
This is a repository copy of OP-PIC - An Unstructured-Mesh Particle-in-Cell DSL for
Developing Nuclear Fusion Simulations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214839/

Version: Accepted Version

Proceedings Paper:
Lantra, Zaman, Wright, Steven A. orcid.org/0000-0001-7133-8533 and Mudalige, Gihan R.
(2024) OP-PIC - An Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion
Simulations. In: 53rd International Conference on Parallel Processing Gotland, Sweden.
The 53rd International Conference on Parallel Processing, 12-15 Aug 2024 ACM , SWE

https://doi.org/10.1145/3673038.3673130

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

OP-PIC – An Unstructured-Mesh Particle-in-Cell DSL for
Developing Nuclear Fusion Simulations

Zaman Lantra
zaman.lantra@warwick.ac.uk

University of Warwick
United Kingdom

Steven A. Wright
steven.wright@york.ac.uk

University of York
United Kingdom

Gihan R. Mudalige
g.mudalige@warwick.ac.uk

University of Warwick
United Kingdom

ABSTRACT

Particle-in-Cell (PIC) applications form a core simulation compo-

nent for designing fusion reactors and their efficient use. In this

work, we introduce OP-PIC, a new embedded Domain Specific

Language (DSL) for developing unstructured-mesh PIC applica-

tions. The DSL is aimed at gaining performance portability for PIC

codes on current and emerging, massively parallel architectures.

We investigate and bring together the state-of-the-art in PIC solver

parallelization techniques, refactoring them within a multi-layered

DSL. OP-PIC use source-to-source translation to generate platform-

specific optimizations. These parallelizations can be reused for any

application declared using the DSL’s high-level API. We showcase

the performance and portability of two non-trivial PIC applications

developed with OP-PIC on multiple CPU and GPU clusters, em-

ploying a number of parallelization techniques, including OpenMP,

CUDA, HIP and their combinations with distributed memory (MPI)

parallelization. We benchmark the OP-PIC generated code on a

range of single node systems and a number of distributed-memory

systems, including an AMD EPYC CPU-based HPE-Cray EX cluster,

an NVIDIA V100 GPU cluster, and an AMD MI250X GPU clus-

ter, exploring both single node and scaling performance. Results

demonstrate the flexibility of the DSL to implement radically dif-

ferent optimizations for each platform, showing between 1.4× to

3.5× speed-ups with GPUs compared to CPUs on power equivalent

systems and good weak-scaling to over 10 billion particles.

CCS CONCEPTS

·Computingmethodologies→ Parallel computingmethodologies;

· Software and its engineering → Domain specific languages.

KEYWORDS

Particle-In-Cell, PIC, DSL, OP-PIC, Unstructured-mesh

ACM Reference Format:

Zaman Lantra, Steven A. Wright, and Gihan R. Mudalige. 2024. OP-PIC ś

An Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion

Simulations. In The 53rd International Conference on Parallel Processing

(ICPP ’24), August 12ś15, 2024, Gotland, Sweden. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3673038.3673130

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP ’24, August 12ś15, 2024, Gotland, Sweden

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673130

1 INTRODUCTION

The particle-in-cell (PIC) method is a well-established numerical

technique, used to model the behavior of charged particles under

the influence of electrostatic and/or electromagnetic fields [7]. PIC

simulations are particularly common in plasma physics to study the

behavior of charged particles in plasma environments, notably the

research on energy generation through nuclear fusion reactions.

The fundamental PIC algorithm involves tracking particles in a

Lagrangian frame, while modeling field values on a stationary Euler-

ian mesh. Traditionally, the domain is represented as a structured

mesh, where the connectivity is implicit, enabling easy identifica-

tion of adjacent mesh elements. The regular and ordered manner of

the data lends well to compiler optimizations, but may not be well

suited to modeling highly complex geometries, and simultaneously

obtain accuracy and performance [4]. Unstructured meshes, on the

other hand, are highly flexible and can conform to complex geome-

tries. Additionally mesh refinement and adaptations are easier to

implement, allowing for higher resolutions in regions of interest.

However, the irregular data structures, including indirect accesses

involving explicit neighbor mappings and non-uniform access pat-

terns, may degrade performance if not carefully implemented.

PIC simulations are typically memory-bound due to low compu-

tational intensity in the particle algorithms. There are substantial

numbers of particles involved in such simulations, ranging from

several millions to trillions [5]. This gives rise to memory bottle-

necks when loading large numbers of particles to for low-compute

intensity calculations. The issues compound further on modern

massively parallel architectures, where feeding large numbers of

processor units with work via relatively limited communication

channels significantly curtails achievable performance. A further

challenge lies in the diversity of such systems that then require

platform-specific optimizations, such as optimizing for memory bot-

tlenecks, that lead to multiple divergent code paths, implemented

to gain the best performance from them. For many large-scale sci-

entific applications, maintaining multiple versions of a code-base,

often in tens of thousands or even millions of lines of code, is infea-

sible given the significant time and effort required, not to mention

the expertise needed in the many different associated technolo-

gies. This challenge of achieving performance portability ś gaining

best performance on multiple architectures/systems without sig-

nificant manual modifications to the code ś ultimately reduces the

continued scientific delivery from the applications. Performance

portability, together with productivity, a measure of how fast an

application can be augmented or extended with new features while

maintaining existing code, makes a triumvirate of challenges that

łare now general to any scientific domain that relies on numerical

simulation software using HPC systemsž [38].

ICPP ’24, August 12–15, 2024, Gotland, Sweden Lantra, et al.

A number of PIC applications [4, 5, 41] have achieved a level

of performance portability using C++ template libraries such as

Kokkos [15] and Alpaka [24], or using similar ParallelFor targets

for CUDA, HIP, and DPC++ [35]. In this work we use an alterna-

tive technique, based on creating higher-level abstractions for the

class of applications, and optimized automatic code-generation to

develop a custom Domain Specific Language (DSL) for PIC opera-

tions. We are specifically motivated by on-going work to develop

new modeling software to treat the complex dynamics of high tem-

perature fusion plasma for the design of a nuclear fusion reactor

at UKAEA through the NEPTUNE (NEutrals and Plasma TUrbu-

lence Numerics for the Exascale) project [2, 33]. In this paper, we

explore the flexibility afforded by a DSL in gaining performance

portability, following techniques developed in other domains such

as CFD [27, 37], seismological modeling [22], finite element [29],

and finite difference [23] solver/application development. More

specifically, we make the following contributions:

• We introduce OP-PIC, a new DSL consisting of a high-level API

for declaring both electrostatic and electromagnetic PIC on un-

structured meshes. OP-PIC follows the loop-level abstraction

of OP2 [27] for unstructured meshes, but allows a developer to

declare particles and a mesh. It then allows to elucidate the main

steps of a PIC application consisting of the key communication/-

computation pattern of particle moves and their charges affecting

the mesh as an iterative explicit solver;

• OP-PIC brings together the state-of-the-art and best known op-

timizations for parallelizing PIC on multi-core and many-core

processors. The framework uses source-to-source translation to

automatically generate optimized versions for multi-core CPUs

and GPUs (OpenMP, CUDA, HIP, and their combinations with

MPI). This includes multiple distributed memory algorithms, opti-

mizations for double indirections for particle moves, and platform

specific optimizations for GPUs, such as segmented reductions;

• Finally, we benchmark the performance of two non-trivial PIC

applications, Mini-FEM-PIC [39] and CabanaPIC [25], developed

with OP-PIC on CPU and GPU clusters. Results are presented on

an Intel CPU cluster, a large AMD CPU cluster (ARCHER2), a

NVIDIA GPU cluster, and a large AMD GPU cluster (LUMI-G).

Both single-node and weak scaling performance for a number of

representative problem sizes are provided.We present an analysis

of performance bottlenecks and discuss lessons learnt in the

development of the DSL.

We show that the high-level abstraction techniques used in OP-PIC

can provide a clean separation of concerns between the declaration

of the solver (the science source) and its parallel implementation. A

developer can use the OP-PIC API to write a solver as a serial imple-

mentation without worrying about data races, synchronizations, or

explicit data copies between host and device; OP-PIC handles the

parallelization orchestration automatically. In contrast, a Kokkos

developer for example needs to address data races, possibly by

using scatter views, and handle synchronizations through barri-

ers/fences. Additionally, unlike the ParallelFor methods, users

of OP-PIC will not need to develop their own distributed mem-

ory parallel implementation. A further advantage is the greater

flexibility provided by the source-to-source translation techniques

for generating optimized target code compared to other methods,

Figure 1: Core PIC iterative algorithm

significantly easing the implementation (and reuse) of radically

different parallelizations. We see matching or marginally better

performance from OP-PIC generated code, compared to the Kokkos

version of CabanaPIC. With the OP-PIC generated code, we see

approximately 1.4× to 3.5× speed-up gained with GPUs compared

to CPUs on power equivalent systems, and good weak scaling up

to 1024 GPUs.

The remainder of this paper is structured as follows: Section 2

introduces the general PIC algorithm, the underlying formulation,

and related work; Section 3 outlines the proposed DSL including

its API, backend design, and automatic code-generation targeting

multiple parallelizations; Section 4 details performance results on a

range of parallel systems; finally, Section 5 concludes the paper.

2 THE PARTICLE-IN-CELL (PIC) METHOD

In a PIC simulation, charged particles move over a simulation do-

main under the influence of electric andmagnetic fields. The domain

is represented by an Eulerian mesh, whereas the particle movement

is tracked using Lagrangian methods. Particle-to-particle interac-

tions are typically not directly computed, instead particles influence

the electric and magnetic fields, that in turn affect the movement of

particles. This gives rise to an operator split approach as described

at a high-level by Brown et al. [9]. Here we use this description to

elucidate the core algorithm in order to understand the key com-

putation and communication pattern of PIC for the purposes of

developing a DSL. In general the algorithm consists of four main

steps, as summarized in Figure 1: (1) compute the electric and/or

magnetic fields (Field solver), (2) compute the effect of the electric

and/or magnetic fields on each individual particle (Weight fields to

particles), (3) compute the movement of particles due to fields, and

move particles (Push/Move particles), and (4) compute the effect of

updated particle positions onto the mesh (Weight particles to grid).

1. Field solver: The algorithm begins by computing the electric/-

magnetic fields using Maxwell’s equations which govern time evo-

lution of electric and magnetic fields:

∇ · ®𝐸 =

𝜌

𝜖0
(1) ∇ · ®𝐵 = 0 (2)

𝜕 ®𝐵

𝜕𝑡
= −∇ × ®𝐸 (3)

𝜕 ®𝐸

𝜕𝑡
=

1

𝜇0𝜖0
∇ × ®𝐵 −

1

𝜖0
®𝐽 (4)

The equations consist of Gauss’ Law (1), the magnetic divergence

constraint (2), Faraday’s Law (3), and Ampere’s Law (4). Here, ®𝐸 is

the electric field, ®𝐵 is the magnetic field, 𝜌 is the charge density, ®𝐽

is the current density, 𝜖0 is the vacuum permittivity, and 𝜇0 is the

vacuum permeability. When the electric field is irrotational (i.e.,

∇ × ®𝐸 = 0), the scenario is regarded as electrostatic, leading to a

reduction of the equations to only Gauss’ Law (1). However, in cases

where particles move at relativistic velocities or when the current

density is substantial, the complete set of Maxwell’s equations must

be calculated, classifying the case as electromagnetic [4].

OP-PIC – An Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion Simulations ICPP ’24, August 12–15, 2024, Gotland, Sweden

For a structured mesh, the above equations are typically solved

using a finite-difference time-domain (FDTD) method (as in

VPIC [5] and CabanaPIC [25]). For an unstructured mesh, the finite

element (FE) method is typically used [4]. Thus, the field values

required for the solution are stored as data structures of the mesh,

which can be within cells, nodes and/or edges/faces of the mesh.

2. Weighting fields to particles: The updated electric and mag-

netic field values are only known at spatial grid points, e.g., mesh

cells, but their influence on each particle within the cell needs to

be determined. This requires the exact location of each particle.

For structured meshes, this process can involve a straightforward

interpolation based on distance, however, for unstructured mesh

the computation is more involved. The electric and magnetic fields

at a specific particle position ®𝑥𝑖 within a cell can be computed using

Eq. (5) and Eq. (6):

®𝐸 (®𝑥𝑖) =

𝑛edge
∑︁

𝑗=0

𝐸 𝑗𝑒 𝑗 (®𝑥𝑖) (5) ®𝐵(®𝑥𝑖) =

𝑛face
∑︁

𝑗=0

𝐵 𝑗𝑏 𝑗 (®𝑥𝑖) (6)

Here, 𝑛edge and 𝑛face are the number of edges and faces of the mesh

cell (i.e., the finite element containing the particle). 𝐸 𝑗 and 𝐵 𝑗 are the

field values of the edges and faces of the cell respectively. These field

values are weighted based on the particle location ®𝑥𝑖 using basis

functions 𝑒 𝑗 , the Nédélec edge elements [28], and 𝑏 𝑗 , the Raviart-

Thomas [8] face elements. Since field values are calculated per

particle position, the values can be stored in particle data structures,

unless the calculations are merged into the move routine; hence,

this routine may require mesh-to-particle interactions.

3. Push/Move particles: With each particle now having a known

electric/magnetic field value influencing it, the solver needs to com-

pute their new velocities and positions to progress the simulation

forward. The force encountered by a charged particle is given by the

Lorentz force equation (Eq. (7)). In PIC simulations, to accurately

compute the relativistic particle motion, the standard relativistic

equations of motion (Eqs. (8) and (9)) are employed:

®𝐹 = 𝑞
(

®𝐸 + ®𝑣 × ®𝐵
)

(7)
𝜕®𝑣

𝜕𝑡
=

®𝐹

𝑚
(8)

𝜕®𝑥

𝜕𝑡
= ®𝑣 (9)

®𝑥 represents the particle position, ®𝑣 is the particle velocity, 𝑞 is

the charge of the particle,𝑚 is the mass of the particle, and ®𝐹 is

the force on the particle. The above equations can be solved using

classical/explicit leap-frog numerical schemes, the Boris integration

method [31] being the de facto method with a non-zero magnetic

field. Other methods such as Velocity Verlet (zero magnetic field

giving second-order accuracy [32]), Vay, Higuera, and Cary push-

ers [31] can also be used.

Given that individual particle details are required without depen-

dencies, this routine becomes directly parallelizable. The routine

relocates particles to new positions based on the fields and time

step, presenting the challenge of determining the new cell in which

the particle resides when dealing with an underlying unstructured

mesh. One solution is to identify the residing cell by using a nearest

neighbor search and jumping to the most probable neighbor if the

current cell is not the final location-containing cell [14]. This can

be implemented as an iterative process starting from the initial

location. Another approach is to move directly into a cell closer to

the final location and search the neighboring cells [1, 16, 33]; how-

ever, this requires maintaining additional mapping data structures.

This may not be a viable solution for electromagnetic simulations

since these may require deposition of charge/current to each mesh

element passed along the path of particle movement. It is a key

issue that has important performance trade-offs, as discussed later.

4.Weighting particles/deposit to grid: In this final step, particles

need to deposit their charge or current to the mesh elements at

their new locations. This is a key step for transferring information

between the Lagrangian particle representation and the Eulerian

grid representation.

Depending on the design, charge may be deposited to grid nodes

and current to grid edges. This łscatterž step is detailed by Moon et

al. [26] and leads to Eq. (10) giving the charge contribution to the

𝑖𝑡ℎ node and Eq. (11) giving current contribution to the 𝑖𝑡ℎ edge

(see Figure 2 of Moon et al. [26]):

𝑞𝑖 = 𝑄𝑝𝑊
0
𝑖 (𝑟𝑝) (10) 𝑖𝑖 =

𝑄𝑝

Δ𝑡

∫ 𝑟𝑝,𝑓

𝑟𝑝,𝑠

𝑊 1
𝑖 (𝑟𝑝) 𝑑𝐿 (11)

Barycentric coordinates are used here where in Eq. (10),𝑊
𝑗
𝑖 (𝑟𝑝) is

the barycentric coordinate of the particle’s final position 𝑟𝑝 , and

𝑄𝑝 represents the charge of the 𝑝𝑡ℎ particle. For computing the cur-

rent contribution in Eq. (11), the routine considers the 𝑝𝑡ℎ particle

moving along a straight path 𝐿 from position 𝑟𝑝,𝑠 to 𝑟𝑝,𝑓 during a

Δ𝑡 duration. Thus, in a typical electrostatic simulation, only the

element corresponding to the final particle location 𝑟𝑝 receives

the charge deposition, while in electromagnetic simulations, the

fields are generally assessed on each cell along the particle’s path

of movement. As such, this computation may be integrated with

the particle push routine (Step 3 above). Moreover, considering the

possibility of multiple particles simultaneously occupying the same

mesh cell at the same time, parallel execution of this routine will

lead to data races, unless carefully designed.

In practical implementations of PIC, to enhance computational

efficiency and minimize overhead, physical particles are usually

represented as samples of a distribution function in phase space,

forming macro-particles [17], also known as super-particles. These

macro-particles exhibit properties that encompass a central po-

sition, a charge assignment function, a momentum distribution

function, and various other physical quantities required for the PIC

algorithm. In conjunction with the core PIC procedure described

above, in some state-of-the-art PIC implementations, additional rou-

tines, including particle collisions [19], ionizations [13] and particle

injections [17], may be interleaved.

2.1 Related Work

While the computational characteristics of PIC codes are well un-

derstood for structured-mesh PIC applications, unstructured-mesh

PIC codes are less common and have only been developed more re-

cently [4, 16, 41]. With the use of unstructured meshes, these codes

aim to account for geometric details and/or localized behaviors of

interest using strongly graded, anisotropic meshes.

Well known structured-mesh PIC applications include VPIC [5],

PSC [18], SMILEI [13], hPIC [20], EPOCH [6], and PIConGPU [10]

developed for simulating a range of scientific phenomena such

as laser-plasma interactions, high-power lasers interacting with

ICPP ’24, August 12–15, 2024, Gotland, Sweden Lantra, et al.

matter, astrophysical plasmas, the propagation of electromagnetic

waves and near-surface PlasmaśMaterial Interaction (PMI) prob-

lems. VPIC version 2.0 [5] uses the Kokkos C++ template library

framework to achieve performance portability, while PIConGPU

uses Alpaka [24] to obtain performance portability on GPUs and

CPUs [40]. Warp [34] and Warp-X [17, 35], for electrostatic and

electromagnetic simulations respectively, also employ structured

meshes but incorporate adaptive mesh refinement (AMR) with the

use of the AMRex library which enables targeting clusters of both

CPUs and GPUs. These enables capturing high-fidelity geometries

for accuracy with extreme resolutions, resulting in significant com-

putational expenses.

Unstructured-mesh PIC implementations include XGC [12,

41], GTC [36], EMPIRE-PIC [4], and NESO/NESO-Particles [16].

EMPIRE-PIC [4] from Sandia National Laboratories resolves elec-

tromagnetic wave propagation through plasma using Finite Element

Method PIC calculations and uses Kokkos for gaining performance

portability. XGC and GTC, both started as structured-mesh im-

plementations, later evolving to use unstructured meshes. GTC

specializes in simulating the 5-dimensional Vlasov equations for

magnetic confinement fusion in toroidal geometry, while XGC

focuses on simulating multi-physics in the edge region of magnet-

ically confined plasmas. GTC is coded in C, employing a hybrid

of MPI and OpenMP, with a CUDA version for GPUs. The un-

structured version of XGC-m [41] is developed using the PUMIPic

library [14], which incorporates MPI and the performance-portable

Cabana library, making it capable of running on both CPUs and

GPUs. NESO/NESO-Particles [16] is a code designed to manage

unstructured-mesh PIC simulations through spectral finite element

methods through the Nektar++ library [11]. It is currently under

development as part of the NEPTUNE project [33] with an initial

implementation in C++ using SYCL for performance portability.

3 OP-PIC

In this work, we are motivated by the challenge of gaining per-

formance portability for PIC solvers. Our approach is to define a

high-level abstraction to achieve separation of concerns where the

declaration is decoupled from its parallel implementation(s).

3.1 The OP-PIC API

For unstructured-mesh PIC, the key computation/communication

patterns are: (1) computations over mesh elements accessing data

on neighboring elements, and (2) particle-to-mesh element interac-

tions, including particle movement along the mesh. Unstructured-

meshes use explicit connectivity information to specify the mesh

topology. Then operations over mesh elements will entail iterating

over all the elements (e.g., cells) of the mesh, accessing/updating

data on neighboring elements (e.g., nodes) via a mapping (e.g., a

cells-to-nodes mapping) that specifies connectivity. This leads to in-

direct accesses, the main motif of unstructured-mesh computations.

The first part of our PIC abstraction therefore, will be in declaring

the mesh, its connectivity between elements (mapping), and then

particles that interact with the mesh. The second part will handle

operations over the mesh and particles, including moving particles.

3.1.1 Mesh, particle and data declarations: To illustrate the API,

consider the mesh in Figure 2(a), consisting of 9 cells (C1śC9) and

Figure 2: (a) Unstructured mesh with particles, and double

indirection in loops over particles, (b) Scatter arrays for han-

dling data races

Figure 3: Segmented Reductions

1 int nnodes = 16; int ncells = 9;

2 opp_set nodes = opp_decl_set(nnodes, "nodes");

3 opp_set cells = opp_decl_set(ncells, "cells");

4

5 int ngam = 100000;

6 opp_set x = opp_decl_particle_set("x" , cells);

7 opp_set gam = opp_decl_particle_set("gam", cells, ngam);

8

9 int* c2n = {1,2,5,6, 2,3,7,6, 3,4,7,8, 5,6,9,10, ... };

10 int* c2c = {2,4,-1,-1, 1,3,5,-1, 2,6,-1,-1, 1,5,7,-1, ... };

11

12 opp_map cn = opp_decl_map(cells, nodes, 4, c2n, "cell_to_nodes_map");

13 opp_map cc = opp_decl_map(cells, cells, 4, c2c, "cell_to_cell_map");

14

15 opp_map p2cell_i = opp_decl_map(x,cells, 1, nullptr,"particles_to_cells_index");

16

17 double* d_efield = {...}; double* d_potent = {...}; double* d_cvol = {...};

18 double* d_det = {...}; double* d_sd = {...}; double* d_ncd = {...};

19

20 opp_dat efield = opp_decl_dat(cells, 1, OPP_REAL, d_efield, "electric field");

21 opp_dat sd = opp_decl_dat(cells, 1, OPP_REAL, d_sd, "shape deriv");

22 opp_dat cvol = opp_decl_dat(cells, 1, OPP_REAL, d_cvol, "cell volume");

23 opp_dat cdet = opp_decl_dat(cells, 1, OPP_REAL, d_det, "cell determinants");

24 opp_dat sd = opp_decl_dat(cells, 1, OPP_REAL, d_sd, "shape deriv");

25 opp_dat np = opp_decl_dat(nodes, 2, OPP_REAL, d_potent, "node potential");

26 opp_dat cd = opp_decl_dat(nodes, 2, OPP_REAL, d_ncd, "charge density");

27

28 opp_dat pc = opp_decl_dat(x, 1, OPP_REAL, nullptr, "particle charge");

29 opp_dat lc = opp_decl_dat(x, 1, OPP_REAL, nullptr, "basis function weights");

30 opp_dat ppos = opp_decl_dat(x, 1, OPP_REAL, nullptr, "particle position");

Figure 4: API for declaring mesh, particles and data

16 nodes (N1śN16). OP-PIC refers to these classes of elements as

sets, declaring them with opp_decl_set (see Figure 4, lines 2ś3).

Similarly, particle sets are declared, but will be defined on the mesh

elements using opp_decl_particle_set (lines 6ś7).

Mesh connectivity is declared with opp_decl_map, which speci-

fies the connectivity between two sets, e.g., cells-to-nodes (line 12)

or cells-to-cells (lines 13), together with the arity of the connec-

tion, and raw integer data giving the explicit mappings respectively.

Given the mesh is fixed, OP-PIC will assume that these mappings

will remain static throughout a simulation. opp_decl_map can also

OP-PIC – An Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion Simulations ICPP ’24, August 12–15, 2024, Gotland, Sweden

be used to declare a mapping between particles and a mesh set (line

15) where the first argument is a particle set followed by a mesh set

and arity of 1; a particle is always mapped to just one mesh element.

These maps are dynamic since as particles move through the mesh

the mapping changes. We can declare it with a nullptr if we do

not have a particle distribution at initialization, which will then be

allocated (integer data) during simulation. However for non-zero

particle counts, a valid integer array should be provided.

Data associated with the mesh and particles are declared with

opp_decl_dat (lines 20ś30). Data represents physical quantities

such as the electric field, the node potential, or the charge density.

opp_decl_dat takes the mesh set or particle set on which the data

is defined, its dimension, data type, and either a pointer to the raw

data or a null pointer in the case of a zero particle count (allocated

during the simulation).

3.1.2 Operations Over Sets: All of the numerically intensive opera-

tions in a PIC application can be described as computations over sets,

accessing data though the mappings either directly or indirectly.

A loop over all the mesh elements, such as computing the electric

field on the cells based on the node potentials, is declared with the

opp_par_loop API call (see Figure 5, lines 6ś13). The API speci-

fies an elemental function compute_electric_field_kernel (as a

function pointer, lines 1ś4), a string description of the loop, and the

iteration set. The elemental function takes a number of arguments,

six arguments in this example, and the parallel loop declaration

specifies these using the opp_arg_dat API. Each argument con-

sists of the opp_dat and its access mode, OPP_READ (read only),

OPP_INC (increment), OPP_WRITE (write only) or OPP_RW (read and

write). Additionally, if the opp_dat is accessed indirectly, a map-

ping is also provided (e.g., cells-to-node map, cn used here to access

node potential np) together with the index used in the mapping for

each indirect access. Directly accessed opp_dats such as efield

and sd do not involve a mapping.

Similar to iterating over mesh elements, opp_par_loop can be

used to iterate over all particles on the mesh (see Figure 5, lines 20ś

26). Here iteration set x is a particle set accessing data directly on

opp_dat, pc. The particle-to-cell mapping p2cell_i is used to indi-

rectly increment cd, an opp_dat defined on nodes. This double in-

direction is facilitated by specifying the cells-to-node mapping c2n

for each of the opp_arg_dat arguments. The OPP_ITERATE_ALL

allows us to iterate on the full number of particles. However, in PIC

codes there will be the need to handle particle injections into the

domain as a special case. For example, OPP_ITERATE_INJECTEDwill

allow iteration of only the newly injected particles for enrichment.

3.1.3 Particle Move: A key step in a PIC solver is the particle move.

OP-PIC can declare a particle move as a special loop over particles

as illustrated in Figure 6. If we initially assume an electromagnetic

PIC code, then the elemental kernel over all particles will require:

(1) specifying computations to be carried out for each mesh element,

e.g., cells, along the path of the particle, until its final destination

cell; (2) a method to identify if the particle has reached its final

mesh cell; (3) computations to be carried out at the final destina-

tion mesh cell; (4) actions to be carry out if the particle has moved

out of the mesh domain; and, (5) calculate the next most proba-

ble cell index to search. A template elemental kernel is illustrated

in Figure 6 (lines 1ś15). The application developer will need to

1 void compute_electric_field_kernel(double* ef, double* sd,

2 double* np0, double* np1, double* np2, double* np3){

3 ...

4 }

5 /* declare parallel loop over mesh elements */

6 opp_par_loop(compute_electric_field_kernel, "Compute Electric Field", cells,

7 OPP_ITERATE_ALL,

8 opp_arg_dat(efield, OPP_INC),

9 opp_arg_dat(sd, OPP_READ),

10 opp_arg_dat(np, 0, cn, OPP_READ),

11 opp_arg_dat(np, 1, cn, OPP_READ),

12 opp_arg_dat(np, 2, cn, OPP_READ),

13 opp_arg_dat(np, 3, cn, OPP_READ));

14

15 void deposit_charge_on_nodes_kernel(double* x, double* pc,

16 double* cd0, double* cd1, double* cd2, double* cd3){

17 ...

18 }

19 /* declare parallel loop over particles */

20 opp_par_loop(deposit_charge_on_nodes_kernel, "Deposit Charge on Nodes", x,

21 OPP_ITERATE_ALL,

22 opp_arg_dat(pc, OP_READ),

23 opp_arg_dat(cd, 0, cn, p2cell_i, OPP_INC),

24 opp_arg_dat(cd, 1, cn, p2cell_i, OPP_INC),

25 opp_arg_dat(cd, 2, cn, p2cell_i, OPP_INC),

26 opp_arg_dat(cd, 3, cn, p2cell_i, OPP_INC));

Figure 5: API for loops over mesh elements and particles

1 void move_particles_kernel(double* ppos, double* lc, double* cvol, double* cdet){

2 /* computation per mesh elment for particle */

3 ...

4 /* check condition for final destination */

5 ...

6 /* if final destination element - final computation*/

7 OPP_PARTICLE_MOVE_DONE

8 ...

9 /* else if out of domain*/

10 OPP_PARTICLE_NEED_REMOVE

11 ...

12 /* else not final destination element - calculate next cell & move further*/

13 OPP_PARTICLE_NEED_MOVE

14 ...

15 }

16 /* declare parallel move loop over particles */

17 opp_particle_move(move_particles_kernel, "Move Particles", x, cc, p2cell_i,

18 opp_arg_dat(ppos, OPP_READ),

19 opp_arg_dat(lc, OPP_WRITE),

20 opp_arg_dat(cvol, p2cell_i, OPP_READ),

21 opp_arg_dat(cdet, p2cell_i, OPP_READ));

Figure 6: API for particle move

provide each of the above code segments annotating the relevant

blocks with pre-processor statements: OPP_PARTICLE_MOVE_DONE,

OPP_PARTICLE_NEED_MOVE, and OPP_PARTICLE_NEED_REMOVE.

These allow the OP-PIC code-generator to insert code to imple-

ment the parallel particle move as we will discuss in Section 3.2.

The opp_particle_move, lines 16ś21, will then take this kernel

function (and a string literal as its name) together with the particle

set, mesh element-to-element mapping (e.g., cc), particle-to-mesh

element mapping (e.g., p2cell_i), and a number of opp_dats sim-

ilar to the opp_par_loop API. As can be seen, declaration of the

particle move API is more involved than the standard parallel loops

over mesh elements of particles. A full example can be see in the

OP-PIC codebase. For an electrostatic PIC solver, as discussed in

Section 2, the particle move will only affect the final destination

mesh cell. In this case only the elemental kernel blocks specifying

the method to identify the final destination and computations to

be done at the final destination need to be specified. However, the

parallel implementation of these cases will differ significantly, as

detailed in Section 3.2.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Lantra, et al.

The OP-PIC abstraction was inspired by OP2 [27] and OPS [30],

and closely follows the unstructured-mesh declarations in OP2, but

extends the API for particle declaration and particle-to-mesh inter-

actions. Similar to OP2, the OP-PIC abstraction assumes that the

mesh remains static and there are no mesh refinements during the

simulation. However, the implementation of the PIC algorithm on

parallel architectures deviates significantly from the parallelizations

developed in OP2, for example supporting double indirections for

particle-to-mesh contribution scattering and particle movement.

3.2 Parallelizations

OP-PIC implements the operations declared using the API on par-

allel systems using two main levels: (1) distributed memory and (2)

intra-node or shared-memory. These levels operate orthogonally

to each other and therefore distributed memory is handled as a

classical library implementation, while parallelization on nodes

require implementing the loops over sets (mesh and particle sets)

via a SIMD, multi-threading, or SIMT model using code-generation.

3.2.1 opp_par_loop: The same distributed memory and on-node

parallelization strategies as OP2 can be used for implementing

opp_par_loops for operations over the unstructured-mesh ele-

ments in OP-PIC. Distributed memory entails partitioning and

distributing the mesh among disparate memory spaces. The mes-

sage passing interface (MPI) is used following the standard halo

creation and exchange method with an łowner-computež model,

where the partition (i.e., MPI process) which owns the element (such

as a cell) will be responsible for performing computations over it.

Data races when parallelizing iterations that increments data held

on a set, modified indirectly via a mapping, are handled with redun-

dant computations over MPI halos [27]. Within an MPI process, to

exploit thread-level parallelization, e.g., targeting a shared-memory

multi-processor or a single GPU, the data races are handled using

scatter arrays and atomics/segmented reductions, respectively. In

scatter arrays (see Figure 2(b)), for each thread a local array is used

where, when iterating over mesh cells in parallel, the contribution

from a cell to a node (computed by a thread) will be added to the cor-

responding thread array. Finally, the array entries can be reduced

to get the total contribution to that node.

An opp_par_loop over particles requires a different parallel

implementation. Particles are also distributed over the partitions,

but do not contain MPI halos. Particles are related to the mesh

through a particle-to-cell map, p2cell_i. An MPI process owns

the particles related to the cells in that MPI rank, and these particles

change as the simulation progresses. This will only occur during

particle move or injection. A loop over particles could be direct (e.g.,

updating data declared on particles), have one level of indirection

(e.g., updating data on cells via a particle-to-cell map), or have

a double indirection. An example double indirection is the case

where a loop over particles deposits charge to the mesh nodes.

The state at MPI boundaries can be illustrated as in Figure 2(a).

Cell C2 on MPI rank 1 will hold node N6 in its halo, however,

N6 is owned by MPI rank 2. A loop over particles will use the

particle-to-cell map, p2cell_i, and the cell-to-node map, cn, to

increment data on nodes. For example, when particles P1, P2 in cell

C2 increment data on N6 (e.g., deposit charge), then the increments

are first written to rank 1’s node halos and then at the end of the

(a) multi-hop (b) direct-hop

Figure 7: Particlemove in distributedmemory parallelization

loop over particles, the updated node halos are communicated to

rank 2, which can then update the rank 2 owned N6. Naturally,

large numbers of particles incrementing the same node leads to

significant data races, which again need to be specially handled for

the various on-node/sharedmemory parallel models. For OP-PICwe

have implemented safe/unsafe-atomics and segmented reductions

as discussed in Section 3.3.

3.2.2 opp_particle_move: A particle could move: (1) within the

same cell; (2) to a different cell within the same MPI rank; or, (3) to

a different cell on a different MPI rank. In the first case, a particle’s

cell index remains unchanged, whereas a new cell index is assigned

to a particle otherwise. The third case requiresMPI communications

to move particle data to a new MPI rank.

One strategy for moving particles to cells is to loop over each

particle and łtrackž its movement from cell to cell by computing

the next probable cell. This entails an inner loop per particle which

terminates when the final destination cell is reached, based on

the conditions specified in the opp_particle_move kernel (see

Figure 6). This multi-hop (MH) strategy is illustrated in Figure 7(a).

If a particle crosses an MPI boundary, it is moved to a halo region

of the mesh and marked for communication to the halo of the

MPI rank owning the cell to which the particle has moved. Prior

to communication, the OP-PIC backend packs the particle data

of all marked particles in a buffer, reducing the number of MPI

messages. Packing creates holes in the opp_dats as particle data is

moved out, hence a hole filling routine runs asynchronously during

communication, shifting data from the end of the opp_dats to fill

the holes. Once the particles are received at the destination MPI

rank, the data are unpacked to the end of the respective opp_dats.

A second, direct-hop (DH) strategy, implements a variation of

the particle move method inspired by NESO [1, 16] (see Figure 7(b)).

Here the particles are moved directly to a cell closer to the final

destination, and then switch to multi-hop mode to move to the

correct final destination. In this case, OP-PIC creates two struc-

tured meshes, overlaid over the unstructured mesh: (1) mapping

from structured-mesh cell to unstructured-mesh cells (cell-map),

(2) mapping from structured-mesh cell to MPI rank of which the

unstructured-mesh cell belongs to (rank-map). OP-PIC use an MPI-

RMA-based global move approach to overcome the challenge of

identifying the ranks that are trying to communicate and open MPI

channels accordingly. Even though, direct_hop reduces unnecessary

computations and communications significantly, a higher memory

footprint is required for bookkeeping. The memory is drastically

reduced in MPI-based backends by maintaining only one copy per

shared-memory node using MPI-RMA; however, when not using

MPI one copy of the cell-map is sufficient.

OP-PIC – An Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion Simulations ICPP ’24, August 12–15, 2024, Gotland, Sweden

3.3 Platform Specific Optimizations

A key bottleneck in the solver is the double indirect increment

during particle contributions to the mesh elements (e.g., charge

deposition from particles to nodes, mapped through cells). However,

different hardware requires different data race handling methods

to gain best performance. Atomics are generally easier to program

and are preferred, but CPUs do not have fast hardware atomics

support, hence we use scatter arrays for OpenMP parallelizations

on CPUs. Coloring is another option on CPUs, but require particle

arrays to be kept sorted, introducing an overhead.

On modern GPUs, fast double-precision atomics are well sup-

ported by hardware, especially on NVIDIA GPUs. However, we

see performance degradation when using atomics on AMD GPUs,

especially when large numbers of particles write to a single mem-

ory location, atomics causes serialization. Two alternatives are to

use unsafe atomics and segmented reductions. Atomic operations

are typically implemented using a compare-and-swap approach.

A different implementation using a read-modify-write approach

is available on some AMD hardware, but can potentially lead to

incorrect answers if not implemented with care.

Alternatively, in a segmented reduction, increments are carried

out in three steps: (1) store_values_and_keys, (2) sort_by_key,

and (3) reduce_by_key. For instance (see Figure 3), when particles

need to deposit charge to the associated four nodes of the residing

cell, data hazards are avoided by initially storing the values to

reduce alongside their respective node indices. Subsequently, the

values are sorted according to the node indices and then reduced

according to node indices.

3.4 Automatic Code-Generation

OP-PIC follows the automatic code-generation techniques and tech-

nologies in OP2 and OPS for generating on-node/shared-memory

parallelizations. The high-level view of this process is illustrated

in Figure 8. An application written in OP-PIC will be parsed by

the code-generator using clang and will build an abstract syntax

tree (AST) of the code. The AST facilitates us to easily traverse and

collect information on the API calls, for example the arguments of

opp_par_loops. The API information together with the elemental

kernel functions forms an intermediate representation of the appli-

cation. These are then used to populate or modify code templates

for specific parallelizations. The templates are written in Jinja2 and

they are updated using Python. These ideas were developed initially

by Balogh et al. [3], but we use simpler technologies to encode the

boilerplate code for different parallelizations. The system is also

easily extensible where a new parallelization, or optimization could

be added as a new template which can then be reused. Currently OP-

PIC supports the generation of OpenMP, CUDA and HIP parallel

code in combination with MPI.

4 RESULTS

We evaluate OP-PIC using two non-trivial PIC applications. The

first, Mini-FEM-PIC, is a sequential electrostatic 3D unstructured-

mesh finite element PIC code written in C++ [39]. It is based on

tetrahedral mesh cells, nodes, and faces forming a duct. Faces on

one end of the duct are designated as inlet faces and the outer wall

is fixed at a higher potential to retain the ions within the duct.

Figure 8: OP-PIC application development life cycle

Charged particles are injected at a constant rate from the inlet

faces of the duct (one-stream) at a fixed velocity, and the particles

move through the duct under the influence of the electric field. The

particles are removed when they leave the boundary face. Overall

Mini-FEM-PIC has 1 degree of freedom (DOF) per cell, 2 DOFs

per node and 7 DOFs per particle. The second, CabanaPIC, is a 3D

electromagnetic, two-stream PIC code, where particles move in a

duct (cuboid) with cuboid cells. It is implemented with periodic

boundaries and has 9 DOFs per cell and 7 DOFs per particle. It was

originally developed as part of the Exascale Computing Project,

Co-design center for Particle Applications (CoPA) [25] using the Ca-

bana library, based on Kokkos as a structured-mesh PIC application.

In the original implementation only shared memory paralleliza-

tions are available, but the on-node parallel code can be used within

an MPI application if implemented by a user. In this work, we im-

plement the application with OP-PIC, using unstructured-mesh

mappings solving the same physics as the original. We validate the

electric and magnetic field energy per iteration against results from

the original implementation, showing error in the order 10−15 (i.e.,

less than machine precision) in double-precision (FP64).

OP-PIC supports partitioning the mesh with ParMETIS, how-

ever, in this paper we use a custom partitioning routine where

partitions are created along the łprincipal direction of motion of

particlesž, as in PUMIPic [14]. This significantly minimizes com-

munication between partitions. Even with a custom partitioning

scheme, the developer only needs to provide rank details of a single

mesh set. Currently an opp_dat can be used to provide this informa-

tion. OP-PIC will automatically partition the remaining opp_sets,

communicate to the correct ranks, and create halo regions.

4.1 Single Node/GPU Performance

4.1.1 Runtime and Breakdown: Figure 9(a) presents the runtime

and breakdown of time of Mini-FEM-PIC (48k cell mesh with an

average of 70M particles) on 2×Intel Xeon 8268 (48 cores) and

2×AMD EPYC 7742 (128 cores) CPUs and a number of GPUs ś

NVIDIA V100 (32GB), NVIDIA H100 (80GB), AMD MI210 (64GB),

and AMD MI250X with 2×Graphics Compute Dies (GCDs) (64GB

per GCD). Given Mini-FEM-PIC’s electrostatic nature, the elec-

tric field remains constant on all particle positions of a cell dur-

ing the particle move step. This eliminates the need for weight-

ing fields to particle locations where the electric field can be di-

rectly inherited from cell data. The push/move routine within

Mini-FEM-PIC is divided into two loop functions: CalcPosVel,

responsible for computing new particle positions and velocities;

ICPP ’24, August 12–15, 2024, Gotland, Sweden Lantra, et al.

(a) Mini-FEM-PIC ś 48k cell mesh with 70M particles (b) CabanaPIC ś 96k cell mesh with 144M particles

Figure 9: Runtime Breakdown on a single node/device

and Move, which ensures particles are relocated to the correct

cells. The particle-to-grid weighting operation predominantly con-

sists of the DepositCharge routine, which may contain data haz-

ards. The field solver encompasses several subroutines, primarily

ComputeJMatrix, ComputeF1Vector and ComputeElectricField.

The ComputeJMatrix and ComputeF1Vector routines create the

data structures required for a linear solver, which is computed

using a PETSc KSP solver.

On CPUs, running Mini-FEM-PIC with flat MPI (which consis-

tently gives better or matching performance compared to OpenMP),

the most time-consuming step is the particle move, Move; the direct-

hop (DH) versions gives lower runtimes. On the NVIDIA GPUs,

Move again dominates runtime. However, on the AMD GPUs, more

time is spent in DepositCharge. Resolving data races particularly

affects performance, where unsafe atomics (UA) gives a marginal

improvement over segmented reductions (SR). We observe that

standard atomics (AT) on AMD GPUs (not shown here) perform

significantly worse, over 200× slower than UA or SR. We attribute

this to the serialization of atomics. However, atomics on NVIDIA

GPU hardware appear to be better implemented, causing less serial-

ization, so much so that DepositCharge is faster than Move. Particle

sorting is available as an auxiliary API call within OP-PIC; however,

periodic shuffling with hole-filling (explained in Section 3.2.2) has

proven most effective on GPUs to minimize serialization issues.

The performance of CabanaPIC on the same hardware is detailed

in Figure 9(b). In this case we use multi-hop (MH) to support the

electromagnetic PIC move step. We benchmark two problem sizes

with a 96k cell mesh, with 72M (solid filled bars) and 144M particles

(cross-pattern bars). The 144M case gives approximately 1500 parti-

cles per cell, which is a regime of interest to UKAEA [16]. Instead of

directly weighting fields into particle locations, the Interpolate

routine of CabanaPIC, computes derivatives of field values, storing

them as interpolator values within cell data. As the simulation is

electromagnetic, each particle must deposit current on all pass-

ing cells during the move routine. This entails calculating new

positions and velocities, moving to the correct final cell, and de-

positing current into an accumulator in a single routine, known

as Move_Deposit. This is the most time consuming routine, over-

whelmingly dominating the runtime. Subsequently, the accumulator

data is processed in the AccumulateCurrent routine to obtain the

current density necessary for field solving. Field solving follows

a kernel based leap-frog approach, with AdvanceE and AdvanceB

being the key subroutines.

Table 1: GPU utilization

Mini-App Counts per 1×MI250X 8×MI250X 1×V100 4×V100

GCD/GPU GCDs GCDs GPUs GPUs

CabanaPIC 96k cell mesh 99% 88% 98% 92%

72M particles

CabanaPIC 96k cell mesh 99% 93% 99% 96%

144M particles

Mini-FEM-PIC 48k cell mesh 99% 90% 90% 77%

70M particles

It is interesting to note that in Figure 9(b) the 2×AMD EPYC

7742 gives better performance than the NVIDIA V100, markedly for

the 144M particles problem. Here we observe that the GPU suffers

from kernel divergence (branching in the kernel) where threads

within a warp take different execution paths, leading to inefficient

resource use and performance degradation by effectively serializing

the execution of threads within the warp. We also see atomics being

serialized as an issue especially compounded when there are higher

numbers of particles.

Table 1 shows GPU utilization on Bede and LUMI-G (collected

with nvidia-smi and rocm-smi). Both applications show high uti-

lization when using a single GPU, with a noticeable decrease when

usingmultiple GPUs, asMPI communication times and synchroniza-

tion wait times reduce the GPU utilization. We also see CabanaPIC

achieves higher utilization with increased particle counts.

4.1.2 Roofline Performance: Figures 10 and 11 show roofline plots

for the significant routines of the OP-PIC generated versions of

Mini-FEM-PIC and CabanaPIC for a 2×Intel 8268 CPU node (MPI

only), a single V100 GPU, and one GCD of the MI250X GPU. For the

Intel 8268 CPU node and the V100 GPU node, we collect data with

Intel Advisor and NVIDIA Insight, respectively. For the MI250X

GPU, we estimate the arithmetic intensity of kernels and total FP64

operations per kernel using Omniperf1, and also compare to the

FP64 counts for the kernels on the V100 GPU. FLOP/s are then

estimated using kernel times from OP-PIC code instrumentation.

Finally, the Berkeley ERT [21] is used to obtain rooflines.

For both applications, on all architectures, almost all routines are

bandwidth bound. On CPUs we see several routines L3 cache bound,

including the most time consuming Move kernel of Mini-FEM-PIC.

CabanaPIC’s most time consuming CPU kernel, Move_Deposit,

is just below the threshold of DRAM bandwidth, as it consists

of both move and deposit current within the same routine, as

opposed to Mini-FEM-PIC’s separate routines. Mini-FEM-PIC’s

1https://rocm.github.io/omniperf

OP-PIC – An Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion Simulations ICPP ’24, August 12–15, 2024, Gotland, Sweden

(a) Intel 8268 CPU roofline (b) NVIDIA V100 GPU roofline (c) LUMI MI250X 1GCD roofline

Figure 10: Mini-FEM-PIC single node/device ś 48k cell mesh with ≈70M particles

(a) Intel 8268 CPU roofline (b) NVIDIA V100 GPU roofline (c) LUMI MI250X 1GCD roofline

Figure 11: CabanaPIC single node/device ś 96k cell mesh with 72M particles

Figure 12: CabanaPIC original vs OP-PIC comparison

DepositCharge, does not appear in the GPU rooflines as it is la-

tency bound where thousands of particles are attempting to in-

crement the same mesh element at the same time affecting per-

formance. The Move_Deposit routine of CabanaPIC is particu-

larly impacted by kernel divergence, due to significant branching

path computations. Additionally, in spite of the notable runtimes

of Update_Ghosts in Figure 9(b), it is a simple assignment/incre-

ment kernel, dominated by halo-exchanges, hence not noted on the

roofline plots.

4.1.3 Comparison to State-of-the-Art: Next, we compare the per-

formance of CabanaPIC written using OP-PIC with the original

(structured-mesh) version parallelized using Kokkos [25]. We ex-

plore three different particle regimes, with 750, 1500, and 3000

particles per cell. We benchmark single-core and single-socket per-

formance on an Intel Xeon 8268 CPU (Figure 12(a)), maintaining

constant workload per CPU core per regime, with 2k cells on one

core and 48k cells for 24 cores. In all CPU runs, we observe that both

OP-PIC OpenMP and MPI outperform the Kokkos version by up to

15%. As noted before, the original code repository does not have

a distributed memory parallel version available. Comparing GPU

performance using CUDA on an NVIDIA V100 (Figure 12(b)), shows

similar performance across all tested regimes. The marginally better

Table 2: Systems specifications

System Avon ARCHER2𝑎 Bede𝑏 LUMI-G𝑐

Dell PowerEdge HPE Cray EX IBM PowerSystems HPE Cray EX
C6420 AC922 GPU Cluster GPU Cluster

Processor Intel Xeon AMD EPYC 7742 IBM Power9 AMD EPYC 7A54
Platinum 8268 + NVIDIA Tesla + AMD MI250X
Cascade Lake V100-SXM2-32GB

(procs×cores) 2×24 2×64 2×16 + 4×GPUs 1×64 + 4×GPUs
/node
Memory/node 192GB 256GB 512GB + 32GB/GPU 512GB + 128GB/GPU
Interconnect Mellanox ConnectX-6 HPE Cray Slingshot Mellanox HPE Cray Slingshot

HDR100 (100 Gb/s) 2×100 Gb/s EDR (100 Gb/s) 50 Gb/s
InfiniBand bi-directional/node Infiniband bi-directional/GPU

Compilers gcc/10.3.0 PrgEnv-gnu/8.3.3 cuda/12.0.1 HIPCC (AMD Clang
OpenMPI/4.1.1 gcc/11.2.0 gcc/12.2 14.0.0)

cray-mpich/8.1.23 OpenMPI/4.0.5 Cray Clang 14.0.2
Compiler Flags -fopenmp -fPIC -O3 -fopenmp -O3 -gencode -m64 -O3 -isystem -O3

Petsc Version PETSc/3.15.1 PETSc/3.20.0 PETSc/3.20.1 PETSc/3.20.0
GPU Arch - - sm_70 gfx90a
Power/node ≈ 475W 660W ≈ 1500W ≈ 2390W

a https://www.archer2.ac.uk
b https://n8cir.org.uk/bede/
c https://lumi-supercomputer.eu/

performance of the OP-PIC version, even though it is implemented

using unstructured-mesh computations, is due to the runtime be-

ing dominated by the particle move routine Move_Deposit, which

does not gain any significant advantages on a structured-mesh.

Furthermore, the OP-PIC version calculates the next cell using the

direction of movement and reading an int mapping, whereas the

Kokkos version computes the next cell index directly.

4.2 Scaling Performance

We investigate scaling performance for OP-PIC generated code

using four cluster systems. The systems are detailed in Table 2, and

consists of two CPU clusters (Avon and ARCHER2) and two GPU

clusters (Bede and LUMI-G).

We see excellent weak scaling for Mini-FEM-PIC on up to 128

nodes (16k cores) or GPUs (128 MI250X GCDs or 64 V100 GPUs)

(Figure 13). In this case, we solve a 48k cell mesh with ≈70M parti-

cles per node or GPU for 250 iterations. At each scale, the collection

ICPP ’24, August 12–15, 2024, Gotland, Sweden Lantra, et al.

Figure 13: Mini-FEM-PIC weak scaling: 48k cells and 70M

particles per CPU node/V100/MI250X GCD for 250 iterations

of V100 GPUs or MI250X GCDs perform better than the equivalent

number of ARCHER2 nodes. Again, the particle move dominates

performance. CabanaPIC also shows good weak scaling ś up to

16k cores on ARCHER2 and 1024 GPUs on LUMI-G (see Figure 14).

However, solving a 96k cell mesh with 144M particles per node or

GPU, the V100 cluster (Bede) performs significantly worse than

ARCHER2. This follows from the single-node performance observed

in Figure 9(b), where an ARCHER2 node is 20% faster than a single

V100 GPU for the same problem configuration per node or GPU.

Scaling is also affected by load-balancing of particles, largely deter-

mined by mesh partitioning ś an equal particle distribution reduces

idle time, as finalizing the particle move requires all MPI ranks to

synchronize. Comparing MH to DH (not shown) we observed that

the DH approach consistently gives 20% faster runtimes.

4.2.1 Power-equivalent Performance: Our final set of results esti-

mate the performance of each machine for a roughly equivalent

power envelope. Using the node and GPU power consumption of

the systems we estimate that 18 ARCHER2 nodes, 8 Bede nodes

(consisting of 32 V100 GPUs) and 5 LUMI-G nodes (consisting of

20 MI250X GPUs) consume roughly 12kW of power.

Running Mini-FEM-PIC with 1.536M cells and ≈2.5B particles,

and CabanaPIC with 3.072M cells and ≈2.3B and 4.6B particles, then

allows us to compare the speed-ups from the different CPU and

GPU systems as illustrated in Figure 15. For Mini-FEM-PIC, the

GPU speed-ups compared to ARCHER2 are 1.43× (Bede) and 1.71×

(LUMI-G). For CabanaPIC, the speed-ups from LUMI-G are 3.52×

and 3.03× for 2.3B and 4.6B particles problems.

5 CONCLUSION

In this paper, we have introduced OP-PIC, a new embedded DSL

for developing unstructured-mesh PIC applications, motivated by

nuclear fusion reactor simulations. An application written using

the OP-PIC DSL can be used to automatically generate optimized

parallel CPU and GPU code. Two non-trivial PIC applications have

been developed using OP-PIC and their performance has been ex-

plored on a number of single-node and cluster systems. Our results

demonstrate the flexibility afforded by automatic code-generation

for different code-paths including different optimisation techniques

depending on the underlying architecture. Additionally, users of

OP-PIC do not need to program the parallelization orchestration,

e.g., resolving data races, synchronizations, nor explicit data copies

between host and device. Nor do they need to develop their own

distributed memory parallelizations. OP-PIC provides optimized

MPI-based back-ends, including for example, the much involved

particle move step.We seematching or better performance fromOP-

PIC generated code compared to a state-of-the-art PIC application

Figure 14: CabanaPIC: 96k cells and 144M particles per CPU

node/V100/MI250X GCD

Figure 15: Power equivalent best runtimes ś 18 ARCHER2

nodes vs 8 Bede nodes vs 5 LUMI-G nodes

written using Kokkos, indicating that the high-level abstraction

does not detract from gaining good performance. In our experi-

ments runtime is dominated by particle move routines, and almost

all steps of the PIC algorithm are bandwidth limited. However, seri-

alization of atomic operations on GPUs leads to a latency-bound

charge deposit kernel, which needs further improvements to gain

performance. Good weak scaling was observed on 16k CPU cores

and up to 1024 GPUs. Comparing performance of CPU and GPU

clusters within an equivalent power envelope demonstrates that

on the GPU systems we gain 1.4× to 3.5× speed-ups. Future work

aims to develop larger and real-world simulations with OP-PIC, im-

plement further optimizations, and extend the code-generation to

produce parallelizations for other architectures, such as Intel GPUs.

OP-PIC and the mini-apps developed in this paper are available as

open source software at: https://github.com/OP-DSL/OP-PIC.

ACKNOWLEDGMENTS

The ExCALIBUR programme (https://excalibur.ac.uk/) is supported

by the UKRI Strategic Priorities Fund. The programme is co-

delivered by the Met Office and EPSRC in partnership with the

Public Sector Research Establishment, the UK Atomic Energy Au-

thority (UKAEA) and UKRI research councils, including NERC,

MRC and STFC.

This work used the ARCHER2 UK National Supercomputing

Service (https://www.archer2.ac.uk).

This work also made use of the facilities of the N8 Centre of Ex-

cellence in Computationally Intensive Research (N8 CIR) provided

and funded by the N8 research partnership and EPSRC (Grant No.

EP/T022167/1). The Centre is coordinated by the Universities of

Durham, Manchester and York.

The authors acknowledge the EuroHPC Joint Undertaking for

awarding this project access to the EuroHPC supercomputer LUMI,

hosted by CSC (Finland) and the LUMI consortium through a Eu-

roHPC Benchmark Access call (EHPC-BEN-2024B03-043).

OP-PIC – An Unstructured-Mesh Particle-in-Cell DSL for Developing Nuclear Fusion Simulations ICPP ’24, August 12–15, 2024, Gotland, Sweden

Gihan Mudalige acknowledges support from EPSRC (Grant No.

EP/V000942/1). The authors thank Will Saunders at UKAEA for his

insights on the application domain, and Tobias S. Flynn at Warwick

and Istvan Reguly at PPCU Hungary for their advice and support.

REFERENCES
[1] Accessed 2023. NESO Particles Documentation. https://excalibur-neptune.

github.io/NESO-Particles/main/sphinx/html/concept/concept.html
[2] Wayne Arter, L. Anton, D. Samaddar, and Rob J. Akers. 2019. ExCALIBUR Fusion

Modelling System Science Plan. Technical Report CD/EXCALIBUR-FMS/0001.
UKAEA. https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/
pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf.

[3] G. D. Balogh, Gihan R. Mudalige, István Z. Reguly, S. F. Antao, and Carlo Bertolli.
2018. OP2-Clang: A Source-to-Source Translator Using Clang/LLVM LibTooling.
In Proceedings of the IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC). 59ś70. https://doi.org/10.1109/LLVM-HPC.2018.8639205

[4] Matthew T. Bettencourt et al. 2021. EMPIRE-PIC: A Performance Portable Un-
structured Particle-in-Cell Code. Communications in Computational Physics 30, 4
(Aug. 2021), 1232ś1268. https://doi.org/0.4208/cicp.OA-2020-0261

[5] Robert F. Bird et al. 2022. VPIC 2.0: Next Generation Particle-in-Cell Simulations.
IEEE Transactions on Parallel and Distributed Systems 33, 4 (April 2022), 952ś963.
https://doi.org/10.1109/TPDS.2021.3084795

[6] Robert F. Bird, Patrick Gillies, Michael R. Bareford, AndyHerdman, and StephenA.
Jarvis. 2018. Performance Optimisation of Inertial Confinement Fusion Codes
usingMini-applications. The International Journal of High Performance Computing
Applications 32, 4 (2018), 570ś581. https://doi.org/10.1177/1094342016670225

[7] C. K. Birdsall and A. B. Langdon. 1991. Plasma Physics via Computer Simulation.
In Plasma Physics Series. Institute of Physics Publishing. https://doi.org/10.1201/
9781315275048

[8] Franco Brezzi and Michel Fortin. 1991. Mixed and Hybrid Finite Element Method.
Springer Series In Computational Mathematics 15 (Jan. 1991), 350. https://doi.org/
10.1007/978-1-4612-3172-1

[9] Dominic A. S. Brown et al. 2021. Higher-order particle representation for particle-
in-cell simulations. J. Comput. Phys. 435 (2021), 110255. https://doi.org/10.1016/
j.jcp.2021.110255

[10] Heiko Burau et al. 2010. PIConGPU: A Fully Relativistic Particle-in-Cell Code
for a GPU Cluster. IEEE Transactions on Plasma Science 38, 10 (2010), 2831ś2839.
https://doi.org/10.1109/TPS.2010.2064310

[11] Chris D. Cantwell et al. 2015. Nektar++: An open-source spectral/hp element
framework. Computer Physics Communications 192 (2015), 205ś219. https:
//doi.org/10.1016/j.cpc.2015.02.008

[12] Eduardo D’Azevedo et al. 2017. The fusion code XGC: Enabling Kinetic Study
of Multiscale Edge Turbulent Transport in ITER. CRC Press, 529ś552. https:
//doi.org/10.1201/b21930

[13] J. Derouillat et al. 2018. Smilei: A collaborative, open-source, multi-purpose
particle-in-cell code for plasma simulation. Computer Physics Communications
222 (2018), 351ś373. https://doi.org/10.1016/j.cpc.2017.09.024

[14] Gerrett Diamond, Cameron W. Smith, Chonglin Zhang, Eisung Yoon, and Mark S.
Shephard. 2021. PUMIPic: A mesh-based approach to unstructured mesh Particle-
In-Cell on GPUs. J. Parallel and Distrib. Comput. 157 (2021), 1ś12. https://doi.
org/10.1016/j.jpdc.2021.06.004

[15] H. Carter Edwards and Christian R. Trott. 2013. Kokkos: Enabling Perfor-
mance Portability Across Manycore Architectures. In Extreme Scaling Workshop
(XSW’13). 18ś24. https://doi.org/10.1109/XSW.2013.7

[16] ExCALIBUR-NEPTUNE. [n. d.]. NESO Framework. https://github.com/
ExCALIBUR-NEPTUNE/NESO and https://github.com/ExCALIBUR-NEPTUNE/
NESO-Particles.

[17] Luca Fedeli et al. 2022. Pushing the Frontier in the Design of Laser-Based Electron
Accelerators with Groundbreaking Mesh-Refined Particle-in-Cell Simulations on
Exascale-Class Supercomputers. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC’22) (Dallas,
Texas). IEEE Press, Article 3, 12 pages.

[18] Kai Germaschewski et al. 2016. The Plasma Simulation Code: A modern particle-
in-cell codewith patch-based load-balancing. J. Comput. Phys. 318 (2016), 305ś326.
https://doi.org/10.1016/j.jcp.2016.05.013

[19] Zoltan Juhasz et al. 2021. Efficient GPU implementation of the Particle-in-
Cell/Monte-Carlo collisions method for 1D simulation of low-pressure capaci-
tively coupled plasmas. Computer Physics Communications 263 (2021), 107913.
https://doi.org/10.1016/j.cpc.2021.107913

[20] Rinat Khaziev and Davide Curreli. 2018. hPIC: A scalable electrostatic Particle-
in-Cell for Plasma Material Interactions. Computer Physics Communications 229
(2018), 87ś98. https://doi.org/10.1016/j.cpc.2018.03.028

[21] Yu Jung Lo et al. 2015. Roofline Model Toolkit: A Practical Tool for Architectural
and Program Analysis. In High Performance Computing Systems. Performance
Modeling, Benchmarking, and Simulation, Stephen A. Jarvis, Steven A. Wright,

and Simon D. Hammond (Eds.). Springer International Publishing, 129ś148.
[22] M. Louboutin et al. 2019. Devito (v3.1.0): an embedded domain-specific lan-

guage for finite differences and geophysical exploration. Geoscientific Model
Development 12, 3 (2019), 1165ś1187. https://doi.org/10.5194/gmd-12-1165-2019

[23] David J. Lusher, Satya P. Jammy, and Neil D. Sandham. 2018. Shock-
wave/boundary-layer interactions in the automatic source-code generation frame-
work OpenSBLI. Computers & Fluids 173 (2018), 17ś21. https://doi.org/10.1016/j.
compfluid.2018.03.081

[24] Alexander Matthes et al. 2017. Tuning and Optimization for a Variety of Many-
Core Architectures Without Changing a Single Line of Implementation Code
Using the Alpaka Library. In High Performance Computing, Julian M. Kunkel, Rio
Yokota, Michela Taufer, and John Shalf (Eds.). Springer International Publishing,
496ś514.

[25] Susan M. Mniszewski, James Belak, et al. 2021. Enabling particle applications
for exascale computing platforms. The International Journal of High Perfor-
mance Computing Applications 35, 6 (2021), 572ś597. https://doi.org/10.1177/
10943420211022829

[26] Haksu Moon, Fernando L. Teixeira, and Yuri A. Omelchenko. 2015. Exact charge-
conserving scatterśgather algorithm for particle-in-cell simulations on unstruc-
tured grids: A geometric perspective. Computer Physics Communications 194
(2015), 43ś53. https://doi.org/10.1016/j.cpc.2015.04.014

[27] Gihan R. Mudalige, Mike B. Giles, István Z. Reguly, Carlo Bertolli, and Paul H. J.
Kelly. 2012. OP2: An active library framework for solving unstructured mesh-
based applications on multi-core and many-core architectures. In 2012 Innovative
Parallel Computing (InPar). IEEE, 1ś12.

[28] Jean-Claude Nédélec. 1980. Mixed finite elements in R3. Numer. Math. 35 (1980),
315ś341.

[29] Florian Rathgeber et al. 2016. Firedrake: Automating the Finite Element Method
by Composing Abstractions. ACM Trans. Math. Software 43, 3, Article 24 (Dec.
2016), 27 pages. https://doi.org/10.1145/2998441

[30] István Z. Reguly, Gihan R. Mudalige, Michael B. Giles, Dan Curran, and Simon
McIntosh-Smith. 2014. The OPS domain specific abstraction for multi-block
structured grid computations. In The 4th International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Computing.
IEEE, 58ś67.

[31] Bart Ripperda et al. 2017. A Comprehensive Comparison of Relativistic Particle
Integrators. The Astrophysical Journal Supplement Series 235 (10 2017). https:
//doi.org/10.3847/1538-4365/aab114

[32] Will Saunders, James Cook, and Wayne Arter. 2022. ExCALIBUR 1-
D and 2-D Particle Models. Technical Report CD/EXCALIBUR-FMS/0070.
UKAEA. https://excalibur-neptune.github.io/Documents/UKAEA_CD-
EXCALIBUR-FMS0070-1.00-M4c.1_DDParticleModelsm4C100.html.

[33] Edward J. Threlfall, Rob J. Akers, Wayne Arter, et al. 2023. Software for Fusion
Reactor Design: ExCALIBUR Project NEPTUNE : Towards Exascale Plasma Edge
Simulations. In Proceedings of the 29th IAEA Fusion Energy Conference. GBR.

[34] Jean-Luc Vay et al. 2004. Application of adaptive mesh refinement to particle-
in-cell simulations of plasmas and beams. Physics of Plasmas 11 (April 2004),
2928ś2934. https://doi.org/10.1063/1.1689669

[35] Jean-Luc Vay et al. 2018. Warp-X: A new exascale computing platform for
beamśplasma simulations. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 909
(2018), 476ś479. https://doi.org/10.1016/j.nima.2018.01.035

[36] Bei Wang et al. 2019. Modern Gyrokinetic Particle-In-Cell Simulation of Fu-
sion Plasmas on Top Supercomputers. The International Journal of High Perfor-
mance Computing Applications 33, 1 (2019), 169ś188. https://doi.org/10.1177/
1094342017712059

[37] F. D. Witherden, A. M. Farrington, and P. E. Vincent. 2014. PyFR: An open source
framework for solving advectionśdiffusion type problems on streaming architec-
tures using the flux reconstruction approach. Computer Physics Communications
185, 11 (2014), 3028ś3040. https://doi.org/10.1016/j.cpc.2014.07.011

[38] Steven A. Wright et al. 2024. Developing performance portable plasma edge
simulations: A survey. Computer Physics Communications 298 (2024), 109123.
https://doi.org/10.1016/j.cpc.2024.109123

[39] Steven A. Wright, Edward Higgins, Gihan R. Mudalige, Ben McMillan, and Tom
Goffrey. 2023. Progress on Development of an FEM-PIC Miniapp. Technical
Report 2057699-TN-03-03. UKAEA. https://github.com/ExCALIBUR-NEPTUNE/
Documents/blob/main/reports/2057699/TN-03-3.pdf.

[40] Erik Zenker et al. 2016. Performance-Portable Many-Core Plasma Simulations:
Porting PIConGPU to OpenPower and Beyond. In High Performance Computing,
Michela Taufer, Bernd Mohr, and Julian M. Kunkel (Eds.). Springer International
Publishing, 293ś301.

[41] Chonglin Zhang, Gerrett Diamond, Cameron W. Smith, and Mark S. Shephard.
2023. Development of an unstructured mesh gyrokinetic particle-in-cell code for
exascale fusion plasma simulations on GPUs. Computer Physics Communications
291 (2023), 108824. https://doi.org/10.1016/j.cpc.2023.108824

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI

https://doi.org/10.5281/zenodo.12793460

ARTIFACT IDENTIFICATION

OP-PIC is a high-level embedded domain specific language (DSL)

for writing unstructured-mesh Particle-in-Cell algorithms with au-

tomatic parellelization on multi-core and many-core architectures.

The API is embedded in C/C++. The current OP-PIC DSL supports

generating code targeting multi-core CPUs with OpenMP thread-

ing, many-core GPUs with CUDA/HIP offloading, and distributed

memory cluster variants of these using MPI.

This appendix contains the information necessary to compile

and run the OP-PIC DSL library and the applications described in

this paper. It includes: (1) the code/scripts, meshes, and configura-

tion files that were used in the experiments; and, (2) a Dockerfile

for CPU deployment on a single computer. A detailed step-by-step

deployment guide, together with the necessary environment vari-

ables, libraries, and compilers required to deploy OP-PIC on both

CPU and GPU architectures can be found in the comments at the

end of the Dockerfile.

This paper presents experiments with two PIC applications, Mini-

FEM-PIC and CabanaPIC, developed using the DSL. We describe

the system environments, setup, and workflow in support of repro-

ducing the results from these applications in this artifact.

REPRODUCIBILITY OF EXPERIMENTS

Example Slurm submission scripts for the main four systems, Avon,

ARCHER2, Bede, and LUMI-G, are included in the artifact archive

showing the specific commands used (see the script_files di-

rectory) . See the README file of the artifact for more details on

the configurations used for the experiments. All figures are gen-

erated through Python matplotlib files which can be found in the

python_diagram_files directory.

(1) Single node runtimes (Paper Section 4.1.1) can be obtained

by running the command manually on the terminal, or by sub-

mitting the Slurm scripts (in script_files directory) with the

number of nodes/GPUs set to one. Each simulation typically

takes 1-3 minutes to run. Mini-FEM-PIC single node runs use

a 48,000 cell mesh with 1𝑒18 plasma density, generating ≈70

million particles for the simulation. CabanaPIC experiments

use 𝑛𝑥 = 40, 𝑛𝑦 = 40, 𝑛𝑧 = 60 creating 96,000 cells and 750/1500

particles per cells. The timing data of the solver routines (in

the output log) can then be used to recover the single node

breakdown behaviour described in this paper. More details and

an example of an output log can be seen in the README file of

the artifact.

(2) Roofline experiments (Paper Section 4.1.2) are done using

the NVIDIA Nsight Compute for the V100 GPU, and with Intel

Advisor for the Intel CPU. For the MI250X GPU, we estimate

the arithmetic intensity of kernels and total FP64 operations per

kernel using Omniperf, and also compare to the FP64 counts for

the kernels on the V100 GPU. FLOP/s are then estimated using

kernel times from OP-PIC code instrumentation. The rooflines

(bandwidth and peak FLOP values) were obtained from Intel

Advisor for the Intel CPU plot, and the GPU systems were

benchmarked with Lawrence Berkeley National Laboratory’s

Empirical Roofline Tool (ERT).

(3) The original CabanaPIC comparisons (Paper Section 4.1.3) use

the master branch of the CabanaPIC repository: https://github.

com/ECP-copa/CabanaPIC/ with b7dc525daa110146 commit.

The installation requires Kokkos and the Cabana library. This

is compared against the MPI, OpenMP, and CUDA versions of

OP-PIC on an Intel Cascade Lake CPU socket and on an NVIDIA

V100 GPU. A number of minor adjustments were made to the

original CabanaPIC code which are described in the README

file of the archived artifacts. The runs were done manually and

take 20-30 minutes to execute.

(4) Weak scaling runtimes (Paper Section 4.2) are collected using

the Slurm scripts provided in the script_files directory. This

directory is sub-divided into application_name and then into

server_name. Since particles per cell is controlled by configu-

rations, the mesh size is increased according to the number of

CPU nodes or V100 GPUs or MI250X GCDs used. This increases

both the mesh size as well as the particle count with the ex-

pected amount for weak scaling. Meshes with multiples of 48k

cells are used for Mini-FEM-PIC (48k, 48k×2, 48k×4, 48k×8, ...)

and meshes with multiples of 96k cells are used for CabanaPIC

(96k, 96k×2, 96k×4, 96k×8, ...). The MainLoop TotalTime from

the log files are collected to plot the weak scaling results. Each

script runs the application multiple times and a single applica-

tion run on one server configuration takes roughly 1-3 minutes

for Mini-FEM-PIC and roughly 2-4 minutes for CabanaPIC.

(5) Power-equivalent performance runs (Paper Section 4.2.1) are

carried out using Slurm scripts and can be found in the artifact

archive along with the weak scaling scripts. It is configured to

run on 18 ARCHER2 nodes, 5 LUMI-G nodes (with 20 MI250X

GPUs), and on 8 Bede nodes (with 32 V100GPUs). The MainLoop

TotalTime from the log files are used to plot the results. The

total time to obtain power-equivalent runtimes is ≈20 minutes.

Mini-FEM-PIC iterates 250 times with a 1.536 million cell mesh

and ≈2.5 billion particles. CabanaPIC uses 𝑛𝑥 = 40, 𝑛𝑦 = 40,

𝑛𝑧 = 1920, generating 3.072 million mesh cells and 750/1500

particles per cell, adding up to 2.3/4.6 billion particles, for 500

iterations.

ARTIFACT DEPENDENCIES AND
REQUIREMENTS

1. Checklist (artifact meta information)

• Program:Mini-FEM-PIC has been tested with PETSc versions

3.15.1 to 3.20.1, but may work on later versions also. There are

no third-party library dependencies for CabanaPIC.

• Compilation: See Paper Table 1. Some example source files

can be found in the source_files directory of the artifacts, and

the Dockerfile contains further details. Makefiles are included to

compile the library and applications.

ICPP ’24, August 12–15, 2024, Gotland, Sweden

• Binary: Binaries for CUDA, HIP, Sequential, OpenMP, MPI,

MPI+CUDA, and MPI+HIP can be generated.

• Data set: Mesh files used for the scaling and roofline studies.

Mini-FEM-PIC can run using HDF5 mesh files (if HDF5 version

of the apps are compiled) or ASCII .dat mesh files.

• Runtime environment: Details of module environments used

on Avon, ARCHER2, Bede, and LUMI-G are available in the

GitHub repository as well as in the artifact archive.

• Hardware: See Paper Table 1 for details on systems used in this

work, namely Avon, ARCHER2, Bede, and LUMI-G clusters. OP-

PIC is tested on Intel/AMD CPUs and on NVIDIA/AMD GPUs.

• Execution: Example Slurm submission scripts for the clusters

are included in the artifacts.

• Output: Timing for different routines of the simulation.

• Experiment workflow: Install the OP-PIC library and its de-

pendencies (PETSc/HDF5 required for Mini-FEM-PIC). Compile

Mini-FEM-PIC and/or CabanaPIC applications, run and observe

performance.

• Experiment customization: The simulation can be customized

using a configuration file, an example file is present in the direc-

tory of each application and the cluster specific files are included

in the artifact archive.

• Publicly available?: Yes.

2. How software can be obtained

• The OP-PIC GitHub repository:

https://github.com/OP-DSL/OP-PIC

• The archived artifacts contain a copy of the code used for this

paper.

3. Hardware dependencies:

The code has been tested on AMD/Intel CPU based HPC clusters,

NVIDIA GPU HPC clusters, and AMD GPU HPC clusters. It can

also be compiled for single server nodes or consumer hardware

with or without MPI. To reproduce the exact results from the paper,

access to the aforementioned systems is required. However, the

details from this artifact description provide a complete view of the

steps required to run the experiments on similar hardware.

4. Software dependencies

See the top-level README file listing the dependencies, along with

where they can be found. The Avon, ARCHER2, Bede, and LUMI-

G systems provide a module environment that contain several of

these dependencies. The exact module environment used on each

machine can be found in the source_files in the artifact.

A Python (>= 3.8) installation is required for the code-generator

to operate and details on setting-up the code-generation environ-

ment (one time process) can also be found in the README file of

OP-PIC. Mini-FEM-PIC depends on the HDF5 and PETSc libraries.

5. Datasets

The mesh files used for Mini-FEM-PIC scaling and the Roofline

studies can be found in the mesh_files directory of the artifact.

CabanaPIC generates the mesh during runtime using configura-

tions, hence does not require reading in a mesh from file.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

1. Installation

Once the dependencies are satisfied, activate the Python environ-

ment by:

$ source $OPP/opp_translator/opp_venv/bin/activate

Now the installation of the software can be achieved with the fol-

lowing steps. Check the Dockerfile for further detailed step-by-step

information.

a) Build the OP-PIC library

The library can be compiled using the Makefile located in the direc-

tory OP-PIC/opp_lib. Mini-FEM-PIC requires the OP-PIC library

to be linked with PETSc, while for CabanaPIC, the library should

be built without PETSc. See the README file in OP-PIC/opp_lib

or the Dockerfile for more information.

b) Build Application ś Mini-FEM-PIC

The application files can be found in the OP-PIC/app_fempic di-

rectory. Mini-FEM-PIC can be built with or without HDF5, using

fempic.cpp for non-HDF5 and fempic_hdf5.cpp for HDF5 builds.

(1) Generate-Code:
$ python3 $OPP_TRANSLATOR -v -I$OPP_PATH/include/

--file_paths <app_cpp_file>
This generates a fempic_opp.cpp or fempic_hdf5_opp.cpp

file and seq, omp, mpi, cuda, and hip directories.

(2) Compile the application: Compile the application with the

required parallelization using the Makefile provided in the ap-

plication directory.

The README file in the OP-PIC/app_fempic directory contains

more information on these steps. The OP-PIC/app_fempic_cg di-

rectory contains code-generated files, that can be compiled directly

using the make commands, skipping Step (1).

c) Build Application ś CabanaPIC

CabanaPIC compilation follows same steps as Mini-FEM-PIC, how-

ever it does not contain an HDF5 version. The application files can

be found in the OP-PIC/app_cabanapic directory.

(1) Generate-Code:
$ python3 $OPP_TRANSLATOR -v -I$OPP_PATH/include/

--file_paths cabana.cpp
This generates a cabana_opp.cpp file and seq, omp, mpi, cuda,

and hip directories.

(2) Compile the application: Compile the application with the

required parallelization using the Makefile provided in the ap-

plication directory.

The README file in the OP-PIC/app_cabanapic directory con-

tains more information on these steps. In addition, the directory

OP-PIC/app_cabanapic_cg contains code-generated files, that can

be compiled directly using the make commands, skipping Step (1).

2. Running the applications

Once the required parallelized version of the OP-PIC application

is compiled, a configuration file and a mesh file (mesh file only for

Mini-FEM-PIC) are required for execution. Compiled binaries can

be found in a bin directory within the application directory.

$ <app_binary> <config_file> can be used to run non-MPI sim-

ulations and mpirun can be used for MPI parallelized applications.

	Abstract
	1 Introduction
	2 The Particle-in-Cell (PIC) Method
	2.1 Related Work

	3 OP-PIC
	3.1 The OP-PIC API
	3.2 Parallelizations
	3.3 Platform Specific Optimizations
	3.4 Automatic Code-Generation

	4 Results
	4.1 Single Node/GPU Performance
	4.2 Scaling Performance

	5 Conclusion
	Acknowledgments
	References

