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Summary
Background It is uncertain which biological features underpin the response of rectal cancer (RC) to radiotherapy. No
biomarker is currently in clinical use to select patients for treatment modifications.

Methods We identified two cohorts of patients (total N = 249) with RC treated with neoadjuvant radiotherapy (45Gy/
25) plus fluoropyrimidine. This discovery set included 57 cases with pathological complete response (pCR) to che-
moradiotherapy (23%). Pre-treatment cancer biopsies were assessed using transcriptome-wide mRNA expression and
targeted DNA sequencing for copy number and driver mutations. Biological candidate and machine learning (ML)
approaches were used to identify predictors of pCR to radiotherapy independent of tumour stage. Findings were
assessed in 107 cases from an independent validation set (GSE87211).

Findings Three gene expression sets showed significant independent associations with pCR: Fibroblast-TGFβ
Response Signature (F-TBRS) with radioresistance; and cytotoxic lymphocyte (CL) expression signature and
consensus molecular subtype CMS1 with radiosensitivity. These associations were replicated in the validation cohort.
In parallel, a gradient boosting machine model comprising the expression of 33 genes generated in the discovery
cohort showed high performance in GSE87211 with 90% sensitivity, 86% specificity. Biological and ML signatures
indicated similar mechanisms underlying radiation response, and showed better AUC and p-values than published
transcriptomic signatures of radiation response in RC.

Interpretation RCs responding completely to chemoradiotherapy (CRT) have biological characteristics of immune
response and absence of immune inhibitory TGFβ signalling. These tumours may be identified with a potential
biomarker based on a 33 gene expression signature. This could help select patients likely to respond to treatment with
a primary radiotherapy approach as for anal cancer. Conversely, those with predicted radioresistance may be can-
didates for clinical trials evaluating addition of immune-oncology agents and stromal TGFβ signalling inhibition.
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Research in context

Evidence before this study
Patients with RC are usually treated with radiotherapy as part
of neoadjuvant therapy although they show a wide range of
responses. Currently there are no clinical or molecular
biomarkers implemented in the clinic to select which patients
benefit or not from such treatment. We searched PubMed
with the terms “rectal”, “radiotherapy”, and “expression”, for
articles published up to Oct 2, 2020. Nine studies reported a
gene expression RNA signature for response to CRT in
primary RC using pre-treatment biopsies. However, they had
important limitations, notably low statistical power, with the
largest discovery set being only 77 cases, and a missing
validation set in 3 cases. Furthermore, most studies had an
heterogeneous clinical setting including diverse regimens of
chemotherapy combined with conventionally fractionated
radiotherapy.

Added value of this study
Our study used a discovery set of 249 cases, drawn from one
large case series and the control arm of a national clinical trial.

Multi-omic profiling was undertaken by a multi-institution
consortium using state of the art analytical tools. Advanced
ML algorithms and methodology were used to detect
previously defined gene sets associated with pCR. The
findings were validated in an independent, external dataset of
107 cases and the predictive performance compared against
all other published signatures. We reveal clear biological
features (immune activity) underpinning response to
radiation and define predictive biomarkers of pCR with
excellent performance.

Implications of all the available evidence
We find that the stromal and immune cell compartments
within tumours are key determinants of pCR to CRT in RC.
Targeting these compartments provide the basis for novel
studies using improved patient selection and combination
treatments, which may be able to improve radiation response.
Introduction
Rectal Cancer (RC) accounts for 30% of the total inci-
dence of colorectal cancer (CRC) and radiotherapy is
used as part of the primary treatment of 40% patients
with RC.1 Pre-operative staging with MRI of the pelvis
identifies patients with locally advanced RCs, in whom
the surgical resection margin is threatened or involved,
and in these people neoadjuvant treatment including
chemoradiation or short course radiotherapy with pre-
operative chemotherapy is indicated, with the inten-
tion of maximising the likelihood of achieving an R0
resection.2 Neoadjuvant therapy also has an emerging
role in the non-operative management of RC in patients
who are reluctant or unfit to undergo radical surgery, or
for those in whom pCR is observed in the 6–12 weeks
following completion of CRT. In these patients a watch
and wait policy may be undertaken and a recent meta-
analysis shows increased local recurrence rates but
long term outcomes comparable in clinical complete
responders to total mesorectal excision.3

Prediction of response to CRT in RC has not been
possible to date despite a number of small scale at-
tempts to define predictive biomarkers from the
transcriptome.4–12 This is plausibly owing to a number of
limitations in such studies such as different
chemotherapy combinations with radiotherapy, un-
matched endpoints mostly based on different cut points
to call response, lack of correction for stage, critically
low statistical power, and absence of a validation cohort
(Supplementary Table S1). Notably, reported biological
insights from such studies are few and inconsistent.
The lack of biomarkers to predict pCR to neoadjuvant
radiotherapy is a clinical unmet need. Such a stratifier
could enable a proportion of patients with high likeli-
hood of achieving pCR to be offered definitive, radiation
based treatment like in anal cancer, enabling a signifi-
cant number of patients to be treated without surgery
and avoid a stoma. In contrast, identification of those
with poor response to CRT, who also have a higher rate
of distant metastases,13 could spare them the toxic ef-
fects and inconveniences of such treatment. It may also
enable selection of patients for suitably modulated first
line therapy designed to target the underlying biology
driving radioresistance and metastasis.

In this study from the Stratification in COloRectTal
cancer (S:CORT) consortium, we aimed to identify the
biological basis of complete response to radiotherapy in
patients with RC and to derive a predictive biomarker.
We have undertaken multi-omic profiling of 249 pre-
radiotherapy biopsies from two cohorts of patients with
www.thelancet.com Vol 106 August, 2024

http://creativecommons.org/licenses/by/4.0/
http://www.thelancet.com


Articles
RC, comprising transcriptome-wide mRNA expression,
mutations in 80 CRC driver genes and genome-wide copy
number alterations. Using multiple regression and ML
approaches we identify and validate biological predictors
of pCR to radiotherapy in RC with a level of performance
that suggests clinical utility.
Methods
Clinical cohorts
Two independent cohorts of pattients with RC were
included in our discovery set: 125 cases from a
sequential cohort from the Aberdeen area in the UK
(‘Grampian cohort’) and 124 cases from the control arm
of the UK multicentre Aristotle clinical trial which
compared the efficacy of standard CRT with or without
irinotecan (ISRCTN09351447). Patients identified
received ‘standard CRT’ comprising pelvic irradiation
(45–50.4Gy in 25 fractions over 5 weeks) with capecita-
bine 900 mg/m2 bd days Monday to Friday, throughout
radiotherapy (Supplementary Figure S1a and b,
Supplementary Methods) based on a threatened or
involved circumferential rectal fascia on pre-treatment
MRI scan. Sex was included as a covariable. Validation
testing was performed on 107 cases from a publicly
available RC cohort (GSE87211)14 with transcriptomic
data from pre-treatment biopsies, selected to have been
treated with similar neoadjuvant regimen (50.4Gy in 28
fractions with infusional 5-fluorouracil alone) expected
to have equivalent biological effects. Full details for the 3
cohorts are available in Supplementary Methods. The
primary endpoint in all cases was pCR after CRT as
assessed by specialist pathologist (GIM for Grampian
and NPW for Aristotle).

Profiling
All clinical samples assessed were taken from
Formalin Fixed Paraffin Embedded (FFPE) RC biopsies
from patients before commencement of CRT given as
neoadjuvant therapy for RC management. After
assessment of haematoxylin and eosin-stained sections,
areas of tumour were macrodissected and nucleic acids
were extracted using standard protocols. A specifically
designed panel of RNA baits (Agilent SureSelect)
enabled capture and sequencing of all exons of 80 CRC
driver genes, 66 regions of recurrent copy number
gains/losses, 960 reference SNPs distributed across the
genome (allowing low resolution copy number esti-
mations) and 123 regions for microsatellite instability
(MSI). Samples showing neutral copy number calls in
>20% of the length of all chromosomes combined
were classified negative for Chromosomal Instability
(CIN), otherwise as positive.15 RNA expression
profiling used the 24,441 genes/110,961 probesets
ALMAC/Affymetrix XCEL microarrays (Supplementary
Methods).
www.thelancet.com Vol 106 August, 2024
Statistics
Twenty pre-defined, hypothesis-based candidate gene
sets, pathways or molecular classifiers for response to
radiotherapy were selected by an expert panel of re-
searchers and tested for association with pCR using
logistic regression analyses (Supplementary Table S2,
Supplementary Methods).

In a second, hypothesis-free analysis, our aim was to
build a machine learning (ML) model to predict pCR
from the transcriptomic data. A pipeline consisting of
five steps was established and applied using 12 different
modelling approaches: Quality check, Pre-processing,
including correction of class imbalance, differentially
expressed genes (DEG) selection, Decision making
genes (DMG) selection, Training to build a model (ML)
from the discovery cohort as previously described.16 The
best performing ML model was tested on the full
GSE87211 validation cohort after appropriate batch
correction to derive sensitivity, specificity, and area un-
der curve. Additional models were also tested. The
complete methodology is provided in Supplementary
Methods.

Additionally, a literature search identified 9 reported
signatures for prediction of response to radiotherapy in
RC (Supplementary Table S1) which were also tested in
the validation cohort.

Ethics
The S:CORT consortium including this specific analysis
was reviewed and approved by the South Cambs
Research Ethics committee (REC ref 15/EE/0241; IRAS
reference 169363). All patients provided written
informed consent for further research to be undertaken
on samples.

Role of funders
The Stratification in Colorectal Cancer Consortium
(S:CORT) was funded by the Medical Research Council
and Cancer Research UK. The funders played no role in
the study design, data collection, data analyses per-
formed, interpretation or writing of the report.
Results
Clinical and molecular profiles
Most selected samples (87%) from both Grampian
(N = 125) and Aristotle (N = 124) were successfully
profiled for both transcriptome and targeted NGS, with
remaining cases profiled for one of them (Fig. 1a,
Supplementary Figure S1a and b). The frequency of
pCR in Grampian, Aristotle and GSE87211 cohorts was
26%, 19% and 21% respectively. Both pretreatment T
and N stage showed some variation (Fig. 1b,
Supplementary Table S3) while the frequencies of the
main molecular profiles were within expected ranges,
albeit different for some genetic variables such as APC
3
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Fig. 1: Clinical and molecular data in Grampian, Aristotle and GSE87211. a. Overlap of samples profiled for RNA and DNA platforms. b.
Comparison of the main clinical and molecular profiles by cohort. c. Most common driver mutations by gene. d. Copy number alterations by
chromosome arm. (note RNA data only available from GSE87211).
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Fig. 2: Candidate analysis. a. Univariable regression adjusted for T and N stage for prediction of pCR in candidate biological features in
discovery cohort (Grampian and Aristotle combined). b. Multivariable model adjusted for T and N stage after stepwise backwards regression in
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and TP53 mutations and CIN that were more common
in Grampian than Aristotle (Fig. 1c and d,
Supplementary Figure S2a Supplementary Table S3).
Summaries of the most common driver mutations, copy
number alterations at chromosome level and tran-
scriptome signatures are shown in Fig. 1 and
Supplementary Figure S2.

Hypothesis-based analysis
To obtain robust predictive models, Grampian and
Aristotle cohorts were merged and relabelled as Dis-
covery cohort (Supplementary Figure S5). Then, logistic
regression adjusted by cohort and baseline T and N
stage was performed to identify predictors of pCR on 20
prespecified biological candidates (Supplementary
Table S2) from our multiomic data. Nine features
were significant (Fig. 2a): five associated positively with
pCR were all indicators of immune cell abundance
(CMS1, mutation burden, CD8 Tcells, cytotoxic lym-
phocytes and B lineage (by MCP)) and 4 negatively
associated (APC mutation, CMS4, F-TBRS and RSI
(radiosensitivity index)). After multivariable backward
stepwise regression, only three remained independently
significant F-TBRS (OR 0.05, p 0.004), cytotoxic lym-
phocytes (OR 37.08, p 0.0006) and CMS1 (OR 3.52, p
0.012) (Fig. 2b). This final model, which we have
labelled as Biological RadioSensitivity Classifier (BRSC),
in a ROC curve predicted pCR with AUC of 72% in the
discovery set (Fig. 2c). BRSC performance was repro-
ducible in the validation set in prediction of pCR
(p = 0.001) showing AUC of 75% (Fig. 2d and e).
Its addition to a model with T and N stage was highly
significant (p = 0.0008, likelihood ratio test). Meta-
analysis of these three variables (CMS1, cytotoxic lym-
phocytes and F-TBRS) in the three tested datasets
showed no significant heterogeneity between cohorts
(Supplementary Figure S3).

Analysis of genetic variables
We interrogated other multiomic profiles not tested as
candidates. None of the mutations or copy number
changes were significant (Supplementary Figure S4).

ML analysis
Using multiple ML methods (Supplementary Methods,
Fig. 3a, Supplementary Figure S6) we aimed to develop
a locked ML model as recommended by FDA.16 We
compared their performance in cross-validation, and
identified in the discovery cohort the gradient boosting
machine as providing the optimal geneset based on
highest K-fold cross validation accuracy (84%) with
discovery cohort. c. ROC curve applying the 3 variables (F-TBRS, Cytoto
cohort. d. Univariable model of the 3 variables (F-TBRS, Cytotoxic lymphoc
applying the 3 BRSC variables combined in GSE87211.
lowest number of genes required (33) (Fig. 3b,
Supplementary Table S4). This locked model applied to
all GSE87211 showed 89% accuracy and 89% AUC
(Fig. 3c and d) with 89% sensitivity and 86% specificity
(Fig. 3e), showing excellent ability to differentiate be-
tween pCRs and non-pCRs. Similar results were found
when using a subset of GSE87211 balanced for pCR
(Supplementary Figure S7b–d). We labelled this new
geneset as RadioSensitive Signature (RSS). Considering
the difference between the training and validation co-
horts, batch correction was necessary (Supplementary
Figure S7). Based on our research we identified the
SVA tool (Combat function) as the most relevant algo-
rithm for batch correction.17 This requires some pro-
cessing of the validation data. In particular, to avoid
degrading the pCR signal during the batch correction,
pCR data has to be disclosed to the batch correction
function to properly merge the discovery and GSE87211
cohorts (full discussion on this is provided in
Supplementary Methods). However RSS was also tested
for validation without standardisation of the analytical
platform by using a version of the validation tran-
scriptome built fully agnostically from outcome. This
procedure is suboptimal from a batch correction
perspective, but it is an important validation that
RSS was still predictive in a setting not disclosing the
pCR data (64% accuracy, 74% AUC, p = 0.04)
(Supplementary Figure S7e–g).

Finally, we performed a randomized permutation
experiment to further test our geneset. An empirical
null was generated by randomly picking 1000 gene sets
(each containing 33 genes). The AUC for the discovery
(Supplementary Figure S7h) & validation cohort
(Supplementary Figure S7i and j) estimated using this
empirical null was found significant (p-value <0.001,
Predictor p-values in linear models).

BRSC and RSS across grades of clinical response
We have used pCR as a valuable clinical endpoint with a
clear biological meaning. We asessed whether RSS
might also provide additional granular information for
broader response to radiotherapy than specifically for
pCR. We checked the distribution of RSS scores across 4
levels of pathological response in the single cohort
(Grampian) with these data available and across patho-
logical T stage after treatment in the whole Discovery
cohort and GSE87211 (Supplementary Figure S8a–c).
pCRs and yT0 cases showed higher levels of RSS but all
the other categories showed comparable, lower levels.
The same was observed for BRSC scores
(Supplementary Figure S8d–f). These results suggest
xic lymphocytes and CMS1) as one compound variable in discovery
ytes and CMS1) adjusted for T and N stage in GSE87211. e. ROC curve

www.thelancet.com Vol 106 August, 2024
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Fig. 3: Machine learning. a. Analytical pipeline used to derive and validate a new signature to predict pCR. b. 10-fold cross validation accuracy
and number of genes for each ML method tested. The one with highest accuracy was selected. EN: elastic net, GBM: gradient boosting machine,
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the inherent biology uncovered might be specific to pCR
rather than good response to radiotherapy.

Biological assessment of RSS
In order to understand the biology associated with RSS,
we first performed gene set enrichment analysis (GSEA)
of the RSS model predictions on GSE87211 using hall-
mark genesets. We compared “RSS positive” (eg pre-
dicted to be pCRs) against “RSS negative” (eg predicted
to be not-pCRs). The same analysis was also performed
with real pCR status for a fair comparison (Fig. 4a). We
identified 15 hallmarks in common between both ana-
lyses, all of them in the same direction, while four
hallmarks were identified only by RSS predicted status
and also four only by pCR status. These results suggest
strong concordance of RSS prediction with actual pCR
status also at the level of biological pathways. In agree-
ment with our previous BRSC results, two of the shared
hallmarks showing stronger enrichment in pCRs were
immune-related (interferon alpha response and inter-
feron gamma response) while a hallmark tightly asso-
ciated with stroma (epithelial mesenchymal transition)
was strongly enriched in not-pCRs cases. Some other
interesting hallmarks linked in the literature with
radiotherapy were found such as hypoxia and oxidative
phosphorylation.

We then aimed at comparing RSS with our BRSC
model that underlines the biology driving pCR. The
association of each individual RSS gene with each
BRSC biological variable was analysed by regression
and meta-analysed. As expected, the discovery set
showed strong association for all 3 BRSC features
without heterogeneity in the models. GSE87211
showed the expected trends although in this smaller
cohort with more heterogeneity, two of the variables
did not reach significance. The same analysis was
then performed on RNAseq data from TCGA CRC
resections. In this third large set all 3 BRSC features
were significantly associated with RSS genes, albeit
with high levels of heterogeneity (Fig. 4b and
Supplementary Figure S9). These analyses suggest the
33 RSS genes broadly overlap with all 3 BRSC
features.

Our biological analyses suggest RSS is strongly
associated with the tumour microenvironment.
Accordingly, we aimed at testing whether the expression
of these 33 genes may potentially be driven by the
composition of different cell types in the profiled tissue.
Using an unrelated transcriptome cohort composed of
four different cell types separated by FACS from six
CRC cases,18 we identified 14 RSS genes strongly
expressed in specific cell types (epithelial, leucocytes,
LR: lasso regression, NN: neural net; RF: random Forest; SVM: support-vect
from Gradient boosting machine model on GSE87211. d. ROC curve for Gra
the new RSS signature in GSE87211.
endothelial or fibroblasts) and 12 genes that were not
(Supplementary Figure S10).

Comparison with similar published signatures
We compared RSS and BRSC with similar signatures
reported in the literature to predict outcome to radio-
therapy in RC (Supplementary Table S1). We first found
very few overlapping genes between any of the signa-
tures (Fig. 5a, Supplementary Figure S11a). We then
looked for correlations in GSE87211 which was not used
for training any of the signatures. RSS was only corre-
lated with BRSC but not with any of the published sig-
natures (Fig. 5b). We then compared how samples
would have been ranked according to each signature.
None of them seem to show similar ranks to RSS
(Fig. 5c) but most of them seemed to show an inverse
association for BRSC (Supplementary Figure S11b).
Finally, we tested the prediction ability for pCR using
each signature score. Only Palma and Park were statis-
tically significant but at much lower level than BRSC
and RSS (p = 0.047, p = 0.038, p = 0.002 and p < 0.001
respectively). Notably, better performance of our two
models was clearly evidenced by better ORs and AUCs
(Fig. 5d). In summary, most of these published signa-
tures mildly associate with the same biology we have
identified but they all clearly underperfom to predict
pCR compared to RSS.
Discussion
CRC biology remains a challenge to the research and
clinical communities. The 15% of MSI cases shows the
importance of the interaction between epithelial cell
biology and immune response as key determinant of
outcome. The development of the CMS classification
has helped to stratify the remaining 85% of CRC with
proficient mismatch repair.19 While MSI cases are allo-
cated with some other cases with immune activation to
CMS1, the key observation from the CMS and prior
gene expression classification systems has been the
identification of CMS4 with its increase in fibrotic
stroma and prevalence of TGFβ signalling, poor prog-
nosis and poor response to chemotherapy. Recently, we
reported that image based consensus molecular sub-
types correlate with radiation response with increased
pCRs in imCMS1, but reduced pCRs in imCMS4.20

This study has shown that the predictors associated
with pCR to radiotherapy are based on contributions
from the tumour microenvironment, notably stromal
cells (TGFβ signalling) and immune response (CMS1,
cytotoxic lymphocytes). Increasing evidence points to
the immune response as being a critical determinant of
or machine. The prefix F- refers to functional. c. RSS predictive scores
dient boosting machine model on GSE87211. e. Confusion matrix for
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Fig. 4: RSS biology a. GSEA for cancer hallmarks from differential expression analyses based on pCR and RSS prediction in GSE87211. b.
Association of BRSC molecular features and RSS genes by meta-analysis for all genes in discovery cohort, GSE87211 and TCGA separately (see
Supplementary Figure S8 for full analysis).
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radiation sensitivity. Using 97 rectal biopsies from pa-
tients treated with heterogeneous neoadjuvant radio-
therapy regimens, estimations of immune infiltrate
were found associated with increased response and
prolonged disease free survival.21 In a separate report,
gene expression from over 10,000 pancancer patients
showed high RSI22 had distinct enrichment of
interferon-associated signalling pathways and immune
cell infiltrates.23 The importance of an IL-1 mediated
response from inflammatory cancer associated fibro-
blasts has been shown to mediate radiation resistance in
RC.24 Consistently, here we report radiation response
associates with TGFβ and immune markers. TGFβ is a
pleiotropic cytokine derived from many cell types but
especially the myofibroblastic stromal cells, which is
present at a high level in stroma-rich CRC,19 is released
from its extracellular matrix trap by radiotherapy,20 re-
duces intrinsic radiosensitivity through DNA repair
pathway switching25 and has multiple inhibitory effects
www.thelancet.com Vol 106 August, 2024
on the immune response.26 These predictive features are
plausible biologically and targetable, enabling design of
combination therapy through inhibition of TGFβ or
related stromal cytokine pathways, such as IL-1, and
enhancing the immune cell engagement through im-
mune checkpoint inhibition and other related ap-
proaches. Interestingly, this biology overlaps extensively
with that driving the development of metastasis in the
poor prognosis CMS4 subtype. Batlle and colleagues
have shown in an autochthonous tumour model of
CMS4 (APTK) which is highly metastatic, inhibition of
TGFβ and with PD-1 inhibition is the most potent
approach to inhibiting the development of metastases
and enhancing survival.27 This approach has been
shown in early clinical trials using the TGFBR1 inhibi-
tor vactosertib in metastatic CRC in combination with
pembrolizumab.28

We complemented this hypothesis-based approach
with a hypothesis-free, ML method undertaken
9
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Fig. 5: Comparison of our signatures with published ones. a. Number of overlapping entrez genes in published signatures and ours. b.
Pearson correlation across different signatures in GSE87211. c. Heatmap of samples ranked by each signature sorted by biological score of RSS in
GSE87211. d. Prediction to pCR in GSE87211 by each signature sorted by AUC.
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separately using the same datasets. The availability of
more complex and personalised statistical tools for gene
expression data analysis coupled with an unprecedented
large dataset enabled us to derive robust biomarkers. A
dataset without proper pre-processing to handle batch
effect, causal inference, class imbalance and outliers can
lead to misleading results.29 Given the validation set was
processed in an entirely different laboratory setting, we
performed batch correction. This requires disclosure of
clinical variables, including response, in order to avoid
degrading the biological signal. However, we also per-
formed an analysis not revealing the response data
during batch correction, which is suboptimal from a
batch correction perspective, but avoids disclosing the
response data. We also used a set of pre-processing
techniques including correction of class imbalance us-
ing downsampling to balance classes in the discovery
cohort and multiple iterations using differing not-pCR
cases to minimise biases in our discovery cohort. After
addressing most of the known biases, DEG analysis was
done on 100 subsets of the discovery cohort with two
tools finding a robust geneset of 80 DEGs in all itera-
tions. Finally, we used six well known ML algorithms
trained on all 80 DEGs or selected features to make
prediction models and internal validation was under-
taken using 10-fold cross-validation. This identified a
RSS of 33 genes which is independent of T and N stage
and highly predictive of pCR with high robustness and
accuracy in an independent dataset with optimal pre-
processing, which remained significant when omitting
pCR from the combat step. GSEA analysis of samples
with either high RSS scores or with actual pCR, showed
interferon alpha response and interferon gamma
response were highly enriched in responding patients
while a hallmark tightly associated with stroma
(epithelial mesenchymal transition) was strongly
enriched in not-pCRs cases showing the two methods
had independently shown the same biological features.

The ML approach based on rigorous statistics has
therefore provided us with the basis for a biomarker
Fig. 6: Clinical implementation of RSS. NCCN guidelines define clinical op
the 33 gene signature described here would inform decision making, resu
and has potential to improve outcomes.

www.thelancet.com Vol 106 August, 2024
which could be tested prospectively to identify
patients with RC who are highly likely to achieve
pCR to standard dose radiotherapy coupled with flu-
oropyrimidines. The 15–25% of patients who have the
radiosensitive biology could be identified at diagnosis
and counselled that a primary radiotherapy based
approach to management is possible similar to that
currently undertaken in anal cancer, with planned
close follow up on a ‘watch and wait’ basis as is
currently performed in those found to have a com-
plete clinical response after neoadjuvant CRT.
Conversely, it identifies patients unlikely to obtain
pCR who may be considered for trials targeting the
stromal inhibitory mechanisms (TGFβ) and
enhancing the immune response in combination with
radiation. Further research may also test whether RSS
may also be useful in earlier stage disease for patients
currently not considered for CRT who may achieve an
organ preserving strategy (Fig. 6, Supplementary
Figure S12).

Only recently RNA profiling has been successfully
undertaken using optimised 3’ RNAseq from FFPE tis-
sue. In our study we used the Almac Xcel array which is
optimised for FFPE samples and we were able to achieve
good yields from 98% of rectal biopsies. In collaboration
with the Wellcome Trust Sanger Institute we also
developed a reduced input to the sequencing process
enabling 50 ng DNA to be used rather than the previous
minimum standard of 200 ng. The use of FFPE obvi-
ously makes collection of cases much more straight-
forward and also makes the results more readily
implementable in the clinical workflow as fresh frozen
samples are not required.

The main strengths of our study compared to pre-
vious efforts are larger discovery and validation sets,
strong sample selection resulting in clear clinical ho-
mogeneity, adjustment of the potential confounders T
and N baseline stage, assessment of the associated
biology, additional use of mutation and copy number
data, and the use of a clear endpoint both clinically and
tions for patients with rectal cancer. Adding a certified test based on
lting in increased organ preservation, reduced treatment morbidity,
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biologically such as pCR. Although the latter may have
resulted in some loss of signal from good responders
not reaching pCR, our biomarkers showed similar low
levels across responses and yT stage within non-pCRs.
This may be expected since they were derived specif-
ically for pCR. Overall, our results provide a compre-
hensive picture that was missing in this field.

Our research is limited to analysis of patients treated
with long course CRT. Total noadjuvant chemotherapy
(TNT) is an emerging standard of care based on rand-
omised trials30 and meta-analyses31,32 showing improved
outcomes. Recently, we have assessed predictors of
response with varying chemoradiotherapy regimens and
show that the addition of oxaliplatin to CRT seems to
reduce the negative predictive effect of stromal biology
on pCR.33 Further research, including acquisition of
transcriptomics data in the relevant cohorts, will be
needed to fully determine whether our findings may
apply to patients treated with TNT, and also to stage I
and IV patients as they were mostly missing in our co-
horts. It is also unclear whether the same level of signal
may be shown in patients with regimens other than with
addition of fluoropyrimidines or even in different
tumour types. RSS needs further development using a
standardised analytical laboratory process to avoid the
requirement for batch correction and to be further
validated in independent datasets using that locked
down protocol to become a clinically validated tool. To
our knowledge this is the first time that a predictive
model has been used to predict individual patient
outcome in an entirely independent dataset. Finally,
while our two biomarkers do not show heterogeneity in
our three curated cohorts, we also show early evidence
that the signals from some of the individual RSS genes
may come from different cell lineages. More studies are
needed to properly detail the involvement of each RSS
gene in different cell types and why their combination
results in stable signals to predict pCR in rectal biopsies.
Such analyses may also consider that while we identify
three biological features independently associated with
pCR in multivariable analysis (F-TBRS, CL, CMS1), six
others were also found in univariable models and it can
not be ruled out that any of them or others not profiled
in this study may have a relevant role.

In summary, RCs that respond completely to radio-
therapy have the biological characteristics of immune
activation as identified by CMS1 and cytotoxic lympho-
cytic infiltration and an absence of immune inhibitory
TGFβ signalling. These tumours may be identified by
measurement of expression of a 33 geneset that merits
further research for validation and development as a
potential new biomarker. This could open the door to
selection of responsive patients for treatment of patients
with RC with a primary radiotherapy based approach as
for anal cancer. Conversely those with predicted radio-
resistance would be candidates for clinical trials evalu-
ating addition of immune-oncology agents and stromal
signalling inhibition to overcome these drivers of im-
mune exclusion and radioresistance.
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Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.ebiom.2024.105228.
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