
This is a repository copy of Constrained Device Performance Benchmarking with the
Implementation of Post-Quantum Cryptography.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214922/

Version: Published Version

Article:

Fitzgibbon, Gregory and Ottaviani, Carlo orcid.org/0000-0002-0032-3999 (2024)
Constrained Device Performance Benchmarking with the Implementation of Post-Quantum
Cryptography. Cryptography. 8020021. ISSN 2410-387X

https://doi.org/10.3390/cryptography8020021

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Citation: Fitzgibbon, G.; Ottaviani, C.

Constrained Device Performance

Benchmarking with the

Implementation of Post-Quantum

Cryptography. Cryptography 2024, 8,

21. https://doi.org/10.3390/

cryptography8020021

Academic Editor: Josef Pieprzyk

Received: 9 April 2024

Revised: 14 May 2024

Accepted: 16 May 2024

Published: 23 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Constrained Device Performance Benchmarking with
the Implementation of Post-Quantum Cryptography

Gregory Fitzgibbon 1 and Carlo Ottaviani 2,*

1 Quantum and AI Research, Tession Ltd., Cheadle, Cheshire SK8 1PY, UK; greg@tession.com
2 Department of Computer Science & York Centre for Quantum Technologies, University of York,

York YO10 5GH, UK

* Correspondence: carlo.ottaviani@york.ac.uk

Abstract: Advances in quantum computers may pose a significant threat to existing public-key

encryption methods, which are crucial to the current infrastructure of cyber security. Both RSA

and ECDSA, the two most widely used security algorithms today, may be (in principle) solved by

the Shor algorithm in polynomial time due to its ability to efficiently solve the discrete logarithm

problem, potentially making present infrastructures insecure against a quantum attack. The National

Institute of Standards and Technology (NIST) reacted with the post-quantum cryptography (PQC)

standardization process to develop and optimize a series of post-quantum algorithms (PQAs) based

on difficult mathematical problems that are not susceptible to being solved by Shor’s algorithm.

Whilst high-powered computers can run these PQAs efficiently, further work is needed to investigate

and benchmark the performance of these algorithms on lower-powered (constrained) devices and

the ease with which they may be integrated into existing protocols such as TLS. This paper provides

quantitative benchmark and handshake performance data for the most recently selected PQAs from

NIST, tested on a Raspberry Pi 4 device to simulate today’s IoT (Internet of Things) devices, and

provides quantitative comparisons with previous benchmarking data on a range of constrained

systems. CRYSTALS-Kyber and CRYSTALS-Dilithium are shown to be the most efficient PQAs in the

key encapsulation and signature algorithms, respectively, with Falcon providing the optimal TLS

handshake size.

Keywords: post-quantum cryptography; Internet of Things; constrained devices; benchmarking

1. Introduction

Modern-day applications need security to protect the confidentiality and integrity
of data, particularly during digital communications. Internet users rely on this security
for numerous critical services, including online banking, mobile and cloud computing,
e-commerce, and home automation. Cryptography is a key tool used to grant digital
security, allowing the encryption, transfer, and decryption of data during their transmission
between devices. Encryption and decryption occur via the use of cryptographic keys,
which can either be private or public depending on whether the encryption is symmetric or
asymmetric, respectively.

Devices employing symmetric encryption (private-key encryption) use a single (secret)
key for both encryption and decryption; hence, devices using private-key encryption
exchange this key, which is subsequently used in the decryption process [1]. Asymmetric
encryption (public-key encryption) uses an encryption key (public key) and a separate
decryption key (private key) [2].

Whilst current symmetric encryption methods including ChaCha20 and AES offer
users confidentiality (attacks based on the quantum Grover algorithm are possible, but their
effectiveness is limited and mitigable, redefining the cryptosystem parameters like the key
size), it is public-key methods that are fundamental to many digital systems for providing

Cryptography 2024, 8, 21. https://doi.org/10.3390/cryptography8020021 https://www.mdpi.com/journal/cryptography

Cryptography 2024, 8, 21 2 of 17

both key negotiation and digital signing. The public-key cryptographic protocol transport
layer security (TLS) builds encrypted tunnels between digital entities and is used in over
60% of internet connections in the form of a TLS-based secure HTTPS protocol [3,4]. TLS
also provides authentication with the use of digital certificates, issued by trusted certificate
authorities. Endpoints can verify a communicating device’s identity and public key as
those contained within the certificate. The two most widely used public-key methods
within certificates today are the Elliptic Curve Digital Signature Algorithm (ECDSA) and
Rivest–Shamir–Adleman method (RSA).

The robustness of these two cryptographical methods relies on strong mathematical
calculations that cannot be practically broken by conventional computer systems without
the legitimate cryptographical key. ECDSA relies on the difficulty of its elliptic curve
discrete logarithm (ECDL), and RSA relies on integer factorization, meaning that it could
take a powerful computer system several years to break. However, both ECDL and
RSA are no longer quantum-resistant following the discovery, by Peter Shor, of quantum
factorization algorithms that could solve both ECDL and integer factorization problems in
polynomial time [5]. Today, despite the fact that quantum computers (QCs) able to run the
Shor algorithm are still not available to us, recent advances in the implementation of QCs by
global companies like IBM, Google, and other players in the quantum computer race make
the advent of the quantum era feel closer and more plausible, along with its threat to the
security of cryptosystems that are reliant on the hardness of the factorization problem [6]
and discrete logarithms, including the Diffie–Hellman key-exchange method [7].

For a cryptographic system to remain secure from quantum attacks, hard mathematical
problems that are not susceptible to either Shor’s or any other quantum algorithm are now
being developed for both key encapsulation mechanisms (KEMs) and signatures. Research
into PQC has become both a significant area of interest in fundamental research and a ne-
cessity towards practical application, e.g., to update current cryptographic infrastructures,
as recommended by the NIST post-quantum standardization process. Moreover, meeting
the need to integrate such algorithms into existing devices, particularly ‘constrained’ IoT
devices with limited performance, has become a worthy endeavor amongst researchers.

2. Background and Research Questions

In this section we provide a short description of the background that motivates
our research questions, we summarize the existing work carried out on post-quantum
cryptographic protocols, and we review the existing literature on the benchmarking of
constrained devices.

2.1. Post-Quantum Algorithm Families

To address the issue of current security protocols potentially being broken by QC-
equipped attackers, the cryptographic community has been developing problems and
subproblems of NP hardness (i.e., at least as hard as a nondeterministic polynomial time
problem) that cannot be solved by quantum algorithms in polynomial time. The current
PQAs span five key families of mathematical problems that are hard to solve even for
a quantum adversary. The distinct family classifications of asymmetric algorithms are
described in more detail below. This grounding in PQAs and their respective classifications
is essential to help answer all the related research questions, as the performance of each
PQA is correlated with its family class.

In lattice-based cryptography, a mathematical structure named a lattice is used to
provide an infinite number of grid points. Vectors (tuples) represent the coordinates of a
given point in the lattice relative to the origin (a tuple of 0 s), and vectors can be defined as
‘far’ vectors or ‘short’ vectors depending on their proximity to the origin. Any vector in the
lattice space originates from a basis, i.e., a smaller set of vectors used to represent the entire
lattice space, and can be represented as a linear combination of the basis vectors [8,9]. A
basis can be identified as long or short depending on the lattice location, which has given
rise to a series of hard lattice problems, including the following:

Cryptography 2024, 8, 21 3 of 17

A. Shortest-Vector Problem: Finding the shortest vector in the Euclidean norm [10];
B. Closest-Vector Problem: Finding a lattice vector that minimizes the distance from

another target lattice [11];
C. Short-Integer Solution Problem: finding a non-zero integer vector given a number of

uniformly random vectors grouped as the column of a matrix [12];
D. Learning with Errors: Recover a secret (s) given a sequence of ‘approximate’ random

linear equations on s. For example, the input could be where each equation is correct
up to some small additive error and the goal is to recover [13].

The difficulty of each of these problems is increased by the vast dimensions of the
lattice and has therefore yielded some promising lattice-based PQAs that have been consid-
ered for standardization. Examples include CRYSTALS-Kyber (Kyber) [14], CRYSTALS-
Dilithium (Dilithium) [15], NTRU [16], and Falcon [17]. All of these except NTRU (which
was excluded in NIST Round 4) are performance-tested in this paper, to represent lat-
tice methods and help answer RQ1, and then integrated with TLS [18] to answer RQ3.
Data gleaned from previous studies on the performance of these PQAs will support us in
answering RQ2 and will provide input for the advantages/disadvantages for RQ4.

Hash-based cryptography represents an alternative to current digital signature schemes,
relying on Merkle trees and one-time signatures or few-time signatures used with secure
cryptographic hash functions. The security of these algorithms depends on the properties
of the hash function collision and preimage resistance. Assuming that the hash function
is good, finding collisions and primages would be difficult if not impossible even for a
quantum algorithm, meaning that hash-based approaches represent a good option for post-
quantum authentication. The main disadvantage is that the hash-based digital signatures
are stateful, meaning that they can only be used once requiring state management. A prime
example of a hash-based PQA considered for standardization is SPHINCS+ [19], which is a
combination of Merkle hash trees in the Forest of Random Subsets Scheme [20] and Witerniz
One-Time Signatures Plus Scheme [21] and is stateless, which alleviates the latter issue of
stage-managing but subsequently increases the signature size (approximately 40–60 KB),
resulting in slower performance. SPHINCS+ will be performance-tested to obtain primary
data to answer RQ1 and RQ3. Secondary data regarding SPHINCS+ performance will be
used as input for RQ2 and RQ4.

Code-based cryptography, proposed by Robert McEliece in 1978, has remained un-
threatened by cryptanalysis until relatively recently [22]. The concept is based on the use of
a cyphertext comprising a word of an appropriate linear error-correcting code, which in this
instance is a binary Goppa code, to which random errors are introduced [23]. The generator
matrix (i.e., the arbitrary basis of the code) is the public key that allows anyone receiving it
to encrypt it. Authentic users who have access to the decoding algorithm for the code (a
polynomial time algorithm termed a ‘trapdoor’ or private key) can remove the errors and
recover the cleartext. The scheme security relies on two key principles: (i) generic decoding
is usually hard, and (ii) the public key used to generate the cyphertext is hard to distinguish
from a random matrix.

Examples considered for standardization include the Classic McEliece scheme [24],
which has a much larger public key than its classical counterparts such as RSA. BIKE
and HQC are also code-based KEMs that are being considered for standardization. BIKE
is based on Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes that take
inspiration from the McEliece scheme but have improved bandwidth and a decoder (Black
Gray Flip) [25]. Hamming Quasi-Cyclic (HQC) [26] is reliant on the difficulty of decisional
quasi-cyclic syndrome decoding with parity problems. HQC is INDCPA-secure and is
alleged to also be secure against adaptive chosen-ciphertext attack (CCA2) [27]. It does,
however, have significantly larger keys and ciphertexts compared to BIKE, but its key-
generation and decapsulation mechanisms are considerably faster. Classic McEliece, BIKE,
and HQC are all performance-tested in this paper to represent the code-based methods for
RQ1. HQC and BIKE are available for TLS handshake performance testing for RQ3, and
secondary data are obtained for all the algorithms to contribute to RQ2 and RQ4.

Cryptography 2024, 8, 21 4 of 17

Isogeny-based cryptography is based on elliptic curves for KEMs. The first elliptic
curve key exchange algorithm was the Elliptic Curve Diffie–Hellman, based on the dis-
crete logarithm problem over elliptic curves [28]. It was theoretically solved by Shor’s
algorithm, and, therefore, it is no longer considered secure against quantum algorithms.
This has prompted the development of isogeny-based schemes, such as the Supersingular
Isogeny-based Diffie–Hellman (SIDH). Isogenies are surjective and homomorphic structure-
preserving functions that map two groups together. Between two elliptic curves, an isogeny
φ will map points on the domain curve E1 to points on a co-domain curve E2. These
isogenies are calculated using Velu’s formulas [29] as φ: E → E/κ, where κ is defined as the
kernel. An isogeny is generated from random values and used for private keys in secure
communications, and, as yet, no significant attacks against it have been identified. For this
reason, SIKE (Supersingular Isogeny-based Key Encapsulation) [30] is an SIDH-based PQA
that is being considered for standardization, and it will be assessed further in this paper.
Given its close relationship with ECC and Diffie–Hellman protocols, SIKE’s integration
into existing systems is considered relatively easy compared to its other PQA counterparts.
SIKE also has a very small key size of 750 bytes but is an order of magnitude slower than
the alternative PQAs being considered.

Multivariate polynomial cryptography (MPC) involves the hardness of solving prob-
lems of multivariate quadratic equations across finite fields, which is an NP-hard problem.
MCP often results in excessive signature or key sizes, and many of the developed PQAs
considered for standardization have focused on reducing these. MPC candidates include
GeMSS [31] and Rainbow [32]. Unfortunately, attacks on these PQAs have significantly
reduced their security, and, therefore, they are not being considered for PQC standardiza-
tion [33–35]. Consequently, this class of PQAs will not be investigated in this paper.

Relevant PQA winners of the NIST round 4, and alternatives, are represented in Figure 1.

ffi

ffiϕ E1 E2ϕ: E → E/κ κ	
tt

ffi

tt

Family KEM Signature

Lattice CRYSTALS-Kyber

CRYSTALS-Dilithium

Falcon

Hash-Based SPHINCS+

Code-based

BIKE*

Classic McEliece*

HQC*

Isogeny-based SIKE*

Figure 1. The four PQA winners [14,15,17,19] and the four PQA alternatives (*) [24–26,30] from NIST

Round 4. Five of the algorithms are employed for KEM (with CRYSTALS-Kyber as the primary PQA),

three are selected for signatures.

Cryptography 2024, 8, 21 5 of 17

2.2. Post-Quantum Cryptography and IoT Devices

The IoT connects embedded sensors and actuators using networking protocols. As
such, the IoT has contributed significantly to the creation of novel applications, including
smart homes, smart cities, smart farms, healthcare, smart sensors, drones, and many
more. The majority of devices involved in such IoT networks are constrained devices
with limited CPU, memory, wireless bandwidth, and/or power resources [36]. Given the
high asset value of the sectors and environments in which these systems operate, they
have become a significant target for cyberattacks [37,38]. Whilst the security protocols for
most information technology (IT) devices can be patched in the future, performing this
task for today’s billions of embedded IoT devices presents a significant challenge, and the
security risks to such devices are further increased in a post-quantum world [39]. There
therefore needs to be consideration of how quantum-resistant algorithms perform on these
constrained IoT devices, as opposed to focusing on their non-constrained counterparts.

Given the increase in the number of IoT devices transmitting encrypted data, the
work developed in ref. [40] discusses the need for ‘lightweight’ PQAs that are quantum-
safe but with minimal overheads. Ref. [41] supports the need for PQAs to maintain
security against quantum adversaries but emphasizes the ease with which higher-powered
computing devices can run such algorithms; therefore, the testing of constrained devices
with limited capabilities is necessary to simulate the performance of current IoT devices.
Ref. [41] achieves this in an IoT laboratory where the constrained device is a Raspberry
Pi 3B+ (1.2 GHz quad core ARMv8 (A53) 64-bit processor, 1 GB RAM and 32 GB storage).
This is used for benchmarking the performance of the selected PQAs from Round 2 of
the NIST PQC standardization competition. Both KEMs (including Kyber, Saber, NTRU,
Classic McEliece, and FrodoKEM) and signatures (including Dilithium, qTESLA, Rainbow,
and SPHINCS+) are benchmarked in [41], which is relevant to this study, as it provides
a similar justification and methodology for generating the quantitative data-measuring
time (ms) to assess the performance of each algorithm on individual constrained devices.
This previous work also combines the performance of KEM/signature PQAs during a
handshake between two constrained devices, communicating using TLS1.3 over a wired
network and also providing secondary data to answer RQ2. The methods used in [41] will
aid in generating the benchmarking data to answer RQ1, and the data from [41] can also be
a source of secondary quantitative data to assist in answering RQ2 and RQ4. The work in
ref. [41] also points to previous studies that used higher-powered CPUs in their constrained
devices to obtain similar results [42,43], which could be of use for the control used in this
study for the first two research questions.

The interpretation of this quantitative data will provide the basis of an assessment for
identifying the advantages and disadvantages of the PQAs being investigated.

2.3. Research Questions

• RQ1: The PQA standardization competition was updated by NIST in July 2022 [44],
which highlights how cutting-edge the post-quantum field is and prompts further
inquiry into the efficiency and practicality of PQAs. This includes the ease with which
they integrate with current security technologies and how they perform in current
IoT devices, which have significantly less processing power than their high-powered
counterparts and yet are widely distributed within smart systems and are therefore
more prone to cyber-attacks. For this reason, there is the need to ask the question:
how do the selected PQAs perform relative to each other on constrained devices and
compared to higher-powered devices?

• RQ2: There are numerous groups within the cryptographic community that have
tested the performance of PQAs on a range of constrained devices and lower power
processors [41,45–48]. Whilst the data may not be directly comparable, it would be
useful to have supporting data to either confirm or refute the findings of RQ1, and,
therefore, we should ask: how do the data from this study compare to those from
similar previous studies?

Cryptography 2024, 8, 21 6 of 17

• RQ3: The integration of PQAs into existing network security protocols such as TLS will
be a requirement even for future networks that QCs form part of. For this reason, this
question should be posed: how do the PQAs perform on constrained target devices
when tested in combination (KEM and Sign) over TLS?

• RQ4: Finally, to summarize the findings, we need to ask what the concluding key advan-
tages and disadvantages of PQAs are, when they are implemented in constrained devices.

2.4. Primary Data Collection and Experimental Methods

The method defined in this section was employed to generate primary quantitative
data to help answer RQ1. Quantitative data were collected and analyzed to determine
the benchmark performance of each PQA, encompassing the four NIST winners and
the four alternate candidates in the fourth round for PQC standardization (see Table 1).
Benchmarking measures mean the time (µs) during key exchange and signing for each
of the PQA algorithms when tested on both constrained and higher-performance devices.
For KEMs, the process timings were subdivided into key generation, encapsulation, and
decapsulation, and for signatures, they were subdivided into Keypair, Sign, and Verify.

Table 1. This table summarizes the performance of PQA KEM, comparing the benchmarking per-

formed in this work with that of other existing works. * SSF = Classic McEliece with semi-systematic

form of public-key generation.

PQA Reference
NIST
Level

Constrained? Device/CPU Keygen (ms) Encaps (ms) Decaps (ms)

Kyber

Barton et al. [41] 3 Yes RPi3 0.89 1.08 1.32

This work 3 Yes RPi4 0.11 0.11 0.08

This work 3 No PC 0.04 0.05 0.06

HQC

Røneid, 2021 [49] 3 No 3.5 GHz CPU 0.08 0.13 0.21

This work 3 Yes RPi4 24.28 48.48 72.97

This work 3 No PC 3.75 7.52 11.35

Classic-McEliece

Chikouche et al.
2018 [45] 3 Yes Android Mobile 320,313.00 11.00 364.00

Røneid, 2021 [49] 3 No 3.5 GHz CPU 53.95 0.03 0.07

This work 3 Yes RPi4 1907.86 0.47 106.63

This work 3 No PC 83.26 0.02 0.06

Classic-McEliece
(SSF) *

Røneid, 2021 [49] 3 No 3.5 GHz CPU 29.27 0.03 0.07

This work 3 Yes RPi4 0.48 106.60 596.47

This work 3 No PC 0.08 28.68 80.56

BIKE-L3

Barton et al. [41] 3 Yes RP3 24.50 30.30 127.00

Roneid, 2021 [50] 3 No 3.5 GHz CPU 0.44 0.12 1.65

This work 3 Yes RP4 200.41 10.19 161.67

This work 3 No PC 0.57 0.07 1.62

Benchmarking was achieved using Open Quantum Safe (OQS), an open source project
chosen for this paper due to its correlation in experimenting with NIST-selected algorithms
and the ability to evaluate PQC within a testing environment [51]. Liboqs is a library
from the OQS platform containing the relevant PQAs that is available through GitHub
(https://github.com/open-quantum-safe, accessed on 15 May 2024) and provides bench-
marking functionality for both KEM and signing. This library has been used in previous
benchmarking studies [41] and allows greater comparability of data, to answer RQ2.

Cryptography 2024, 8, 21 7 of 17

A second component was to performance-test the TLS1.3 handshake between the two
constrained devices using a fork in the OQS-OpenSSL 1.1.1 project, which integrates liboqs
(version 0.7.1). The TLS handshake size (bytes) and timings (ms) were determined for
different combinations of KEM and signing PQAs. The OpenSSL fork’s protocol involves
simulated client–server handshake on the same device, but here, it was adapted for client–
server handshake measurement between two networked, constrained devices. These data
were generated within an IoT laboratory setting, using the equipment and configurations
described below:

• Two Raspberry Pi 4 devices with a 1.5 GHz quad core ARMv8 (A72) 64-bit processor,
4GB RAM. Given that a 64-bit operating system is required to run liboqs, Raspberry
Pi OS 64-bit Debian version 11 (bullseye) was installed with 64 GB microSD storage.
Access to the devices was over SSH (using PuTTY 0.77) from a desktop PC.

• A standalone network generated between the two devices using a home-based switch
(Netgear GS308).

Comparative PQA performance testing on non-constrained (control) devices was
performed using the following:

• Windows 11 OS Desktop PC with 4.9 GHz 16 core (32 thread) Ryzen 9 5950x processor,
64 GB DDR4 3600 MHz RAM, and 1 TB of M.2 NvMe SSD storage.

• A Windows 11 OS laptop (Razer Blade) with up to 2.6 GHz 6-core (12-thread) i7-9750H
processor, 8 GB GDDR6 VRAM, and 1 TB SSD.

• For both control devices, testing was performed on a Linux-based hypervisor using
VM Virtual Box version 6.1.36 (Oracle) running Ubuntu 22.04.01 LTS Jammy Jellyfish
OS. The hypervisors were set to access all CPU cores within each respective system,
and all additional parameters were maximized to optimize performance.

• All PQA benchmarks were run in triplicate on both Raspberry Pi 4 devices and control
devices, and the mean values are presented in the Results section.

• All TLS performance tests were run in singlet due to the lack of variance in the data
generated. The designated server Raspberry Pi 4 device (RPi4-1) was configured to
have a static IP address, as per the configuration shown in Figure 2. The OQS-OpenSSL
protocol was adapted to enable testing across both devices using the connect ip address
command on the client device (RPi4-2).

ff

tt

Figure 2. Standalone wired network for measuring PQA handshake sizes and timings over TLS

between RPi4-1 (server) and RPi4-2 (client). A static IP address was configured for the server to allow

connection from the client.

3. Results and Analysis

OQS benchmark analysis assessed the performance of the KEM and signature PQA
schemes and the TLS handshake (combining KEM and signature mechanisms). Given the

Cryptography 2024, 8, 21 8 of 17

number of parameter variations in each PQA, the volume of quantitative data generated
needed restricting, as follows:

• The selection of the PQA parameters required to achieve NIST Level 3 security only
(equivalent to cracking AES-256 or 128 bits of quantum security, as required for NIST
standardization). Where this was not available, NIST Level 5 security was selected.
We observed that Falcon-512 and Falcon-1024 had claimed NIST security levels of 1
and 5, respectively; therefore, the latter was selected.

• Only those PQAs with representation in liboqs were used. During benchmarking, SIKE
was no longer available in liboqs, having been compromised by a classical computer
attack, after having reached NIST Round 4 selection [52]. It was therefore excluded
from testing.

• Where significant variations in a PQA existed, specific parameters were selected and
taken as representative of the group (as for SPHINCS+).

The summarized results of this paper are represented graphically in the relevant
sections and then compared, where possible, with other benchmarks from the literature.
In order to allow further understanding of the different PQAs in the context of the results
generated in this paper, both public- and private-key sizes are provided. These can be
found in Appendix A, Table A1 for each KEM, and in Table A2 for each signature PQA,
selected based on the above criteria [50].

3.1. KEM Benchmarking

Benchmark performance testing of the KEM PQAs on the two constrained devices
(RPi4-1 and RPi4-2) and two control devices (PC and laptop) provided mean times (µs) for
the individual stages of key generation, encapsulation, and decapsulation. The data are
represented graphically (bar charts) in Figure 3 for each of the devices on a logarithmic axis
due to the broad range of values.

tt

tt

ff

ff

Figure 3. Logarithmic plot of time (µs) versus KEM PQA processes for key generation (keygen),

encapsulation (encaps), and decapsulation (decaps) on constrained (RPi4-1 and RPi4-2) and higher-

powered (PC and laptop) devices. Kyber768 processes are fastest for all devices and show the least

difference between the two device power classifications.

Across all devices tested, the lattice-based solution Kyber (Kyber768) was the front
runner, with a moderate key size and performing encapsulation and decapsulation in ap-
proximately 0.05 milliseconds. Of the code-based algorithms—HQC (parameter HQC-192),
BIKE (parameter BIKE-L3), and Classic McEliece—HQC demonstrated the best overall

Cryptography 2024, 8, 21 9 of 17

performance across all devices. BIKE’s performance was more costly than HQC, with
the highest cost being for decapsulation for the higher-powered devices and key genera-
tion for the low-powered systems. Classic McEliece parameter 460,896 showed the best
performance in the code-based solutions for encapsulation, but the key generation was
substantially more costly, given the large public-key size and the fact that the system would
reject 3–4 Goppa polynomials on average, thus restarting the key-generation process [24].
Despite having the same large public-key size, the alternatively designed parameter for
Classic McEliece 460896f used a semi-systematic form (SSF) of public-key generation, which
offered a far better key-generation performance due to its the lower probability of key-
generation failure compared to the systematic form [24] and generated a much-improved
performance compared to that of HQC. This was, however, hindered by the excessive
decapsulation latency noted across all platforms, which requires further investigation via
comparison with previous studies.

In addition to this, comparison between the constrained devices and the higher-
powered devices revealed a difference in latency of up to an order of magnitude for the
constrained platforms, except for Kyber768, which showed only a ~50% improvement

When run on the PC (see Figure 3), interestingly, kyber768 tested on the constrained
devices showed a marginally improved performance compared to when it was run on
the laptop.

This performance testing has answered RQ1 regarding KEM PQAs, placing the lattice-
based Kyber method as the fastest of the KEM PQAs for key generation, encapsulation,
and decapsulation on both constrained devices; it demonstrates the least difference in
performance between constrained devices and higher-powered platforms. HQC appears
to be another promising algorithm, with a uniformly distributed performance across
key generation, encapsulation, and decapsulation on constrained platforms; however,
the difference in performance between constrained and higher-powered devices is more
pronounced. These results are further supported by the NIST competition that marked
Kyber as the winning KEM lattice-based PQA due to its security and performance across
other constrained devices [44].

3.2. Comparison with Other KEM Works

In Table 1, we compare three relevant publications testing KEM PQAs. In the com-
parison, the speeds are converted to micro seconds, and, where comparative data are not
available on constrained devices, PC benchmarks from this work are also included.

Given that each benchmarking is performed under slightly different conditions and
parameters, a summary of these divergencies is explained below in Table 1. The work de-
veloped in ref. [41] uses a Raspberry Pi 3 B+, which, while less powerful than the Raspberry
Pi 4, provides comparative results for Kyber768, supporting the speed and consistency of
Kyber’s performance across key generation, encapsulation, and decapsulation. Ref. [41]
also performance-tests BIKE-L3 and provides similar performances on constrained plat-
forms. In contrast, the work developed in ref. [50] delivers a comprehensive study focused
on Classic McEliece, including a semi-systematic form (SSF) variant, in comparison with
the other code-based PQAs, such as HQC and BIKE. These data are primarily collected on
a device with a 3.5 GHz CPU (non-constrained). However, consistency is maintained in the
high key-generation latency for Classic McEliece compared to its SFF counterpart.

The performance of HQC on the PC, compared with that described in ref. [49], shows
an increase in latency. The work developed in ref. [45] uses a Samsung Galaxy A5, model
SM-A500H, which is equipped with an Exynos 7880 Octa-core 1.9 GHz processor, to
benchmark a range of PQAs, including Classic McEliece [45], again showing extensive key-
generation times compared to the other KEM PQAs, listed with no SSF comparison in this
case. No previous studies support the extended SSF decapsulation time that we observed.

Cryptography 2024, 8, 21 10 of 17

3.3. Signature Benchmarking

Benchmark performance testing of the signature PQAs on the two constrained devices
and control devices provided mean times (µs) for the individual stages of Keypair, Sign,
and Verify processes (see Figure 4).

ff

ff

Figure 4. This figure describes the performance of signature PQA processes Keypair, Sign, and Verify

for constrained (RPi4-1 and RPi4-2) and higher-powered (PC and laptop) devices. Dilithium3 is

the fastest for all devices and shows a moderate difference in performance between the two power

classifications of devices. The performance is measured using a Log of time in µs.

The hash-based method SPHINCS+ can use either Haraka, SHA56, or SHAKE256
hash functions, each of which has a ‘robust’ and ‘simplified’ version, as well as parameters
for ‘fast processing’ (denoted ‘f’) and ‘small signatures’ (denoted ‘s’) [18]. This provides
12 combinations for NIST security level 3 alone, and, therefore, this has been limited to
two SHPINCS+ variants by taking the SHA256 hash-base to be representative and testing
‘simplified’ versions only, as the ‘robust’ alternatives were no longer available in the OQS
benchmark options.

The data in Figure 4 indicate that Dilithium performs the best across all devices for
Keypair, Sign, and Verify. Falcon offers faster verification speeds for constrained devices
but is slower on Keypair and signature. This comparison may, however, be less direct,
given that Falcon’s level 5 security parameter (Falcon-1024) has been used in place of
the level 3 parameter (due to the removal of the latter in the second round of the NIST
competition [27]).

SPHINCS+ ‘s’ variants denote small signatures and SHPINCS+ ‘f’ denotes fast pro-
cessing. SPHINCS+ has the smallest of the public keys, which is reflected in the Keypair
phase being faster than Falcon’s for the f variants. However, the SPHINCS+ Sign and Verity
phases are at least an order of magnitude slower across all devices as a result of its large
stateless signatures.

A comparison of the constrained device performance compared to the PC indicates
that, overall, the PC’s speed is approximately between 5 and 10 times faster than the
Raspberry Pi 4 across the PQAs. The laptop is approximately 50% slower than the PC but
is significantly faster than the Raspberry Pi 4 across the board.

Dilithium is the clear front-runner, with consistently low latency across the Keypair,
Sign, and Verify processes for all platforms compared to the other PQAs. Dilithium runs
approximately one order of magnitude slower on constrained platforms compared to non-

Cryptography 2024, 8, 21 11 of 17

constrained devices, but this is moderate when performing the same comparison for the
other signature PQAs.

The PQA performance testing in this work has answered RQ1, indicating that the
lattice-based PQAs CRYSTALS-Dilithium and CRISTALS-Kyber provide optimal latency
as, respectively, signature and KEM PQAs for IoT devices compared to the remaining
NIST winners/alternatives tested. Section 3.4 looks to verify these findings by measuring
the TLS handshake size for KEM/signature combinations communicated between two
constrained platforms.

D. Comparison with other signature works
Two relevant publications related to performance-testing signature PQAs have been

identified, and Table 2 compares these works to the results of this work. Timings are listed
only for the Sign and Verify processes for most publications selected, with Keypair excluded.
Benchmarking is conducted under slightly differing conditions, which are indicated below
in Table 2.

Table 2. This table summarizes the performance of PQA signature in this work and compares it with

the results of other existing works.

PQA Reference NIST Level Constrained? Device/CPU Sign (ms) Verify (ms)

Dilithium 4
Barton [41] 3 Yes RPi3 6.76 2.14

Sikeridis 2020 [53] 3 No i5 1.7 GHz CPU 1.25 0.3

Dilithium 3 This work 3 No RPi4 0.9 0.31

Falcon

Sikeridis, 2020 [53] 5 No
i5, 4 core 1.7
GHz CPU

5.22 0.05

This work 5 Yes RPi4 1.59 0.21

This work 5 No PC 0.37 0.06

SPHINCS
SHA256-192fs

Barton [41] 3 Yes RPi3 785 39.7

This work 3 Yes RPi4 193.07 10.27

SPHINCS
SHA256-192ss

Barton [41] 3 Yes RPi3 21,200 15.8

This work 3 Yes RPi4 4347.93 3.51

The work developed in ref. [41] uses a Raspberry Pi 3 B+, providing results for
Dilithium IV, but has also included the same SPHINCS+ variants as those selected in this
work. The findings of [41] are consistent with Dilithium’s leading performance with the
lowest latency. As per this study, ref. [41] also demonstrated that SPHINCS+ had the
highest latency for the Sign process, further supporting our results.

Ref. [53] uses a non-constrained device operating a virtual machine with an Intel i5-
8350U processor utilizing four cores set at 1.7 GHz each with 8GB of RAM [53]. Dilithium 4
is tested and again is the front-runner for speed overall. Falcon1024 has approximately ten
times more latency for signing, but verification is approximately three times faster than
Dilithium 4, given its smaller signature size [17]. These supporting data have been helpful
in answering RQ2 through verifying these papers’ findings through comparison with these
previous works.

3.4. TLS Handshake

For TLS performance, a fork in OpenSSL, which integrates liboqs to measure quantum-
safe key exchange and authentication in TLS1.3, is used to determine the size and time of
a handshake between the two constrained devices for each combination of the KEM and
signature PQAs. NIST Security Level 3 parameters for SHPINCS+ SHA-256-192 variants

Cryptography 2024, 8, 21 12 of 17

are not active in the OpenSSL liboqs provided by Open Quantum Safe. For this reason,
SPHINCS+-SHA256-128f-robust for NIST security level 1 was used instead.

Despite having a smaller public-key, private-key, and signature size (32 bytes, 64 bytes,
and 17,088 bytes, respectively) compared to the level 3 variants, this parameter still provides
the smallest of the public-/private-key sizes and the largest signature size compared to the
other signature PQAs tested.

These data are presented in Table 3 and indicate that SPHINCS+ uses the greatest
number of bytes, independent of the KEM algorithm used. Dilithium provided the second-
lowest byte data observed across all KEM combinations, but Kyber768 combinations were
shown to be optimal. Falcon was the front-runner, with the smallest handshake size,
independent of the combined KEM, but using Kyber768 led to the lowest byte cost. This
is attributed to Kyber having the smallest key sizes of the KEMs and Falcon having the
smallest signature size of the signature PQAs tested. Handshake timing data for these
KEM/signature combinations could not be obtained at the time of testing due to a TLS1.3
specific error caused by a configuration issue with Nginx SSL that prevented connection to
the server [54–59].

Table 3. This table shows that SPHINCS+ has the greatest byte cost, independent of the KEM

algorithm. Falcon and Dilithium have the lowest and second-lowest byte data, respectively, for all

KEM combinations, but Kyber768 was optimal. * NIST Level 1 SPHINCS+ alternative was used due

to there being no activation of level 3 (192) in OpenSSL at time of testing.

Handshake (Bytes)

Kyber768 HQC-192 BIKE-L3

Read Written Total Read Write Total Read Write Total

Dilithium3 10,105 1589 11,694 18,043 4927 22,970 12,132 3488 15,620

Falcon-1024 5891 1589 7480 13,831 4927 18,758 7920 3488 11,408

SPHINCS+-SHA256-128f-robust * 35,799 1589 37,388 43,737 4927 48,664 37,826 3488 41,314

4. Discussion and Conclusions

A summary of the results obtained in this work is given in Table 4, showing the key
advantages and disadvantages of the PQAs tested on IoT devices.

This work contributes to the field of post-quantum cryptography by benchmarking the
winning and front-running PQAs on the Raspberry Pi 4. At the time of writing, quad core
processors with speeds between 1.2 and 1.5 GHz and at least 4 GB of RAM can typically
be found in smart TVs, smart home devices, and mobile phones [55–57]. Comparably, the
Raspberry Pi 4 has similar specifications and therefore more closely represents the IoT
devices of today. Previous studies have either used non-constrained devices [40,42] due
to the availability of technology or devices of very limited capability compared to current
IoT device standards [58–60]. Furthermore, some finalist PQAs, such as BIKE and Classic
McEliece, have been modified for performance optimization between the second and third
rounds of the NIST competition, and it is therefore prudent to test the most recent iterations
of these PQAs [24,25].

The limitations of this work included the lack of TLS handshaking timings due to an
OpenSSL configuration issue [54]. It would be prudent to add these timings to support
the handshake size data in future work. Furthermore, SPHINCS+ SHA256-192-based
parameters were disabled in OpenSSL at the time of testing and were therefore replaced
with SHA256-128 parameters. Whilst this is inconsistent with the benchmarking data,
SHA256-192 testing for level 3 security is unlikely to add any value, given the large
size of the SPHINCS+ handshake, even at security level 1. Finally, this work has only
benchmarked PQAs using timings, which has limited the number of comparable prior
studies for RQ2. The literature ranges regarding the type of PQA benchmarking data

Cryptography 2024, 8, 21 13 of 17

collected and includes timings, CPU cycles, memory usage, and energy consumption.
Broadening these measurements in follow-up studies can provide greater insight into
PQA performance.

In terms of outlook and future work, the consistent and excessive decapsulation time
observed for the Classic McEliece SST parameter across all platforms tested is not supported
in the literature, prompting further investigation in order to better understand these
findings. The current literature reflects the need to adapt PQAs for the most vulnerable,
constrained nodes within a network, and introduce lighter-weight versions with reduced
latency and memory costs [61–64]. The benchmarking of these variants would be prudent
in order to build on the findings of this paper.

Aside from timings, PQA fitness for purpose and ‘cryptoagility’ needs to be considered
for migration into existing IT infrastructures and real-world use. The work developed
in ref. [65] indicates the main open issues that need to be addressed in order for robust
PQAs to achieve a quantum secure network that may be shared by both quantum and
classical infrastructures.

Table 4. The Table summarizes the key advantages and disadvantages of the PQAs tested on IoT

devices. * Includes reference to this paper. White cells denote KEMS, and gray cells denote signatures.

Advantages Disadvantages

CRYSTALS-Kyber

• Lowest-latency KEM across all processes *
[41,44,46]

• Adapted for constrained devices * [61,62]
• Smallest TLS handshake size * [41]

• Inefficient memory usage [66]

HQC
• Low-latency key generation * [49]
• Small public key * [26,50]
• Runs on low-cost hardware [49]

• Largest TLS handshake size *

Classic
McEliece

• Low-latency encapsulation/
decapsulation * [45,50]

• Establishes security well [24,49]
• Small cyphertext [26,49]

• Largest public key and highest
key-generation latency * [24,49]

• SST parameter with highest
decapsulation latency *

• Large bandwidth requirements [49]
• Not appropriate for constrained

devices * [45,49]
• Not available for testing in liboqs OpenSSL

fork * [50]

BIKE-L3
• Adapted for constrained devices * [49,66]
• Runs on low-cost hardware [49]

• High cost of key generation * (this work) [49]
• High cost of decapsulation * [49]

CRYSTALS-
Dilithium

• Lowest-latency signature across all
processes * [41]

• Adapted for constrained devices * [60,61]
• Moderate TLS handshake size * [53]

• Less efficient hardware architecture [67]

Falcon

• Smallest TLS handshake size * [53]
• Smallest signature size * [17]
• Small public-key size [17]
• Low verification latency *

• High Keypair latency *
• Increased susceptibility to side-channel

attacks [48]

SPHINCS+ • Smallest private- and public-key size [19]

• Large signature size * [19]
• High Sign latency * [19,47]
• Not appropriate for constrained

devices * [47,68]

Author Contributions: G.F. developed the analysis. C.O. supervised the project. Both authors con-

tributed to the conceptualization of the analysis. Both authors contributed to writing the manuscript.

All authors have read and agreed to the published version of the manuscript.

Cryptography 2024, 8, 21 14 of 17

Funding: Carlo Ottaviani acknowledges support from EPSRC and DSIT TMF-uplift CHEDDAR:

Communications Hub For Empowering Distributed ClouD Computing Applications And Research

(EP/X040518/l) and (EP/Y037421/l).

Data Availability Statement: All reported data are included in the manuscript.

Acknowledgments: Greg Fitzgibbon would like to acknowledge his son William Fitzgibbon for the

motivation to deliver this work.

Conflicts of Interest: Author Gregory Fitzgibbon was employed by the company Quantum and AI

Research, Tession Ltd. The remaining authors declare that the research was conducted in the absence

of any commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

Private- and public-key sizes (and signature sizes) for the PQAs selected based on [55].
This provides a frame of reference for the relative performance of each PQA in the bench-
marking analyses.

Table A1. KEM PQA private- and public-key sizes.

Family Protocol Parameter Set Private-Key Size (Bytes) Public-Key Size (Bytes)

Lattice Crystal-Kyber
Kyber-768 2400 1184

Kyber-768-90s 2400 1184

Code-based

BIKE BIKE-L3 10,105 3083

HQC HQC-192 4586 4522

Classic McEliece
Classic-McEliece-460896 13,608 524,160

Classic-McEliece-460896f 13,608 524,160

Table A2. Signature PQA public-key, private-key, and signature sizes.

Family Protocol Parameter Set
Private-Key Size

(Bytes)
Public-Key Size

(Bytes)
Signature Size

(Bytes)

Lattice
Dilithium Dilithium3 4000 1952 3293

Falcon Falcon-1024 2305 1793 1462

Hash-based SPHINCS+

SPHINCS+-SHA256-192f-robust ‡ 96 48 35,664

SPHINCS+-SHA256-192f-simple 96 48 35,664

SPHINCS+-SHA256-192s-robust ‡ 96 48 16,224

SPHINCS+-SHA256-192s-simple 96 48 16,224

‡ Public-key, private-key, and signature sizes for SPHINCS+ robust variants were sourced from [26].

References

1. Delfs, H.; Knebl, H. Introduction to Cryptography: Principles and Applications. In Information Security and Cryptography: Texts

and Monographs, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007.

2. Li, N. Asymmetric Encryption. In Encyclopedia of Database Systems; Liu, L., OZsu, M.T., Eds.; Springer: Boston, MA, USA, 2009;

p. 142.

3. Chan, C.L.; Fontugne, R.; Cho, K.; Goto, S. Monitoring TLS adoption using backbone and edge traffic. In Proceedings of the

IEEE INFOCOM 2018—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA,

15–19 April 2018; pp. 208–213. [CrossRef]

4. Naylor, D.; Finamore, A.; Leontiadis, I.; Grunenberger, Y.; Mellia, M.; Munafò, M.; Papagiannaki, K.; Steenkiste, P. The Cost of

the “S” in HTTPS. In Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and

Technologies, Sydney, Australia, 2–5 December 2014. [CrossRef]

5. Shor, P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual

Symposium on Foundation of Computer Science, Washington, DC, USA, 20–22 November 1994; pp. 124–134. [CrossRef]

6. Bernstein, D.J. Introduction to post-quantum cryptography. In PostQuantum Cryptography; Bernstein, D.J., Buchmann, J.,

Dahmen, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–14.

Cryptography 2024, 8, 21 15 of 17

7. Buchanan, W.; Woodward, A. Will quantum computers be the end of public key encryption? J. Cyber Secur. Technol. 2017, 1, 1–22.

[CrossRef]

8. Nejatollahi, H.; Dutt, N.; Ray, S.; Regazzoni, F.; Banerjee, I.; Cammarota, R. Post-Quantum Lattice-Based Cryptography Imple-

mentations: A Survey. ACM Comput. Surv. 2019, 51, 129. [CrossRef]

9. Peikert, C. A Decade of Lattice Cryptography. Found. Trends®Theor. Comput. Sci. 2016, 10, 283–424. [CrossRef]

10. Micciancio, D. Shortest Vector Problem. In Encyclopedia of Algorithms; Kao, M.-Y., Ed.; Springer: Boston, MA, USA, 2008;

pp. 841–843.

11. Micciancio, D. Closest Vector Problem. In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A., Ed.; Springer: Boston,

MA, USA, 2005; pp. 79–80.

12. Ajtai, M. Generating hard instances of lattice problems (extended abstract). In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996. [CrossRef]

13. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM 2009, 56, 34. [CrossRef]

14. Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS-Kyber:

A CCA-Secure Module-Lattice-Based KEM. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy

(EuroS&P), London, UK, 24–26 April 2018; pp. 353–367. [CrossRef]

15. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium: A Lattice-Based Digital

Signature Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 238–268. [CrossRef]

16. Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Algorithmic Number Theory; Springer:

Berlin/Heidelberg, Germany, 1998; pp. 267–288.

17. Fouque, P.-A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon:

Fast-Fourier Lattice-based Compact Signatures over NTRU. Submiss. NIST’s Post-Quantum Cryptogr. Stand. Process 2019, 36, 1–75.

18. Crockett, E.; Paquin, C.; Stebila, D. Prototyping Post-Quantum and Hybrid Key Exchange and Authentication in TLS and SSH.

2019. Available online: https://eprint.iacr.org/2019/858 (accessed on 15 May 2024).

19. Aumasson, J.-P.; Bernstein, D.J.; Beullens, W.; Dobraunig, C.; Eichlseder, M.; Fluhrer, S.; Gazdag, S.-L.; Hülsing, A.; Kampanakis, P.;

Kölbl, S.; et al. SPHINCS+ Submission to the NIST Post Quantum Project, v3. 1 October 2020. Available online: https:

//sphincs.org/data/sphincs+-round3-specification.pdf (accessed on 15 May 2024).

20. Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [CrossRef]

21. Buchmann, J.; Dahmen, E.; Ereth, S.; Hulsing, A.; Ruckert, M. On the Security of the Winternitz One-Time Signature Scheme. In

Proceedings of the Progress in Cryptology—AFRICACRYPT 2011, Dakar, Senegal, 5–7 July 2011; pp. 363–378.

22. Canteaut, A.; Sendrier, N. Cryptanalysis of the Original McEliece Cryptosystem. In Advances in Cryptology—ASIACRYPT’98;

Ohta, K., Pei, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 187–199.

23. McEliece, R.J. A Public-Key Cryptosystem Based on Algebraic Coding Theory. Deep Space Network Progress Report. Volume

44, pp. 114–116, 1 January 1978. Available online: https://ui.adsabs.harvard.edu/abs/1978DSNPR..44..114M (accessed on

15 May 2024).

24. Bernstein, D.J. Classic McEliece: Conservative Code-Based Cryptography. 10 October 2020. Available online: https://cryptojedi.

org/papers/mceliecenistr3-20201010.pdf (accessed on 15 May 2024).

25. Aragon, N.; Barreto, P.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.-C.; Gaborit, P.; Ghosh, S.; Gueron, S.; Güneysu, T.; et al.

BIKE: Bit Flipping Key Encapsulation. 29 September 2021. Available online: https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.

26.1.pdf (accessed on 15 May 2024).

26. Gaborit, P.; Deneuville, J.-C. Hamming Quasi-Cyclic (HQC) Third Round Version. 1 October 2020. Available online: https:

//pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf (accessed on 15 May 2024).

27. Alagic, G.; Alperin-Sheriff, J.; Apon, D.; Cooper, D.; Dang, Q.; Kelsey, J.; Liu, Y.-K.; Miller, C.; Moody, D.; Peralta, R.; et al. Status

Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process. NIST, July 2020. Available

online: https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf (accessed on 15 May 2024).

28. Haakegaard, R.; Lang, J. The Elliptic Curve Diffie-Hellman (ecdh). 2015. Available online: https://koclab.cs.ucsb.edu/teaching/

ecc/project/2015Projects/Haakegaard+Lang.pdf (accessed on 15 May 2024).

29. Moody, D.; Shumow, D. Analogues of Velu’s Formulas for Isogenies on Alternate Models of Elliptic Curves. Math. Comput. 2011,

85, 1929–1951. Available online: https://eprint.iacr.org/2011/430 (accessed on 15 May 2024). [CrossRef]

30. Jao, D. SIKE: Supersingular Isogeny Key Encapsulation. Soumission a l’appel a candidatures “Post-Quantum Cryptography” du

NIST. 2017. Available online: https://joostrenes.nl/publications/sike-rd1.pdf (accessed on 15 May 2024).

31. Casanova, A.; Faugere, J.-C.; Macario-Rat, G.; Patarin, J.; Perret, L.; Ryckeghem, J. GeMSS: A Great Multivariate Short Signature;

Université Pierre-et-Marie-Curie: Paris, France, 2017.

32. Ding, J.; Schmidt, D. Rainbow, a New Multivariable Polynomial Signature Scheme. In Applied Cryptography and Network Security;

Springer: Berlin/Heidelberg, Germany, 2005; pp. 164–175.

33. Tao, C.; Petzoldt, A.; Ding, J. Improved Key Recovery of the HFEv-Signature Scheme. 2020. Available online: https://eprint.iacr.

org/2020/1424 (accessed on 15 May 2024).

34. Beullens, W. Improved Cryptanalysis of UOV and Rainbow. In Advances in Cryptology—EUROCRYPT 2021; Springer International

Publishing: Cham, Germany, 2021; pp. 348–373.

Cryptography 2024, 8, 21 16 of 17

35. Beullens, W. Breaking Rainbow Takes a Weekend on a Laptop; Springer: Berlin/Heidelberg, Germany, 2022.

36. Bormann, C.; Ersue, M.; Keranen, A. Terminology for ConstrainedNode Networks. IETF. Available online: https://datatracker.

ietf.org/doc/html/rfc7228#:%CB%9Cconstrained%20nodes%22%20in%20that%20network (accessed on 15 May 2024).

37. Hossain, M.; Xie, J. Third Eye: Context-Aware Detection for Hidden Terminal Emulation Attacks in Cognitive Radio-Enabled IoT

Networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 214–228. [CrossRef]

38. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw. Comput. Appl. 2017, 88, 10–28.

[CrossRef]

39. Kumar, A.; Ottaviani, C.; Gill, S.S.; Buyya, R. Securing the future internet of things with post-quantum cryptography. Secur. Priv.

2022, 5, e200. [CrossRef]

40. Bavdekar, R.; Chopde, E.J.; Bhatia, A.; Tiwari, K.; Daniel, S.J. Post Quantum Cryptography: Techniques, Challenges, Standardiza-

tion, and Directions for Future Research. arXiv 2022, arXiv:2202.02826.

41. Barton, J.; Buchanan, W.; Pitropakis, N.; Sayeed, S.; Abramson, W. Post Quantum Cryptography Analysis of TLS Tunneling on a

Constrained Device. In Proceedings of the 8th International Conference on Information Systems Security and Privacy—ICISSP,

Online, 9–11 February 2022. [CrossRef]

42. Bos, J.W.; Costello, C.; Naehrig, M.; Stebila, D. Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with

Errors Problem. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015;

pp. 553–570. [CrossRef]

43. Bos, J.; Costello, C.; Ducas, L.; Mironov, I.; Naehrig, M.; Nikolaenko, V.; Raghunathan, A.; Stebila, D. Frodo: Take off the ring!

Practical, Quantum-Secure Key Exchange from LWE. In Proceedings of the CCS’16: 2016 ACM SIGSAC Conference on Computer

and Communications Security, Vienna, Austria, 24–28 October 2016. [CrossRef]

44. Alagic, G. Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process. NIST, NIST, July

2022. Available online: https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf (accessed on 15 May 2024).

45. Chikouche, N.; Ghadbane, A. Performance Evaluation of Post-Quantum Public-Key Cryptography in Smart Mobile Devices. In

Proceedings of the IFIP International Federation for Information Processing, Kuwait City, Kuwait, 12 October 2018; pp. 67–80.

[CrossRef]

46. Septien-Hernandez, J.-A.; Arellano-Vazquez, M.; Contreras-Cruz, M.A.; Ramirez-Paredes, J.-P. A Comparative Study of Post-

Quantum Cryptosystems for Internet-of-Things Applications. Sensors 2022, 22, 489. [CrossRef] [PubMed]

47. Kannwischer, M.J.; Rijneveld, J.; Schwabe, P.; Stoffelen, K. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4.

IACR Cryptol. ePrint Arch. 2019, 2019, 844. Available online: https://eprint.iacr.org/2019/844 (accessed on 15 May 2024).

48. Hattenbach, H. Quantum-resistant digital signatures schemes for low power IoT. arXiv 2021, arXiv:2106.11710.

49. Røneid, P.N. Hardware Implementations of the McEliece Cryptosystem for Post Quantum Cryptography. Master’s Thesis,

Department of Informatics Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway, 2021. Available online:

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8878692&fileOId=8878700 (accessed on 15 May 2024).

50. Algorithms in Liboqs. Available online: https://openquantumsafe.org/liboqs/algorithms/ (accessed on 15 May 2024).

51. Stebila, D.; Mosca, M. Post-quantum Key Exchange for the Internet and the Open Quantum Safe Project. In Selected Areas in

Cryptography—SAC 2016; Springer International Publishing: Cham, Germany, 2017; pp. 14–37.

52. Goodin, D. Post-Quantum Encryption Contender Is Taken out By Singlecore PC and 1 Hour. ARS Technica. Available on-

line: https://arstechnica.com/informationtechnology/2022/08/sike-once-a-post-quantum-encryption-contender-iskoed-in-

nist-smackdown/ (accessed on 15 May 2024).

53. Sikeridis, D.; Kampanakis, P.; Devetsikiotis, M. Post-Quantum Authentication in TLS 1.3: A Performance Study. IACR Cryptol.

ePrint Arch. 2020, 2020, 71.

54. Nginx SSL Handshake Error (No Suitable Key Share). Available online: https://serverfault.com/questions/932102/nginx-ssl-

handshake-errorno-suitable-key-share (accessed on 15 May 2024).

55. Ravenscraft, E. How Much RAM Does My Smartphone Really Need? PC Mag UK. Available online: https://uk.pcmag.com/

gallery/120531/how-much-ram-doesmy-smartphone-really-need (accessed on 15 May 2024).

56. Price, D. Is a Smart TV Worth It in 2017? 6 Things to Check Before You Buy. Make Use of (MUO). Available online:

https://www.makeuseof.com/tag/buy-smart-tv-2017/#:%CB%9C:text=Today%E2%80%99s%20TVs%20have%20proved.,as%

206%20or%208%20GB (accessed on 15 May 2024).

57. Alvey, J. Google Home Mini Teardown, Comparison to Echo Dot, and Giving Technology a Voice. Available online: https://justlv.

medium.com/google-homemini-teardown-comparison-to-echo-dot-and-giving-technology-a-voicec59a23724a26 (accessed on

15 May 2024).

58. Czypek, P.; Heyse, S.; Thomae, E. Efficient Implementations of MQPKS on Constrained Devices. In Cryptographic Hardware and

Embedded Systems—CHES 2012; Prouff, E., Schaumont, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 374–389.

59. Strahl, T.; Johansson, R. Post-Quantum Secure Communication on a Low Performance IoT Platform. 2016. Available online:

https://www.duo.uio.no/bitstream/handle/10852/87158/Master.pdf?sequence=1:text=Introduction%20Small%20devices%

20with%20limited (accessed on 15 May 2024).

60. Suomalainen, J.; Kotelba, A.; Kreku, J.; Lehtonen, S. Evaluating the Efficiency of Physical and Cryptographic Security Solutions

for Quantum Immune IoT. Cryptography 2018, 2, 5. [CrossRef]

Cryptography 2024, 8, 21 17 of 17

61. Botros, L.; Kannwischer, M.J.; Schwabe, P. Memory-Efficient HighSpeed Implementation of Kyber on Cortex-M4. In Progress in

Cryptology—AFRICACRYPT 2019; Springer International Publishing: Cham, Germany, 2019; pp. 209–228.

62. Becker, H.; Hwang, V.; Kannwischer, M.J.; Yang, B.-Y.; Yang, S.-Y. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72

and Apple M1. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2022, 221–244. [CrossRef]

63. Kim, Y.; Song, J.; Youn, T.-Y.; Seo, S.C. Crystals-Dilithium on ARMv8. Secur. Commun. Networks 2022, 2022, 5226390. [CrossRef]

64. pqm4: Post-Quantum Crypto Library for the ARM Cortex-M4. Available online: https://github.com/mupq/pqm4 (accessed on

15 May 2024).

65. Wiesmaier, A.; Alnahawi, N.; Grasmeyer, T.; Geißler, J.; Zeier, A.; Bauspieß, P.; Heinemann, A. On PQC Migration and Crypto-

Agility. arXiv 2021, arXiv:2106.09599.

66. Bischof, M.; Oder, T.; Guneysu, T. Efficient Microcontroller Implementation of BIKE. In Innovative Security Solutions for Information

Technology and Communications; Springer International Publishing: Cham, Germany, 2020; pp. 34–49.

67. Zhao, C.; Zhang, N.; Wang, H.; Yang, B.; Zhu, W.; Li, Z.; Zhu, M.; Yin, S.; Wei, S.; Liu, L. A Compact and High-Performance

Hardware Architecture for CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2022, 270–295. [CrossRef]

68. Schöffel, M.; Lauer, F.; Rheinländer, C.C.; Wehn, N. Secure IoT in the Era of Quantum Computers—Where Are the Bottlenecks?

Sensors 2022, 22, 2484. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background and Research Questions
	Post-Quantum Algorithm Families
	Post-Quantum Cryptography and IoT Devices
	Research Questions
	Primary Data Collection and Experimental Methods

	Results and Analysis
	KEM Benchmarking
	Comparison with Other KEM Works
	Signature Benchmarking
	TLS Handshake

	Discussion and Conclusions
	Appendix A
	References

