
This is a repository copy of Development and validation of AI-derived segmentation of 
four-chamber cine cardiac magnetic resonance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214821/

Version: Published Version

Article:

Assadi, H., Alabed, S. orcid.org/0000-0002-9960-7587, Li, R. et al. (13 more authors) 
(2024) Development and validation of AI-derived segmentation of four-chamber cine 
cardiac magnetic resonance. European Radiology Experimental, 8 (1). 77. 

https://doi.org/10.1186/s41747-024-00477-7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Assadi et al. 

European Radiology Experimental            (2024) 8:77  

https://doi.org/10.1186/s41747-024-00477-7

ORIGINAL ARTICLE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Development and validation of AI-derived 
segmentation of four-chamber cine cardiac 
magnetic resonance
Hosamadin Assadi1,2, Samer Alabed3, Rui Li1,2, Gareth Matthews1,2, Kavita Karunasaagarar3, Bahman Kasmai1,2, 

Sunil Nair2, Zia Mehmood2, Ciaran Grafton‑Clarke1,2, Peter P. Swoboda4, Andrew J. Swift3, John P. Greenwood4, 

Vassilios S. Vassiliou1,2, Sven Plein4, Rob J. van der Geest5 and Pankaj Garg1,2*   

Abstract 

Background Cardiac magnetic resonance (CMR) in the four‑chamber plane offers comprehensive insight 

into the volumetrics of the heart. We aimed to develop an artificial intelligence (AI) model of time‑resolved segmenta‑

tion using the four‑chamber cine.

Methods A fully automated deep learning algorithm was trained using retrospective multicentre and multivendor 

data of 814 subjects. Validation, reproducibility, and mortality prediction were evaluated on an independent cohort 

of 101 subjects.

Results The mean age of the validation cohort was 54 years, and 66 (65%) were males. Left and right heart parame‑

ters demonstrated strong correlations between automated and manual analysis, with a ρ of 0.91−0.98 and 0.89−0.98, 

respectively, with minimal bias. All AI four‑chamber volumetrics in repeatability analysis demonstrated high correla‑

tion (ρ = 0.99−1.00) and no bias. Automated four‑chamber analysis underestimated both left ventricular (LV) and right 

ventricular (RV) volumes compared to ground‑truth short‑axis cine analysis. Two correction factors for LV and RV four‑

chamber analysis were proposed based on systematic bias. After applying the correction factors, a strong correlation 

and minimal bias for LV volumetrics were observed. During a mean follow‑up period of 6.75 years, 16 patients died. 

On stepwise multivariable analysis, left atrial ejection fraction demonstrated an independent association with death 

in both manual (hazard ratio (HR) = 0.96, p = 0.003) and AI analyses (HR = 0.96, p < 0.001).

Conclusion Fully automated four‑chamber CMR is feasible, reproducible, and has the same real‑world prognostic value 

as manual analysis. LV volumes by four‑chamber segmentation were comparable to short‑axis volumetric assessment.

Trials registration ClinicalTrials.gov: NCT05114785.

Relevance statement Integrating fully automated AI in CMR promises to revolutionise clinical cardiac assessment, 

offering efficient, accurate, and prognostically valuable insights for improved patient care and outcomes.

Key points 

• Four‑chamber cine sequences remain one of the most informative acquisitions in CMR examination.

• This deep learning‑based, time‑resolved, fully automated four‑chamber volumetric, functional, and deformation 

analysis solution.
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• LV and RV were underestimated by four‑chamber analysis compared to ground truth short‑axis segmentation.

• Correction bias for both LV and RV volumes by four‑chamber segmentation, minimises the systematic bias.

Keywords Artificial intelligence, Deep learning, Heart diseases, Magnetic resonance imaging (cine), Prognosis

Graphical Abstract

Background
Cardiac magnetic resonance (CMR) is an established 

imaging modality for cardiovascular assessment [1]. 

CMR offers one of the best spatial resolutions for volu-

metric assessment of the heart. In routine practice, a 

stack of cine images acquired in the left ventricle (LV) 

short-axis orientation is the reference method for LV and 

right ventricle (RV) volumetric assessment, and several 

software solutions offer deep learning artificial intel-

ligence (AI) segmentation models for short-axis cine 

volumetric assessment [2–8]. Cine images in the four-

chamber long-axis plane are also routinely acquired in 

most CMR studies [9]. Analysis based on the four-cham-

ber may be useful in cases where the short axis has mis-

registration or temporal issues due to undersampling, or 

it may provide a complimentary analysis to the short-axis 

stack for internal validation. Furthermore, assessment 

of the longitudinal function of the heart is typically per-

formed using a long-axis view per the Society for Car-

diovascular Magnetic Resonance recommendations [10]. 

The four-chamber view provides rapid analysis that is 

often comparable to the results obtained through tran-

sthoracic echocardiography [11].

Automated heart segmentation using the four-chamber 

cine has previously mostly focused on a single chamber, 

commonly the LV [3, 12], the left atrium (LA) [3, 13] or 

the right atrium (RA) [8]. Moreover, commercially avail-

able CMR analysis software, CVi42 (Circle Cardiovascu-

lar Imaging Inc., Calgary, Canada; https:// www. circl ecvi. 

com/), can automatically analyse LV, LA, and RA on all 

cardiac phases from two orthogonal planes but not the 

RV. Other commercially available CMR software solu-

tions, including Medis Suite MRI (Medis medical imag-

ing systems, Leiden, The Netherlands; https:// www. 

medis imagi ng. com/), HeartVista (HeartVista Inc., CA, 

USA; https:// www. vista. ai/), and Caas MR solutions 

(Pie Medical Imaging, Maastricht, The Netherlands; 

https:// www. pieme dical imagi ng. com/), have integrated 

AI segmentation tools for the LV and RV but not for all 

four chambers in the long-axis view. A comprehensive, 

https://www.circlecvi.com/
https://www.circlecvi.com/
https://www.medisimaging.com/
https://www.medisimaging.com/
https://www.vista.ai/
https://www.piemedicalimaging.com/
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time-resolved four-chamber cine segmentation of all four 

chambers will allow for the assessment of not only the 

global longitudinal function but also the inference of LA 

and RA function [14]. Additionally, as the evaluation is 

being made in one cine sequence, issues with coregistra-

tion are less likely.

The main objective of this study was to train and 

develop a deep learning AI model of time-resolved seg-

mentation of all heart chambers using the four-chamber 

cine sequence in a multicentre and multivendor dataset. 

The second objective was to validate the agreement of 

the AI model externally with manual four-chamber and 

automated short-axis segmentation analyses. The third 

objective was to investigate the prognostic value of the AI 

model in the validation cohort.

Methods
Study cohort

This multicentre, multivendor, and retrospective obser-

vational study consisted of 814 previously prospectively 

recruited individuals between 2014 and 2018 who were 

selected for training, comprising studies of 624 patients 

in the ASPIRE registry from Sheffield Teaching Hospital 

(367 scans with GE Healthcare equipment and 257 scans 

Siemens Healthineers equipment), as well as 190 subjects 

from Leeds Teaching Hospitals NHS Trust (with Philips 

Healthcare equipment) [15–17]. To assess the perfor-

mance of the model, a separate population comprising 

101 prospectively recruited patients (studied with Sie-

mens Healthineers equipment) from the PREFER-CMR 

registry in Norfolk and Norwich University Hospitals 

was used. The inclusion criteria specific to this study 

for the derivation and validation cohorts were individu-

als over the age of 18 with a clinical indication for CMR, 

good quality scan for segmentation and who provided 

written informed consent. The exclusion criteria for all 

subjects were body weight > 120  kg, inability to lie flat, 

pregnancy, incompatible devices or implants or any other 

contraindication to CMR, including allergy to contrast, 

claustrophobia, and end-stage renal impairment (esti-

mated glomerular filtration rate < 30 mL/min).

Ethics approval and consent to participate

The research adhered to the guidelines outlined in the 

2013 version of the Declaration of Helsinki. Data acqui-

sition and handling were authorised by the National 

Research Ethics Service in the UK, with approval number 

21/NE/0149. A pragmatic opt-out informed consent was 

obtained from all subjects included in the study [18, 19].

CMR protocol

CMR images of the training cohort for this study were 

acquired on scanners from three vendors:

1. 1.5-T HDx system by GE Healthcare (Chicago, IL, 

USA); the CMR protocol included baseline survey 

images and standard cine images with 8-mm slice 

thickness and 20 phases per cardiac cycle, repeti-

tion time of 3.7 ms and echo time of 1.6 ms using a 

cardiac-gated balanced steady-state free precession 

(bSSFP) sequence;

2. 1.5-T Avanto system by Siemens Healthineers (Erlan-

gen, Germany); the CMR protocol included baseline 

survey images and standard cine images, with 6-mm 

slice thickness and 25 phases per cardiac cycle, rep-

etition time of 38.92  ms and echo time of 1.13  ms 

using a cardiac-gated bSSFP sequence;

3. 1.5-T Ingenia system by Philips Healthcare (Best, 

the Netherlands); the CMR protocol included base-

line survey images and standard cines with 8-mm 

slice thickness, 30 phases per cycle, repetition time 

of 2.72 ms and echo time of 1.36 ms using a bSSFP 

single-slice breath-hold sequence.

The validation cohort consisted solely of studies per-

formed with a 1.5-T Magnetom Sola system (Siemens 

Healthineers, Erlangen, Germany) acquired in a clini-

cal setting, not used in training the model. Cine CMR 

acquisitions were performed using a bSSFP sequence. 

The CMR protocol included baseline survey images and 

cine sequences. Following planning sequences, four-

chamber cine images were acquired, followed by a stack 

of short-axis cine images covering apex to base. Standard 

cine images were obtained with 8-mm slice thickness, 

30 phases per cycle, repetition time of 2.71 ms and echo 

time of 1.13 ms, field of view 360 × 289.3  mm2 with phase 

80.4%, number of signal averages 1, matrix 224 × 180 

(phase), bandwidth 167.4 kHz (930 Hz/Px), flip angle 80°, 

and GRAPPA acceleration with a factor of 2.

CMR manual image analysis

Endocardial contours for the LV, RV, LA, and RA were 

manually drawn in all cardiac phases using point-by-

point tracing on the four-chamber cine. Papillary muscles 

and trabeculations were included in the volume calcu-

lation [10, 20]. Epicardial contours in all cardiac phases 

were also drawn for the LV. All image analyses used the 

MASS research software (MASS, Version 2023-EXP, 

Leiden University Medical Center, Leiden, The Nether-

lands). Manual annotations for the GE and Philips scans 

in the training cohort were previously described [15]. 

For the Siemens cases in the training and testing data-

sets, manual annotations were performed by H.A. (four 

years of advanced CMR experience). All manual annota-

tions were performed without the observers’ knowledge 

of the patient’s clinical details. P.G. (European Associa-

tion of Cardiovascular Imaging level-III certified expert 
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with over 10 years of CMR experience) reviewed all the 

manual contours to ensure accuracy.

AI model training

In this work, we used a fully convolutional neural net-

work previously developed for automated segmentation 

of four-chamber cine CMR [15]. This study showed high 

agreement between automated and manually derived 

RA area measurements, and the correlation between 

AI-derived RA areas and invasive haemodynamics was 

demonstrated. The original model was trained on a com-

bination of GE (n = 367) and Philips (n = 80) scan data 

(total n = 447), which were randomly selected from the 

ASPIRE in Sheffield [21] and Leeds registries [16, 17]. 

To improve and increase the model ability to be applied 

broadly, 257 Siemens and 110 Philips scans with manu-

ally traced contours were added to the training set. The 

final model training set comprised 367 GE, 190 Philips, 

and 257 Siemens scans from three centres.

The CNN used in this study had a similar architec-

ture to U-NET, consisting of 16 convolutional layers 

incorporating residual learning units. The implementa-

tion was carried out using Python (https:// www. python. 

org/) and TensorFlow (https:// www. tenso rflow. org/). 

Images were resampled to a pixel spacing of 1  mm and 

cropped to a matrix size of 256 × 256 pixels, using zero 

filling as required. During training, data augmentation 

was performed on the images by randomly rotating, flip-

ping, shifting, and modifying their intensities, which 

created new training samples. A total of 814 manually 

annotated four-chamber cine series were used for train-

ing, corresponding to 18,289 images. The Adam opti-

miser method was used for training, and the learning 

rate was set at 0.001. The loss function used was cross-

entropy. Each training batch comprised a random selec-

tion of 20 images, and the number of epochs was set to 

50. The CNN raw output was a labelled image with six 

possible label values corresponding to one of the four 

cardiac chambers, the background, or the left ventricu-

lar myocardium. The largest connected component was 

extracted for each cardiac label, and a closed and spatially 

smoothed contour was generated around the extracted 

region for each cardiac label. The area of the cardiac cavi-

ties was then calculated as the area surrounded by the 

generated contours.

For quality control, the AI-generated segmentations 

and time-resolved volume curves throughout all cardiac 

phases for all four chambers were evaluated by H.A. A 

visual assessment-based scoring system of satisfactory, 

suboptimal, or failure was used. Satisfactory categorisa-

tion comprised instances of perfect annotations or minor 

errors deemed insignificant to affect the time-resolved 

volume curves. Suboptimal categorisation comprised 

annotations with errors significant enough to impact 

time-resolved volume curves. Failure was character-

ised by either missing annotations or substantial failure 

in contouring cardiac chambers (Supplemental Video 

S1). The image acquisition quality was also assessed for 

artefacts and slice position errors. The experimentations 

were conducted on a regular computer featuring an Intel 

Core i7 CPU, 64  GB of internal RAM, and an Nvidia 

GTX 1080 TI GPU with 12  GB of memory. A central 

illustration demonstrating an overview of the study flow 

chart is shown in Fig. 1.

Statistical analysis

Normal distribution was tested using the Shapiro–Wilk 

test (Supplemental Table S1). Continuous variables were 

summarised using the mean value and standard devia-

tion (SD) or median with interquartile range to provide 

an overview of central tendency and data dispersion. 

Categorical data were expressed as frequencies and per-

centages. To compare continuous variables, we used a 

two-sample independent t-test. Correlations between 

the segmentation methods were evaluated using Pearson 

coefficient of rank correlation (r) for normally distrib-

uted data or Spearman coefficient of rank correlation (ρ) 

for non-parametric data. We used Bland–Altman plot 

analysis to check for agreement and bias between the 

methods. We calculated the within-subject coefficient 

of variation (CoV) as SD of the differences divided by 

the mean. We used the Cox proportional hazard model 

and the Kaplan–Meier analysis for univariable and multi-

variable prognosis analysis. Statistical analyses were con-

ducted using SPSS Statistics version 29 (IBM, Chicago, 

USA) and confirmed in MedCalc version 22.009 (Med-

Calc Software, Ostend, Belgium). Unless otherwise indi-

cated, all statistical tests were two-tailed, and significance 

was defined as a p-value < 0.05.

Results
Study population

The study sample included 915 subjects, of which 814 

were used to train the model. The training dataset 

included CMR studies from two centres and three ven-

dors (Sheffield: 367 GE scans and 257 Siemens scans; 

Leeds: 190 Philips scans). Demographic data for the 

derivation cohorts were previously described [8, 15, 16, 

22]. To validate our model externally, we used CMR data 

from one centre and one vendor (Norwich: 101 Siemens 

scans). The demographic data of the validation cohort are 

shown in Table 1. The mean age was 54 years, and 65% of 

the cohort were male.

In the validation cohort, follow-up data between 

undergoing CMR and the pre-specified end date were 

obtained from the hospital clinical notes. During a mean 

https://www.python.org/
https://www.python.org/
https://www.tensorflow.org/
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follow-up period of 6.75 years, 16 (16%) of patients died. 

Patients who died were older (68 ± 10 versus 52 ± 16 years, 

p < 0.001), and more males died than females (15 versus 1, 

p = 0.009). There were no statistical differences between 

patients who died and those who survived in terms of 

comorbid history (p > 0.05). All patients who reached the 

endpoint had a history of myocardial infarction. One-

third of patients who died were smokers and or had a 

history of atrial fibrillation (5 of 16). There was a high 

prevalence of ischaemic heart disease (56%), followed by 

hypertension (44%). Nearly a quarter of the patients were 

diabetics, and a substantial minority had either a history 

of coronary revascularisation procedure (19%) or chronic 

obstructive pulmonary disease (6%).

CMR evaluation

CMR characteristics of the validation cohort are dem-

onstrated in Table  2. AI-derived segmentation yielded 

higher median values than manual analysis for LA 

end-diastolic volume (EDV) (90  mL versus 86  mL), 

LA stroke volume (SV) (51  mL versus 46  mL), LV EDV 

(156  mL versus 155  mL), LV SV (91  mL versus 86  mL), 

LV peak filling rate (487 mL/s versus 448 mL/s), RA SV 

(33 mL versus 31 mL), RV EDV (84 mL versus 76 mL), and 

RV SV (54  mL versus 50  mL). AI-derived segmentation 

overestimated LV and RV cardiac outputs (median (inter-

quartile range) 5,878 (5,046–7,178) mL/min versus 5,506 

(4,888–6,910) mL/min, and 3,608 (2,671–4,336) mL/min 

versus 3,331 (2,505–4,158) mL/min, respectively). While 

LA, LV and RA ejection fraction (EF) measurements 

were lower in the manual segmentation method, RV EF 

was slightly lower in the automated approach (66% versus 

68%).

Correlation between AI and manual methods

The results regarding the correlation, CoV, and Bland–

Altman analyses are provided in Fig. 2, Table 3 and Sup-

plemental Fig. S1 and S2. Notably, left heart parameters, 

Fig. 1 Overview of study flow chart. AI Artificial intelligence, LA Left atrium, LV Left ventricle, RA Right atrium, RV Right ventricle
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including LA EDV, LA end-systolic volume (ESV), LA SV, 

LA EF, LV EDV, LV ESV, LV SV, and LV EF, demonstrated 

strong correlations (LA EDV, ρ = 0.97; LA ESV, ρ = 0.98; 

LA SV, ρ = 0.94; LA EF, ρ = 0.96; LV EDV, ρ = 0.98; LV 

ESV, ρ = 0.94; LV SV, ρ = 0.94; LVEF, ρ = 0.91), with small 

bias  (LA EDV -4.5 mL; LA ESV -0.6 mL; LA  SV -4.3 

mL; LA EF -1.8%; LV EDV -3.2 mL; LV ESV 1.9 mL; LV 

SV -5.1 mL; LVEF -1.5%)  signifying good agreement 

between measurement techniques. The highest within-

subject CoVs for the left heart were observed for LA SV 

(13%) and LV peak filling rate (27%), suggesting greater 

variability in measurements within individual subjects. 

Moreover, right heart parameters, including RA EDV, RA 

SV, RV EDV, RV ESV and RV SV, exhibited strong cor-

relations (ρ = 0.98, ρ = 0.91, ρ = 0.96, ρ = 0.91, and ρ = 0.92, 

respectively) and minimal bias (-2  mL, -3.9 mL, -7 mL, 

-3.1 mL, and -3.9 mL, respectively). The highest within-

subject CoVs for the right heart were observed for RA 

SV (21%) and RV ESV (29%), indicating high variability 

in measurements within individual subjects. In contrast, 

strain analysis for RA and RV global longitudinal strain 

(GLS) showed weak to moderate correlations (ρ = 0.66 

and ρ = 0.58, respectively) and wider limits of agreement. 

The results remained the same after excluding the two 

failed cases from the quality control assessment.

Repeatability

All AI-generated four-chamber volumes showed excellent 

repeatability without bias on Pearson correlation analy-

sis (r = 0.99−1.00). Only LV peak ejection rate and peak 

filling rate showed minimum bias (-1.5 mL/s and -1 mL/s, 

respectively). Within-subject CoVs were < 1% in all volu-

metric analyses apart from LV peak ejection rate (2%) 

and LV peak filling rate (1%), showing overall excellent 

consistency in volumetric analyses. Full results of the 

automated four-chamber repeatability analysis are shown 

in Supplemental Table S2.

Agreement with short‑axis volumetric measurements

Left ventricular EDV and ESV exhibited significant 

strong positive correlations and a bias towards lower val-

ues in the four-chamber compared to short-axis analy-

sis (LV ESV, r = 0.86, bias =  -12.5 mL, p = 0.001; LV ESV, 

r = 0.91, bias =  -14.8  mL, p < 0.001). LV mass and LV 

EF showed a strong negative correlation (r = 0.89 and 

r = 0.88) with a bias towards higher values in the short-

axis than four-chamber measurements (bias = 6.9  g and 

4.6%, respectively). However, LV peak ejection rate and 

peak filling rate demonstrated a moderate positive cor-

relation with the short-axis measurements (r = 0.52 for 

both) and bias of -37.4 mL/s and 43.7 mL/s, respectively. 

Additionally, RV measurements consistently indicated 

larger mean volumes (RV EDV 155 mL versus 86 mL; RV 

ESV 69  mL versus 31  mL; RV SV 87  mL versus 55  mL) 

and lower ejection fraction (57% versus 65%) in the short-

axis compared to the four-chamber analyses.

Two correction factors for LV (14.56  mL) and RV 

(50.78  mL) four-chamber volumetric analysis were pro-

posed. After applying the correction factors, there were 

no significant differences and minimal bias between 

Table 1 Study demographics of the external validation cohort

Data are given as mean ± standard deviation

Demographics All (n = 101) Alive (n = 85) Dead (n = 16) p‑value

Age, years 54.2 ± 16.5 51.6 ± 16.3 67.8 ± 9.7  < 0.001

Male sex, n (%) 66 (65) 51 (60) 15 (94) 0.009

Body surface area,  m2 1.97 ± 0.21 1.95 ± 0.21 2.05 ± 0.20 0.095

Smokers, n (%) 33 (33) 28 (33) 5 (31) 0.871

Hypertension, n (%) 31 (31) 24 (28) 7 (44) 0.222

Diabetes mellitus, n (%) 10 (10) 7 (8) 3 (19) 0.201

Atrial fibrillation, n (%) 18 (18) 13 (15) 5 (31) 0.131

Ischaemic heart disease, n (%) 30 (30) 21 (25) 9 (56) 0.011

Myocardial infarction, n (%) 4 (4) 4 (5) 16 (100) 0.381

Chronic obstructive pulmonary disease, n (%) 5 (5) 4 (5) 1 (6) 0.791

Oedema, n (%) 10 (10) 6 (7) 4 (25) 0.030

New York Heart Association functional class, n (%) I, 74 (73) I, 63 (74) I, 11 (69) 0.901

II, 12 (12) II, 9 (11) II, 3 (19)

III, 15 (15) III, 13 (15) III, 2 (13)

Haemoglobin, g/dL 130.1 ± 40.6 126.7 ± 43 146.7 ± 18 0.073

Creatinine, μmol/L 84.3 ± 23.9 81.9 ± 23.3 96.3 ± 23.8 0.027

Urea, mmol/L 7.2 ± 8.6 7.2 ± 9.4 7.1 ± 2.5 0.992
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automated four-chamber and short-axis measure-

ments for LV EDV (bias = 2.04  mL, p = 0.493) and LV 

ESV (bias = -0.26  mL, p = 0.903). However, the results 

remained similar for the RV measurements, with bias 

reducing from -69 mL to -18.7  mL for RV EDV and 

from -37.6  mL to 13.2  mL for RV ESV. Mean LV and 

RV volumetric curves, correlation, and Bland–Altman 

results before and after applying the correction factor 

of AI-generated four-chamber and short-axis segmenta-

tions are shown in Fig. 3, Supplemental Tables S3 and S4, 

and Supplemental Fig. S3 and S4.

Quality control assessment

In our validation cohort, 88 of 101 cases were satisfac-

tory, and 11 (11%) had suboptimal contours. Seven of the 

11 misplaced contours were in the RA, mainly because of 

the off-plane four-chamber slice disposition. Four subop-

timal cases were in the LA and LV regions. The LV sub-

optimal contours were due to including the LV outflow 

tract as part of the LV volume. Two of the 101 cases failed 

due to severe image artefacts and, in one case, due to the 

inclusion of pericardial fat in the RV contours (Supple-

mental Table S5).

Survival analysis

Patients who died had greater mean LV mass in the 

manual and AI assessments (both 164  g versus 137  g, 

p = 0.041). Moreover, mean LA EF was significantly 

lower in patients who died during follow-up in manu-

ally-derived (44% versus 56%, p = 0.004) and AI-derived 

(45% versus 58%, p = 0.002) segmentations. Additionally, 

in the AI-generated segmentation analysis, mean LA SV 

(42 mL versus 55 mL) and RA EF (42 mL versus 52 mL) 

were higher, and LA GLS (-16% versus -23%) and RA GLS 

(-17% versus -24%) were lower in patients who died (all 

p < 0.05). The AI-generated segmentation analysis and 

the manually generated segmentation results are demon-

strated in Supplemental Tables S6 and S7.

At univariable Cox regression analysis, only LV mass 

and LA EF were significantly associated with death in 

Table 2 Results of manual and automated analyses

Data are given as median (interquartile range)

Manual segmentation Automated segmentation

Left heart

 Left atrial end‑diastolic volume, mL 86 (65–126) 90 (69–124)

 Left atrial end‑systolic volume, mL 36 (24–63) 37 (27–63)

 Left atrial stroke volume, mL 46 (35–59) 51 (39–64)

 Left atrial ejection fraction, % 56 (46–64) 58 (48–65)

 Left atrial global longitudinal strain, % ‑15 (‑21 to ‑9) ‑21 (‑27 to ‑15)

 Left ventricular end‑diastolic volume, mL 155 (134–192) 156 (136–200)

 Left ventricular end‑systolic volume, mL 66 (48–92) 63 (49–95)

 Left ventricular stroke volume, mL 86 (72–104) 91 (75–109)

 Left ventricular mass, g 133 (109–167) 133 (108–167)

 Left ventricular ejection fraction, % 56 (47–64) 58 (50–66)

 Left ventricular peak ejection rate, mL/s 417 (367–493) 446 (401–553)

 Left ventricular peak filling rate, mL/s 448 (331–549) 487 (370–610)

 Left ventricular cardiac output, mL/min 5,506 (4,888–6,910) 5,878 (5,046–7,178)

 Left ventricular global longitudinal strain, % ‑17 (‑20 to ‑13) ‑20 (‑22 to ‑15)

Right heart

 Right atrial end‑diastolic volume, mL 72 (52–87) 72 (54–88)

 Right atrial end‑systolic volume, mL 36 (25–48) 33 (26–44)

 Right atrial stroke volume, mL 31 (23–40) 33 (26–45)

 Right atrial ejection fraction, % 48 (40–55) 51 (42–57)

 Right atrial global longitudinal strain, % ‑16 (‑21 to ‑11) ‑22 (‑26 to ‑18)

 Right ventricular end‑diastolic volume, mL 76 (57–100) 84 (61–106)

 Right ventricular end‑systolic volume, mL 24 (16–35) 28 (20–38)

 Right ventricular stroke volume, mL 50 (38–63) 54 (41–68)

 Right ventricular ejection fraction, % 68 (61–73) 66 (60–71)

 Right ventricular cardiac output, mL/min 3,331 (2,505–4,158) 3,608 (2,671–4,336)

 Right ventricular global longitudinal strain, % ‑30 (‑34 to ‑23) ‑29 (‑34 to ‑25)
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manual segmentation (LV mass, hazard ratio (HR) = 1.01, 

p = 0.047; LA EF, HR = 0.96, p = 0.004). On AI-derived 

segmentation, four left heart (LV mass, LA SV, LA GLS, 

and LA EF) and two right heart (RA GLS and RA EF) 

CMR parameters were associated with death (LV mass, 

HR = 1.01, p = 0.046; LA SV, HR = 0.96, p = 0.017; LA 

GLS, HR = 1.07, p = 0.017; LA EF, HR = 0.96, p = 0.002; 

RA GLS, HR = 1.07, p = 0.011; RA EF, HR = 0.96, 

p = 0.021). On stepwise multivariable Cox-proportional-

hazard analysis, only LA EF demonstrated an independ-

ent association with death in both manual (β =  -0.04, 

standard error = 0.01, HR = 0.96, p = 0.003) and AI analy-

ses (β =  -0.05, standard error = 0.01, HR = 0.96, p < 0.001) 

(Supplemental Tables S8 and S9).

At Kaplan–Meier analysis, patients with LA EF < 55% 

demonstrated a significantly higher association with 

death, with the risk of death being more significant in AI-

generated CMR segmentation (95%, χ2 = 12.4, p < 0.001) 

than in manual segmentation (92%, χ2 = 6.9, p = 0.009) 

(Fig.  4). Moreover, after adjusting for manual LA EF in 

the regression model, AI-generated LA EF < 55% was 

independently associated with the risk of death (Fig. 5).

Fig. 2 Examples of the manual and automated four‑chamber segmentation methods and their correlation. The AI method segments all time 

frames; however, only end‑diastole and end‑systole frames are demonstrated. The coloured contours are as follows: green for the LV epicardium, 

red for the LV endocardium, pink for the LA, yellow for the RV endocardium, and turquoise contours for the RA. AI Artificial intelligence, EDV 

End‑diastolic volume, EF Ejection fraction, ESV End‑systolic volume, LA Left atrium, LV Left ventricle, ρ Spearman correlation coefficient, RA Right 

atrium, RV Right ventricle
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Discussion
In this study, we developed a time-resolved, AI deep-

learning-based segmentation solution for all four cham-

bers of the heart using multicentre and multivendor 

four-chamber cine data. In an external validation cohort 

of 101 CMR scans, we observed good agreement and 

excellent repeatability for left and right heart volumet-

ric assessments. However, longitudinal strain parameters 

only demonstrated moderate agreement. Additionally, we 

found that the AI four-chamber cine analysis significantly 

underestimates LV and LV volume systemically compared 

with the ground truth based on analysis of a short-axis 

cine stack. In this study, we provide correction factors for 

both LV and RV volumes using automated four-cham-

ber analysis. In this heterogenous real-world all-comers 

CMR data, we noted AI segmentation informed LA EF 

was independently associated with all-cause mortality.

Over the last few years, many studies have used dif-

ferent research and commercial software solutions to 

develop and validate automated segmentation models 

for four-chamber cine CMR sequences [3, 12, 13, 23, 24]. 

While showing potential, these studies had several limi-

tations. Bai et  al. [3] trained an AI-segmentation model 

using data from 3,782 healthy subjects, tested it on 600 

(541 healthy and 39 cardiovascular disease patients), 

compared automated LA and RA four-chamber segmen-

tation with manually acquired data and demonstrated 

that the accuracy of AI-segmentation measures is in 

agreement with human expert performance (mean Dice 

similarity coefficient of 0.95 and 0.96 for LA and RA, 

respectively). However, they did not report any volumet-

ric results, and their focus was only on the atria. Ruijsink 

et al. [23] developed a fully automated four-chamber cine 

functional CMR assessment model using 3,975 single-

centre and single-vendor data from healthy volunteers 

and patients with various cardiovascular diseases to train 

a model. They compared the results of LV strain analysis 

obtained from their AI model with those of manual anal-

ysis on a validation cohort of 100 healthy controls and 

cardiomyopathy patients [23]. Similar to our LV strain 

Table 3 Correlation and coefficient of variation between AI‑generated and manual segmentations for all four chamber parameters

CoV Coefficient of variation (within-subject standard deviation method), ρ Spearman rank correlation coefficient

Variable Correlation (ρ) p‑value CoV %

Left heart

 Left atrial end‑diastolic volume, mL 0.97  < 0.001 6.4

 Left atrial end‑systolic volume, mL 0.98  < 0.001 7.2

 Left atrial stroke volume, mL 0.94  < 0.001 13.1

 Left atrial ejection fraction, % 0.96  < 0.001 6.9

 Left atrial global longitudinal strain, % 0.74  < 0.001 ‑39.6

 Left ventricular end‑diastolic volume, mL 0.98  < 0.001 4.0

 Left ventricular end‑systolic volume, mL 0.94  < 0.001 11.2

 Left ventricular stroke volume, mL 0.94  < 0.001 9.6

 Left ventricular mass, g 0.93  < 0.001 7.3

 Left ventricular ejection fraction, % 0.91  < 0.001 6.9

 Left ventricular peak ejection rate, mL/s 0.84  < 0.001 13.0

 Left ventricular peak filling rate, mL/s 0.86  < 0.001 26.7

 Left ventricular cardiac output, mL/min 0.93  < 0.001 11.1

 Left ventricular global longitudinal strain, % 0.75  < 0.001 ‑14.8

Right heart

 Right atrial end‑diastolic volume, mL 0.98  < 0.001 8.2

 Right atrial end‑systolic volume, mL 0.89  < 0.001 12.8

 Right atrial stroke volume, mL 0.91  < 0.001 20.5

 Right atrial ejection fraction, % 0.87  < 0.001 14.6

 Right atrial global longitudinal strain, % 0.66  < 0.001 ‑42.4

 Right ventricular end‑diastolic volume, mL 0.96  < 0.001 12.0

 Right ventricular end‑systolic volume, mL 0.91  < 0.001 29.4

 Right ventricular stroke volume, mL 0.92  < 0.001 11.5

 Right ventricular ejection fraction, % 0.77  < 0.001 8.6

 Right ventricular cardiac output, mL/min 0.93  < 0.001 11.8

 Right ventricular global longitudinal strain, % 0.58  < 0.001 ‑19.5
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analysis results (r = 0.82, bias = 1.89%, p < 0.001), they 

achieved a good correlation between manual and auto-

mated LV strain analysis (r = 0.89, bias = 1.03%, p < 0.001) 

[23]. The results of both studies were produced using the 

commercially available software cvi42 [3, 23]. However, 

both models used the UK biobank, single-vendor (1.5-T 

Siemens scanner), and homogeneous CMR dataset to 

train the algorithms, limiting their broader applicability.

Moreover, a study by Shahzad et al. [12] investigated 

the feasibility, accuracy, and agreement of an AI-seg-

mentation pipeline for LV volumetric parameters with 

both manual annotations and short-axis cine. Using 

the same research software (MASS) as in the current 

study, they trained and tested an AI model combining 

the four-chamber and two-chamber cine scans using 

multicentre, single-vendor (3-T Philips scanner) data of 

145 healthy controls and subjects with various cardiac 

conditions [12]. Similar to our study, they observed 

a very good agreement between AI and manual 

segmentation results of left ventricular EF, SV, EDV 

and ESV (r = 0.84−0.97) [12]. Furthermore, when com-

paring AI-segmented four-chamber to short-axis volu-

metric measurements, a strong positive correlation was 

also seen for the same LV parameters (r = 0.87−0.99) 

[12]. Our study achieved similar results in an external 

validation cohort, showing that automated four-cham-

ber segmentation agrees with the ground truth. The 

bias reduced substantially after applying the correc-

tion factor for LV EDV (2.04 mL), LV ESV (-0.26 mL), 

RV EDV (-18.7  mL), and RV ESV (13.2  mL), further 

supporting the claim that functional LV parameters 

obtained from the four-chamber analysis are as accu-

rate as the short-axis segmentation [12, 25]. Even as 

four-chamber analysis relies on geometric assumptions, 

the benefit of viewing the basal and apical margins of 

the left ventricle perpendicularly may compensate for 

the drawback of using calculated data to replace real 

measurements partially [26].

Fig. 3 Quantification results of mean LV and RV volumes of automated four‑chamber and short‑axis segmentation methods over time. 

a AI‑generated contours of short‑axis cine stack of images using standard endocardial and epicardial contour methods. b AI‑generated 

four‑chamber cine segmentation contours using standard endocardial and epicardial contours methods. c The AI‑generated four‑chamber 

cine segmentation results yielded slightly lower left and right ventricular volumes than the ground truth. d Quantification results of automated 

four‑chamber mean left and right ventricular volumes after applying 14.56 mL and 50.78 mL correction factors and short‑axis segmentation results 

over time. The AI‑generated four‑chamber cine LV segmentation results were similar, and RV yielded slightly higher volumes than the ground truth. 

AI Artificial intelligence, 4CH Four‑chamber, LV Left ventricle, RV Right ventricle, SAX Short‑axis
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Fig. 4 Survival analysis. a Kaplan–Meier analysis demonstrates that patients with left atrial ejection fraction < 55% had a higher risk of death. b The 

risk of death is higher when using artificial intelligence‑generated segmentation. EF Ejection fraction, LA Left atrium

Fig. 5 Kaplan‑Meir analysis demonstrates that AI‑generated LA ejection fraction < 55% is independently associated with risk of death 

after adjusting for manual LA EF in the regression model. AI Artificial intelligence, EF Ejection fraction, LA Left atrium
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Gonzales et  al. [13] developed and tested a time-

resolved, four-chamber cine, fully automated left atrial 

segmentation model on 37 patients with various cardio-

vascular diseases from a single centre and single vendor 

(1.5-T Siemens) scanner. Using the medical image analy-

sis software “Segment”, they achieved good agreement 

between AI and manually-segmented LA volumetric anal-

ysis, with r = 0.98, 0.97, 0.96, and 0.92 for EDV, ESV, EF 

and GLS, respectively [13]. The only difference between 

our results and theirs is our relatively low correlation 

between automated and manual segmentation results 

for LA GLS (ρ = 0.74), as our AI model tends to overes-

timate strain measures. However, there was no mention 

of the number of cases used for model training by these 

authors. Additionally, the testing dataset had a relatively 

small sample size (n = 37) [13]. One recent study used 

3,925 subjects from the UK biobank for training and 600 

subjects for testing an automated three-dimensional four-

chamber CMR image analysis model of all heart cham-

bers [24]. They observed a strong agreement between the 

automated and manual methods for LV and RV measure-

ments (r = 0.87−0.93) and a slightly lower agreement in 

LA (r = 0.76 and 0.81) and RA (r = 0.76 and 0.86) EDV and 

ESV, respectively [24]. Our AI model was trained using a 

multicentre multivendor cohort and tested on an exter-

nal dataset, achieving a stronger correlation with manual 

analysis for LA EDV (ρ = 0.97) and ESV (ρ = 0.98) and RA 

EDV (ρ = 0.98) and ESV (ρ = 0.89). Although their three-

dimensional model was trained using a single centre (UK 

biobank) and vendor (1.5-T Siemens scanner) dataset, the 

testing cohort was substantially larger (n = 600) than that 

of our study [24].

The four-chamber view is advantageous in scenarios 

requiring a comprehensive assessment of both ventricles 

and atria. A well-executed four-chamber cine is of signifi-

cant clinical value as it facilitates a comparative analysis 

of the LA and other chambers. On the other hand, seg-

mental wall motion and left ventricular mass are usually 

assessed using the short-axis view. It might, however, be 

restricted in some circumstances, such as difficulty in 

evaluating left ventricular segmental wall motion using 

established guidelines and evaluation of ventricular 

mass due to obscure epicardial and endocardial borders 

in the apical slices of the heart [27]. Moreover, the four-

chamber view enables the assessment of the pericardium, 

subcutaneous adipose tissue, and descending aorta. 

Therefore, a four-chamber analysis can be invaluable 

in situations where high-quality cines in other views are 

unavailable due to arrhythmias or other issues.

This study enhances the clinical applicability of four-

chamber analysis by introducing correction factors for 

both LV and RV volumetric assessments to compensate 

for the underestimation compared with the reference 

standard short-axis stack measurements. There are sev-

eral clinical scenarios where a four-chamber cine could 

potentially be more beneficial than a short-axis stack 

assessment. One of the primary advantages of a four-

chamber cine is that it requires only a single breath-hold 

and a few seconds to acquire. This feature could be par-

ticularly valuable for patients who are claustrophobic or 

have poor echocardiographic views. Typically, a four-

chamber cine is one of the first cine sequences to be 

acquired in CMR protocols. Therefore, even if a patient is 

claustrophobic, evaluating the function of all four cham-

bers is still possible. Another advantage of a four-cham-

ber cine is that it allows for a longitudinal functional 

assessment, which is not possible with a short-axis stack. 

Furthermore, spatial misalignment between the slices in 

short-axis cines can lead to errors in functional and volu-

metric calculations. In such cases, a four-chamber cine 

could potentially guide management decisions. Lastly, a 

four-chamber cine volumetric and functional assessment 

can serve as an internal validation check on a short-axis 

cine assessment. In instances where there is a substantial 

disagreement, the reporter has the option to revisit the 

contours, whether they were done manually or using AI 

deep learning contours.

This study has limitations. First, the four-chamber 

analysis depends on acquisition. If wrongly planned, it 

can lead to underestimating or overestimating volumes. 

However, we had clear acquisition protocols, which likely 

reduced this error. Second, although our model was 

trained on a large multicentre multivendor heterogene-

ous data, our external validation single centre and ven-

dor cohort did not include complex variations of data in 

clinical practice, such as congenital heart disease, and 

was relatively small in size. Future studies should test the 

model on larger, multicentre, multivendor, and other dis-

ease types commonly seen in clinical practice to deter-

mine wider applicability. Finally, our quality control was 

performed manually by an expert observer. Future stud-

ies should look at automating this process.

In conclusion, fully automated four-chamber CMR is 

feasible, reproducible and appears to have the same prog-

nostic value as manual analysis in real-world CMR. Four-

chamber analysis systemically underestimates LV and RV 

volumes. After applying the correction factors, LV vol-

umes by four-chamber segmentation are comparable to 

short-axis volumetric assessment.
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