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Abstract
Multi-line charts are commonly used inmulti-criteria decision-making (MCDM) to represent
multiple data series on the same graph. However, the presence of conflicting criteria or diver-
gent viewpoints introduces the challenge of accurately interpreting these charts, necessitating
thoughtful design to improve their comprehensibility. In this paper, wemodel thesemulti-line
charts as connected perfect matching bipartite graphs. We propose a metric called the Coef-
ficient of Complexity (CoC) to quantify the complexity of these multi-line charts. In order to
reduce the visual complexity of these charts, we propose to minimize the CoC by modeling
it as an integer linear optimization problem (reminiscent of the traveling salesman problem).
We demonstrate our techniques through multiple real-life case studies, wherein multi-line
charts serve as data visualization across various MCDM software tools. Additionally, multi-
line charts with specific requirements have been optimized using our approach, showcasing
the adaptability and efficacy of our technique. We also formulate the radar chart as a special-
ized form of the multi-line chart, and adapt our technique to improve its comprehensibility.
The proposed CoC and its optimization are important contributions to the field of analytics,
as a number of methods use multi-line charts for visual aid. Consequently, enhancing their
comprehensibility can facilitate the decision-making process and help decision-makers gain
insights.

Keywords Multiple criteria analysis · MCDM · MCDA · Optimization · Data visualization

1 Introduction

Data visualization leverages graphical or visual representations to depict quantitative or qual-
itative data, offering a more intuitive comprehension of the information (Knaflic, 2015). In
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the realm of multi-criteria decision-making (MCDM), various data visualization methods
like tables, graphs, and charts are useful means to assist decision-makers and stakehold-
ers (Miettinen, 2014). A judicious selection of charts can enhance the reader’s understanding
significantly (Arabnia, 1999). By effectively communicating the strengths and weaknesses
of alternatives, these visualization techniques facilitate a more informed decision-making
process.

Nonetheless, achieving effective data visualization in MCDM is not an easy task. This
difficulty is registered in the context of the description problematic δ of Bernard Roy’s four-
stage methodology (Roy & Vincke, 1981), aiming to represent alternatives more accurately
by fostering a cognitive process through data visualization (Roy, 1996). Its complexity arises
from the need to incorporate multiple dimensions of discrete elements-including criteria,
alternatives, and multiple decision-makers (DM) in group decision-making (GDM)-which
together constitute a multi-dimensional data series. To facilitate comprehension, MCDM
methods and their associated software tools have incorporated a variety of chart types, each
offering different levels of detail. Multi-line charts are frequently employed in MCDM, yet
their comprehensibility remains under-explored, particularly given their propensity for visual
complexity and entanglement when data volume increases. In this study, our objective is to
propose and apply a novel technique to reduce the visual complexity of these charts, thus
providing a better representation of the underlying data for DMs. Our goal is to enhance the
readability of multi-line charts that feature a relatively modest number (e.g. 10) of data series,
i.e., alternatives, without compromising any of the information they convey. Undertaking
this task is far from trivial. Insights from the psychology of comparison literature indicate
that the complexity of making comparisons increases substantially as the number of stimuli
increases (Thurstone, 1954). This suggests that adding even a single stimulus to an analysis
can dramatically alter the comprehensibility of visual displays. Hence, when delving into
the intricacies of multi-line charts, the difficulty in interpreting them stems not merely from
the quantity of alternatives shown but is also compounded by the diversity of dimensions
represented on the x-axis. Consequently, a relatively modest number of data series (i.e.,
alternatives) across a limited number of dimensions (i.e., criteria, factors, scorers) can still
quickly escalate the complexity of the chart due to overlapping alternatives. This complexity
increase poses a significant challenge to decision makers (DMs), adding additional visual
complexity that can hinder their ability to efficiently interpret and act on the data displayed.
Therefore, developing an appropriate technique to overcome this challenge is crucial.

The study is structured as follows: We begin with a literature review on MCDM, group
decision-making related data visualization, and the general usage and development of multi-
line charts in MCDM. Through this review, we identify the research gap that our study aims
to address. We then introduce our approach for enhancing multi-line charts and present our
optimization model, which serves as the core technique. The effectiveness of this technique
is then demonstrated through both a hypothetical complex numerical example and multiple
real-world case studies. Finally, we discuss potential directions for future work and conclude
the study.

2 Literature review

MCDM problems inherently involve comparing and selecting from a variety of alternatives
based on conflicting criteria (Marttunen et al., 2017). The challenge lies not only in the
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multidimensionality of the decision vectors but also in effectively communicating this com-
plex information to the DMs (Korhonen et al., 1992). Data visualization serves as a crucial
support mechanism in this regard. They help elucidate similarities and differences among
alternatives and enhancing overall comprehension and efficiency in the decision-making
process (Miettinen, 2014).

2.1 Are charts properly utilized in MCDM software?

To assist practitioners in addressing MCDM problems, diverse MCDM software tools
have been developed (Weistroffer & Li, 2016). Miettinen (2014) extensively surveyed
various types of charts, ranging from generic to more specialized visualizations, utilized
in MCDM software. MCDM software can be categorised into two main types based on
Malczewski’s taxonomy on MCDM (Malczewski, 1999): Multi-Criteria Decision Analysis
(MCDA)/Multiple Attribute Decision Analysis (MADA) software, and Multiple Objective
Programming (MOP)/Multiple Objective Optimization (MOO) software. Due to the distinct
characteristics of MCDA and MOO (Vergara-Solana et al., 2019), these software tools offer
varied visualization options to meet specific requirements.

Common types of charts, such as bar charts, line charts, and radar charts, are widely
employed in MCDA software, including ValueDecision (Haag et al., 2022a) and MAMCA
software (Huang et al., 2020), among others. Furthermore, several sensitivity analysis charts
proposed by Belton and Vickers (1990) are frequently utilized in software tools like Expert
Choice (Forman et al., 1983), etc.

In addition to these general charts, specialized charts for specific methodologies have
also been developed. For instance, visualization techniques specific to the Analytic Hier-
archy Process (AHP) are presented in Siraj et al. (2015), to PROMETHEE in Visual
PROMETHEE (Mareschal & De Smet, 2009), and to FITradeoff in the FITradeoff soft-
ware (de Almeida et al., 2016), among others. These specialized charts further extend the
scope of visual tools available for decision-making analysis.

On the other hand, the parallel coordinate plot is a popular chart extensively used in MOP
software tools. In parallel coordinate plots, objective functions are typically represented by
vertical axes and solution candidates are represented by polylines. We will discuss it in detail
in Sect. 2.3.

Though different charts are utilized, the task of visualizing such complex data is non-
trivial. There is a delicate balance between ensuring the simplicity of the visualized data and
maintaining its comprehensive nature (Cleveland, 1985). In other words, the challenge is
to create visual representations that are easy to interpret without losing critical information
or unintentionally introducing misleading information. It is essentially a trade-off among
complexity, precision, and comprehensibility. In this study,wedelve deeper into themulti-line
chart, examining its usage in MCDM and exploring potential avenues for improvements.

2.2 Aremulti-line charts preferred within theMCDM context?

Line charts are widely used for data visualization (Spear, 1952). This type of chart presents
information through a series of data points, i.e., markers, which are linked by straight line
segments (Newman, 1954). Building on the versatility of line charts, multi-line charts, also
known as series line charts, extend the functionality by allowing the representation of more
than one data series on the same graph. These charts become especially useful when the data
sets share a common variable, such as time or an ordinal scale, making the comparison across
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Table 1 Multi-line chart usage in MCDM software

Category Software name Used* Source

MCDA software 1000Minds Yes Hansen and Ombler (2008)

Criterium decision plus No Murphy (2014)

DecideIT No Preference (2024a)

Decisionarium Yes Hämäläinen (2003)

DEXI No Craheix et al. (2015)

Diviz No Meyer and Bigaret (2012)

D-Sight Yes Hayez et al. (2012)

Entscheidungsnavi Yes Siebert et al. (2021)

Expert choice Yes Forman et al. (1983)

FITradeoff Yes Pessoa et al. (2022)

Helison No Preference (2024b)

IRIS No Dias et al. (2002)

Logical decisions No Chelst and Canbolat (2011)

MAMCA Yes Huang et al. (2020)

M-MACBETH Yes Bana e Costa and Vansnick (1999)

PriEsT No Siraj et al. (2015)

SOCRATES No Munda et al. (2022)

Transparent choice Yes TransparentChoice (2024)

Value decision Yes Haag et al. (2022a)

Visual PROMETHEE Yes Mareschal and De Smet (2009)

VIP analysis No Dias and Clímaco (2000)

MOO software IND-NIMBUS Yes Miettinen (2014)

Interalg No Kroshko (2007)

ModeFRONTIER Yes Parashar et al. (2010)

RGDB No Lotov et al. (2004)

ParallAX Yes Avidan and Avidan (1999)

* If multi-line chart is used as data visualziation in the software

different categories or groups straightforward. It effectively displays multi-dimensional data
in a sequential format. Thus, the multi-line charts are aligned with the data type and objective
of MCDM, which are able to illustrate the performance of different alternatives on different
criteria. The process becomes more complicated when decisions are made by groups of
DMs, each with varying preferences and judgements, which has been widely researched as
multi-criteria group decision-making (MCGDM) (Hwang & Lin, 2012). Therefore, in this
context, the multi-line chart is a suitable chart type that can simultaneously illustrate the
performances/preferences of alternatives on different criteria and possibly different groups.

To systematically assess the integration of multi-line chart visualizations within MCDM
software, we conducted an exhaustive review of both web-based and desktop (Windows-
based) applications as catalogued in the studies by Miettinen (2014); Weistroffer and Li
(2016); MCDM-Society (2024).1 The surveyed software is listed in Table 1. It’s important
to mention that our analysis excluded complementary tools or solvers developed on Excel,

1 TestEnvironmentSpecifications:The evaluationswere performedon a system runningWindows10, powered
by an Intel® Core™ i7-12800H processor.
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Matlab, Python, or similar platforms. However, it’s worth acknowledging the existence of
notable software such as ASMO (Eichfelder, 2009) and DESDEO (Misitano et al., 2021).
These tools were not included in our survey of multi-line chart usage due to their higher
flexibility for data visualization on their platforms.

We surveyed 26 software tools and discovered that 14 of them employ multi-line(-like)
charts for data visualization purposes.2 These charts are utilized in various ways across the
surveyed tools. Specifically, some tools use multi-line charts to display the outcomes of
data analyses, effectively representing multi-dimensional data sets. Others incorporate these
charts as interactive elements, broadening their applicability to activities such as sensitivity
analysis. Below, we delve into some of these applications in greater detail, with screenshots
in Fig. 1.

1. In Expert Choice, the multi-line chart is utilized as a form of sensitivity analysis visu-
alization. It is called “all in one chart” (see Fig. 1a). Paired with a bar chart that depicts
the weights of various criteria, users can gain a comprehensive understanding of the
performance of different alternatives (Forman et al., 1983; Ishizaka & Labib, 2009).

2. In software such as VISA and IND-NIMBUS, multi-line charts are deployed to illustrate
“value paths” (Belton & Vickers, 1990; Miettinen & Mäkelä, 2000). As illustrated in
Fig. 1b, each line in the chart represents an alternative, reflecting its performance across
various criteria, which are depicted as bars. These bars illustrate the range of each criterion
within the Pareto optimal set (Miettinen, 1999).

3. In the MAMCA software, multi-line charts are employed to showcase the preferences
of various stakeholder groups within a group decision-making framework, called “multi-
actor view” (Huang et al., 2020). In Fig. 1c, the x-axis represents different stakeholders,
using a nominal scale, while the y-axis portrays the preferences of the alternatives among
these various stakeholder groups.

4. In MOP software, parallel coordinates increasingly stand out among the most efficient
approaches (Wegman, 1990). The “value paths” can be seen as parallel coordinates with
fewer solutions. In particular, parallel coordinates offer space efficiency per criterion,
allowing scalable application across many criteria (Fleming et al., 2005). Such diagrams
facilitate the comparison of multiple alternatives over a set of numerical variables. An
example of this application can be seen in the modeFRONTIER software, as shown in
Fig. 1d.

2.3 The enhancement of multi-line chart

We can see the multi-line charts are commonly used as a method for visual representation
in various contexts (Miettinen, 2014). However, multi-line charts, despite their ability to
provide rich insights, can also become overly complex, leading to confusion and reducing
their interpretability. Each additional line adds a layer of complexity to the chart, which
can lead to clutter and confusion, making it harder to distinguish individual lines and derive
accurate insights.

This overly complex scenario often happens in the MOP studies. Thus, researchers con-
tinue to devise new approaches to facilitate the readability of multi-charts, i.e., parallel
coordinate plot in MOP. For example, some suggest that by carefully choosing colors, line
styles, line thickness, andmarkers may help distinguish different lines (representing different

2 Despite the different terminologies used in different software to refer to multi-line(-like) charts, they are
unified by their underlying purpose of data visualization. For consistency and clarity, we will refer to all such
variations as “multi-line charts” in the remainder of this paper.
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Fig. 1 Screenshots of multi-line charts in MCDM software
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series of data) (Healey, 1996; Card, 1999). Inselberg (1997) also proposed a systematic way
to process parallel coordinate plots. The integration of more interactive techniques has led
to the adoption of a technique known as “brushing,” which allows users to manipulate plots
actively to produce more insightful data visualizations (Becker & Cleveland, 1987).

A notable advancement in enhancing parallel coordinate plots involves rearranging the
dimensions-specifically, the labels on the X-axis-to uncover specific data properties. Ankerst
et al. (1998) introduced an algorithm that models the task of rearranging axes as a solution to
the Traveling Salesman Problem (TSP) (Lawler, 1985), aiming to position dimensions with
similar behaviors adjacent to each other. Zhen et al. (2017) expanded on this concept, devel-
oping an algorithm that effectively illustrates the dominance relationship between solutions,
thereby shedding light on the evolutionary process. However, they didn’t investigate how to
extract more useful information from the solution sets and then present this information in
the parallel coordinates. To address this, Saini (2022) proposed an innovative visualization
technique known as SCORE bands. This method combines several strategies, including solu-
tion clustering, axis ordering, and axis placement, to aid DMs in identifying patterns among
solutions and understanding correlations between objectives. In the end, the lines in parallel
coordinates plots are clustered and visualized as bands in the charts and axes are reordered
to better help DMs understand objective correlations. Nonetheless, such methods typically
employed inMOP are generally better suited for analyzing larger datasets, for example, those
containing hundreds of lines. The application of these methods might lead to a loss of origi-
nal information in the visualization, such as when transforming clusters of lines into bands.
In the context of MCDA/MCGDM, the scenario is quite different. Here, a handful number
of alternatives have already been identified, and the evaluation is conducted with respect to
specific criteria. The focus remains on the readability and accuracy of information, that is,
reducing the complexity of multi-line charts whilst keeping the information intact.

While the aforementioned approachesmay not be directly applicable to this goal, they pro-
vide valuable insights that inform our proposed technique. Research conducted by Ghoniem
et al. (2005) demonstrates a notable decline in graph readability as the quantity of intersec-
tions escalates. For this reason, careful attention must be given to the design and layout of
multi-line charts.

In the context of reducing readability complexity, force-directed layout algorithms, which
aim to position nodes to minimize edge crossings, represent an intriguing approach for
enhancing graph readability (Tamassia, 2013). Despite their effectiveness in network graphs,
their direct application to multi-line charts proves challenging due to differing structural
complexities. While there is a certain degree of similarity between the two chart types, there
currently isn’t a suitable algorithm for reducing visual complexity in multi-line charts using
a force-directed layout concept. Consequently, the goal of this study is to develop a technique
that adapts the principles of this algorithm to optimize multi-line charts. This objective stands
to benefit from the insights gained through extensive research on edge (or arc) crossings in
graph theory (Purchase et al., 1996).

2.4 Edge crossings problems in bipartite graphs

Bipartite graphs, which consist of two distinct sets of vertices with edges only connecting
vertices from different sets, play a fundamental role in graph theory and have broad appli-
cations in fields such as networking, data visualization, and matching algorithms. A critical
aspect of research on bipartite graphs focuses onminimizing edge crossings when visualizing
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these structures because such crossings significantly impact the readability and interpretabil-
ity of the graphs (Purchase et al., 1996). An exemplary problem in this domain is Turán’s
brick factory problem, which queries the minimum number of crossings in a drawing of a
complete bipartite graph (Turán, 1977). Following this, numerous studies have introduced
various algorithms aimed at reducing edge crossings. Tamassia (2013) provides a comprehen-
sive overview of these techniques, including the layering approach. In this approach, vertices
are organized into horizontal layers, and edges are depicted as straight lines between these
layers. Although effective, this method often requires complex algorithms to optimize the
ordering of vertices within the layers to minimize crossings. The edge crossing problem has
been proven to be NP-hard (Garey & Johnson, 1983), highlighting the difficulty of finding
an optimal solution. Consequently, researchers have explored heuristic methods. He et al.
(2007) discuss the use of heuristic algorithms that, although not ensuring an optimal solution,
can significantly reduce the number of crossings in large bipartite graphs.

While our study shares the general objective of minimizing visual complexity, our
approach to simplifying multi-line graphs by drawing inspiration from edge crossing prob-
lems in bipartite graphs differs from traditional edge crossing problems. The classical edge
crossing problem is defined in the context of complete bipartite graphs, where every vertex
from one set is connected to every vertex in the other set (Gould, 2012). In contrast, our inves-
tigation of multi-line graphs concerns a set of bipartite graphs where each graph is perfectly
matched, indicating a one-to-one correspondence between vertices in the two sets (Tanimoto
et al., 1978). Moreover, in our context, the connections within the bipartite structures are
predetermined, with each line representing a set of data, such as the performance metrics of
alternatives across different criteria. This introduces unique properties and challenges spe-
cific to our study, which are discussed in the following section. Consequently, there is a need
to develop a novel method specifically tailored to reducing the visual complexity inherent in
multi-line charts.

3 Visual complexity in themulti-line chart

As aforementioned, our objective is to enhance graph readability by minimizing edge cross-
ings (i.e. intersections). Our goal is to optimize a specific chart type, namely amulti-line chart,
where one axis represents a nominal scale and the other axis corresponds to a numerical scale.
The chart depicts scores associated with a set of labels, denoted as N = {n1, n2, . . . , nJ },
which are displayed on the nominal scale.

We use a sequence of connected perfect matching bipartite graphs to illustrate this type
of multi-line chart.

Definition 1 (Bipartite Graph) A bipartite graph is a graph G = (V , E) consisting of a set
of vertices V , and a set of edges E . V can be divided into two disjoint sets L and R, where
L represents the vertices on the left side of the edges, and R denotes the vertices on the right
side of the edges. Every edge e ∈ E connects a vertex in L to a vertex in R.

Formally, this means that there are no edges connecting vertices within the same set. The
bipartite graph can also be denoted as:

G = (L ∪ R, E) where L ∩ R = ∅, and ∀e ∈ E, e = {l, r} with l ∈ L, and r ∈ R. (1)
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Fig. 2 A perfect matching
bipartite graph

Definition 2 (Perfect Matching Bipartite Graph) If a bipartite graph L and R have equal
cardinality, meaning they have the same number of vertices, the graph is called a balanced
bipartite graph. A perfect matching bipartite graph is a balanced bipartite where every vertex
in V is adjacent to exactly one edge in E .

This implies that a perfect matching pairs each vertex in L with exactly one vertex in R
and vice versa, leaving no vertex unmatched. An example of a perfect matching bipartite
graph is illustrated in Fig. 2, which can be mathematically formulated as:

B = (L ∪ R, E) where |E | = |L| = |R|, and ∀v ∈ L ∪ R, ∃!e ∈ E such that v ∈ e.
(2)

Now, we define the items to be displayed on the multi-line chart. Consider a set of items
I = {i1, i2, . . . , iM }. Each item is allocated a score based on the labels; consequently, for
each im ∈ I , an associated score Sm = {sm,n1 , sm,n2 , . . . , sm,nJ } is assigned. The scorematrix
can be illustrated as:

n1 . . . nJ

i1
...

iM

⎡
⎢⎣

s1,n1 . . . s1,nJ
...

. . .
...

sM,n1 . . . sM,n j

⎤
⎥⎦ , (3)

where the line segments for im are subsequently generated by connecting the scores for
each label {sm,n1 , sm,n2 , . . . , sm,nJ }(∀m ∈ M).

Definition 3 Themulti-line chart can be represented by a sequence of J−1 connected perfect
matching bipartite graphs B = {B1, B2, . . . , BJ−1}.
For each graph Bj = (L j ∪ R j , E j ), line segments are drawn for items on the labels n j and
n j+1. The set L j contains the scores on label n j , i.e., {s1,n j , s2,n j , . . . , sM,n j }, while R j =
{s1,n j+1 , s2,n j+1 , . . . , sM,n j+1}. The scores {sm,n j , sm,n j+1} are connected by edge em,n j ∈ E j .
These bipartite graphs are connected such that the right-side vertices of one bipartite graph
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=

Fig. 3 Connected perfect matching bipartite graphs {B1, B2, B3}

is the left-side vertices of the next bipartite graph, ensuring that for all Bj , Bj+1, we have
R j = L j+1. Thus we define V ′

j = R j = L j+1. As illustrated in Fig. 3, a series of connected
perfectmatching bipartite graphs {B1, B2, B3} demonstrates this relationship. In total,M×N
line segments are drawn to represent the relationships among the items.

3.1 Definition of the visual complexity of bipartite

Now, we introduce the concept of visual complexity in the context of the bipartite graph.
As the number of intersections increases, it becomes more challenging to comprehend the
connections between vertices. A study byGhoniem et al. (2005) found that the readability of a
graph significantly decreased when the number of intersections increased. Thus, minimizing
intersections in a bipartite graph can improve the readability and overall effectiveness of a
graph.

As a result, it is essential to determine the number of intersections within a given bipartite
graph. To accomplish this, we first need to establish the conditions under which two edges
in the bipartite graph intersect. To illustrate this, let us consider two edges connecting two
random items in an adjacent bipartite in a multiple bipartite graph, im and im′ , with their
respective labels n j and n j+1, where the line segments/edges em,n j , em′,n j connect items. It
is important to note that n j and n j+1 represent nominal labels, and as such, it is not permissible
to compute their difference directly. Nevertheless, for the purpose of this analysis, we assume
an undefined distance D > 0 exists between the two sides of the bipartite graph, such that
|n j − n j+1| = D (see Fig. 4). The subsequent theorem demonstrates that the value of D has
no impact on the results of our analysis.

Theorem 1 For a given adjacent bipartite in connected bipartite graphs, two non-overlapped
line segments are intersecting as long as it satisfies

(
sm,n j − sm′,n j

)·(sm,n j+1 − sm′,n j+1

) ≤ 0.

Proof Antonio (1992) developed an algorithm that determine two given line segments in 2-D
space whether they intersect or not. The line segments can be defined in terms of first degree
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Fig. 4 Two intersecting line segments

Bézier parameters (Mortenson, 1999):

em.n j =
[

n j

sm,n j

]
+ t

[
n j − n j+1

sm,n j − sm,n j+1

]
, em′.n j =

[
n j

sm′,n j

]
+ u

[
n j − n j+1

sm′,n j − sm′,n j+1

]
, (4)

where t and u are real numbers.The intersection point of the line segments is found with
one of the following values of t or u range [0, 1] (Antonio, 1992). In our case:

t =

∣∣∣∣
n j − n j n j − n j+1

sm,n j − sm,n j+1 sm,n j+1 − sm′,n j+1

∣∣∣∣
∣∣∣∣

n j − n j+1 n j − n j+1

sm,n j − sm′,n j sm,n j+1 − sm′,n j+1

∣∣∣∣

= (n j − n j )
(
sm,n j+1 − sm′,n j+1

) − (
sm,n j − sm,n j+1

) (
n j − n j+1

)
(
n j − n j+1

) (
sm,n j+1 − sm′,n j+1

) − (
sm,n j − sm′,n j

) (
n j − n j+1

) , (5)

u =

∣∣∣∣
n j − n j n j − n j+1

sm,n j − sm,n j+1 sm,n j − sm′,n j

∣∣∣∣
∣∣∣∣

n j − n j+1 n j − n j+1

sm,n j − sm′,n j sm,n j+1 − sm′,n j+1

∣∣∣∣

= (n j − n j )
(
sm,n j+1 − sm′,n j+1

) − (
sm,n j − sm,n j+1

) (
n j − n j+1

)
(
n j − n j+1

) (
sm,n j+1 − sm′,n j+1

) − (
sm,n j − sm′,n j

) (
n j − n j+1

) . (6)

As there is an undefined distance D exists between the two sides of the bipartite graph,
we have:

t = 0 − D (
sm,n j − sm,n j+1

)

D (
sm,n j+1 − sm′,n j+1

) − D (
sm,n j − sm′,n j

)

= −sm,n j + sm,n j+1

−sm,n j + sm,n j+1 − sm′,n j+1 + sm′,n j

= u. (7)
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Thus, the intersection can be found if:

0 ≤ −sm,n j + sm,n j+1

−sm,n j + sm,n j+1 − sm′,n j+1 + sm′,n j

≤ 1. (8)

When −sm,n j + sm,n j+1 − sm′,n j+1 + sm′,n j 
= 0, we have:

−sm,n j + sm,n j+1 ≤ −sm,n j + sm,n j+1 − sm′,n j+1 + sm′,n j , if − sm,n j + sm,n j+1 ≥ 0,

−sm,n j + sm,n j+1 ≥ −sm,n j + sm,n j+1 − sm′,n j+1 + sm′,n j , if − sm,n j + sm,n j+1 ≤ 0 (9)

i.e.

sm′,n j+1 ≤ sm′,n j , if sm,n j+1 ≥ sm,n j ; sm′,n j+1 ≥ sm′,n j , if sm,n j+1 ≤ sm,n j .

Eventually,
(
sm,n j − sm′,n j

) · (
sm,n j+1 − sm′,n j+1

) ≤ 0, if−sm,n j + sm,n j+1 − sm′,n j+1 + sm′,n j 
= 0.

�

Now, we define the visual complexity of the bipartite graph. Recall that intersec-

tions of line segments contribute to the difficulty of readability. Additionally, readability
is also challenged when two line segments overlap. Overlapping occurs in the spe-
cial case when −sm,n j + sm,n j+1 − sm′,n j+1 + sm′,n j = 0, i.e.,

(
sm,n j − sm′,n j

) =(
sm,n j+1 − sm′,n j+1

)
. In this situation, the two line segments are either parallel or overlapping;

trivially,
(
sm,n j − sm′,n j

) · (
sm,n j+1 − sm′,n j+1

) ≥ 0. Overlapping occurs specifically when(
sm,n j − sm′,n j

) = (
sm,n j+1 − sm′,n j+1

) = 0. With this understanding, we can define under
which circumstances the visual complexity increases in the bipartite graph. And then we can
further identify the visual complexity of a given bipartite.

Definition 4 (Visual complexity). For two edges/line segments in a given bipartite, it can be
seen as an increase of visual complexity when

(
sm,n j − sm′,n j

) · (
sm,n j+1 − sm′,n j+1

) ≤ 0.

Theorem 2 For a given perfect matching bipartite graphwith M edges, themaximumnumber
of intersections and overlaps is

(M
2

)
.

Proof For every edge e j ∈ E j , it can intersect or overlap with all the other edges. Conse-
quently, to determine the number of intersections between every two edges from a fixed set
of M edges, we utilize the binomial coefficient

(M
2

) = M !
2!(M−2)! . �


To better quantify the visual complexity in the perfect matching bipartite, we define a
coefficient called coefficient of complexity (CoC):

Definition 5 (Coefficient of complexity). For a perfect matching bipartite with M edges, the
coefficient of complexity (CoC) is formulated as follows:

CoC = #Intersections and overlaps

Maximum possible
# intersections and overlaps

= | (sm,n j − sm′,n j

) · (
sm,n j+1 − sm′,n j+1

) ≤ 0|(M
2

) ,∀m < m′ ≤ M, (10)

where CoC is a value in the range of [0, 1]. It compares the number of intersections and
overlaps of edges in a given bipartite graph to the maximum possible number of intersections
and overlaps for anM-edge perfect matching bipartite graph.When the CoC is 1, the bipartite
graph exhibits maximal readability difficulty; conversely, when the CoC is 0, the bipartite
graph is considered to have no readability difficulty.
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4 Optimizationmodel for decreasing the visual complexity of the
multi-line chart

Expanding upon the proposed coefficient of complexity, we propose an optimization model
with the objective of minimizing visual complexity. As previously noted, the type of multi-
line charts targeted for optimization can be conceptualized as a series of interconnected
perfect matching bipartite graphs. These charts exhibit a unique characteristic: they present
the scores of various items across distinct labels, and rearranging the order of the labels has no
impact on the chart’s meaning. Consequently, the strategy for reducing the visual complexity
of these multi-line charts involves adjusting the order of the labels in order to minimize
the number of intersections and overlaps. Building on Theorem 1, the intersections of line
segments are unaffected by the nominal scale distances on the labels. Trivially, overlaps are
also unrelated to these distances. Thus, the first step of the optimization is to compute the
CoC for all possible single bipartite graphs corresponding to different pairs of labels. For a
given dataset represented as matrix (3), the CoC of items can be pairwise compared across
different labels and is depicted as follows:

⎡
⎢⎢⎢⎢⎢⎣

CoCn1,n1 CoCn1,n2 . . . CoCn1,nJ−1 CoCn1,nJ

CoCn2,n1 CoCn2,n2 . . . CoCn2,nJ−1 CoCn2,nJ
...

...
. . .

...
...

CoCnJ−1,n1 CoCnJ−1,n2 . . . CoCnJ−1,nJ−1 CoCnJ−1,nJ

CoCnJ ,n1 CoCnJ ,n2 . . . CoCnJ ,nJ−1 CoCnJ ,nJ

⎤
⎥⎥⎥⎥⎥⎦

, (11)

where CoCn j , n j ′ signifies the coefficient of complexity for a perfect matching bipartite
graph based on the scores of I = {i1, i2, . . . , iM } on the labels n j , n′

j . The coefficients along
the diagonal, i.e., CoCn j , n j , are not required to be calculated.

Upon computing coefficients for all pairwise comparisons, our next step is to identify
an ordering to construct the new multi-line chart that minimizes the aggregated CoCs.
Let’s define the reordered connected bipartite graphs as B′ = {B ′

1, B
′
2, ..., B

′
nJ−1

}. These
graphs still adhere to the properties outlined in Definition 3. Thus, the reordered connected
bipartite graphs is still a series of perfect matching bipartite graphs. For each vertex set

V ′ ∈
{
L ′
1, R

′
j = L ′

j+1, R
′
J

}
( j = 1, 2, ..., J − 1) within the total vertex set of the connected

bipartite graphs VC , the condition ∀V ′ ∈ VC , ∃!V ′ holds. This rule ensures that a set of
vertices within one label only appears once throughout the entire connected bipartite graphs.
Consequently, by calculating each CoC of bipartite within the reordered connected bipartite

graphs, we obtain a set of CoCs, C′ =
{
CoCn′

1,n
′
2,
,CoCn′

2,n
′
3,
, ...,CoCn′

J−1,n
′
J ,

}
. Then we

aggregate all the CoCs of C′:

O =
J−1∑
j=1

CoCn′
j ,n

′
j+1

. (12)

Given the unique existence property ofB′, i.e., ∀V ′ ∈ VC , ∃!V ′, we can actually determine
O values for all possible orderings of the connected bipartite graphs, using matrix (11). This
is enabled by the interconnection of all labels. With the exception of the initial and final
labels, the item scores for all other labels must uniquely connect to two other distinct sets of
item scores. The optimization process thus aims to identify the minimum O within the realm
of possible orderings. Intriguingly, this optimization bears resemblance to the (symmetric)
traveling salesman problem (TSP), as the CoCs can be considered analogous to distances
between cities, with O representing the total tour length in TSP (Pop et al., 2023). Therefore,
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we can construct an integer linear optimizationmodel, drawing inspiration from the principles
of the TSP (Papadimitriou & Steiglitz, 1998):

minO = min
J∑

j=1

J∑
j 
= j ′, j ′=1

CoCn j ,n j ′ · xn j ,n j ′ (13)

xn j ,n j ′ =
{
1, if vertex sets on label j and j ′ are conncted;
0, otherwise,

(14)

where xn j ,n j ′ are the binary variables that determine whether the vertex sets on different
labels are connected. Thus, we have the constraints that except for the first and the last labels,
the vertex sets on all the other labels are exactly connected to two other distinct sets. To
generalize this as a conventional TSP problem, where the salesman is required to return to
the original city (i.e., all labelsmust connect to two other labels), we introduce a dummy label.
This dummy label has zero CoC to every other label, thereby allowing for the return to the
origin, aligning with conventional TSP formulations (Lawler, 1985). Thus, the optimization
problem (13) changes to:

minO = min
J+1∑
j=1

J+1∑
j 
= j ′, j ′=1

CoCn j ,n j ′ · xn j ,n j ′ , (15)

where

CoCn j ,nJ+1 = 0,∀n j ∈ N ;
CoCnJ+1,n j = 0,∀n j ∈ N . (16)

The complete optimization model will be designed utilizing the Dantzig-Fulkerson-
Johnson (DFJ) formulation (Dantzig et al., 1954). The selection of the DFJ formulation
is attributed to its relative simplicity and ease of implementation for the TSP, particularly
when dealing with a problem of our scale which does not present a large optimization
challenge (Gutin & Punnen, 2006):

minimize
x,u

O =
J+1∑
j=1

J+1∑
j 
= j ′, j ′=1

CoCn j ,n j ′ xn j ,n j ′ , (Objective), (17)

J+1∑
j ′=1, j ′ 
= j

xn j ,n j ′ = 1,∀ j = 1, ..., J + 1, (18)

J+1∑
j=1, j 
= j ′

xn j ,n j ′ = 1,∀ j ′ = 1, ..., J + 1, (19)

∑
n j∈Q

∑

n′
j∈Q, j 
= j ′

xn j ,n j ′ ≤ |Q| − 1,∀Q � {n1, ..., nJ+1}, |Q| ≥ 2, (DFJ constraint),

(20)

xn j ,n j ′ ∈ {0, 1},∀ j, j ′ = 1, ..., J + 1, j 
= j ′, (Binary decision variables). (21)

Where constraint (20) is the subtour elimination constraint. Q is a subset of the labels, and
this constraint enforces that, the resultant solution forms a singular, uninterrupted tour rather
than a collective amalgamation of smaller, disparate tours (Grötschel & Padberg, 1975).
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Fig. 5 Illustrating the performance of 4 alternatives on 4 criteria from a hypothetical numerical illustration

While the subtour elimination constraint can potentially give rise to an exponential quantity
of constraints, our scenario is relatively straightforward, implying that computational com-
plexity should not pose a significant issue. Upon completion of the optimization process, the
dummy label is subsequently disregarded. Consequently, this process allows us to ascertain
the path of the TSP without necessitating a return to the originating point, i.e., find out the
initial label and final label in the line chart in our case. It should be noticed that, the objective
function (17) is possible to be modified, as the intention of set the current objective function
is to mimic the TSP problem. For example, it can be modified as:

minimize
x,u

O

J − 1
(22)

where we can obtain a normalized value to evaluate the visual complexity in a range of
[0, 1].

5 Algorithm demonstration

To showcase the efficacy of our optimization algorithm, we begin by applying it to a hypo-
thetical MCDM problem featuring four alternatives and four criteria. Figure5a presents a
complex multi-line chart, characterized by numerous intersections among the lines, result-
ing in an average CoC value of 1 (i.e., the highest complexity, each bipartite has maximum
possible intersections over edges).This intricate pattern suggests that the Decision Maker
(DM) has varying preferences for different alternatives across the multiple criteria, making
it challenging to understand their overall preference structure.

To reduce this complexity, we apply our optimization algorithm on this chart. The resultant
chart, depicted in Fig. 5b reveals a significant improvement in readability. By optimizing the
ordering of the criteria, the visual representation becomes more straightforward, allowing for
a clearer understanding of the DM’s preference trends. The data clearly shows that Option 1
performs well on criteria c1 and c3, while Option 2 performs better on c2 and c4. Assuming
equal weighting across criteria, the graph shows that Option 3 outperforms Option 2 overall.
This is evidenced by the fact that Option 3’s superior criteria outperform those of Option
2, and its lesser performing criteria still outperform the corresponding lesser performing
criteria of Option 2. An optimized graph enhances the clarity of these distinctions, making it
easier to compare the performance of the options. Also, notably, the ’sawtooth’ fluctuations
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Fig. 6 Illustrating the performance of 6 alternatives appraised by 5 decision-makers from Huang et al. (2021)

in the lines are eliminated. Additionally, it allows for the discernment of trends in alternative
preferences across various criteria. The application of the algorithm successfully reduces the
average CoC to a more manageable value of 0.333, thereby facilitate the decision-making
process.

5.1 Real-life case study: reaching consensus among DMs

Our real-life analysis begins with a case extracted from a consensus-reaching problem rooted
in a transportation decision-making case (Huang et al., 2021). This particular case was
selected due to its relative simplicity and clarity. In addition, as the main objective of this
paper revolves around consensus-reaching issues, i.e., identifying the best performed options
(items) based on different decision-makers (labels), we actually explore another mean of
achieving “consensus” from a visual optimization perspective.

Figure 6a presents an initialmulti-line chart generated from theBrussels case. The primary
goal of this analysis is to determine the most sustainable alternatives according to the scores
assessed by various DMs (Huang et al., 2021). The figure illustrates the performance of 6
alternatives appraised by 5 stakeholder groups based on Preference Ranking Organization
Method for Enrichment Evaluations (PROMETHEE) (Behzadian et al., 2010). Although the
original case has its intrinsic value, in order to concentrate on our focus of visual improvement,
we’ve chosen to represent the actual alternative options and DMs as numbers, rather than
revealing their specific identities.

The calculated average CoC for the original chart is 0.733. The chart is notably cluttered
with numerous intersecting lines, escalating its visual complexity. Consequently, capture
the performance of individual options becomes a challenging task due to this intricate
presentation of data.

We therefore implement the optimization model detailed in (17) with the goal of reducing
visual complexity. The outcome of this process is demonstrated in Fig. 6b, which presents
the optimized multi-line chart.

The improvements in visualization become discernible through the reduced intersection
count. Noticeably, the average CoC has declined to 0.433 (A detail investigation can be found
in Table 2). This improved view allows us to already visually identify the performance of
individual options. Option 2 stands out with its relatively better performance: Option 2 is
the favored choice among decision-makers DM1, DM3, and DM5. Furthermore, the analysis
simplifies the task of pinpointing the least successful alternative. Options 3 and 5 demonstrate
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Table 2 The CoC comparison
before and after the optimization
from Huang et al. (2021)

Before After

CoC(B1/B
′
1) 0.800 0.733

CoC(B2/B
′
2) 0.733 0.200

CoC(B3/B
′
3) 0.733 0.067

CoC(B4/B
′
4) 0.667 0.733

Average CoC 0.733 0.433

comparatively weaker preferences. The performance of “middle” alternatives also becomes
more apparent, facilitating a straightforward assessment of their standings. Notably, The
preferences for Option 6, which were difficult to identify in Fig. 6a, are clarified in Fig. 6b.
Here it appears as the second choice for DM1 and DM5, and the fourth choice for DM3,
providing a clearer perspective on its relative preference among decision makers.

5.1.1 Tailoring visualization to reflect specific needs

In practical applications of data visualization, the requirements often extend beyond simply
generating a clear chart. For instance, it might be necessary to maintain a fixed order for
certain dimensions of the data. This need could arise from the desire to compare two specific
criteria more closely or to explore the preferences of two different DMs in greater detail.
These specialized requirements can actually be incorporated as constraints in the proposed
optimization algorithm to meet these practical needs effectively.

Consider the transportation decision-making case as detailed by Huang et al. (2021).
Suppose DM1 and DM2 represent two distinct groups with potentially divergent interests
yet collaborate closely. In such a scenario, we would like to keep these two DMs closely in
the chart in order to compare the preferences of these two DMs. Therefore, the model (17)
can be adapted by introducing an additional constraint:

x1,2 + x2,1 = 1, (23)

This constraint ensures a direct connection between DM1 and DM2, either from DM1 to
DM2 or vice versa, thereby guaranteeing their adjacency in the solution. Such a modifica-
tion adeptly accommodates the potential requirements mentioned, effectively tailoring the
optimization process to suit specific analytical goals. The multi-line chart optimized with the
Eq. (23) is depicted in Fig. 7a, shown along with the unconstrained optimisation in Fig. 7b
(for side-by-side comparison).

This visualization maintains a direct connection between DM1 and DM2. Remarkably,
the average CoC declined, underscoring the feasibility of meeting specific real-life require-
ments while concurrently reducing complexity. Such findings highlight the adaptability and
versatility of the proposed optimization model: it not only streamlines the intricacies of the
visualization but also flexibly aligns with practitioners’ specific needs. The subsequent sec-
tions will delve into more specialized scenarios, offering a deeper exploration of the model’s
applicability.
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Fig. 7 Comparing the optimisation of CoC with and without constraint from Huang et al. (2021)

Fig. 8 Illustrating the performance of 5 alternatives appraised by 7 decision-makers from Macharis et al.
(2012)

5.2 A special multi-line chart

We will now delve into a more specialized case, which is characterized by a higher level of
complexity in the data structure.

The subsequent case study is a decision-making problem that assesses various biofuel
options (Macharis et al., 2012), depicted in Fig. 8a. The chart displays the performance
evaluation of five alternatives as assessed by seven stakeholder groups using the Analytic
Hierarchy Process (AHP) method (Saaty, 1989). In addition, it includes an aggregated rep-
resentation of each alternative’s overall performance. We’ve chosen this example for several
reasons. Firstly, its objective is similar to our previous case: to identify the best perform-
ing options, or in this instance, the optimal biofuel alternative. Secondly, the addition of
DMs in the figure escalates the level of complexity. Furthermore, the original case study is
presented through one of the famous decision-making software, Expert Choice (Ishizaka &
Labib, 2009). This affords an opportunity to assess whether our optimization approach could
enhance the visualization capabilities of such software (Ishizaka & Siraj, 2018). Lastly, this
case study differs from the standard multi-line chart. Here, the overall scores, which is illus-
trated in gray area in Fig. 8a, reflects the cumulative scores calculated from the preceding
DMs, representing the final outcome. Consequently, these overall scores will invariably be
positioned last.
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Table 3 The CoC comparison
before and after the optimization
from Macharis et al. (2012)

Before After

CoC(B1/B
′
1) 0.400 0.100

CoC(B2/B
′
2) 0.600 0.400

CoC(B3/B
′
3) 0.500 0.400

CoC(B4/B
′
4) 0.100 0.400

CoC(B5/B
′
5) 0.900 0.400

CoC(B6/B
′
6) 0.400 0.300

CoC(B7/B
′
7) 0.900 0.600

Average CoC 0.543 0.371

In order to optimize this variant of themulti-line chart, we need to reconfigure the pairwise
CoC matrix (11). In a generic case, we introduce a dummy label. However, for this specific
scenario, we’ll adjust the CoC from this dummy label, transitioning from equation (16) to
the following revised formula:

CoCn j ,nJ+1 = ε, j = 1, 2, . . . , J − 1; (24)

CoCnJ+1,n j = ε, j = 1, 2, . . . , J − 1. (25)

where ε is an arbitrary large value, i.e., ε � 1. While CoCnJ ,nJ+1 , CoCnJ+1,nJ ,
CoCnJ+1,nJ+1 remain 0. By doing so, the dummy data will always be connected to the last
label. The optimized result is illustrated as Fig. 8b.

Despite the cumulative scores already being displayed at the end, the optimized visual-
ization offers a more discernible perspective on the performance across DMs. Option 1, 2,
and 3, with their higher cumulative scores, also exhibit stable lines in the optimized chart.
On the contrary, Option 4 and 5 demonstrate markedly low scores, which contribute to a
significantly lower cumulative result. The optimization process significantly enhances our
ability to discern the preferences or “trends” among the decision-makers (DMs). Specifically,
it clarifies that early in the optimized chart, DM4 and DM5 show a preference for Option 4,
whereas towards the end, DM2 and DM6 exhibit a clear aversion to it. This optimization also
reveals the rankings of options with greater precision. For instance, Option 1’s position in the
preferences of the DMs becomes more clear after optimization. It was initially challenging
to determine its rank across all DMs, as it was never positioned as either the top or bottom
choice. Yet, through optimization, we can accurately determine Option 1’s standing among
the DMs: it secures the second position for DM4 and DM6, the third position for DM2 and
DM5, and the fourth position for DM1, DM3, and DM7. The enhanced visualization hence
highlights these variations more distinctly. For the comparison of the CoCs before and after
optimization, check Table 3.

5.3 The radar chart

The radar chart can be seen as a special form of the multi-line chart (that we aim to optimize),
with the exception that every label is connected with two others. Some widely used variants
of radar charts are spider charts and star plots (Tague, 2004). In fact, the optimization process
for a radar chart can be viewed as a direct application of the original symmetric TSP, without
the necessity of constructing a dummy label. By altering the objective from Eqs. (17) to (13),
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Fig. 9 Illustrating the performance of 4 alternatives on 5 criteria from Roselli et al. (2019)

Table 4 The CoC comparison
before and after the optimization
from Roselli et al. (2019)

Before After

CoC(B1/B
′
1) 0.667 0.500

CoC(B2/B
′
2) 0.500 0.500

CoC(B3/B
′
3) 0.667 0.167

CoC(B4/B
′
4) 0.833 0.333

CoC(B5/B
′
5) 0.333 0.833

Average CoC 0.600 0.467

and disregarding items on (J +1)th label in the constraints, we are able to optimize the radar
chart.

We will take a radar chart from another decision-making case study, which conducted an
extensive neuroscience experiment to gauge how decision makers interpret the visualizations
and select the most optimal alternatives from the FITradeoff method decision support system
(DSS) (Roselli et al., 2019). Various types of graphs were included to evaluate multiple
possibilities and ascertain biases when taken out of their specific contexts. We’ve chosen
this particular case study because it aligns with our study’s central aim: enhancing data
visualization for decision-making. Despite having a similar objective, our primary focus is
to explore methods for reducing visual complexity within a single chart. We selected one
dataset from the study: 4A5C, which denotes four alternatives and five criteria. The radar
chart for this dataset is illustrated in Fig. 9a. And the radar chart after the optimization is
illustrated in Fig. 9b.

The radar chart displays the performance evaluation of four alternatives via the Flexible
and interactive trade-off (FITradeoff) method across five distinct criteria:C1,C2, . . . ,C5 (de
Almeida et al., 2016).Given the simplicity of the radar chart’s dataset, it allows us to delve into
a detailed investigation of the CoCs. As demonstrated in Table 4, we observe that the average
CoC does not exhibit a significant improvement. This can be expected due to the stricter
constraints inherent in radar chart optimization, which makes the decreasing of average CoC
more challenging. In this case, the sole change following the optimization is the swapping
of the positions of C1 and C4. Although this shift doesn’t result in a drastic improvement,
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it enables an easier identification of the performances of alternatives on different criteria.
Since the nature of the optimization model is to reduce the intersections, and in the spider
chart all values of alternatives are connected on criteria, we can expect that the optimization
will try to connect criteria where alternatives have similar performances together to reduce
the intersections. Therefore, we can quickly identify, for example, that option 2 performs
well on c1, c3, and c5, and relatively poorly on c4 and c2. It is not obvious from the original
graph in Fig. 9a. Furthermore, dominant alternatives-those that outperform all others can be
effortlessly identified after the optimization. We can discern that Option 1 performs best in
C4 and C2, Option 2 in C1 (achieving a tied top 1) and C3, and Option 3 in C5, respectively.

5.4 Discussion

Our proposed technique demonstrates several advancements over existing visualization
strategies for reducing the complexity of multi-line charts used in MCDM. By introducing
the CoC as a metric to quantify visual complexity and applying an optimization algorithm
to minimize the CoC, our method improves the readability and interpretability of multi-line
charts without compromising data integrity.

Our method offers distinct advantages over existing visualization techniques. Existing
techniques, such as those that focus on optimizing parallel coordinate plots by rearranging
dimensions (Ankerst et al., 1998; Zhen et al., 2017), or more advanced optimization tech-
niques such as SCOREbands proposed by Saini (2022), perform better with larger datasets by
highlighting specific data points. However, our approach is more effective in situations with
fewer alternatives, ensuring that visual complexity remains manageable and the decision-
making process is facilitated without loss of information. This balance between readability
and information integrity makes our technique a valuable addition to the variety of visu-
alization tools available in the MCDM domain. Moreover, our technique is highly flexible
and can be applied to various types of multi-line charts, including radar charts. By adjusting
different constraints, the optimization can be tailored to different situations. This tailored
visualization optimization increases the applicability and effectiveness of our technique in
different scenarios.

Nevertheless, when optimizing a spider chart, it is critical to validate whether the perfor-
mance of alternatives may be chart dependent. For example, in certain methodologies, such
as Multi-Criteria Sustainability Assessment (MCSA), scores are derived by calculating the
area of the spider chart generated by the performance of alternatives across criteria (Nzila
et al., 2012). In this context, the score is influenced by the order in which the criteria are
arranged, which means that changing the order of the criteria can potentially lead to rank
reversals (Dias & Domingues, 2014). The potential bias introduced by reordering needs to
be considered during the optimization process. This awareness is essential to ensure that
interpretations of the data remain accurate and unbiased, recognizing that changes in the
visual representation can affect the perceived performance of alternatives.

In conclusion, our method enhances data interpretation and supports decision-makers
in making more informed decisions, thereby leading to better decision-making outcomes.
Additionally, these improvements have potential applications beyond the field of MCDM,
extending their utility to various other domains. When data needs to be illustrated to identify
trends and correlations across different metrics and categories, multi-line charts can be effec-
tively employed (Peebles & Ali, 2015; Ratwani & Gregory Trafton, 2008). Our approach
can be then optimizing these charts in diverse areas such as healthcare (Kudyba, 2010),
engineering (Kamba et al., 1996), manufacturing (Oakland & Oakland, 2007), and market
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research (Hutchinson et al., 2010). As long as the X-axis does not require a specific order,
such as chronological sequencing, our technique can be applied to improve the readability
and interpretability of these data visualizations.

6 Conclusion and future work

In this study, we define the visual complexity of multi-line charts in the spirit of that of con-
nected perfect matching bipartite graphs. We then introduce the Coefficient of Complexity
(CoC), a novel metric designed to quantify the complexity of multi-line charts. We further
propose an algorithm aimed at minimizing the CoC,modeling it as an integer linear optimiza-
tion problem analogous to the traveling salesman problem. Through an illustrative example
and real-world case studies, we demonstrate how our technique effectively decreases visual
complexity in these charts. Moreover, we expand the technique’s utility by applying it to
other specialized forms of multi-line charts, underscoring its value in bolstering the clarity
and readability of these visualizations. For instance, we investigate specific dimensions of
interest by strategically positioning them next to each other in the chart, all while aiming for
an overall reduction in complexity.

In summary, we regard the optimization of the proposed CoC as significant contributions
to the field of MCDM. This significance is underlined by the extensive reliance on multi-line
charts within various MCDM methodologies as a means of visual aid. Our enhancements to
the comprehensibility of these charts serve a crucial role, not merely as academic exercises,
but as practical tools that can facilitate the decision-making process. By improving the com-
prehensibility of multi-line charts, we empower decision-makers to extract more meaningful
insights from the data, thus facilitating more informed and effective choices. Furthermore,
these improvements have potential applications beyond the field of MCDM, extending their
utility to various other fields.

While the proposed optimization technique effectively reduces visual complexity, there
are several directions to explore for future research. We can enhance the validation of our
technique by conducting a experimental analysis. This could involve an A/B test where a
group of people are tasked with identifying the performance of different data series on multi-
line charts both before and after optimization. Such a study could provide additional empirical
evidence for the efficacy of our technique. Meanwhile, the optimization model itself could
be improved by considering additional chart attributes. For instance, we could examine not
only the intersections of adjacent labels, but also the trends in overall performance across
different data series. This would help avoid the creation of ’saw-tooth’ lines in the chart,
which could mislead decision-makers in their assessment of overall performance.
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