focus on detecting

face touch by relying on smart devices worn by participants, which makes it challenging and

unsustainable system to use to understand human movements as it requires multiple data

sources from individuals. On the other hand, other systems have been developed relying on

independently detecting hands and faces and classifying the hand-to-face touch based on the

proximity of one to the other. As a result, when detecting hand or object movement close to

one’s face, these systems are more likely to have flaws and a higher likelihood of false positives

(for example, drinking from a water bottle, or picking up a phone).

In this research, we contribute with the following: 1) We introduce a new framework called

FaceTouch that aims to detect hand-to-face touches in the wild, including video calls, bus foot-

age, or CCTV feeds. The introduced framework learns to detect face touches from the RGB

representation of a given scene, despite partial occlusion of faces. It made use of body gestures

such as the movement of the arm which is useful in complex urban scenes, beyond detecting

hand movement and its proximity to faces alone. 2) We extend the widely utilised self-super-

vised batch contrastive learning to fully-supervised learning, allowing us to effectively exploit

image labels. 3) We also introduce a new dataset for face-to-hand touch including various

poses of humans at both indoor and outdoor, last, 4) we also provide an extensive analysis of

different deep learning models that can contribute to solving other similar issues.

After the introduction, section 2 describes the related work and methods previously used

for the stated issues. Section 3 describes the introduced framework, training procedures and

evaluation metrics. Section 4 summarises the results of the method, and section 5 discusses the

results with the current literature, highlighting future work and limitations. Last, we conclude

our work.

Related work

Some studies in the literature can be directly linked to the stated issues, which can be summa-

rised in two domains.

Detection via sensor devices

By relying on smartwatches as data sensors, [11] developed a method to detect spontaneous

facial self-touches by extracting and classifying accelerometer data from various participants

via various machine learning methods, including Random Forest and Support Vector

Machines. In a similar approach to analysing hand movement, [3] used accelerometer data to

detect face touches using Random Forest. Similarly, A wearable system has been introduced to

avoid unconscious face touches relying on accelerometer data and a deep learning approach to

classify hand movement [4]. On the other hand, [2] used an ear-worn device and developed a

method to detect hand touches and identify the types of hand touches to mucosal and non-

mucosal areas by relying on thermal infrared and physiological signals determining changes

caused by the skin when a face is touched.

Separate hand and face detections

Despite accuracy, detecting a facial touch can be achieved by detecting individually one’s hand

and face and arithmetically finding the threshold distance to determine a touch. First, regard-

ing face detection, several works have been achieved to detect faces as a lightweight method

that can be used for edge devices in real-time [12–18]. Furthermore, Deng et al. [15] developed

a method for detecting faces and key facial landmarks in the wild by relying on feature pyra-

mids and deep architecture. This introduced method shows a strong approach for detecting
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and localising a large number of faces in a given image. Similarly, Hu and Ramanan [16] devel-

oped a method to detect tiny faces in the wild relying on CNN architecture and re-scaling the

input image to different sizes allowing the introduced method to detect faces simultaneously at

a different resolution to output the final detection of the merged outcomes of each resolution.

Furthermore, Yang and Song [17] introduced a new loss function for deep learning that could

enhance facial recognition in different illumination settings. Second, regarding hand detec-

tion, Adiguna and Soelistio [18] used the CNN model to create a posture-free hand detector

from RGB images. Liu et al. [19] extended the detection of hand from pixels by introducing

deep blocks that can allow better interpretation of the results and a robust rotation map that

provides a rotated bounding box of hands in the wild, similar to the work developed by [20].

Moreover, Xu et al. [21] developed a method to detect hands by reconstructing their represen-

tation using Generative Adversarial Networks (GAN). In contrast, Kourbane and Genc [22]

developed a skeleton-aware regressor model to estimate 2D hand pose by relying on the key

points of hands. Furthermore, different research has been developed to provide a detailed

detection of hand gestures to perform complex tasks [23–25].

In summary, progress has been made by using data from sensing devices to categorise hand

motion and, consequently, define a hand-to-face touch. Additionally, an arithmetic method

can be used to calculate the distance between a hand and a face to identify a touch by localising

both hands and faces from images. On the other side, a system to localise face occlusion by

hands was developed [10], acquiring the ability to recognise hand-over-face occlusions by

synthesising facial occlusions from a dataset of non-occluded faces. However, difficulties still

exist in overcoming the shortcomings of the aforementioned methodologies and learning to

comprehend a face touch through the representation of faces or human poses in the wild (not

necessarily where all faces or hands can be seen).

Materials and methods

The project was approved ethically by Urban Observatory, New Castle University, where the

funds are allocated. Individual consent is not required because the data utilised is not disclosed

and includes no personal information. We only reveal the findings based on publicly available

internet data, with blurry faces.

In this section, we describe the approach to our method, architecture, materials, evaluation

metrics, and implementation details, including model hyperparameters.

Approach

To detect a face touch based on an input of a given RGB image at different scales and high vari-

ance whereas a given face can be seen clearly (i.e. at a video call), or at very low resolution with

many occlusions (i.e. CCTV cameras in street), we relied on supervised contrastive learning

(SCL) approach [26]. SCL is closely linked to Triplet loss [27, 28], proven to be superior in per-

formance in comparison to the traditional approach of supervised learning.

In SCL, a model learns a given task through two networks; 1) An encoder network [Enc(.)]

and 2) a projection network [Proj(.)]. First, the encoder network maps x to a vector representa-

tion r, given that r ¼ EncðxÞ 2 RDE , whereas a given sample x is augmented by finding a ran-

dom different view of the sample and passed to the model paired with the original one. Any

known image recognition architecture (i.e. ResNets, MobileNet) could be used to represent

this encoder network. Second, the projection network maps r to a vector z, given that

z ¼ ProjðrÞ 2 RDP . This enables using the inner product to measure distances in the latent vec-

tor space. The architecture of this encoder could be a single fully-connected layer or a multi-

perception layer. It is worth mentioning that The projection network is used only during
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training whereas it is discarded during inference, making the inference time dependent only

on the architecture of the encoder network.

Proposed framework

To utilise the learned model to be used in practice with for example a stream of video data, we

have created a framework that allows the detection and localisation of humans and faces at dif-

ferent scales. Fig 1 shows the overall framework comprising four main components as follows:

Backbone: To determine humans, we rely on two backbone models for the introduced method

including, object detection and face detection to maximize the classification of a face touch

in complex scenes. Initially, a face detector is used to detect faces, while the human detector

is inactive, in the case of face detection, the subset of images that includes faces are passed

to the encoder to detect hand action. In the case of undetected faces, a human detector is

activated to detect humans. In case of a positive detection, the sub-set of a given scene that

includes humans are passed to the following encoder to detect hand actions. The architec-

ture of the object detection is based on YoloV5, which is proven to achieve high results in

the VOC dataset [29], in comparison to other state-of-the-art methods besides its real-time

performance. This trade-off between performance and speed allows using the proposed

object detector as a backbone. As for face detection, we utilised Haar Cascades algorithms

[30], which have been also proven to be a fast and simple approach for detecting faces with

minimal computational needs.

Fig 1. The architecture of FaceTouch.

https://doi.org/10.1371/journal.pone.0288670.g001
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Action encoder: After the introduced backbone, the extracted faces/bodies RGB images are

passed through an encoder to classify them and identify whether there is a face touch while

localising multi-humans in a given image. As explained previously, we utilise here SCL

approach to learn a face touch. Nevertheless, to optimise speed and efficiency for the overall

framework, we have trained several state-of-the-art encoder architectures, including ResNet

[31], MobileNet [32, 33], ImageSig [34], and Vision Transformer (ViT) [35] with both

approaches: traditional supervised learning and SCL. Accordingly, an optimal architecture

and learning approach can be selected. We report on how each model is trained in the

implementation section and we provide a quantitative analysis of the pre-trained models on

the introduced validation dataset, in the results section.

Face Blur: To comply with data privacy, ethical considerations, and minimising the re-identi-

fications of human subjects, in the case of face detection, we provide a component that adds

Gaussian noise to the local distribution of a given image to ensure data anonymity when

using the tool in practice.

Explainable AI: We also added a component to visualise attention when inferring face. We

have used Grad-CAM [36] to visualise the learned weights and localise the attention when

classifying a hand touch in the trained model. This implementation occurs only after train-

ing at the inference, where this strategy has demonstrated effective results in the goal of our

model for displaying context-aware and localised attention with a small number of

parameters.

Framework losses and evaluation metrics

For the introduced backbone of object detection to detect and localise humans, we define the

object loss based on the weighted sum of the localization loss (Lloc) and confidence loss

(Lconf), as follows:

Lðx; l; gÞ ¼
1

N
ðLconf ðx; cÞ þ aLlocðx; l; gÞÞ; ð1Þ

Given that N represents the matched default bounding boxes, the loss is set to 0 if N = 0 and

α is set to 1 by cross-validating the model. The confidence loss represents a cross-entropy loss

based on a softmax loss for the different classes (c). The parameters of the predicted box (l) are

defined based on the default bounding box’s centre (cx, xy), as well as its width (w) and height

(h) and the localization loss is described as a smooth loss between those parameters and the

ground truth bounding box (g). It is defined as:

Llocðx; l; gÞ ¼
XN

i2Pos

X

m2cx;xy;w;h

xk
ijsmoothL1ðl

m
i � ĝm

i Þ; ð2Þ

To train the action encoder for hand-to-face touches based on supervised contrastive learn-

ing, whereas there are more negative cases than positive, we utilise a supervised contrastive

loss defined as:

LContrastive ¼
X

i2I

� log
1

jPðiÞj

X

p2PðiÞ

exp zi �
Zp
t

� �

P
a2AðiÞexp zi �

Za
t

� �

0

@

1

A ð3Þ

where Zl represents the projection of Encð~xlÞ, τ is a parameter for scalar temperature, and
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represents the anchor, given that PðiÞ � fp 2 AðiÞ : ~yp ¼ ~yig represents the set of indices of

the positive cases in a given batch of (i) and is |P(i)| the cardinality of P(i).
As a baseline, we also used a traditional cross entropy function paired with a focal loss to

account for the presented class imbalance in the data sets with skew representation for each

class. Providing that y 2 0, 1 and P̂ 2 0; 1, the objective loss L is defined as:

Lðy; P̂Þ ¼ � ayð1 � P̂Þglog P̂ � ð1 � yÞP̂glogð1 � P̂Þ ð4Þ

given that γ is a focusing parameter that specifies how much higher-confidence correct predic-

tions contribute to the overall loss (the higher γ, the faster easy-to-classify examples are down-

weighted), and α is a hyperparameter that governs the trade-off between precision and recall

by weighting errors for the positive class up or down (α = 1) is the default, which is the same as

no weighting).

To evaluate the performance of the trained models based on different approaches with dif-

ferent encoder’s architecture, we calculated accuracy as (TP + TN)/(TP + TN + FP + FN), pre-

cision as TP/(TP + FP), recall as TP/(TP + FN), and F1-score 2� Precision�Recall
PrecisionþRecall, given that TN are

the predicted true-negative values, TP are the predicted true-positive values, FN are the pre-

dicted false-negative values and FP are the predicted false-positive values. We also computed

the Receiver operating characteristic curve (ROC) curve to outline the performance of the clas-

sification for both: the backbone and the action encoders.

Materials

There are no open-access deep learning datasets that label and classify persons in complex set-

tings based on whether one touches their own face. Given this limitation and the lack of a

benchmark data set, compiling our database becomes a reliable resource for carrying out this

research. We gathered over 20,000 images from the Google Images search engine that relate to

indoor and outdoor locations, including diverse positions of humans in various settings and

conditions. Furthermore, these images are collected without regard to image size, the presence

of urban structures, components, or field of view. Following a visual inspection, we focused on

10,413 images of individuals touching or not touching their faces. These images are divided

according to training and test with 0.8 to 0.2 proportions, respectively. Fig 2 shows a sample of

Fig 2. A sample of the collected data that belongs (Faces are blurred for privacy).

https://doi.org/10.1371/journal.pone.0288670.g002
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the collected data for people self-touching their faces and without touching their faces. The

images belong to a different context and various resolutions to ensure learning the complexity

of a face-touch in a real-world setting.

Three criteria are used to define the model’s ground truth. First, there is the obvious case of

people touching their faces. Second, when data is acquired, the metadata linked with the

images from search engines (such as Google Search engine) is used. In all, the collected images

are visually inspected to ensure label relevancy and a broad representation of image orientation

and illumination conditions, and only then are the images labelled to either face touch or not.

We trained the model to interpret both facial images and whole body images to enable a

higher degree of freedom in analysing the condition of a wide range of human movements and

gestures within given scene images. As a result, regardless of the angle or elevation of the input

image, the model will be able to recognise the status of hand touch. While this change compli-

cates the training process, it enables the proposed model to be extensively used and subsequently

enhanced to fulfil a variety of sensing needs for indoor and outdoor settings. Accordingly, We

also used the VOC benchmark dataset [29] to train an object detector to localise humans.

Table 1 summarises the two datasets used in this research, in terms of size and classes.

Implementation details

Object detection. For the backbone of the introduced framework, we trained an object

detector on the VOC dataset based on the architecture of YOLOV5l. We followed closely the

training procedures introduced for YOLOV5. First, the anchor size has been self-calibrated on

the training set of the dataset, resulting in a size of 4. The model is optimised based on a learn-

ing rate of 0.01, and a momentum of 0.937 with a weight decay of 0.0005. We used several data

augmentation techniques, including translation, scale, shear, flipping, and mosaic techniques.

We trained the model with a pixel size of 640 and with a batch size of 4 for 100 epochs.

Action recognition. For classifying actions, we trained several classifiers following two

different training procedures as introduced early (with contrastive loss and with traditional

cross entropy/focal losses) with different architectures to account for the trade-off between

speed and accuracy. First, for traditional supervised learning, we trained architecture such as

ImageSig by following closely the implementation of ImageSig as presented. Following signa-

ture computation, we employed a basic convolution block composed of two CNN 1D layers

with feature maps of 32 and 64 and a kernel size of 3, all of which are activated by a ReLU func-

tion. A Max-pooling layer of kernel size 3 follows each layer. The model is flattened after the

last pooling layer and feedforward to a single 50-neuron FC layer that is activated by a ReLU

function before the last softmax layer. The Adam optimization method is used to train the

model, using a batch size of 3000 for 300 iterations. We also trained Convolutional models by

utilising transfer learning to train the presented convolution-based models, based on Ima-

geNet weights. For training ResNet models [31] and MobileNet models, After freezing the

model’s weight, We trained an FC and output layer using the same hyperparameters as the

aforementioned architectures after truncating the FCs layer in each given model. We noticed

that models converged in the given dataset when trained with a batch size of 32 and for 50

epochs. We trained the Vit model using an image patch size of 6 and an input size of 64 X 64.

Table 1. The datasets used for different tasks.

Task Data set name Size classes

Action recognition FaceTouch (New) 10,413 Negative: 8,101, positive: 2,312

Object detection VOC (Benchmark) 11,540 A multi-class dataset t

https://doi.org/10.1371/journal.pone.0288670.t001
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The architecture consists of four transformer layers with 64 projection dimensions. Each layer

has four attention heads and transformer units of 128, and 64 respectively. The model is

trained using the AdamW optimizer with 256 batches and 20 epochs.

Second, training the SCL approach is slightly different than a traditional supervised classi-

fier. It includes training a given architecture in two stages. First, we started with unsupervised

training of the encoder with the Proj(.) network based on the introduced contrastive loss.

Afterward, the weights of this network are frozen and re-trained with supervision on the data

labels using the Enc(.) network. We trained each introduced architecture followed by a single

FC layer of projection units of 128, in the case of the Proj(.) network activated by a ReLU func-

tion, dropout rate of 0.5, temperature value of 0.05. Whereas in the case of the Enc(.) network,

we added a hidden layer of 512 neurons and activated also with a ReLU function and followed

by an output layer of the binary classes activated by a Softmax layer. All models followed the

same optimisation procedures based on Adam optimiser with a learning rate of 0.001 and

momentum of 0.9 and trained with 256 batch size for 50 epochs.

Results and ablation study

After training the different models in the framework of FaceTouch. Table 2 shows the evalua-

tion metrics of the different models in two different approaches, including traditional super-

vised learning and supervised contrastive learning approaches. It shows a substantial

performance improvement when it comes to SCL for each given architecture network. For

instance, training a network based on VGG16 architecture has improved by 5.2% in compari-

son to the traditional supervision methods. The table also shows not only the accuracies of

each model but also other metrics, including AP, Recall and F1-score, in addition to the size of

each one to evaluate the trade-off between accuracies, model stability in classification, and

their size within the overall framework.

Fig 3 shows the evaluation metrics for the object detection model. It highlights the relation-

ships of F1, confidence curve, precision and recalls for all classes in the VOC dataset, showing

high performance for human detection across the different metrics. Fig 4 shows the ROC

curves for all trained action recognition, including SCL and traditional supervised learning.

Without a doubt, training the all presented architectures with SCL outperforms the traditional

approach.

Table 2. Evaluation metrics of the trained models of the FaceTouch framework.

Task Models Size Acc. (%) AP Recall F1-score Params (m) Size (MB)

Backbone YoloV5l (640,640) - 0.4901 0.7321 0.5701 46.5 14.0

Action Recognition: SL ResNet50v2 (64,64) 93.839 0.801 0.891 0.879 23.6 102.0

MobileNet (64,64) 95.929 0.864 0.934 0.920 3.2 18.5

MobileNetv2 (64,64) 94.059 0.808 0.878 0.882 2.2 16.4

VGG16 (64,64) 90.319 0.708 0.886 0.822 14.7 59.2

SigModel2 (64,64) 84.268 0.563 0.751 0.706 0.037 0.48

ViT (64,64) 91.24 0.973 0.889 0.940 7.9 95.5

Action Recognition: SCL ResNet50v2 (64,64) 96.920 0.897 0.939 0.939 23.6 102.0

MobileNet (64,64) 98.020 0.931 0.974 0.961 3.2 18.5

MobileNetv2 (64,64) 96.040 0.867 0.943 0.923 2.2 16.4

VGG16 (64,64) 96.590 0.883 0.965 0.934 14.7 59.2

1 Represents Mean values for AP, Recall, and F1-score.
2 The model is trained with a truncated signature depth (N) of 4.

https://doi.org/10.1371/journal.pone.0288670.t002
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Fig 5 shows a sample of images in the test set, highlighting a wide range of scene contexts

where the model succeeded to classify a hand touch. To verify what the model has learned, Fig

6 shows the weights of the trained model before classification. It explains how the model con-

cludes the classification of a given class. It shows the strength of the model in self-localising

and focusing its weights on hand position, when hands are available in a given scene, and face.

Fig 7 shows incorrectly identified cases in contrast to successfully labelled ones, particularly

when the hand is close to the side of the face, suggesting that more attention is needed to fur-

ther improve inference in this case.

The proposed method demonstrates originality in the analysis of a broad range of images of

face touches that are representative of a variety of human poses. It shows a strong pragmatism

when dealing with image and video streams of complex environments with low-resolution of

human representations. From images, the FaceTouch framework can detect face touches in

real-time, with 25 FPS, in the case of MobileNet. The Facetouch framework shows high perfor-

mance when it is deployed in real-world settings. This system can also be integrated to assist

visually impaired individuals to help them navigate complex urban environments at a safe

social distance as presented in [37], while being aware of others who are touching their faces.

Fig 7 shows the deployment of the framework in several complex settings, highlighting its

effectiveness in differentiating for example between a face touch and the action of drinking

Fig 3. Evaluation of the object detection model. (a) describes the relationship between F1 and confidence for the different classes of the model. (b)

describes the relationship between Recall and confidence for the different classes of the model. (c) describes the relationship between Precision and

confidence for the different classes of the model. (d) describes the relationship between Precision and Recall for the different classes of the model,

highlighting the average curve (in blue colour).

https://doi.org/10.1371/journal.pone.0288670.g003
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Fig 4. ROC curves for trained action recognition models. (a) represents the trained models with supervised learning. (b) represents the trained models

with Supervised Contrastive Learning.

https://doi.org/10.1371/journal.pone.0288670.g004

Fig 5. Examples of the predicted positive and negative cases for face touches.

https://doi.org/10.1371/journal.pone.0288670.g005

Fig 6. Examples of overlaying the learned attention of the model with the images, highlighting a high accuracy of localising the attention on the faces

and hands.

https://doi.org/10.1371/journal.pone.0288670.g006
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water, despite the proximity of one’s hand to the face. It also shows three scenarios where the

utility of the Facetouch framework can be useful: 1) it Shows the performance of the frame-

work in video calls where faces are clear, 2) shows the performance of FaceTouch inside a bus

where the resolution is very low and faces are most likely to be partially observed in a very low

Fig 7. Examples of s incorrectly identified cases (highlighted in red) in comparison to correctly labelled ones (highlighted in green).

https://doi.org/10.1371/journal.pone.0288670.g007
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resolution but the overall human pose may indicate whether there is a face touch, and 3)

shows the performance of Facetouch in CCTV cameras whereas the scene includes multiple

humans in different poses and scales.

While there are several state-of-the-art methods for extracting human 2D poses based on

detecting key points in a human body (i.e. openpifpaf [38], pifpaf [39], OpenPose [40]) that

can be utilised to measure distances between one’s hands and face as shown in Fig 8, they are

less accurate in comparison to object detection, in complex outdoor scenes. Fig 8 shows the

Fig 8. Deploying the FaceTouch tool in video streams of several complex settings such as video calls, bus CCTV

footage, and street CCTV.

https://doi.org/10.1371/journal.pone.0288670.g008
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outcomes of utilising Openpifpaf [38] and an object detector, whereas all humans are detected

in case of object detection (5 persons), whereas partial key points of 2 persons only are detected

when relying on pose estimation. Accordingly, by utilising pose estimation instead of object

detection as a backbone for detecting faces, the introduced framework would have missed

detecting humans. On the other side, the outputs of these methods are inconsistent and spare

even when multiple humans are detected in comparison to object detection, which makes it

challenging to determine actual facial touch arithmetically due to facial occlusions, and par-

tially seeing humans in a given scene. Accordingly, learning to detect face touches based on

the representation of a given RGB image opens the door for utilising the introduced frame-

work in complex scenes produced from low-resolution cameras such as CCTV and bus

footage.

Discussion

The proposed method demonstrates originality in the analysis of a broad range of images of

face touches that are representative of a variety of human poses. It shows a strong pragmatism

when dealing with image and video streams of complex environments with low-resolution of

human representations. From images, the FaceTouch framework can detect face touches in

real-time, with 25 FPS, in the case of MobileNet. The Facetouch framework shows high perfor-

mance when it is deployed in real-world settings. This system can also be integrated to assist

visually impaired individuals to help them navigate complex urban environments at a safe

social distance as presented in [37], while being aware of others who are touching their faces.

Fig 8 shows the deployment of the framework in several complex settings, highlighting its

effectiveness in differentiating for example between a face touch and the action of drinking

water, despite the proximity of one’s hand to the face. It also shows three scenarios where the

utility of the Facetouch framework can be useful: 1) it Shows the performance of the frame-

work in video calls where faces are clear, 2) shows the performance of FaceTouch inside a bus

where the resolution is very low and faces are most likely to be partially observed in a very low

resolution but the overall human pose may indicate whether there is a face touch, and 3)

shows the performance of Facetouch in CCTV cameras whereas the scene includes multiple

humans in different poses and scales.

While there are several state-of-the-art methods for extracting human 2D poses based on

detecting key points in a human body (i.e. openpifpaf [38], pifpaf [39], OpenPose [40]) that

can be utilised to measure distances between one’s hands and face as shown in Fig 9, they are

less accurate in comparison to object detection, in complex outdoor scenes. Fig 9 shows the

outcomes of utilising Openpifpaf [38] and an object detector, whereas all humans are detected

in case of object detection (5 persons), whereas partial key points of 2 persons only are detected

when relying on pose estimation. Accordingly, by utilising pose estimation instead of object

detection as a backbone for detecting faces, the introduced framework would have missed

detecting humans. On the other side, the outputs of these methods are inconsistent and spare

even when multiple humans are detected in comparison to object detection, which makes it

challenging to determine actual facial touch arithmetically due to facial occlusions, and par-

tially seeing humans in a given scene. Accordingly, learning to detect face touches based on

the representation of a given RGB image opens the door for utilising the introduced frame-

work in complex scenes produced from low-resolution cameras such as CCTV and bus

footage.

PLOS ONE Finding a hand touch in the wild

PLOS ONE | https://doi.org/10.1371/journal.pone.0288670 June 13, 2024 13 / 17

https://doi.org/10.1371/journal.pone.0288670


Conclusion

Understanding unconscious face touches especially in public areas, including indoor spaces or

urban environments could help in tracing infectious diseases. This paper aimed to contribute

to this issue by providing an autonomous framework that can be deployed in CCTV cameras,

known as FaceTouch, to detect hand-to-face touches in untrimmed video streams. From

Images, FaceTouch is trained to detect both human bodies and faces to maximise the ability of

the introduced framework to detect face touches despite face occlusion or undetected small

faces in complex urban scenes. After detecting whether there is a face touch, the framework

ensures individuals’ anonymity by applying facial blur, in case of face detection. The frame-

work is trained on a newly introduced dataset that comprises images extracted from the inter-

net, pedestrian cameras, bus CCTV feeds, and Zoom meetings, ensuring a wide range of utility

of the presented framework. After training and validating several encoders’ architectures, the

overall framework shows a high validation on the test set. As for future research, one possible

future direction to the presented framework would be utilising the temporal information and

sequence of events in video streams when humans touch their faces, or any other objects

Fig 9. The shortcomings of applying pose estimation as the backbone for FaceTouch. The figure shows several real-world

cases under different environmental conditions and complex urban scenes (beyond a single face person).

https://doi.org/10.1371/journal.pone.0288670.g009
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publicly used in a given scene. To achieve this, the introduced framework of FaceTouch could

help in pseudo-labelling sequential frames, alongside extending object detection to include

other objects besides humans.
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