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Review

Sensory encoding and memory in the mushroom body:
signals, noise, and variability
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1Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; 2Sagol School

of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; 3School of Biosciences, University of Sheffield, Sheffield S10 2TN,

United Kingdom; 4Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom

To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative

valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and

other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in

insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, high-

lighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spa-

tially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory

systems.

When you learn to associate a particular stimulus with a positive or

negative experience, how does your brain ensure that the associa-

tion is specific to that particular stimulus and not other similar but

irrelevant stimuli? For example, a child touching a hot stove in the

kitchen may learn to associate the hot stove with pain and there-

fore to avoid it. However, the same child will most probably not

avoid a toy stove located in their room. What mechanisms allow

this associative memory to be stimulus-specific?

Studies in mammalian brains have provided us with many

mechanistic insights (Burgess and O’Keefe 2011; Kandel et al.

2014; Eichenbaum 2017; Mel et al. 2017; Fernández and Morris

2018; Josselyn and Tonegawa 2020). However, the sheer number

of neurons and neuronal types and the overall complexity of the

mammalianmemory circuitry make it difficult to fully understand

the underlying mechanisms.

TheDrosophila olfactory system is an ideal model to study the

mechanisms underlying stimulus-specific associative memory.

The Drosophila nervous system consists of only ∼105 neurons,

but it shares many information-coding principles with more com-

plex mammalian brains. Furthermore, recent technical advances

have allowed the complete ultrastructural connectome of the fly

nervous system to be reconstructed, revealing novel connections

and neuron types (Galili et al. 2022). Finally, the Drosophilamodel

systemhas numerous genetic tools that allowneurons to be labeled

andmanipulated at single-cell resolution, whether for electrophys-

iological recording, functional imaging, altering gene expression,

or activating/silencing identified neurons in behaving animals

(Venken et al. 2011). Thus, Drosophila allows us to simplify the

complexity of the mammalian brain by stripping it down to its

most fundamental building blocks and dissecting the underlying

mechanisms in a simple, genetically accessible nervous system.

In this review, we address the mechanisms underlying

stimulus-specific associative memory in the fly’s memory center,

the mushroom body, with a particular focus on pattern separation

between sensory inputs, mitigation and exploitation of noise and

variability, and the specificity of neuromodulation.

Olfactory memory in Drosophila

In classical conditioning, animals learn to associate a conditioned

stimulus (CS), such as odor, taste, touch, etc., with an uncondi-

tioned stimulus (US) that signals punishment or reward. In

Drosophila olfactory learning, flies learn to associate specific odors

(CS) with electric shock punishment or sugar reward (US). We be-

gin by describing the early olfactory system, which carries the CS

odor information to the fly’s memory center.

The organization of the insect and mammalian olfactory sys-

tems shows striking similarities. Odors are sensed by olfactory re-

ceptor neurons (ORNs), with each ORN expressing only one type

of olfactory receptor in most cases (Couto et al. 2005; Fishilevich

and Vosshall 2005; Benton et al. 2009). ORNs project to the anten-

nal lobe, the first relay of the olfactory circuit, with all ORNs that

express the same receptor converging onto the same glomerulus

(Grabe et al. 2016). In Drosophila, there are 51 olfactory glomeruli

(Bates et al. 2020). Second-order projection neurons (PNs) send

their dendrites to AL glomeruli; while these are morphologically

and neurochemically diverse (Tanaka et al. 2012; Bates et al.

2020), of greatest interest for learning are the uniglomerular cho-

linergic PNs, each of which sends dendrites to a single glomerulus

and thereby receives monosynaptic input from only a single class

of ORNs. PNs, in turn, project onto two brain regions: the mush-

room body (MB), which underlies olfactory learning and memory,

and the lateral horn (LH), which is involved in odor intensity and

odor valence coding (Parnas et al. 2013; Dolan et al. 2019; Frechter

et al. 2019; Lerner et al. 2020). The principal neurons of the MB,

called Kenyon cells (KCs), are where the CS (odor) and the US

(reward/punishment) converge (Fig. 1).

Whereas the CS is signaled by odor-evokedKC activity, the US

is signaled by the activity of dopaminergic neurons (DANs).

Different DANs signal punishment or reward (Das et al. 2014;

Lin et al. 2014b; Cohn et al. 2015; Huetteroth et al. 2015; Dylla

et al. 2017; Berry et al. 2018; Villar et al. 2022) and innervate spa-

tially segregated compartments along the KC axon bundles (Fig.

1; Tanaka et al. 2008; Aso et al. 2014a; Li et al. 2020; Otto et al.

2020). These compartments match the innervation patterns of5These authors contributed equally to this work.
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mushroom body output neurons (MBONs): Each MBON inner-

vates a specific compartment along the KC axon bundles (Tanaka

et al. 2008; Aso et al. 2014a). These MBONs are excited by KCs

and can be considered as valence-encoding neurons, as their opto-

genetic activation leads to either attraction or avoidance (Aso et al.

2014b; Owald et al. 2015). The compartments pair DANs with

MBONs of the “opposite” valence: Reward DANs innervate the

same compartment as MBONs that drive aversion, and punish-

ment DANs innervate the same compartment asMBONs that drive

attraction (Aso et al. 2014a,b).

This anatomical arrangement suggests that learning occurs by

weakening the “incorrect” action. Indeed, when an odor is paired

with, say, reward, the coincidence of KC activity and “reward”

DAN activity weakens synapses from the odor-activated KCs onto

“avoidance” MBONs; conversely, KC activity plus “punishment”

DAN activity weakens outputs toward “approach” MBONs

(Séjourné et al. 2011; Hige et al. 2015; Owald et al. 2015; Perisse

et al. 2016; Berry et al. 2018; Felsenberg et al. 2018; Stahl et al.

2022; Modi et al. 2023; Yamada et al. 2023). This synaptic depres-

sion is specific to the compartment innervated by the activated

DAN; it does not spread to neighboring compartments (Hige

et al. 2015; Stahl et al. 2022). Thus, learned behavior is thought

to be driven by a plasticity-induced imbalance between avoid

and approach MBONs.

Ultrastructural studies suggest that dopamine is broadcast

globally within each compartment (Takemura et al. 2017). Thus,

all KCs in each compartment, not just odor-activated KCs, receive

the signal to weaken their synaptic outputs to that compartment’s

MBON. How, then, are olfactory memories kept odor-specific?

According to current models, one key factor is that plasticity is re-

stricted to KCs that were activated by the trained odor because the

plasticity requires coincident activity of KCs and DANs. In this

way, other KCs would not undergo depression at their output syn-

apses, so untrained odors would activate only synapses untouched

by training. This principle in turn creates two further require-

ments. First, odor specificity requires Kenyon cells to encode the

CS in a way that allows efficient pattern separation. Second, neuro-

modulation should be effective on a KC only when dopamine arri-

ves at the same time that the KC is active. We now turn to the

mechanisms underlying these requirements.

Pattern separation by sparse odor coding
in Kenyon cells

The mushroom body is one example among many in the animal

kingdom of so-called “expansion layer” circuits, in which a rela-

tively small number of input channels (projection neurons) pro-

ject onto a much larger number of “expansion layer” neurons

(Kenyon cells). The expansion layer then converges on a small

number of output neurons (MBONs), and learning occurs bymod-

ifying synapses from the expansion layer to the output layer (Fig.

2A). This expand–converge structure (sometimes called a “fan-out,

fan-in” structure) was noted decades ago, including in the mush-

room body issue of Learning & Memory, for which this issue marks

the 25th anniversary (Heisenberg 1998; Laurent et al. 1998). This

basic architecture is also found in the cerebellum, the electrosen-

sory lobe of weakly electric fish, and the hippocampus (Warren

and Sawtell 2016; Cayco-Gajic and Silver 2019; Modi et al. 2020).

It is alsowidely used inmachine learning,where it is knownby var-

ious names such as perceptrons, reservoir computing, echo state

networks, or extreme learningmachines (here, the expansion layer

is generally called a “hidden” layer) (Rosenblatt 1958; Huang et al.

2006; Tanaka et al. 2019). Theoreticians in the 1960s and 1970s

suggested that this expansion layer design allows for “expansion

recoding”—transforming dense codes in the input layer, where a

large fraction of neurons out of a small number are active, into

sparse codes in the expansion layer, where only a small fraction

Figure 1. Diagram of the Drosophila olfactory system. Odors activate olfactory receptor neurons (ORNs). ORNs signal to matching projection neurons
(PNs; indicated bymatching colors: brown, purple, and green) via glomeruli in the antennal lobe; these signals are transformed by local neurons (LNs). PNs
project to the mushroom body for flexible behavior and to the lateral horn for innate behavior. In the mushroom body, PNs activate Kenyon cells (KCs),
which respond sparsely to odors. Each KC sends axons through different compartments. In compartments for appetitive memory, KCs get local neuro-
modulatory input from reward-encoding dopaminergic neurons (DANs) and send output to mushroom body output neurons (MBONs) that trigger avoid-
ance behavior (–). Conversely, in compartments for aversive memory, KCs get input from punishment-encoding DANs and send output to MBONs that
trigger approach behavior (+). Learning occurs by depressing outputs to the “wrong” action.
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of neurons out of a large number are active (Marr 1969; Albus 1971;

Kawato et al. 2021).

Expansion recoding has at least two benefits. First, it can in-

crease the dimensionality of sensory representations (Litwin-

Kumar et al. 2017); that is, the number of dimensions needed to

describe population responses to different sensory stimuli in “ac-

tivity space.” High dimensionality is important for associative

learning because it enables stimuli to be classified by linear separa-

tors; i.e., lines and planes (Cayco-Gajic and Silver 2019). To under-

stand this intuitively, one may imagine red and blue dots mixed

together on a two-dimensional plane; because they are mixed to-

gether, they cannot be separated by a straight line. However, in

three-dimensional space, the red and blue dots might no longer

be mixed, so they could be separated by a plane (i.e., “linearly sep-

arable”) (Fig. 2B). A similar principle applies to “hyperplanes” in

higher-dimensional spaces. This linear separability—the ability

to classify stimuli by separating them using hyperplanes—is im-

portant because the learning algorithm (modifying the output syn-

apses of expansion layer neurons) is equivalent to drawing a

hyperplane in activity space to divide stimuli. Thus, high-

dimensional odor representations in Kenyon cells allow synaptic

plasticity at their output synapses to separate odors into rewarded

and punished classes.

Second, expansion recoding allows sparse responses (Olshau-

sen and Field 2004). The large number of expansion layer neurons

allows each neuron to respond to only a small fraction of stimuli

(“lifetime” sparseness) and allows each stimulus to activate only

a small fraction of neurons (“population” sparseness). Compared

with projection neurons, KC responses are sparser in both lifetime

and population sparseness; ∼5%–10% of KCs respond reliably to

each odor presentation (although ∼20% respond unreliably) (see

below; Perez-Orive et al. 2002; Turner et al. 2008; Honegger et al.

2011). For example, in one set of experiments, odors activated on

average 59% of PNs but only 6% of KCs (Turner et al. 2008). This

sparseness aids odor specificity of memory because only KCs acti-

vated by the CS+ (the odor paired with the US) depress their output

synapses ontoMBONs. If a new odor that was never paired with re-

ward/punishment activates a CS+-activated KC, this new odor

would activate previously depressed KC–MBON synapses and

thereby inappropriately trigger a learned behavior. Thus, sparse

KC odor responses reduce overlap between odor representations

and thereby make olfactory memories more specific.

This model is supported by both experimental and computa-

tional results. When KC odor responses are made less sparse by re-

moving feedback inhibition from the GABAergic interneuron APL

(anterior paired lateral), flies are less able to learn to discriminate

between similar odors (Lin et al. 2014a). Moreover, flies are less

able to discriminate between pairs of odors or odormixtures whose

KC representations are more overlapping (Campbell et al. 2013;

Hige et al. 2015; Ahmed et al. 2023;Modi et al. 2023). Finally, com-

putational studies show improved memory performance with

sparser activity in the expansion layer (Babadi and Sompolinsky

2014). Indeed, under some circumstances, lifetime sparseness of

Kenyon cells is a better predictor of memory performance than di-

mensionality (Abdelrahman et al. 2021).

If sparseness aids learned discrimination, why not use a max-

imally sparse code, where only a single KC responds to each odor?

Such a “grandmother cell” strategy (so called from the

tongue-in-cheek idea that one’s grandmother is represented by a

single neuron in the visual cortex) (Barwich 2019) would only be

able to encode as many odors as there are KCs (2000) and would

not be robust to noise: If an odor activates only a single KC, any

failure of this KC to respond (due to intertrial variation in KC activ-

ity) (Honegger et al. 2011; Srinivasan et al. 2023) would make the

flies fail to detect the odor.

Moreover, discrimination is not the sole function of the

mushroom body: In order to recognize different encounters with

one odor as the same odor, the flies must generalize between noisy

KC representations of the same odor (Fig. 2B). Asmost odor objects

are complex mixtures of chemicals, in nature it is likely also useful

to generalize between similar odormixtures. Here, overlap between

KC representations is helpful rather than harmful.

Thus, sparse—but not extremely sparse—KC coding may

strike a balance between discrimination and generalization/robust-

ness. Computational studies have shown that the sparseness of ex-

pansion layer representations controls a trade-off between

discrimination and generalization (Barak et al. 2013) and that ex-

pansion layer responses are more variable between trials when

they are extremely sparse (<10% of cells responding) (Litwin-

Kumar et al. 2017). Encoding odors in sparse subsets rather than

single cells may also allow themushroom body to exploit intertrial

variability to aid discrimination: Whereas the core of reliable cells

that always respond to an odor is helpful for distinguishing very

different odors, these cells may be too overlapping between very

similar odors to allow discrimination. Instead, the “penumbra”

of unreliable cells that only sometimes respond to an odor may

be more helpful in discriminating between very similar odors (Sri-

nivasan et al. 2023).

Moreover, the interodor overlap in KC representations carries

useful information about odor similarity. Odors elicitingmore sim-

ilar ORN activity patterns also elicit more similar KC activity pat-

terns, and the relative similarity of different odor pairs is

stereotyped across individuals (Turner et al. 2008; Lin et al.

A

B

Figure 2. Expansion recoding aids pattern separation. (A) Diagram of
expansion recoding circuitry. In expansion layer circuits, a small number
of input layer neurons (purple) synapse onto a much larger number of ex-
pansion layer neurons (gray), which in turn converge onto a small number
of output layer neurons (green). This basic architecture is used by both the
insect mushroom body and the vertebrate cerebellum. (B) Why expansion
recoding aids discrimination. Each dot represents the neuronal response to
a single exposure to an odor in “activity space,” where each dimension is
one neuron’s activity. Due to noise, different trials elicit slightly different
responses, represented by the cluster of dots of the same color. Here, in
a two-dimensional space, the clusters for odor 1 and odor 2 overlap,
making it difficult to cleanly discriminate between the two odors by
drawing a line between the two clusters. In contrast, in three-dimensional
space, the two clusters can be separated by a plane. The same principle
applies if the red dots are rewarded odors and the blue dots are punished
odors. Adapted from Cayco-Gajic and Silver (2019).
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2014a; Endo et al. 2020; Yang et al. 2023). In addition, while PN–

KC connectivity is mostly random, some PN channels are overrep-

resented or underrepresented as KC inputs (Caron et al. 2013;

Hayashi et al. 2022; Ellis et al. 2023), and certain food-related PN

channels are more likely than chance to coinnervate the same

KCs (Zheng et al. 2022). This randombut biased input to KCs is pre-

dicted tomake certain ethologically relevant odorsmore salient for

learning and make it easier to generalize between odors from sim-

ilar natural sources (Zavitz et al. 2021; Ellis et al. 2023; Yang et al.

2023). Indeed, across insects, mice, and humans, similarity in neu-

ronal odor representations matches not physico–chemical similar-

ity between odor molecules but rather how close the molecules are

in “metabolic space” (i.e., how fewmetabolic steps it takes to trans-

form one molecule into another in biological systems) (Qian et al.

2023). By encoding ethologically relevant odor similarity as over-

lap in KCodor representations, themushroombody can generalize

where appropriate. For example, anMBON known asMBONα′3 re-

sponds to novel odors but not familiar odors, yet novel odors that

are similar to familiar odors are treated as partially familiar to the

extent of the similarity, in a biological implementation of a data

structure for testing similarity called a Bloom filter (Hattori et al.

2017; Dasgupta et al. 2018, 2022).

Indeed, whether flies discriminate or generalize between sim-

ilar odors depends on behavioral context. Drosophila larvae dis-

criminate between similar odors if, during training, one was

presented with a reward and the other was presented without,

but they generalize if only one odor was presented during training

(Mishra et al. 2010). In adults, if A is paired with optogenetic pun-

ishment (artificial activation of punishment-encoding dopaminer-

gic neurons) but similar odor A′ is not, flies discriminate between A

and A′ when given a direct choice between them but generalize

the aversive memory from A to A′ if given the choice between A′

and unrelated odor B, or if they experience A and A′ separated

by a gap in time. This difference arises from the fact that when

choosing between A and A′, flies experience transitions between

the two odors (Modi et al. 2023). This phenomenon may arise

from the temporal dynamics of learning: When KC activity pre-

cedes dopamine, KC output synapses are depressed, but when dop-

amine precedes KC activity, KC output synapses are potentiated

(see “Stimulus-Specific Neuromodulation” below; Handler et al.

2019). Meanwhile, some KCs respond to odor onset and others re-

spond to odor offset (Ito et al. 2008; Lüdke et al. 2018). Thus, when

an odor is paired with punishment, “on” KCs’ outputs to approach

MBONs are depressed because their activity preceded dopamine,

while “off” KCs’ outputs are potentiated because their activity fol-

lowed dopamine (Vrontou et al. 2021). This differential depres-

sion/potentiation means that if A is punished and A′ is not, then

an approach MBON will fire more on transitioning from A to A′

than vice versa, leading the flies to prefer A′ even though they

would avoid both A and A′ compared with B (Modi et al. 2023).

Development and homeostasis of sparse coding

How is sparse, distributed coding established in Kenyon cells? In

part, KCs are odor-specific because their relatively high spiking

thresholdsmean a KC requiresmultiple PN inputs to be simultane-

ously active to trigger it to fire an action potential (Gruntman and

Turner 2013; Li et al. 2013). In addition, the mostly random con-

nectivity between PNs and KCsmeans that each KC receives inputs

froma different subset of PN channels (Caron et al. 2013); thus, not

only does a small fraction of KCs respond to each odor, but each

odor elicits responses in different KCs. Finally, feedback inhibition

from the GABAergic interneuron APL increases sparseness by sup-

pressing KC activity (Lei et al. 2013; Lin et al. 2014a).

Theoretically, themore inputs a KC receives, themore likely it

is to receive enough simultaneous inputs to fire. Indeed, increasing

(decreasing) the number of PN inputs per KC increases (decreases)

their likelihood of responding to an odor (Elkahlah et al. 2020;

Ahmed et al. 2023). Developmentally, the number of inputs per

KC is set by KCs, not by PNs: When the number of PNs or KCs is

artificially increased or decreased, PNs make more or fewer presyn-

aptic boutons to meet the KCs’ altered “demand” for synapses,

keeping the number of inputs per KC constant (Elkahlah et al.

2020; Puñal et al. 2021).

KC activity is also governed by homeostatic plasticity. When

the inhibitory APLneuron is artificially activated for 4 d, themush-

room body adapts to the excess inhibition by increasing KC activ-

ity through a combination of decreased inhibition and increased

excitation (Apostolopoulou and Lin 2020). This homeostatic com-

pensation may also be useful for improving memory performance.

Computational models show that natural variability in the param-

eters governing KC excitability (number/strength of excitatory in-

puts and spiking threshold) can impair memory performance

because it increases variability in KC lifetime sparseness. This var-

iability is a problem because some KCs respond very broadly and

others do not respond at all, and these KCs are less useful for dis-

criminating between odors (because they respond to too many

odors or none at all). However, this problem can be solved by com-

pensatory variability where, for example, KCs with higher spiking

thresholds might have stronger excitatory inputs to compensate.

Indeed, anatomical evidence for such compensation can be found

in the hemibrain connectome (Scheffer et al. 2020), where, for ex-

ample, KCs with more PN inputs have fewer synaptic sites per PN,

suggesting weaker excitatory connections (Abdelrahman et al.

2021). Thus, homeostatic compensation may serve to mitigate

the negative effects of interneuronal variability.

Homeostatic compensation has limits; for example, KCs do

not compensate for complete loss of inhibition (Apostolopoulou

and Lin 2020). Moreover, increasing the number of inputs per

KC increases KC activity, making flies worse at discriminating sim-

ilar odors (Ahmed et al. 2023), indicating that the KCs cannot fully

compensate away the effect of increased excitation. Does this

contradict the findings that KCs with more inputs have weaker in-

puts (Abdelrahman et al. 2021)? Not necessarily. First, perhaps the

compensation mechanism itself requires adjusting of the input

number, a process that would necessarily be bypassed when artifi-

cially altering the input number. Second, compensation in Kenyon

cells might be imperfect: Kenyon cells with more inputs might

weaken their excitatory inputs or raise their thresholds, but not

by enough to completely erase the effect of more inputs.

Stimulus-specific neuromodulation

Aside from efficient pattern separation by sparse KC odor coding,

the second requirement for stimulus specificity is that dopamine

should induce plasticity on KC output synapses only for KCs

that are actually active when the dopamine arrives. This coinci-

dence detection is enforced by multiple intracellular signaling

mechanisms.

The first such mechanism is a pair of antagonistic signaling

pathways thought to trigger depression versus potentiation of

KC–MBON synapses. Triggering depression is a Gs-coupled dopa-

mine receptor (Dop1R1) that is expressed in KC presynaptic termi-

nals and required for olfactory learning (Kim et al. 2007; Qin et al.

2012). Dop1R1 activates a downstream Ca2+-dependent adenylyl

cyclase known as Rutabaga (Levin et al. 1992). It is believed

that the coincidence of dopamine input with odor-evoked Ca2+ in-

flux in KCs triggers cyclic adenosine monophosphate (cAMP)-

dependent plasticity. Indeed, KC activation and dopamine appli-

cation can synergistically elevate cAMP levels in KC axons in a

Rutabaga-dependent manner (Tomchik and Davis 2009; Handler
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et al. 2019). This cAMP is thought to trigger KC–MBON depression

to weaken the incorrect action (Fig. 1).

Conversely, flies that experience “reverse” pairing (US then

CS) learn the opposite way: If flies experience electric shock fol-

lowed by an odor, they learn to approach the odor because it pre-

dicts “relief” from pain (Tanimoto et al. 2004; Yarali et al. 2009;

Aso and Rubin 2016; Handler et al. 2019; Jacob and Waddell

2020). This reverse plasticity also requires temporal proximity of

KC activity and dopamine release. Here, the coincidence detector

is thought to be the Ca2+-sensitive IP3 receptor, which likely induc-

es stronger Ca2+ release from the ER in KCs when IP3 (triggered by

the Gq-coupled dopamine receptor Dop1R2) is followed by odor-

evoked Ca2+ influx in KCs (Himmelreich et al. 2017; Handler

et al. 2019), compared with the opposite order (Ca2+ then IP3).

This Ca2+ release from the ER is thought to trigger potentiation

of KC–MBON synapses to produce “reverse” learning (e.g., after

shock then odor, approach outputs are potentiated because the

odor predicts relief from pain).

However, these coincidence detectors are not perfect. In par-

ticular, Rutabaga is still active in the absence of Ca2+ (Levin et al.

1992), so dopamine alone even without KC activity can increase

cAMP levels (Tomchik and Davis 2009; Boto et al. 2014; Handler

et al. 2019). One might expect this nonspecific cAMP elevation

to depress the outputs even of KCs not activated by the trained

odor, thus defeating the odor specificity allowed by sparse KC cod-

ing. The solution is twofold. First, cAMP production alone is not

sufficient: A recent study showed that KCs require simultaneous

cAMP production and KC depolarization in order to depress their

presynaptic release probability (Yamada et al. 2024). Second, KCs

form extensive axonal synapses with each other, as revealed in

the connectome (Eichler et al. 2017; Takemura et al. 2017; Li

et al. 2020). These lateral connections surprised the field at first

because KCs are cholinergic (Barnstedt et al. 2016), and lateral ex-

citation would, like nonspecific cAMP, defeat the benefit of the

sparse coding in olfactory learning (Eichler et al. 2017). However,

these lateral connections are actually inhibitory, mediated not by

nicotinic receptors but by the inhibitory muscarinic receptor B

(mAChR-B). mAChR-B is a GPCR coupled to Gi/o and reduces odor-

evoked Ca2+ influx in KC axons (Manoim et al. 2022). Indeed, lat-

eral inhibition via mAChR-B may explain why blocking the

GABAergic feedback neuron APL has a smaller effect on KC activity

than blocking synaptic output from all KCs (Lin et al. 2014a).

Moreover, mAChR-B reduces cAMP synthesis, allowing lateral in-

hibition to prevent cAMP from increasing in the least active KCs,

limiting synaptic depression to the most active KCs. Indeed, the

loss of mAChR-B makes aversive olfactory memories less specific,

so flies avoid even an untrained odor that has little overlap in KC

representations with the trained odor (Fig. 3; Manoim et al. 2022).

Intriguingly, some dopaminergic neurons also corelease nitric

oxide (NO), which triggers “inverted” learning (i.e., NO from re-

ward DANs triggers aversive learning, and NO from punishment

DANs triggers appetitive learning) at slower timescales (after ∼10

min), counteracting the dopamine-induced learning to promote

forgetting (Aso et al. 2019). NO activates soluble guanylate cyclase

Figure 3. Local neuromodulation in the mushroom body. Illustration of examples of local neuromodulation. Dopaminergic PPL2 neurons (purple) in-
nervate KC dendrites and enhance KC responses to the odor that was paired with the unconditioned stimulus (the CS+) but not the unpaired odor (the
CS−). The GABAergic APL neuron (brown) innervates the whole mushroom body, but because it shows localized activity, it may have different functions on
KC dendrites (sparsening KC odor responses) versus KC axons (perhaps gating synaptic plasticity). KC–KC synapses (black) implement axonal lateral in-
hibition via mAChR-B and thereby prevent flies from erroneously showing learned responses to the unpaired odor (CS−). The DPM neuron (turquoise)
releases serotonin (5-HT) locally on KC axons and regulates the coincidence time window; i.e., the largest interstimulus interval (ISI; gap in time
between the CS and US) that still allows flies to learn.
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(sGC), which produces cGMP and triggers transcriptional changes

that promote forgetting (Takakura et al. 2023). sGC activity slowly

potentiates KC–MBON synapses, but, as with cAMP, only when

the KC is simultaneously active with sGC (Yamada et al. 2024).

Compartmentalized neuromodulation locally
modifies KC signaling

The axonal localization of mAChR-B highlights the compartmen-

talized signaling in KCs. As with many other neurons (Branco and

Häusser 2010; Papoutsi et al. 2014), KCs cannot be understood sim-

ply as nodes in a neural network: They are complex three-

dimensional structures with localized signaling in intracellular

compartments. We described above how dopamine-triggered plas-

ticity is restricted to particular axonal compartments, so that, for

example, a punishment DAN weakens KC outputs to an approach

MBON in the same compartment but not an avoidanceMBON in a

neighboring compartment (Fig. 1). As compartmentalized dopa-

mine signaling on KCs has been well reviewed elsewhere

(Cognigni et al. 2018; Hige 2018; Amin and Lin 2019; Felsenberg

2021; Siju et al. 2021), here we discuss recent examples of other

types of local modulation of KC signaling.

Dendritic gain control
Complementary to axonal mAChR-B, the muscarinic receptor

mAChR-A is expressed exclusively in KC dendrites. Although

mAChR-A is normally Gq-coupled and thus usually excites neu-

rons (Rozenfeld et al. 2019), in KCs, mAChR-A (like mAChR-B) is

actually inhibitory (Bielopolski et al. 2019). mAChR-A signaling

may reflect feed-forward inhibition from the cholinergic PNs or lat-

eral inhibition between KCs: As with KC axons, KC dendrites also

contain KC–KC synapses (Christiansen et al. 2011; Amin et al.

2020; Scheffer et al. 2020). mAChR-A is required for both olfactory

learning and learning-induced depression of KC–MBON synapses

(Silva et al. 2015; Bielopolski et al. 2019). It remains unclear exactly

how dendritic mAChR-A signaling regulates axonal synaptic

plasticity. We suggest two ideas. First, mAChR-A might improve

pattern separation through lateral inhibition, similarly to

mAChR-B. Although knocking down mAChR-A did not affect

interodor correlations in KC activity at their cell bodies (Bielopolski

et al. 2019), such measurements may have missed subtle effects or

those restricted to KC dendrites/axons. It will be interesting to test

whether the loss of mAChR-A reduces the specificity of olfactory

memories. Second, mAChR-A might regulate synaptic plasticity

“competence” rather than being involved in the plasticity mecha-

nism itself. That is, mAChR-A activation may make flies’ learning

mechanisms more sensitive but only when the flies smell some

odors (i.e., cholinergic input arriving at KCs).

Anothermechanism that enhances learning sensitivity is dop-

amine release in the calyx from so-called PPL2 neurons. Unlike the

DANs in the mushroom body lobes, they do not themselves in-

struct associative memories; rather, their activity during CS++ US

pairing strengthens the activity of CS+-responsive KCs and makes

memories stronger (Fig. 3; Boto et al. 2019). This memory “gain

control” might occur because increased activity in CS+-responsive

KCs enhances coincidence detection by Rutabaga or increases the

salience of the CS+ odor. Indeed, long-termmemory consolidation

is correlatedwith structural and functional plasticity in PN–KC syn-

aptic connections, including sharpened responses to the trained

odor in KC dendrites (Baltruschat et al. 2021).

Local inhibition
The feedback inhibitory neuron APL (see above; Fig. 3) is a non-

spiking neuron (Papadopoulou et al. 2011) where activity does

not readily spread far (estimated space constant∼50 µm, compared

with the ∼250-µm distance from the calyx to the tips of the axonal

lobes) (Inada et al. 2017;Wang et al. 2019; Amin et al. 2020; Prisco

et al. 2021). This spatially restricted spread means feedback inhibi-

tion in the mushroom body is localized even though APL inner-

vates the entire mushroom body (Amin et al. 2020). Combined

with the anatomical arrangement of KC–APL and APL–KC synaps-

es, this result predicts that the median KC inhibits itself ∼40%

more strongly than it inhibits other individual KCs (Amin et al.

2020). Local inhibition also suggests that the single-neuron APL

may serve different functions on KC dendrites than on KC axons,

essentially acting as multiple independent neurons (Grimes et al.

2010; Meier and Borst 2019). For example, on KC dendrites, it

may primarily suppress KC spiking to enforce sparse coding, while

on KC axons, it might locally gate KC–MBON plasticity (Fig. 3).

Indeed, APL odor responses are suppressed by olfactory training,

and this suppression enhances learning (Liu and Davis 2009;

Zhou et al. 2019; Okray et al. 2023). It is tempting to speculate

that local gating of plasticity could provide a functional logic for

why approach MBONs and avoid MBONs are spatially segregated

from each other.

Local serotonin
A similar kind of local gating occurs with another mushroom body

interneuron, the serotonergic DPM (dorsal paired medial) neuron,

which widely innervates all KC axons (but not their dendrites)

(Waddell et al. 2000). While DPM has long been known to be in-

volved in memory consolidation (Keene et al. 2004, 2006; Yu

et al. 2005; Krashes et al. 2007; Krashes and Waddell 2008; Wu

et al. 2011), recent studies suggest that it also locallymodulates co-

incidence detection in KC axons. First, serotonin lengthens the co-

incidence detection window, which is the maximum interval

between CS and US for which the animal still learns an association

between the two (Fig. 3). Serotonin release from DPM is spatially

heterogeneous across different axonal compartments, causing cor-

respondingly different coincidence detection windows in the dif-

ferent compartments. Serotonin acts via Gi-coupled 5HT-1A to

reduce tonic cAMP (but not phasic cAMP) in KCs; this tonic

cAMP suppression may help stimulus-evoked cAMP signals stand

out better against the background so that even a widely separated

CS and US can still depress KC–MBON synapses (Zeng et al. 2023).

Second, serotonin release fromDPM alsomediatesmultimod-

al binding (Okray et al. 2023). Flies can learn to associate a US with

a multimodal CS (e.g., combined color–odor stimuli), and this

learning enhances future recall of even single-modality stimuli

(e.g., after learning to avoid banana+blue, flies later avoid blue

alone more strongly than if they had been trained only to avoid

blue alone). Thismemory enhancement occurs because the coinci-

dence of dopamine with simultaneous activation of visual and ol-

factory KCs unlocks DPM acting as a compartment-specific

excitatory bridge between visual and olfactory KCs, thus allowing

cross-modal enhancement during memory recall. For example, for

appetitive memories, DPM spreads activity between visual CS-

responsive and olfactoryCS-responsive KCs in the appetitivemem-

ory compartments but not the aversive memory compartments

(Okray et al. 2023).

The mushroom body in comparative perspective

While this review has focused on olfactory memory in Drosophila,

themushroom body underlies olfactorymemory via similarmech-

anisms in other insects as well (Perez-Orive et al. 2002; Szyszka

et al. 2005; Ito et al. 2008; Groh and Rössler 2020). Moreover, there

are important parallels with other species and disciplines in the ge-

neral principles that we have outlined: sparse coding, coincidence
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detection, and localized signaling. Sparse coding for pattern sepa-

ration is used in other expansion layer systems like the cerebellum,

hippocampus, and piriform cortex (Cayco-Gajic and Silver 2019;

Modi et al. 2020; Endo and Kazama 2022). Indeed, the role of inhi-

bition in maintaining sparse coding in KCs for learned discrimina-

tion in themushroombody (Lin et al. 2014a) has been replicated in

the architecturally analogous granule cells of the cerebellum (see

Fig. 2A; Fleming et al. 2024). Moreover, the biological problem

solved by the mushroom body (stimulus-specific associative mem-

ory) also appears inmachine learning in a common problem called

“catastrophic forgetting,” where newly learned information over-

writes old information. Catastrophic forgetting can be alleviated

by adopting features of themushroom body that improve stimulus

specificity, like sparse coding and compensatory variability to

equalize KC average activity (Manneschi et al. 2023; Shen et al.

2023).

Coincidence detection between principal neurons (here, KCs)

and neuromodulatory neurons (here, DANs) is also commonly

seen in other learning systems. Famously, the coincidence of sen-

sory input (CS) and serotonin (US) triggers associative learning in

Aplysia using the same intracellular secondmessenger as themush-

roombody: cAMP (Hawkins 1984). Inmammals, in the primary re-

ward substrate, the ventral tegmental area (VTA), it is believed that

the coincidence of a weak glutamatergic input (CS) with a strong

neuromodulatory cholinergic input (US) strengthens the glutama-

tergic input so that it alone can activate VTA dopaminergic

neurons (Galaj and Ranaldi 2021). Similarly, in eyeblink condi-

tioning, mammals learn to associate a CS (e.g., a tone) with an

air puff to the eye (US; and thus learn to blink to the CS alone),

because granule cells carrying theCS (like KCs) fire immediately be-

fore climbing fibers carrying the US (like DANs), and this coinci-

dence depresses parallel fiber–Purkinje cell synapses (like KC–

MBON synapses) (see Fig. 2A; Freeman and Steinmetz 2011). Re-

markably, the order sensitivity of this coincidence dependence de-

pends on IP3 receptors (Sarkisov and Wang 2008), just as in the

mushroom body (Handler et al. 2019).

Extending classical conditioning to operant conditioning

uses a similar but slightly more complex coincidence detection

rule. For example, in the striatum, current models suggest that cor-

ticostriatal and thalamostriatal inputs representing the current

sensory context (like KCs in this analogy) can depress or potentiate

their synapses onto spiny projectionneurons representing a poten-

tial action (like MBONs), depending on the presence or absence of

a dopamine signal representing whether the chosen action led to a

reward (like DANs) (Wickens et al. 2003; Frémaux and Gerstner

2016; Gerstner et al. 2018). This “three-way” coincidence detec-

tion (pre, post, and dopamine), also known as neuromodulated

spike timing-dependent plasticity (STDP), differs slightly from

the mushroom body, which detects coincidences only between

presynaptic KCs and DANs (MBON activity is usually not required)

(Hige et al. 2015; but see also Cassenaer and Laurent 2012; Pribbe-

now et al. 2022). Including the postsynaptic neuron allows the

plasticity rule to implement operant conditioning (learning the

consequences of one’s own actions) as opposed to classical condi-

tioning (learning associations between two stimuli). It will be inter-

esting to see whether Drosophila’s mechanisms for enhancing the

specificity of coincidence detection (e.g., mAChR-B) have an

equivalent parallel in mammals.

What about localized signaling? The general principle of

different dopaminergic inputs projecting to spatially distinct re-

gions is conserved in the mammalian striatum (Watabe-Uchida

and Uchida 2018). While it is unclear whether the striatum also

compartmentalizes neuromodulation within neurons in the

same way as the mushroom body does, the neuromodulated

STDP described above is local in that STDP is restricted to the acti-

vated presynaptic and postsynaptic terminals (Brzosko et al. 2019).

Moreover, it is increasingly recognized that understanding intra-

cellular compartmentalization (e.g., in dendrites) is key to under-

standing neuronal signal processing (Branco and Häusser 2010;

Papoutsi et al. 2014) and to relating natural and artificial learning

algorithms (Richards and Lillicrap 2019).

Given these important parallels and the track record of the last

50 years (Quinn et al. 1974; Bellen et al. 2010), future research on

the Drosophila mushroom body will likely continue to reveal fun-

damental insights into learning mechanisms with applications to

both mammalian systems and artificial intelligence.
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