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Stochastic journeys of cell 
progenies through compartments 
and the role of self‑renewal, 
symmetric and asymmetric division
Hanan Dreiwi 1,5, Flavia Feliciangeli 1,2,5, Mario Castro 3, Grant Lythe 1, 
Carmen Molina‑París 1,4 & Martín López‑García 1*

Division and differentiation events by which cell populations with specific functions are generated 
often take place as part of a developmental programme, which can be represented by a sequence of 
compartments. A compartment is the set of cells with common characteristics; sharing, for instance, 
a spatial location or a phenotype. Differentiation events are transitions from one compartment to the 
next. Cells may also die or divide. We consider three different types of division events: (i) where both 
daughter cells inherit the mother’s phenotype (self-renewal), (ii) where only one of the daughters 
changes phenotype (asymmetric division), and (iii) where both daughters change phenotype 
(symmetric division). The self-renewal probability in each compartment determines whether the 
progeny of a single cell, moving through the sequence of compartments, is finite or grows without 
bound. We analyse the progeny stochastic dynamics with probability generating functions. In the 
case of self-renewal, by following one of the daughters after any division event, we may construct 
lifelines containing only one cell at any time. We analyse the number of divisions along such lines, and 
the compartment where lines terminate with a death event. Analysis and numerical simulations are 
applied to a five-compartment model of the gradual differentiation of hematopoietic stem cells and 
to a model of thymocyte development: from pre-double positive to single positive (SP) cells with a 
bifurcation to either SP4 or SP8 in the last compartment of the sequence.

Humans, animals, plants, and even fungi consist of multiple cell types which maintain the organism in homeo-
stasis. All cells share the same DNA but gene expression variation lead to a range of different cell functions. 
Cell differentiation, controlled through changes in gene expression, enables cells to become more specialised. 
In embryonic development, non-specialised cells give rise to differentiated and functional cells1,2. Sequences 
of progressive cell-type (or phenotype) changes also take place in adult organisms, leading to cell populations 
with specific functions. Populations of “stem cells” retain the potential to develop into many different types. 
Generally speaking, we can say that “stem-like” cells are able to differentiate into multiple cells of a lineage, giv-
ing rise to more mature cells. Mathematical models of cell differentiation, fitted to experimental data, have been 
used to estimate per-cell event rates, to study differentiation timelines, and cellular dysregulation: keratinocyte 
differentiation and psoriasis pathogenesis3–5, human gastrointestinal tract cellular differentiation6,7, blood-cell 
differentiation and hematopoiesis8–11, cancer differentiation as in chronic myeloid leukaemia12, T-cell develop-
ment and thymic selection13–15, and the T cell exhaustion process16–20.

Differentiation involves a series of cell phenotypes, and may involve different spatial locations as well, as 
in keratinocyte differentiation; the epidermis, the outermost skin layer, is a stratified collection of cells, called 
keratinocytes, characterised by several differentiated stages. During its lifespan, a keratinocyte transits from a 
more internal to an external stratum, undergoing biochemical and morphological changes21. A similar process is 
that of colonic cell differentiation; in this case, the endothelial tissue of the human gastrointestinal tract consists 
of several cell types with different functions, from an outermost layer that acts as a protective barrier and absorbs 
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nutrients, to an inner one of proliferative stem-like cells. In Ref.6, the authors investigate cell proliferation and 
motion in the intestinal crypt (invaginations typical of the colonic tract). Differentiation hierarchies are also 
found in healthy and cancer systems, where a tumour cell population may arise from cellular mutations. In Ref.12, 
a mathematical model of the haematopoietic system representing stem-like cells, progenitors, differentiated and 
terminally differentiated cells is considered. This hierarchy describes both normal and leukaemic cells (cancer 
cells) with differences in cellular rates; for instance, leukaemic stem-like cells rapidly divide by self-renewal 
compared to other differentiated cell types. The authors in Ref.22 study the plasticity of cancer cells with high 
and low tumorigenesis potential, making use of a model where cancer cells undergo division to replenish high 
potential cells or generate cancer cells with lower tumorigenic potential. Cellular de-differentiation also needs 
to be considered. In chronic infection or cancer, CD8+ T cells (or immune cytotoxic cells) have been observed 
to acquire dysfunctional (or exhausted) properties23. Recent studies have brought a greater understanding of this 
exhaustion process20. Yet, we still dot not completely understand the molecular and epigenetic mechanisms that 
lead to T cell exhaustion. Unanswered questions include when and at which stage exhaustion becomes irrevers-
ible, and to what extent exhausted cells can be re-invigorated.

Advances in genetic labelling24 have uncovered different types of cell division, which impact the ability of 
a cell pool to expand or contract. Fate mapping studies reveal linear model structures of cell differentiation, 
such as the hematopoieitic system9. Different division events drive a range of biological processes according to 
whether a given cell population grows by one new cell (self-renewal), stays the same size (asymmetric division, 
where one of the daughter cells changes phenotype), or shrinks (symmetric division, where both daughter cells 
change phenotype)9. In such hierarchical systems cells might not be characterised by the same rates throughout 
the differentiation process9,25; an example is found in the hematopoietic system, where a turning point has been 
observed before the multi-potent progenitor (MPP) stage, where self-renewal is reduced and cell differentiation 
increased9. The heterogeneity of stem-cell populations and their progeny might derive from environmental and 
intra-cellular perturbations that are still poorly understood. For example, it is unknown whether hematopoietic 
stem cells (HSCs) undergo symmetric or asymmetric cell division in the unperturbed bone marrow8–10. The 
authors of Ref.8 found fundamental differences between the normal maintenance of the haematopoietic system, 
its regulation by challenge, and its re-establishment after transplantation, suggesting that different per-cell rates 
(of differentiation, death, or division) apply to a given scenario.

Recent experimental techniques have made it possible to track individual cell states (or compartments) and 
the progeny of a single cell26,27. Mathematical and computational approaches have increased our quantitative 
understanding of cell population dynamics. Deterministic models, which do not incorporate randomness and 
are typically easier to analyse, may describe the mean dynamics of such populations. However, single-cell behav-
iour is invariably stochastic. Deterministic compartmental models are used in ecology and cell biology, and in 
pharmaco-kinetics/pharmaco-dynamics, where they describe the concentration-versus-time curves of a drug 
following administration and how the drug can influence reaction rates and fluxes. Compartments can represent 
populations across different scales, from the intra-cellular to the whole-organ level. A single compartment can be 
thought of as a collection of items, agents, or individuals acting in a homogeneous fashion; agents can differ by 
form or location, so that a compartment might represent the concentration of a drug in blood or in a given organ.

A multi-compartmental model consists of two or more interconnected compartments and it encodes changes 
of state (e.g., precursor to product cells) or changes of location. Multi-compartmental models, where compart-
ments are arranged in a sequence or hierarchy, have been used to model cell division and differentiation, from 
deterministic28–34 and stochastic35–38 perspectives. Many of these models have been developed in the context of 
cancer30–32,34, and have considered specific hierarchies or parameter ranges (e.g., tumour dynamics with no asym-
metric division30, colorectal crypt31, multiple mutations29, age-structured models34, or Moran-type dynamics32). 
Stochastic models are less frequent. Dingli et al.36 proposed a mathematical model to illustrate the role of muta-
tions on stem-cell division and the development of tumours. Shahriyari and Komarova38 proposed a stochastic 
model for a renewing tissue, addressing the optimisation problem of tissue architecture in the context of mutant 
production. Clayton et al.35 discussed the classical epidermal proliferation unit (EPU) model of adult epidermal 
homeostasis, and proposed a single proliferative compartment to better explain experimental observations. 
Mamis et al.37 considered a three-type branching process to model the dynamics of cell populations in colonic 
crypts. Refs.33,39 are recent reviews in this field. The references above differ from the multi-compartmental model 
analysed here, since we explicitly consider both asymmetric division and cellular de-differentiation. This is not 
only a generalisation of previous efforts, but it enables us to examine several differentiation processes, such as 
CD8+ T cell exhaustion reversibility and cancer cell tumorigenesis. Our approach allows the parameters of each 
cell population (or compartment) to differ, and we do not restrict ourselves to a uni-directional cell flow toward 
more differentiated states. Thus, we are able to investigate properties caused by the heterogeneity of the different 
cell populations (or compartments) in a linear-structure model of stem cell differentiation. We also go beyond the 
more frequent deterministic approach, and analyse the stochastic dynamics of the population with probability 
generating functions. Finally, by analysing the stochastic dynamics at the single-cell level, we obtain predictions 
which could be tested (or used for parameter calibration) with novel single-cell experimental methods.

In some circumstances the mean dynamics of cell differentiation might be captured by ordinary differential 
equations; however, details about cell division, death or differentiation are often better modelled by a stochastic 
processes, capable of capturing aspects at the single-cell level, genetic and intra-cellular processes, or describ-
ing scenarios where a cell population is descended from a few progenitor cells. Within the field of stochastic 
analysis, the theory of branching processes has been widely used in cell dynamics40. For instance, the classic 
Galton-Watson model, which was originally developed to study the extinction of family surnames41, has been 
successfully applied to quantify the progeny of a cell40. The theory of branching processes can answer questions 
related to the limiting behaviour (e.g., probability of extinction or unbounded growth) of cell populations. A 
natural generalisation is the multi-type branching process, where cells are not all of the same type. These models 
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can effectively represent cells changing their spatial location42, or their phenotype43 over time. They characterise 
cell dynamics across compartments, where cells in the same compartment follow identical rules. We highlight 
the seminal work by Matis44, who proposed a stochastic compartmental model of cell dynamics.

We put forward a general mathematical model with a sequence of N compartments, characterising the pro-
cess by which, from a stem-cell pool (in compartment C1 ), cells undergo differentiation events across adjacent 
compartments, producing a terminally differentiated progeny population (in compartment CN ). Cells in each 
compartment can divide, die or transit to adjacent compartments (e.g., representing potentially reversible dif-
ferentiation or phenotype change). In our stochastic model, differentiation can either be reversible (e.g., cancer 
cell mutations) or irreversible (e.g., embryonic cell development). Since cells in many tissues are short-lived 
compared to the life span of the host, a continuous regeneration process is required to maintain cell populations. 
We consider a close catenary system where all cell populations are explicitly modelled. Any cell generated in 
the sequence of compartments eventually dies or reaches the final compartment of product cells. However, as 
we show via a case study in Section “Tracking a thymocyte during its development”, alternative compartmental 
structures (for other potential biological applications) could be considered, for which many of our techniques 
(e.g., the analysis in Section “Lifeline analysis”) can be easily generalised. For example, a cyclic system can be 
defined if the last compartment is connected to the first one, or a so-called mammillary system, used to represent 
the blood compartment connected to each organ in the body or cellular states42.

The paper is organised as follows. In Section “Stochastic compartmental model” we describe the continuous-
time Markov dynamics of cells dividing, dying or exiting across a sequence of compartments. The mean behaviour 
of the system is analysed in Section “Mean number of cells in each compartment”. In Section “The progeny of a 
single progenitor cell”, we study the proliferative potential of the system by computing the number of cells in the 
progeny of a single progenitor cell. In both sections we consider either the situation where differentiation events 
can be reversible, or a mathematically more simple “irreversible model”, where differentiation to the next com-
partment cannot be reversed. In Section “Lifeline analysis” our focus is a number of summary statistics related 
to a cellular lifeline which we track over time. In Section “Results”, we summarise numerical results inspired 
by biological applications to illustrate our approach and methods, and examine the impact of asymmetric and 
symmetric division on the cell population arising from a single progenitor.

Stochastic compartmental model
We propose a stochastic model of cell division, death and differentiation across an ordered sequence of com-
partments. Cells in a given compartment may represent a common spatial location within the body, or a com-
mon phenotype (i.e., representing a biological state, defined by morphology and/or function). In practice, this 
means that cells in a compartment behave equally, with the same per-cell rates for a given division, death, or 
differentiation event. We consider a sequence of compartments Ci , i ∈ {1, . . . ,N} , which cells follow, behaving 
independently of each other, as generally assumed in the theory of continuous-time branching processes40.

Our general stochastic model considers a number of cellular events inspired by some recent mathematical 
models3,9,14,42. We assume that each of these events takes place at a given per-cell rate. Particular situations of 
interest arise from setting some of the rates equal to zero, so that those events cannot take place, as we illustrate 
for three different case studies in Section “Results”. Each cell in a given compartment, Ci , can divide, die or exit 
to one of the two adjacent compartments. When a division occurs, both daughter cells might belong to the same 
compartment as the mother (this event is referred to as self-renewal), both daughter cells might instantaneously 
move to the next compartment (symmetric division), or one daughter cell might belong to the same compartment 
as the mother, and the other to the next compartment (asymmetric division)3,9.

The stochastic model, shown in Fig.  1, is a continuous-time Markov chain (CTMC) 
X = {(C1(t),C2(t), . . . ,CN (t)) : t ≥ 0} , where Ci(t) is a random variable that represents the number of cells 
in compartment Ci at time t, with state space given by S = {0, 1, 2, . . .}N = N

N
0  . At any given time, the process 

can be at a particular state (n1, . . . , nN ) ∈ S , so that there are ni cells in compartment Ci . Thus, cell events, labelled 
E1 to E5 below, represent transitions between states as follows: 

	(E1)	 Self-renewal (cell division where both daughter cells remain in the same compartment as the mother) 
can occur in any compartment Ci , with per-cell rate �i , for i ∈ {1, . . . ,N} , 

Figure 1.   General stochastic model of cell division, death and differentiation for an ordered sequence of 
compartments. Grey cells represent a death event. Self-renewal events take place with rate �i , symmetric division 
events with rate si , and asymmetric division events with rate ai . Differentiation events happen with per-cell rate 
νi (forward) or ξi (backward). Death events have per-cell rate µi . Each per-cell rate is a real positive number.
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 The previous notation indicates that the event moving the process from state (n1, . . . , ni−1, ni , ni+1, . . . , nN ) 
to state (n1, . . . , ni−1, ni + 1, ni+1, . . . , nN ) happens at rate �ini , and represents self-renewal.

	(E2)	 Symmetric division (cell division where both daughter cells instantaneously move to the next compart-
ment) can occur in compartment Ci with per-cell rate si , for i ∈ {1, . . . ,N − 1} , 

	(E3)	 Asymmetric division (cell division where one of the daughter cells remains in the same compartment as 
the mother, while the other goes to the next compartment) can occur in compartment Ci with per-cell 
rate ai , for i ∈ {1, . . . ,N − 1} , 

	(E4)	 Differentiation (or migration) between adjacent compartments can occur with per-cell rate νi , for 
i ∈ {1, . . . ,N − 1} and ξi , for i ∈ {2, . . . ,N} , 

	(E5)	 Cells can die in any compartment Ci with per-cell rate µi , i ∈ {1, . . . ,N} , 

We assume that cells in the last compartment, CN , cannot symmetrically or asymmetrically divide, or differentiate 
to the next compartment. All rates are assumed to be positive real numbers.

Mean number of cells in each compartment
We first study the dynamics of the mean number of cells in each compartment at time t, E[Ci(t)] , described by 
the following system of ordinary differential equations44

where E[Ci(t)] represents the expectation of the random variable Ci(t) . These equations constitute a homogene-
ous first-order linear system of ODEs with constant coefficients, which can be written more succinctly in matrix 
form as follows

where

and

The initial value problem of Eq. (2) with C0 = C(0) has a unique solution [45, Theorem 3.9] given by

where eAt represents the matrix exponential

(n1, . . . , ni−1, ni , ni+1, . . . , nN ) →�ini→ (n1, . . . , ni−1, ni + 1, ni+1, . . . , nN ).

(n1, . . . , ni−1, ni , ni+1, . . . , nN ) →sini→ (n1, . . . , ni−1, ni − 1, ni+1 + 2, . . . , nN ).

(n1, . . . , ni−1, ni , ni+1, . . . , nN ) →aini→ (n1, . . . , ni−1, ni , ni+1 + 1, . . . , nN ).

(n1, . . . , ni−1, ni , ni+1, . . . , nN ) →νini→ (n1, . . . , ni−1, ni − 1, ni+1 + 1, . . . , nN ),

(n1, . . . , ni−1, ni , ni+1, . . . , nN ) →ξini→ (n1, . . . , ni−1 + 1, ni − 1, ni+1, . . . , nN ).

(n1, . . . , ni−1, ni , ni+1, . . . , nN ) →µini→ (n1, . . . , ni−1, ni − 1, ni+1, . . . , nN ).

(1)

d E[C1(t)]
dt

=− (µ1 + ν1 + s1 − �1)E[C1(t)] + ξ2E[C2(t)],

d E[Ci(t)]
dt

=(νi−1 + ai−1 + 2si−1)E[Ci−1(t)] − (µi + νi + ξi + si − �i)E[Ci(t)]

+ ξi+1 E[Ci+1(t)], i ∈ {2, . . . ,N − 1},
d E[CN (t)]

dt
=(νN−1 + aN−1 + 2sN−1)E[CN−1(t)] − (µN + ξN − �N )E[CN (t)],

(2)
dC(t)

dt
= A C(t),

(3)C(t) =













E[C1(t)]
E[C2(t)]

...
E[CN−1(t)]
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











, A =






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
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−�1 ξ2 0 · · · 0

�1 −�2 ξ3 . . .
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


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
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



,

�1 =µ1 + ν1 + s1 − �1,

�i =µi + νi + si + ξi − �i , �i−1 = νi−1 + ai−1 + 2si−1, i ∈ {2, . . . ,N − 1},
�N =µN + ξN − �N , �N−1 = νN−1 + aN−1 + 2sN−1.

(4)C(t) = eAtC0,

eAt = I+ At + A2 t
2

2! + A3 t
3

3! + · · · =
+∞
∑

i=0

(At)i

i! .
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The system of equations (2) admits limt→+∞ C(t) = 0N (column vector of zeros) as asymptotic solution. It is 
exponentially stable (solutions of the system for any initial condition converge to zero) if and only if each eigen-
value of A has a negative real part (see, for example, Ref.[45, Corollaries 3.5 and 3.6]).

We note that, for certain biological applications, some of the rates in Fig. 1 will be zero, and thus, the 
analysis of such systems would simplify. For instance, differentiation may be irreversible9,14, so that ξi = 0 for 
i ∈ {2, . . . ,N} as shown in Fig. 2. We will refer to this scenario as the irreversible model. In this case, and if one 
considers a single progenitor cell starting in compartment C1 at time t = 0 , C(0) = (1, 0, . . . , 0)T , it is possible 
to obtain the mean number of cells for any compartment. In fact, one has

Equation (5) is well-defined if �i  = �j for pairs (i, j) with i  = j . If this is not the case, alternative analytic solu-
tions can be found. For example, if �i = �j for all i, j ∈ {1, . . . ,N} , Eq. (5) simplifies to

We note that this is consistent with existing results in the literature. In particular, the most general solution for the 
case of repeated eigenvalues can be found in Ref.46, which analysed the radioactive decay of a chain of nuclides. 
It is clear that in the irreversible model limt→+∞ E[Ci(t)] = 0 , when �i > 0 ∀i ∈ {1, . . . ,N} . This is consistent 
since {−�i : i ∈ {1, . . . ,N}} are the eigenvalues of A in this case.

For biological applications3,14 such as those considered in Section “Results”, it is of interest to determine the 
cumulative average number of cells that arrive to the final compartment, CN , starting with a single “progenitor” 
or precursor cell in compartment C1 . To this end, in the irreversible model one can set �N = µN = 0 , so that cells 
arriving into CN accumulate and can be counted. Then, for the last compartment �N = 0 and thus, Eq. (5) leads to

which is well-defined if �i  = �j for all i, j ∈ {1, . . . ,N − 1} . From the previous equation, we have

Interestingly, this limit also holds if �i = �j for all i, j ∈ {1, . . . ,N − 1} and �N = 0 . In this case one can write

Under population extinction conditions (that is, when �i > 0 for all i ∈ {1, . . . ,N − 1} , so that the population of 
cells in intermediate compartments, {1, . . . ,N − 1} , dies out and only “exiting” cells remain in CN at late times), 
limt→+∞ E[Ci(t)] = 0 for i ∈ {1, . . . ,N − 1} , and thus Eq. (8) also holds.

(5)E[Ci(t)] =


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
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�

i−1
�
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�l

�

i
�
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e−�j t

i
�

m = 1
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)
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−�i t , t ≥ 0.
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�
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�
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�


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
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N−1
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m = 1

�−1
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













,

(8)lim
t→+∞

E[CN (t)] =
N−1
∏

i=1

�i

�i
.

(9)E[CN (t)] =
N−1
∏

i=1

�i

�i
−

N−1
∑

j=1

E[Cj(t)]
N−1
∏

i=j

�i

�i
.

Figure 2.   Irreversible stochastic model of cell division, death and forward differentiation for an ordered 
sequence of compartments. Grey cells represent death events. Self-renewal events occur with per-cell rate 
�i , symmetric division events with rate si , and asymmetric division events with rate ai . Differentiation events 
happen with per-cell rate νi . Death events have (per-cell) rate µi . Each per-cell rate is a real positive number.
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A particular feature of this system is that cells behave independently from each other. This means that the 
dynamics of the progeny of a set of M progenitor (or precursor) cells in compartment C1 at time t = 0 , can be 
analysed as M independent stochastic processes. Thus, in Section “The progeny of a single progenitor cell” we 
consider a number of summary statistics of interest related to the stochastic journeys of cell progenies from a 
single cell starting at a given compartment (typically compartment C1).

The progeny of a single progenitor cell
For a cell starting in compartment Ci , we can define Gi to be the random variable representing the total number 
of cells in the progeny of this cell. Cells in the progeny are the daughters, granddaughters, etc., of the progenitor 
(or precursor) cell, which originate from division events (either self-renewal, asymmetric or symmetric) in any 
compartment over time, not including the progenitor cell itself. It is a summary statistic of the process which 
quantifies the proliferative potential of a single cell in compartment Ci , and its offspring. For example, in Fig. 3, 
we represent a particular realisation of the stochastic process with G1 = 8.

The mean number of cells in the progeny of a progenitor cell, mi = E[Gi] , for any initial compartment of 
interest i ∈ {1, . . . ,N} , can be obtained with first-step arguments by conditioning on the next event that occurs 
in the stochastic process. This approach leads to the following system of equations

The system above can be expressed in matrix form with the column vectors m = (m1, . . . ,mN )
T  and 

b = (2(�1 + a1 + s1), . . . , 2(�N−1 + aN−1 + sN−1), 2�N )T , as follows

with a tri-diagonal coefficient matrix

�1m1 = �1m2 + 2(�1 + a1 + s1),

�imi = �imi+1 + ξimi−1 + 2(�i + ai + si), i ∈ {2, . . . ,N − 1},
�NmN = ξNmN−1 + 2�N .

(10)Jm = b,

Figure 3.   A realisation of the stochastic process tracking the progeny of a single progenitor cell which starts 
in compartment C1 . The cell tracked (see Section “Lifeline analysis”) is shown as striped. Whenever the tracked 
cell divides, we follow one of the daughter cells selected at random (see division in C3 ). For each cell, the colour 
indicates the compartment where it is at any given time. Here, the tracked cell dies in C3 (brown), while its 
progeny continues up to C4 . In this example, G1 = 8 = G1(1)+ G1(2)+ G1(3)+ G1(4) = 4+ 0+ 2+ 2.
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One can exploit the tri-diagonal structure of J to obtain an explicit, or recursive, solution. In particular, by 
following a Gaussian forward-elimination backward-substitution approach, such as the Thomas algorithm47,48, 
one can obtain the recursive equations

where γ1 = −�−1
1 �1 , ρ1 = 2�−1

1 (�1 + s1 + a1) , and

Using backward-substitution, this recursive scheme leads to the explicit solution

where 
∏i−1

l=i γl = 1 . A condition on the parameters arises during the implementation of the recursive scheme

so that the mean values m1, . . . ,mN are finite and non-negative, for all i ∈ {1, . . . ,N} . This ensures that the 
number of cells in the progeny of a progenitor cell is finite with probability one, P(Gi < +∞) = 1 , since 
mi = E[Gi] = E[Gi|Gi < +∞]P(Gi < +∞)+ E[Gi|Gi = +∞]P(Gi = +∞) . In the irreversible case, where 
ξi = 0 for i ∈ {2, . . . ,N} , the solution above simplifies to

where for j = N , we set aN = sN = 0 . For i = N , the empty product above is equal to one, so that mN = 2�N
µN−�N

 . 
For the irreversible model the condition to have finite and non-negative solutions becomes �i > 0 for all 
i ∈ {1, . . . ,N} . Direct inspection of Fig. 2 shows that the condition �i > 0 avoids unlimited accumulation of 
cells in compartment Ci.

Probability generating function
Let us now go beyond the mean number of cells. For the irreversible model we can consider the probability 
generating function of Gi,

The variable Gi counts the cells in the progeny of a progenitor cell starting in compartment Ci , arising from divi-
sion events (self-renewal, asymmetric and symmetric division), not including the progenitor cell itself. To include 
the progenitor cell, one can define Si ≡ Gi + 1 , and denote the new generating function by �i(z) = E(zSi ) . The 
total expectation law over all possible first events implies that

with Ej ∈ {death, differentiation, self-renewal, asymmetric division, symmetric division} . This leads to

with �i = µi + νi + �i + ai + si . Since Si = Gi + 1 , one can write z�i(z) = �i(z), so that

The probability generating functions above agree with the mean values obtained earlier. In particular, by dif-
ferentiating with respect to z, and setting z = 1 , we have

(11)J =

















�1 −�1 0 0 · · · 0
−ξ2 �2 −�2 0 · · · 0
0 − ξ3 �3 −�3 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 − ξN−1 �N−1 −�N−1

0 · · · 0 0 − ξN �N

















.

(12)mN =ρN , mi = ρi − γimi+1, i ∈ {1, . . . ,N − 1},

γi =− �i

�i + ξiγi−1
, i ∈ {2, . . . ,N − 1},

ρi =
2(�i + si + ai)+ ξiρi−1

�i + ξiγi−1
, i ∈ {2, . . . ,N}.

(13)mi =
N
�

j=i

(−1)j−iρj





j−1
�

l=i

γl



, i ∈ {1, . . . ,N},

�1 > 0, �i + ξiγi−1 >0, i ∈ {2, . . . ,N},

(14)mi = 2

N
�

j=i

�j + aj + sj

�j





j−1
�

l=i

�l

�l



, i ∈ {1, . . . ,N},

�i(z) = E(zGi ) =
+∞
∑

k=0

P(Gi = k)zk .

(15)E(zSi ) =
∑

Ej

E(zSi | event Ej)P(Ej),

(16)�i(z) =
µi

�i
z + νi

�i
z�i+1(z)+

�i

�i
z(�i(z))

2 + ai

�i
z�i(z)�i+1(z)+

si

�i
z(�i+1(z))

2,

(17)�iz
2�2

i (z)+ (aiz
2�i+1(z)−�i)�i(z)+�i+1(z)(νiz + siz

2�i+1(z))+ µi = 0.
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which can be solved recursively, leading to

in agreement with Eq. (14). We also note that when i = N , the cells in the progeny of a single progenitor cell 
in compartment CN arise from a linear birth-and-death process, which in discrete time has death probability, 
pd = µN

µN+�N
 , and birth probability, pb = �N

µN+�N
 . Then, a first-step argument for the random variable SN leads to

with φN (z) = pd + pbz
2 . We can then write

which has solution

We find P(GN = k) as the coefficient of the power of zk , using the property of the Catalan numbers49. In par-
ticular, since

we obtain

Note that P(GN = k + 2)/P(GN = k) = 4k
k+3pdpb . Assuming �N < µN , we verify that E(GN ) = �′

N (1) = 2�N
µN−�N

.

Compartmental analysis of the progeny
Cells in the progeny of a single progenitor can belong to different compartments, as shown in Fig. 3. For a pro-
genitor cell starting in compartment Ci , compartments Cj , j ∈ {1, 2, . . . ,N} with greater proliferative potential will 
contribute more to Gi . The proliferative potential of compartment j depends on the parameters �j , aj , sj ,µj , νj , ξj , 
but also on the number of cells arriving into that compartment. It is of interest then to write Gi =

∑N
j=1 Gi(j) , with 

Gi(j) the number of cells in compartment Cj which belong to the progeny of the progenitor cell from compartment 
Ci . For example, for the stochastic realisation of Fig. 3, G1 = G1(1)+ G1(2)+ G1(3)+ G1(4) = 4+ 0+ 2+ 2 = 8
.

One can follow similar arguments to the ones in Section “The progeny of a single progenitor cell” to compute 
the mean quantities mi(j) ≡ E[Gi(j)] . In particular, for an initial compartment Ci , a first-step argument yields 
the following equations

where we implicitly set ξ1 = 0 , and ∀j ∈ {1, 2, . . . ,N} , mN+1(j) = mN (N + 1) = m0(j) = 0 for notational con-
venience. Making use of a recursive approach one can show that for any j ∈ {1, . . . ,N} , we have

where γ1 = −�−1
1 �1 , ρ1(j) = �−1

1 d(1,j) , and

with

(18)(�i − ai − 2�i)�
′
i(1) = 2(ai + �i + si)+ (νi + ai + 2si)�

′
i+1(1),

(19)E(Gi) = �′
i(1) = 2

N
�

j=i

aj + �j + sj

�j





j−1
�

l=i

�l

�l



,

�N (z) =pdz + pbz�
2
N (z) = zφN (�N (z)),

�N (z) =
�N (z)

z
= z φN (�N (z))

z
= φN (z �N (z)),

(20)�N (z) = pd
1−

√
1− 4x

2x
where x = pdpbz

2.

∞
∑

n=0

Cnx
n = 1−

√
1− 4x

2x
,

(21)

�N (z)= pd

∞
∑

n=0

Cn(pdpb)
nz2n =

∞
∑

n=0

(2n)!
(n+ 1)!n!p

n+1
d pnbz

2n = pd + z2p2dpb + z42p3dp
2
b + z65p3dp

4
b + · · · .

�imi(i) = 2�i + ai +�i mi+1(i)+ ξimi−1(i),

�imi(i + 1) = 2si + ai +�i mi+1(i + 1)+ ξimi−1(i + 1),

�imi(j) = �imi+1(j)+ ξimi−1(j), j /∈ {i, i + 1},

mN (j) =ρN (j), mi(j) = ρi(j)− γimi+1(j), i ∈ {1, . . . ,N − 1},

γi =− �i

�i + ξiγi−1
, i ∈ {2, . . . ,N − 1},

ρi(j) =
d(i,j) + ξiρi−1(j)

�i + ξiγi−1
, i, j ∈ {2, . . . ,N},

d(i,j) =
{

2�i + ai , if j = i,
2si + ai , if j = i + 1,
0, otherwise.
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This recursive scheme leads to the solution

where 
∏i−1

p=i γp = 1 . This expression simplifies further for the irreversible model, since ξi = 0 for all i ∈ {2, . . . ,N} . 
In this instance, mi(j) = 0 whenever i > j , and we can write

for any i ∈ {1, . . . ,N − 1} . Finally, we note that 
∏i−1

p=i �
−1
p �p = 1 , and mN (N) = 2�N

�N
.

Lifeline analysis
In the previous sections we have analysed several summary statistics of the progeny of a progenitor cell. This 
section is devoted to summary statistics related to the history of a tracked cell, extending the analysis proposed 
in Ref.42, in the situation when all cell divisions are self-renewals; that is, si = ai = 0 for all i ∈ {1, . . . ,N} . We 
construct lifelines containing a single cell at any time, starting in compartment Ci . The line continues when that 
cell divides (by selecting one daughter cell at random) and terminates when the cell dies. In any given compart-
ment, this cell can divide, move to another compartment, or die. Since the only type of division is self-renewal, 
we use the theoretical “trick” of identifying one of the daughter cells as a continuation of the mother, and the 
other as a new cell. The dynamics can then be represented by the CTMC Y = {Y(t) : t ≥ 0} over the state space 
S = {C1,C2, . . . ,CN , ∅} , where Y(t) represents the state of the cell at time t; the cell is either in some compart-
ment, Cj , or it has died (state ∅ ). A schematic representation of the process Y is given in Fig. 4, and a particular 
realisation of this stochastic process can be seen in Fig. 3, where the tracked cell is shown with stripes.

We study the stochastic process with the following summary statistics:

•	 The duration, Ti , of the lifeline, starting in compartment Ci , 

 which measures the survival potential of cells in the system depending on their initial compartment,
•	 The number of divisions along a path through the family tree, Di , which quantifies the proliferative capacity 

of cells according to their initial compartment, and
•	 The probability that the lifeline ends in a compartment Cj ; that is, βi(j) = P(Y(Ti −�t) = Cj) for small 

enough �t.

Lifespan of a tracked cell
Let τi = E[Ti] be the mean lifespan of a cell starting in compartment Ci . By conditioning on the events the cell 
can undergo in the initial compartment, we obtain the following recursive equations

The previous equations have the general solution

(22)mi(j) =
N
�

k=i

(−1)k−iρk(j)





k−1
�

p=i

γp



,

mi(i) =�−1
i (2�i + ai),

mi(j) =�−1
j−1





j−2
�

p=i

�−1
p �p





�

d(j−1,j) + d(j,j)�
−1
j �j−1

�

, j ∈ {i + 1, . . . ,N},

Ti = inf {t ≥ 0 : Y(t) = ∅|Y(0) = Ci},

(µ1 + ν1)τ1 = ν1τ2 + 1,

(µi + νi + ξi)τi = νiτi+1 + ξiτi−1 + 1, i ∈ {1, . . . ,N − 1},
(µN + ξN )τN = ξNτN−1 + 1.

Figure 4.   Representation of the process Y to follow the fate of a single cell.
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where 
∏i−1

p=i γ̄p = 1 . We have made use of the notation γ̄1 = −�̄−1
1 ν1 , ρ̄1 = �̄−1

1  , with

where �̄i = µi + νi + ξi . A simpler solution is obtained in the irreversible model

where 
∏i−1

p=i
νp

µp+νp
= 1 , and we set νN = 0 for notational convenience.

A similar approach allows one to compute the Laplace-Stieltjes transform of Ti , and any of its higher order 
moments50. In particular, one could obtain a system of equations, via first-step arguments, for the Laplace-Stieltjes 
transform of Ti , φi(z) = E[e−zTi ] . The different order moments can be computed via successive differentiation 
of the transform, while the probability density function of Ti can be computed via its numerical inversion51. For 
example, in the irreversible model, the second-order moment of the lifespan of a cell starting in compartment 
Ci is given by

where 
∏i−1

p=i
νr

µr+νr
= 1 , Ri = 2(νiτi+1+1)

(µi+νi)2
 , and RN = 2

µ2
N

 . We note that if the cell starts in the last compartment 
CN , E[T2

N ] = 2µ−2
N  , since TN ∼ Exp(µN ).

Number of divisions along a lifeline
Let us define Di , the number of division events along the history of the tracked cell, starting in compartment Ci . 
We compute the average value, ηi = E[Di] , with the first-step formula

The previous equations have solution

where 
∏i−1

p=i γ̄p = 1 , ρ̃1 = �̄−1
1 �1 , and

with �̄i and γ̄i defined as above. In the irreversible model, this expression simplifies to

where 
∏i−1

p=i
νp

µp+νp
= 1 . We note that in this case ηN = �Nµ

−1
N  , since DN ∼ Geometric

(

�N
µN+�N

)

.
A division event may occur at any instant along the lifeline of the cell, which may visit different compart-

ments over time. Thus, one can determine the proliferative potential of the cell during its (eventual) visit to 
each compartment by considering Di =

∑N
j=1 Di(j) , where Di(j) is the number of divisions which occur exactly 

in compartment Cj . Average values, ηi(j) ≡ E[Di(j)] , can be computed (again) with first-step arguments. For 
instance, in the irreversible model, one has

τi =
N
�

k=i

(−1)k−iρ̄k





k−1
�

p=i

γ̄p



,

γ̄i =− νi

�̄i + ξiγ̄i−1
, i ∈ {2, . . . ,N − 1},

ρ̄i =
1+ ξiρ̄i−1

�̄i + ξiγ̄i−1
, i ∈ {2, . . . ,N},

τi =
N
�

k=i

1

µk + νk





k−1
�

p=i

νp

µp + νp



, i ∈ {1, . . . ,N},

E[T2
i ] =

N
�

j=i

Rj





j−1
�

r=i

νr

µr + νr



, i ∈ {1, . . . ,N − 1},

(�1 + µ1 + ν1)η1 = �1(η1 + 1)+ ν1η2,

(�i + µi + νi + ξi)ηi = �i(ηi + 1)+ νiηi+1 + ξiηi−1, i ∈ {1, . . . ,N − 1},
(�N + µN + ξN )ηN = �N (ηN + 1)+ ξNηN−1.

(23)ηi =
N
�

k=i

(−1)k−iρ̃k





k−1
�

p=i

γ̄p



,

ρ̃i =
�i + ξiρ̃i−1

�̄i + ξiγ̄i−1
, i ∈ {2, . . . ,N},

ηi =
N
�

k=i

�k

µk + νk





k−1
�

p=i

νp

µp + νp



, i ∈ {1, . . . ,N − 1},
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for i ∈ {1, . . . ,N} and ηN (N + 1) = 0 . We note that the expression above is consistent with the interpretation 

that, in the irreversible model, Di(j) ∼ Geometric
(

�j

�j+νj+µj

)

 restricted to the arrival of the cell to compartment 
Cj . In general, one can write

and, since E[Di(j) | cell never visits Cj] = 0 , the quantity ηi(j) accounts for the probability of the cell not visiting 
this compartment.

More generally, we consider the complete probability distribution of Di , defined by ωi(n) ≡ P(Di = n) , the 
probability that a single cell starting in compartment Ci divides exactly n times before it dies or leaves the system, 
for any non-negative integer n. One can show that

where 
∏i−1

j=i γ̂j = 1 . We have introduced the notation ρ̂1(n) = (�1ω1(n− 1)+ µ11n=0)�̂
−1
1  , γ̂1 = −ν1�̂

−1
1  , and

with �̂i = µi + �i + ξi + νi . We note that ωi(−1) = 0 and that 1n=0 is the indicator function, equal to 1 if n = 0 , 
and zero otherwise. Thus, the probabilities ωi(n) can be computed recursively for increasing values of n, since 
ωi(n) depends on ωi(n− 1).

Cell death
The probability that the tracked cell dies in compartment j is denoted by

for small enough �t , and for any i, j ∈ {1, . . . ,N} . Once again, a first-step argument leads to the following 
recursive relations

with solution

where ρ̄1(j) = µ1�̄
−1
1 1j=1 for j ∈ {1, . . . ,N} , and

For the irreversible model, for i ∈ {1, . . . ,N} , we have

We conclude this analysis with a comment. A particular advantage of obtaining analytical expressions for 
the summary statistics is that they allow one to explicitly compute sensitivities, ∂βi(j)/∂θ , or elasticities, 
(∂βi(j)/∂θ)/(βi(j)/θ ), with respect to model parameters of interest, θ . This can be rather useful when consider-
ing a complex model (with many parameters), as illustrated in Section ’Tracking a thymocyte during its develop-
ment”. A local sensitivity analysis of this kind provides a quantification of the impact that small perturbations 
of model parameters can have on a given summary statistics of interest, and is particularly relevant when a 
subset of the model parameters are being estimated from experimental data sets, and thus, will carry inherent 
uncertainties. Finally, we refer the reader to the Supplementary Material for extra details on different calcula-
tions related to this section.

ηi(i) =
�i

µi + νi
,

ηi(j) =
�j

µj + νj





j−1
�

k=i

νk

µk + νk



, j ≥ i + 1,

ηi(j) =E[Di(j)] = E[Di(j) | cell ever visits Cj] P(cell ever visits Cj)+ E[Di(j) | cell never visits Cj] P(cell never visits Cj),

ωi(n) =
N
�

k=i

(−1)k−iρ̂k(n)





k−1
�

j=i

γ̂j



, i ∈ {1, . . . ,N}, n = 0, 1, 2, 3, . . .,

ρ̂i(n) =
�iωi(n− 1)+ µi1n=0 + ξiρ̂i−1(n)

�̂i + ξiγ̂i−1

, γ̂i =
−νi

�̂i + ξiγ̂i−1

,

βi(j) =P(Y(Ti −�t) = Cj),

(µ1 + ν1)β1(j) = ν1β2(j)+ µ11j=1,

(µi + νi + ξi)βi(j) = νiβi+1(j)+ ξiβi−1(j)+ µi1i=j ,

(µN + ξN )βN (j) = ξNβN−1(j)+ µN1j=N ,

βi(j) =
N
�

k=i

(−1)k−iρ̄k(j)





k−1
�

p=i

γ̄p



 i, j ∈ {1, . . . ,N},

ρ̄i(j) =
µi1i=j + ξiρ̄i−1(j)

�̄i + ξiγ̄i−1

, i ∈ {2, . . . ,N}, j ∈ {1, . . . ,N}.

βi(i) =
µi

µi + νi
, βi(j) = µj

µj + νj

j−1
∏

k=i

νk

µk + νk
, j ∈ {i + 1, . . . ,N}.
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Results
We illustrate our approach with three case studies; in Section “Asymmetric and symmetric division: the case of 
four compartments”, we implement the methods from Sections “Mean number of cells in each compartment” and 
“The progeny of a single progenitor cell” to explore the impact of asymmetric and symmetric division events, for 
the specific case of N = 4 compartments. We perform sensitivity analysis for the probabilities of self-renewal, 
asymmetric and symmetric division. The impact of asymmetric and symmetric division is further analysed in 
Section “Hematopoietic stem cells: self-renewal, asymmetric and symmetric division”, where we consider hemat-
opoietic stem cells, in light of recent experimental data and a mathematical model proposed in Ref.9. Finally, in 
Section “Tracking a thymocyte during its development” we apply the analysis from Section “Lifeline analysis” 
to an existing model of thymic T cell development14.

Asymmetric and symmetric division: the case of four compartments
Let us consider the case N = 4 , for illustrative purposes, where the last compartment, C4 , does not involve any 
death, division or differentiation events ( µ4 = �4 = ξ4 = 0 ), to represent the terminal accumulation of cells in 
it. This allows us to quantify the number of cells that exit the system formed by the first three compartments, 
which is of interest in processes such as thymic development14. We choose µi = 1 = µ for all i ∈ {1, 2, 3} , so 
that the unit of time for the system is the mean lifetime of a cell. We want to study the impact of asymmetric and 
symmetric division on the dynamics, and thus, choose ν1 = ν2 = ν3 = 1/2 in the irreversible model, so that all 
compartments have the same differentiation rates.

Cells can divide in each compartment with per-cell rate ω , and this division represents self-renewal with 
probability pSR , asymmetric division with probability pAD , and symmetric division with probability pSD . This 
is equivalent to setting, with the notation introduced in Section “Stochastic compartmental model”, �i = pSRω , 
si = pSDω and ai = pADω , for i ∈ {1, 2, 3} . We choose ω = 0.9 < 1.0 = µ , so that the system has significant 
proliferative potential, and focus on the following scenarios: 

Only-SR.	� pSR = 1.0 , pSD = 0 , pAD = 0.
Dominant-SR.	� pSR = 0.8 , pSD = 0.1 , pAD = 0.1.
Dominant-SD.	� pSR = 0.1 , pSD = 0.8 , pAD = 0.1.
Dominant-AD.	� pSR = 0.1 , pSD = 0.1 , pAD = 0.8.

 Our aim in this section is to explore the impact that asymmetric or symmetric division has on the dynamics 
of the system (dominant-SR/SD/AD scenarios), compared to the situation where only self-renewal takes place 
(only-SR scenario). In Fig. 5 we plot the mean number of cells, E[Ci(t)] , in compartments i ∈ {1, 2, 3, 4} for each 
scenario. For compartments Ci with i ∈ {1, 2, 3} , and since � = �1 = �2 = �3 and � = �1 = �2 = �3 , one 
can directly make use of Eq. (6). For compartment CN , N = 4 , one has

E[CN (t)] =
(

�

�

)N−1

−
N−1
∑

j=1

E[Cj(t)]
(

�

�

)N−j

.

Figure 5.   Dynamics of the mean number of cells, E[Ci(t)] , in compartments i ∈ {1, 2, 3, 4} for each of the four 
scenarios considered in Section “Asymmetric and symmetric division: the case of four compartments”.
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In Fig. 5, we consider initial conditions C1(0) = 102 , C2(0) = C3(0) = C4(0) = 0 , representing 102 initial cells 
in the first compartment and no cells in the other ones. We observe that an exponential decay in the number 
of cells in C1 is followed by sequential increases in the subsequent compartments, until a steady-state number 
of cells is achieved in the terminal compartment, C4 . Interestingly, the dynamics is faster if symmetric or asym-
metric division is considered (dominant-SR/SD/AD scenarios compared to only-SR): the decay in compartment 
C1 is quicker and the steady-state is reached sooner. The fastest dynamics is observed for the dominant-SD case, 
where symmetric division is more likely, and the two daughters of a cell move directly to the next compartment. 
Figure 5 indicates that symmetric or asymmetric division does not only affect the dynamics but also the total 
mean cell number exiting the system (i.e., reaching the terminal compartment, C4 ). This is directly related to the 
fact that cells can die at any stage in the differentiation process. In particular, limt→+∞ E[C4(t)] is significantly 
larger when asymmetric and (especially) symmetric division can occur. We note that, importantly, the division 
rate, ω , is equal in all four scenarios. This suggests that, in this type of systems, asymmetric or symmetric divi-
sion (compared to self-renewal division) facilitates the generation of a larger terminally differentiated population 
with the same overall proliferative capacity; that is, in the only-SR scenario, a larger number of divisions would 
be required in each compartment for enough cells to escape death and differentiate to the next compartment, 
and to eventually reach C4.

Our comments above are consistent with the results shown in Fig. 6, where we plot the mean number of 
cells, m1(j) , in the progeny of a single cell starting in C1 , belonging to compartments Cj , j ∈ {1, 2, 3, 4} , for all 
four scenarios. In the only-SR scenario, the mean number of cells in the progeny of the progenitor cell decreases 
monotonically across the sequence of compartments, m1(1) > m1(2) > m1(3) > m1(4) . We note that m1(4) = 0 
can be explained since it only accounts for progeny cells which arrive into compartment C4 as a direct result 
of cell proliferation, and no symmetric or asymmetric division is considered in the only-SR scenario. We also 
stress here that this monotonic decrease happens even though the division and differentiation rates are equal 
in all compartments j ∈ {1, 2, 3} . This can be explained by the fact that some cells in the progeny will die before 
reaching compartments C2 or C3 . On the other hand, and as discussed in Fig. 5, scenario only-SR leads to the 
largest mean progeny, m1 = m1(1)+m1(2)+m1(3)+m1(4) . This suggests that the only-SR scenario is an inef-
ficient way to reach a desired population size of terminal cells. Asymmetric and (especially) symmetric division 
events significantly reduce the number of descendants from a single progenitor cell in all compartments, while 
maximising the number of terminal (or product) cells (see Fig. 5). In particular, the dominant-SD scenario is 
characterised by the highest total mean number of terminal cells, E[C4(+∞)] , as well as the smallest progeny 
size, m1 , while leading to the largest progeny, m1(4) , in the terminal compartment.

Finally, the fastest dynamics observed in scenarios with symmetric division, as well as the reduced progeny 
observed from a single progenitor in C1 , imply that this kind of systems can go from unbounded growth to popu-
lation extinction at late times, by increasing the number of symmetric division events. We explore this further 
in the next section, looking at a particular case study.

Figure 6.   Mean number of cells m1(j) in the progeny of a single cell starting in C1 , belonging to compartments 
Cj , j ∈ {1, 2, 3, 4} , for all four scenarios.
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Hematopoietic stem cells: self‑renewal, asymmetric and symmetric division
We consider the model proposed in Ref.[9, Figure 6A] for the gradual differentiation of hematopoietic stem cells 
(HSCs). HSCs are responsible for the production of all blood cells52. In order to maintain such an heterogeneous 
population, HSCs are able to self-renew and differentiate. Moreover, HSCs need to act continuously and rapidly 
to either replace short-lived blood cells, or respond to hematopoietic stress arising from events such as bleeding 
and toxin spotting53. Recent advances in flow cytometry and single-cell analysis have shown that HSC cells are a 
small population compared to the many other blood cell types they can generate. Despite their importance, the 
molecular mechanisms involved in hematopoietic stem cell maintenance remain unclear.

In order to study simultaneously HSC proliferation and differentiation, Barile et al.9 propose a novel math-
ematical model inferred by cell-cycle dependent labelling and HCS fate mapping data. Cells at each state can 
undergo five different processes: self-renewal, asymmetric cell division, symmetric cell division, direct differen-
tiation and cell death. This leads to the following compartmental sequence: HSC1 → HSC2 → MPP1+MPP2 → 
MPP3 → HPC1 (see Ref.[9, Figure 6A]) consisting of N = 5 different compartments. These represent two stages 
of hematopoietic stem cells (HSC1 and HSC2), two stages of multi-potent progenitor cells (MPP1 + MPP2 and 
MPP3), and a final stage of hematopoietic progenitor cells (HPC1).

The model proposed by Barile et al.9 corresponds to the irreversible model (i.e., ξi = 0 for i ∈ {2, . . . , 5} ) 
shown in Fig. 2, when we set N = 5 compartments and consider the parameter values in Table 1, from Ref.[9, 
Figure 6]. We note that the “net loss rate” for HSC1 cells, �1 = −4.6197× 10−3 days−1, is negative. Thus, the 
growth of the HSC1 population is unbounded, as can be observed in Ref.[9, Figure S1 H]. This is also shown in 
Fig. 7, where we simulate the system given by Eq. (2) for the parameters of Table 1.

We note that the parameter calibration performed by Barile et al.9 predicted relatively negligible symmetric 
and asymmetric division rates for most of the compartments. Thus, these authors assumed si = ai = 0 for all 
i ∈ {1, . . . , 5} , as given in Table 1 and Fig. 7. We now explore, for this system, the potential role that symmetric 
and asymmetric division could play. To that end, we perform a sensitivity analysis on the parameters (si , ai) , for 
i ∈ {1, . . . , 5} . In particular, we consider four different scenarios:

•	 Only-SR. All parameters as in Table 1, where si = ai = 0 for i ∈ {1, . . . , 5} and division events correspond to 
self-renewal, as reported by Barile et al.9, and shown in Fig. 7.

•	 Symm1. Symmetric division rate s1 ∈ {10−2, 10−1} for compartment HSC1 is added to the rates in Table 1, 
with si = 0 for i ∈ {2, . . . , 5} , and ai = 0 for i ∈ {1, . . . , 5}.

•	 SymmAll. Equal symmetric division rates si ∈ {10−2, 10−1} per day, for i ∈ {1, . . . , 5} are added to the rates 
in Table 1, with ai = 0 for i ∈ {1, . . . , 5}.

Table 1.   Parameter values obtained from Ref.[9, Figure 6], where they set ai = si = 0 for all i ∈ {1, . . . , 5}. All 
parameters reported in this section have units of days−1.

�i �i

HSC1 − 0.0046197 0.016497

HSC2 0.0017357 0.007847

MPP1+2 0.0044844 0.032834

MPP3 0.01556 0.16113

HPC1 0.0293 0

Figure 7.   Dynamics of the ODEs system (1) and parameters from Table 1, corresponding to the only-SR 
scenario. We choose initial conditions (C1(0),C2(0),C3(0),C4(0),C5(0)) = (890, 1370, 1540, 2020, 1.5× 104) , 
taken from Ref.[9, Figure S1 H].
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•	 AsymmAll. Equal asymmetric division rates ai ∈ {10−4, 10−3, 10−2, 10−1} per day, i ∈ {1, . . . , 5} are added 
to the rates in Table 1. Symmetric division only occurs in compartment HSC1, s1 = 5× 10−3day−1 , chosen 
so that population extinction is guaranteed.

The net loss rate for compartment i, �i ≡ µi + νi + si − �i , does not depend on the asymmetric division rate, ai , 
but it does depend on the symmetric rate, si . Thus, just by tuning the symmetric division rate, s1 , of HSC1 cells 
(Symm1 scenario), we can drastically change the dynamics of the entire system: from unbounded growth (Fig. 7) 
to population extinction (Fig. 8a). Furthermore, as shown in Fig. 8b, if all the compartments are characterised 
by a non-zero symmetric division rate (SymmAll scenario), then the resulting population size is smaller but 
the overall dynamics faster. The change in the asymptotic behaviour of the system, from unbounded growth to 
extinction, and the smaller number of HSC cells observed in the SymmAll scenario compared to the Symm1 
one, can be explained by the transitions across compartments generated by symmetric division events. When a 
symmetric division event occurs in compartment Ci , two cells in the subsequent compartment Ci+1 are gener-
ated, while the number of cells in compartment Ci decreases by one. Thus, symmetric division events speed up 
the transition of cells to subsequent compartments and, at the same time, deplete cells from the compartment 
where the division took place.

In Fig. 9 we explore the impact of increasing the asymmetric division rates, by considering the AsymmAll 
scenario, where those rates are positive and identical for all compartments. We note that, since asymmetric divi-
sion rates do not affect the asymptotic qualitative behaviour of the system (i.e., unbounded growth versus extinc-
tion), we set s1 = 5× 10−3day−1 , so that population extinction is guaranteed. When comparing the AsymmAll, 
Symm1 and SymmAll scenarios, it is clear that increasing the asymmetric division rates leads to a greater number 
of cells across compartments. This is due to the fact that asymmetric division events increase the number of cells 
in subsequent compartments without depleting the compartment where the division takes place. In practice, for 
situations where population extinction is guaranteed at late times (Fig. 9), increasing the asymmetric division 
rates delays the time when extinction occurs. We note Fig. 9 differs from Fig. 6, but they are not in contradic-
tion. In Fig. 6, the division rate ω is kept constant, while the probability for each type of division event is not, 
but given by (pSR , pSD , pAD) . In Fig. 9, we increase the asymmetric division rate in each compartment instead, 
effectively increasing the division rate ω , and thus, leading to a greater population size over time in the system.

Studies suggest that very low numbers of HSC cells (HSC1 and HSC2) can maintain a continuous stream 
of differentiating cells and generate a large number of mature blood cells8,52. During hematopoiesis, HSCs cells 
slowly replace short-lived MPP cells. This heterogeneous population no longer possesses self-renewal ability but 

Figure 8.   Dynamics of the ODE system (1) with initial conditions 
(C1(0),C2(0),C3(0),C4(0),C5(0)) = (1, 0, 0, 0, 0) . Parameter values as in Table 1, except for symmetric division 
rates. (a) Scenario Symm1, where the symmetric division rate s1 is positive only in the HSC1 compartment. (b) 
Scenario SymmAll, where the symmetric division rate si is positive and identical for all compartments.

Figure 9.   Dynamics of the system (1) and parameter values as in Table 1, except for 
s1 = 5× 10−3  day−1 and asymmetric division rates. AsymmAll scenario with equal asymmetric 
division rates ai ∈ {10−4, 10−3, 10−2, 10−1} per day, in all compartments, and initial conditions 
(C1(0),C2(0),C3(0),C4(0),C5(0)) = (1, 0, 0, 0, 0).
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still retains differentiation potential52. We note here that the parameter values estimated by Barile et al.9 result 
in an almost zero net loss rate for HSC2s and MPP1+MPP2 cells; that is, �2 ≈ �3 ≈ 0 . This agrees with the 
hypothesis that the self-renewal rate of HSC2 and MPP1+MPP2 cells is sufficient to maintain, alone, the popula-
tions of more differentiated cells (e.g., MPP3, HPC1), with minimal input from HSC1 cells. Thus, it is pertinent 
to study the progeny of a single HSC (HSC1 or HSC2), and study how symmetric and asymmetric division 
events influence it. To do this, we implement Eq. (14) in the irreversible model for i ∈ {1, 2} and j ∈ {i, . . . , 5} , 
and compute mi(j) , the mean number of cells within the progeny of a single cell from compartment Ci (HSC1 or 
HSC2) in subsequent compartments Cj , j ∈ {i, . . . , 5} . The results are shown in Fig. 10, where we plot mi(j) for the 
Symm1, SymmAll and AsymmAll scenarios, for i ∈ {1, 2} and j ∈ {i, . . . , 5} . We note that the Symm1 scenario is 
not considered in Fig. 10 for i = 2 , since changes in the symmetric division rate, s1 , do not affect m2(j) . First, we 
observe that the mean number of cells in the progeny of a single HSC1 progenitor across compartments, m1(j) , 
increases for increasing values of j; that is, for more differentiated cells regardless of the scenario. Indeed, most 
cells within the progeny of a single HSC1 progenitor belong to the last HPC compartment, consistent with the 
dynamics observed in Figs. 8 and 9.

The trend of m1(j) is drastically different for scenario AsymmAll compared to scenarios Symm1 or Sym-
mAll, for increasing values of the corresponding rate ( s1 in Symm1, sk , k ∈ {1, . . . ,N} in SymmAll, and ak , 
k ∈ {1, . . . ,N} in AsymmAll). In the AsymmAll scenario, m1(j) is an increasing function of the asymmetric 
division rate ak , whereas in the Symm1 and SymmAll scenarios, m1(j) is a decreasing function of the symmetric 
division rate. This agrees with the dynamics shown in Fig. 8, where increasing values of the symmetric division 
rate prevent population growth, guaranteeing extinction at late times. An increase of the asymmetric division rate 
leads to significant production of MPP and HPC cells (see m1(4) and m1(5) in Fig. 10) within the progeny, and 
thus, it could potentially play a role in situations of hematopoietic stress. Similar behaviour can be observed for 
m2(j) . In agreement with m1(j) in Fig. 10, we observe a decrease in m2(j) for scenario SymmAll and an increase 
in m2(j) for scenario AsymmAll, as a function of the corresponding division rate. Finally, we compare the Symm1 
and SymmAll scenarios. We observe that when the symmetric division rate equals 10−2 per day, the number of 
cells in the progeny of a single HSC1 progenitor differs by almost an order of magnitude between the Symm1 
and SymmAll scenarios; that is, symmetric division events taking place in all compartments (SymmAll) lead 
to smaller progeny from an initial HSC1 cell in subsequent compartments, compared to the Symm1 scenario. 
When increasing the symmetric division rate to 10−1 per day, the difference between the number of cells, m1(j) , 
within the progeny for the Symm1 and SymmAll scenarios increases further. Clonal hematopoiesis that has been 
observed in older mice and humans54 is strictly linked to the accumulation of mutations in the HPC population 
and an increasing risk of leukemia. Thus, our results suggest that symmetric division could be a possible way to 
control cell differentiation and limit mutation accumulation in the hematopoietic system.

Tracking a thymocyte during its development
We now consider the T cell thymic development model proposed in Ref.[14, Model 2], and shown in Fig. 11. 
Double negative (DN) thymocytes differentiate to become pre-selection DP thymocytes (pre-DP). In this model, 
pre-DP is the first compartment, which will contain an initial number of cells (initial condition, C1(0) ). Pre-
DPs undergo maturation in the thymus. These cells can progress to the double positive stage (post-DP), where 
thymocytes express both CD4 and CD8 co-receptors. Post-DP cells that are positively selected transition to the 
single positive (SP) stage, where they can express either the CD4 or CD8 co-receptor. Some of these cells will 
then reach the periphery as (single) CD4 or CD8 SP cells.

We exploit this particular model to illustrate the applicability of the analysis developed in Section “Life-
line analysis”. This case study also allows us to show how these methods can easily be adapted to different 
compartment topologies. In this case, we have a compartmental bifurcation, rather than a linear sequence of 
compartments.

First, it is of interest to estimate the percentage of pre-DP thymocytes that are predicted to die in each of the 
compartments during development, and the percentage that successfully reach the periphery instead (either as 
a CD4 or CD8 SP cell). It is clear that our arguments in Section “Lifeline analysis” can easily be adapted to do 
so. In particular, one can slightly redefine the probabilities βi(j) in Section “Lifeline analysis”, with i = 1 (i.e., a 
single pre-DP thymocyte being tracked), as

Similar solutions to those derived in Section “Lifeline analysis” can be obtained by incorporating the compart-
mental bifurcation in the first-step analysis, leading to

β1(1) =probability that the pre-DP thymocyte dies in the pre-DP compartment,

β1(2) =probability that the pre-DP thymocyte dies in the post-DP compartment,

β1(4) =probability that the pre-DP thymocyte dies in the CD4 SP compartment,

β1(8) =probability that the pre-DP thymocyte dies in the CD8 SP compartment,

β1(4P) =probability that the pre-DP thymocyte reaches the periphery as a CD4 SP cell,

β1(8P) =probability that the pre-DP thymocyte reaches the periphery as a CD8 SP cell.
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Figure 10.   Mean number, mi(j) , of cells in the progeny for an (a, b, d) HSC1 ( i = 1 ) or (c, e) HSC2 ( i = 2 ) 
progenitor, in compartments j ∈ {i, . . . , 5} . In each scenario, we vary the corresponding rate ( s1 in Symm1, sk , 
k ∈ {1, . . . ,N} in SymmAll, and ak , k ∈ {1, . . . ,N} in AsymmAll), where only values leading to finite mi(j) are 
considered.
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These analytical expressions allow us to perform a local sensitivity analysis by computing partial derivatives with 
respect to model parameters. For example, we have

The proliferative potential of thymocytes during thymic development directly depends on them reaching the 
CD4 SP or CD8 SP compartment, where they are able to divide, before they exit to the periphery. Thus, the 
average number of divisions initiated by a single pre-DP thymocyte during its thymic development journey, 
η1 = η1(4)+ η1(8) , is given by

Finally, the average lifespan of a pre-DP cell during thymic development (i.e., the mean time until it dies or it 
reaches the periphery) is given by

We consider parameter values in Table 2 selected from Ref.[14, Section 3.2], to compute the average lifespan of 
a pre-DP cell during its thymic development journey (until it dies or reaches the periphery), which corresponds 
to τ1 = 2.84 days. During its lifetime, a cell may undergo differentiation and proliferation, before dying in one 
of the compartments without ever reaching the periphery, or reaching the periphery either as a CD4 or CD8 
cell. We show the predicted cell fate probabilities in Fig. 12. The most likely outcome corresponds to cell death, 
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Figure 11.   Thymic development model proposed in Ref.14. Grey cells represent death events.

Table 2.   Parameter values from Ref.[14, Section 3.2], in units days−1.

Rate µ1 ν1 µ2 ν24 ν28 �4 �8 µ4 µ8 ν4 ν8

Value 0.263 0.137 1.369 0.07 0.054 0.216 0.093 0.04 0.11 0.21 0.14
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especially during the early stages (pre-DP and post-DP compartments). This agrees with existing evidence that 
most of negative selection occurs during the DP stages of development55. Once a cell reaches the CD4 SP com-
partment, it is more likely to reach the periphery than to die in that compartment, while these probabilities are 
comparable in the CD8 SP case.

In Table  3, we present the elasticities (i.e., normalised derivatives) of the probabilities β1(j) , 
j ∈ {1, 2, 4, 8, 4P, 8P} , with respect to model parameters. This can be of particular relevance when parameters 
have been experimentally estimated with some uncertainty, so that one can assess the impact of perturbations 
in these values on specific model outputs. As expected, the division rates, �4, �8 , do not affect the probability of 
death of the tracked cell starting as pre-DP. Moreover, the death rates µ1,µ2,µ4,µ8 positively contribute to the 
probability of the cell dying in the corresponding compartment j ∈ {1, 2, 4, 8} , while negatively contributing to the 
probability of the cell dying in other compartments. It is also worth noting that, for j ∈ {2, 4, 8} , the probability, 
β1(j) , of the cell dying in that compartment is mainly affected by the differentiation rate into compartment j; that 
is, ν1, ν24, ν28 , respectively. This can be understood since we are tracking a cell starting in compartment i = 1 , 
and following its developmental journey across the sequence of compartments. Thus, the probability of dying in 
a compartment j  = 1 is mainly determined by the differentiation rates of previous compartments.

The average  number  of  div is ion events  per formed by a  s ing le  pre-DP cel l  i s 
η1 = η1(4)+ η1(8) = 0.0139+ 0.0046 = 0.0185 . This implies that out of 102 pre-DP cells starting the thymic 
development journey only (about) 2 cells are expected to be produced by cell division from the original cells, 
when visiting the CD4 SP or CD8 SP compartments. These small values are directly related to the small prob-
abilities of reaching these compartments at all, so that the cell can actually divide. Our results here are in agree-
ment with the results from Ref.14, where the authors make use of a deterministic model to conclude that thymic 
development is a rather stringent process characterised by an extremely low success rate.

Discussion
We have presented a general model to characterise the stochastic journeys of cell progenies through compart-
ments. Cells can divide, die or exit to adjacent compartments. We have derived analytical expressions for the 
mean number of cells in each compartment as a function of time, under different scenarios of interest (e.g., 
irreversible model, where differentiation cannot be reversed) and studied the progeny of a single progenitor cell 

Figure 12.   Probabilities of a single pre-DP cell to die in each of the compartments (pre-DP, post-DP, CD4 SP, 
or CD8 SP) before reaching the periphery, or to reach the periphery as a CD4 or CD8 SP cell. In particular, 
β1(1) = 0.6575 , β1(2) = 0.3140 , β1(4) = 0.0026 , β1(8) = 0.0055 , β1(4P) = 0.0135 and β1(8P) = 0.0069.

Table 3.   Elasticities for the probabilities β1(j) , j ∈ {1, 2, 3, 8, 4P, 8P} , with respect to parameter 
θ ∈ {µ1, ν1,µ2, ν24, ν28, �4, �8,µ4,µ8, ν4, ν8} . They are given by (∂β1(j)/∂θ)/(βi(j)/θ) , with cell fate 
probabilities (in rows) and model parameters (in columns).

∂βi(j)
∂θ

/
βi(j)
θ

µ1 ν1 µ2 ν24 ν28 �4 �8 µ4 µ8 ν4 ν8

β1(1) 0.34 −0.34 0 0 0 0 0 0 0 0 0

β1(2) −0.66 0.66 0.08 −0.04 −0.04 0 0 0 0 0 0

β1(4) −0.66 0.66 −0.92 0.96 −0.04 0 0 0.84 0 −0.84 0

β1(8) −0.66 0.66 −0.92 −0.04 0.96 0 0 0 0.56 0 −0.56

β1(4P) −0.66 0.66 −0.92 0.96 −0.04 0 0 −0.16 0 0.16 0

β1(8P) −0.66 0.66 −0.92 −0.04 0.96 0 0 0 −0.44 0 0.44
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in terms of the probability generating function and summary statistics appropriately defined. The analysis allows 
us to track the journey of a lifeline across the system of compartments. We have then calculated its lifetime, 
its proliferative potential and the probability of different cell fates. We have used case studies to illustrate the 
applicability of our techniques and the impact of model parameters on the corresponding summary statistics.

The analysis carried out in Section “Lifeline analysis” sheds light on the dynamics of the cell population by 
analysing the journey followed by a single cell. Moreover, this technique is rather “flexible” since the first-step 
arguments in which it relies can be easily extended to other compartmental topologies, as we have briefly illus-
trated in the third case study (see Section “Tracking a thymocyte during its development”). Moreover, novel 
labelling and barcoding techniques provide an increasing amount of data56–59, which could be compared to this 
type of model predictions.

Our results also highlight the significant role that symmetric and asymmetric division events can play in these sys-
tems, when compared to self-renewal. In particular, we have shown in Section “Asymmetric and symmetric division: 
the case of four compartments” how symmetric division events can significantly affect the dynamics of the system, 
potentially moving it from unbounded growth to extinction. Increasing the asymmetric division rates does not change 
the late time behaviour. Still, it can delay population extinction by increasing the number of cells arising over time across 
compartments. On the other hand, for a fixed division rate, ω , and different probabilities of each type of division event 
(self-renewal, pSR ; symmetric division, pSD ; asymmetric division, pAD ), compartmental systems where symmetric or 
asymmetric division is more likely lead to smaller cell populations and faster dynamics to extinction or steady-state, 
compared to systems where self-renewal is the dominant division process. Interestingly, increasing the probability of 
symmetric or asymmetric division leads to smaller progenies from a single progenitor cell, while maximising the size 
of the fully differentiated (or terminal) population. We note that, in Section “Asymmetric and symmetric division: the 
case of four compartments” we set all differentiation rates to be the same across compartments, since the focus was on 
studying the impact of symmetric/asymmetric division on the cell population dynamics. However, it is to be expected 
that significant heterogeneity in differentiation rates across compartments could make specific compartments more/
less important in the dynamics. In particular, compartments with significantly large differentiation rates would lead 
to shorter residence times, which would likely imply that other events which can occur in these compartments (e.g., 
division) would become less relevant.

A particular limitation of our approach is that it relies on cells behaving independently from each other, as in the 
theory of branching processes. While this may be valid in some situations, for example when studying small cell popula-
tions where tissue growth control is only through feedback by the cell density, it might not be valid in other scenarios 
(e.g., for large cell populations, or under competition for resources, where logistic growth-type models might be more 
appropriate). This, in turn, is related to the fact that the corresponding ODE system for the average number of cells in 
each compartment is linear. Cell independence (or linearity) allows one to implement techniques from the theory of 
branching processes, and makes the single-cell analysis proposed here feasible, since we identify lifelines amongst the 
dynamics of all the cells in the compartmental system. Relaxing this particular assumption is, thus, the aim of future 
work. 

Data availability
Computer codes to generate Figures 5−10 and Figure 12 can be accessed at https://​github.​com/​matml/​Journ​
ey_​Of_A_​Cell_​Across_​A_​Seque​nce_​Of_​Compa​rtmen​ts. There is no other relevant data related to this study.
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