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approach with implications for real-time decision support
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ABSTRACT
Research in modelling housing market dynamics using agent-based models (ABMs) has grown 
due to the rise of accessible individual-level data. This research involves forecasting house 
prices, analysing urban regeneration, and the impact of economic shocks. There is a trend 
towards using machine learning (ML) algorithms to enhance ABM decision-making frame
works. This study investigates exogenous shocks to the UK housing market and integrates 
reinforcement learning (RL) to adapt housing market dynamics in an ABM. Results show agents 
can learn real-time trends and make decisions to manage shocks, achieving goals like adjusting 
the median house price without pre-determined rules. This model is transferable to other 
housing markets with similar complexities. The RL agent adjusts mortgage interest rates based 
on market conditions. Importantly, our model shows how a central bank agent learned 
conservative behaviours in sensitive scenarios, aligning with a 2009 study, demonstrating 
emergent behavioural patterns.
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1. Introduction
1Agent-based models (ABMs) have been adopted in 
various research areas since their inception in the late 
‘90s to early 2000s (Filatova, 2015; Ge, 2017; Groff 
Elizabeth et al., 2018; Heppenstall et al., 2006; 
Kothari et al., 2014; Tang & Bennett, 2010). ABMs 
enable researchers to simulate a complex system with 
autonomous agents interacting with each other within 
an environment. The main strength of ABMs over 
mathematical models is that they simulate, validate, 
and verify behavioural characteristics at granular spa
tio-temporal resolutions (Olmez, Thompson, et al.,  
2022; Secchi, 2015; Todd et al., 2017). This allows 
researchers to analyse complexity and investigate 
how a studied phenomenon develops at the individual 
level (Epstein & Axtell, 1997). This article focuses on 
housing markets and investigates market shocks, 
which are unanticipated changes to economic vari
ables that impact the market’s health (Ramey, 2016).

ABM has been used in housing market research. 
Researchers investigated the emergence of housing bub
bles (Axtell, 2014; Erlingsson et al., 2014; Ge, 2014,  
2017), the dynamics of urban regeneration (Jordan 
et al., 2011, 2012; Picascia et al., 2014), and how real- 
world shocks such as the 2008 financial crash affected 
the housing market (Gilbert et al., 2009; Hamill & 
Gilbert, 2015). The number of ABMs for studying hous
ing and financial markets is growing (Bae et al., 2019; 

Baptista et al., 2016; Carstensen, 2015; Geanakoplos 
et al., 2012). These models generally allow agents to 
make decisions in volatile scenarios, either to hedge 
against volatility or profit from it (Fischer & Riedler,  
2014, Todd et al., 2017; Westerhoff, 2010).

A research area less explored is applications of 
machine learning (ML) algorithms supporting deci
sion-making in alleviating shocks once they have 
occurred, which central-bank policymakers can use 
to inform policy. Most models cited earlier exam
ined how, when, and why shocks occur. However, 
developing techniques to counteract these shocks 
can reduce the impact on the economy and people’s 
health (Oguibenine, 2011). This article proposes 
a hybrid model that integrates reinforcement learn
ing (RL), with a housing market ABM. Conducting 
a series of experiments, we investigate if an intelli
gent adaptive central bank agent (Almahamid & 
Grolinger, 2021; Littman, 2015; Mehta, 2020) can 
learn trends from a housing market in real-time. 
During learning, this central bank agent makes 
decisions to fulfil a goal, for example, decreasing 
homelessness. In this article, “intelligent adaptive 
agent” is defined as: “systems or machines that 
utilise inferential or complex computational algo
rithms to modify or change control parameters, 
knowledge-bases, problem-solving methodologies, 
course of actions, or other objects in order to 
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accomplish a set of tasks required by the user” 
(Imam & Kerschberg, 1997).

We identified several benefits of utilising RL in the 
housing market domain (1) researchers can test macro
economic policies in a safe “sandbox” environment with
out real-world consequences. (2) researchers can adopt 
various RL goal criteria to test policy interventions in the 
housing market. (3) researchers can test various inter
ventions in their housing markets and document the 
steps to counteract these interventions. (4) shocks 
(crashes) can artificially be induced to speed up learning, 
whereas market shocks are rare events in the real world.

This article replicates an ABM of the UK housing 
market (Gilbert et al., 2009). Other notable housing 
market ABMs exist (Baptista et al., 2016; Filatova,  
2015; Ge, 2017; Rosenfield et al., 2013; Yun & Moon,  
2020). However, we found that either these articles 
were not open access and did not include download 
links to the models (Filatova, 2015; Ge, 2017) or the 
articles were open access. However, no documentation 
was provided to access the ABMs (Baptista et al., 2016; 
Rosenfield et al., 2013; Yun & Moon, 2020). We chose 
(Gilbert et al., 2009) as it was well received by 
researchers (61 citations as of May 20 2022 on 
Google Scholar), for its documentation. 
Furthermore, (Gilbert et al., 2009), strikes a good bal
ance between simplicity (where results are tractable) 
and realism (simulating important processes unique to 
the UK housing market, such as chain trade and can 
replicate empirical patterns).

To investigate whether RL can manipulate the 
housing market, this article reproduces two identical 
experiments conducted in (Gilbert et al., 2009) as 
a comparator. Where exogenous shock events occur, 
and the decisions made by the central bank RL agent 
are observed. These results are compared to baseline 
scenarios where the RL intervention is removed. The 
model outputs reflect the consequences of RL deci
sions, and findings are compared with the original 
assertions made in (Gilbert et al., 2009).

The motivation behind the investigation lies in the 
potential applications of RL for policymakers. By 
assessing the adaptability and decision-making pro
wess of the RL agent, particularly in adjusting mort
gage interest rates based on market conditions, our 
study offers insights into novel strategies for mitigat
ing the consequences of unforeseen events in the 
housing market. These insights aim to empower pol
icymakers with a proactive tool-set, allowing them to 
navigate and respond effectively to the challenges 
posed by housing market dynamics.

To summarise, this article will investigate whether 
(i) an RL agent can be integrated with a housing mar
ket ABM and (ii) can an RL agent be trained using 
input data from the housing market ABM and make 
decisions to counteract shocks when they occur during 
run-time.

Section 2 reviews pre-existing studies with Section 
3 describing the ABM developed for this article, 
including the RL application of the central bank 
agent. The results Section 5 defines the experiments 
conducted and the subsequent outcomes. Lastly, 
a discussion and conclusion Section 6 discusses the 
findings from the experiments, limitations and 
strengths and concludes with future avenues to be 
explored.

2. Literature review

Economic crises sometimes take the form of debt crisis 
(where a government’s debt increases while repayments 
decrease), banking crisis (when a large swathe of people 
withdraw their savings as confidence in the banks 
depletes), asset bubble burst (i.e., housing bubble bursts 
which leads to a sudden devaluation of houses, an exam
ple of this was the subprime mortgage credit crisis in 
2007–2008 (Dou & Wang, 2014)) and balance of pay
ment crisis (when a country cannot afford the price of 
imports or services). Regulatory policy is vital when 
a country tries to prevent or counteract an economic 
crisis (Malyshev, 2015), such as a central bank’s monetary 
policy. Martin et al. (2022, p. 3) researched whether 
central banks can stabilise housing markets via interest 
rates. Researchers found that the ability of central banks 
to manage housing markets by increasing interest rates, 
which softens the demand pressure on house prices, is 
limited. However, they note that “central banks can sig
nificantly improve the stability of housing markets by 
dynamically adjusting interest rates”. Researchers agree 
that ML can be used to support decision-makers in 
alleviating economic crises (Chiriţă, 2011; Ho, 2020; 
Loukis et al., 2020; Maghdid & Ghafoor, 2020; Nik 
et al., 2016).

RL algorithms are a subset of ML approaches 
which enable artificial agents to learn. An agent 
tries to complete a task and, in doing so, maximises 
its internal rewards (Sutton & Barto, 2018). 
Typically, these agents learn how to complete 
a task through trial-and-error by interacting with 
their environment (Kaelbling et al., 1996). RL theory 
was derived from empirical observations of the psy
chological and neuroscientific studies in animal 
behaviours (Mnih et al., 2016). RL has successfully 
demonstrated the ability of an agent to learn how to 
achieve long or short-term goals through interac
tions with the immediate environment, the reflection 
of one’s past knowledge and decisions influenced by 
rewards and penalties. Many applications of RL 
exist, including but not limited to (Liu et al., 2020) 
where researchers optimise the choice of medica
tions identifying the correct drug dosing and timing 
of interventions. Spatharis et al. (2019) developed 
a model where air traffic is managed through an 
RL agent that observes millions of data points and 

2 S. OLMEZ ET AL.



makes optimal decisions as to when and where 
planes should land.

Most RL applications in the housing market 
domain are related to “house price forecasting” and 
prediction techniques (Chen et al., 2017; Zhan et al.,  
2020). Some studies have integrated deep neural net
works to investigate housing markets, given the recent 
growth in data from websites like Craigslist, 
Rightmove, and Gumtree. Researchers trained 
a neural network using textual data to identify how 
the rental market dynamics were changing (Zhou 
et al., 2019). Similarly, researchers implemented 
neural networks, to classify physical and socio- 
demographic characteristics, to assess how interre
lated these factors are in the housing market of 
Budapest, Hungary (Norwegian, 2007). An article 
developed an early warning system that identified 
market volatility from house price training data 
(Park & Ryu, 2021). A drawback of this approach 
was that rich data sources are usually placed behind 
paywalls, and the neural network would have to be 
trained every time new data was accessible. In our 
research, the ABM of the housing market acts as 
a continuous data stream. Most importantly, in our 
approach, we can artificially introduce shocks 
(crashes) to the system to speed up learning, whereas 
market shocks are rare events in the real world.

Researcher articles such as Yamaguchi et al. (2018) 
show how RL identifies specific behaviours worms 
possess pre and post-feeding. Sali et al. (2021) used 
RL to deal with the feature selection problem, where 
researchers identified the most accurate and optimal 
features for reducing computation costs. As evidenced 
by the limited yet critical studies above, RL can learn 
to identify a particular phenomenon/pattern in data 
and develop effective interventions using neural net
works to achieve a particular goal. Such as identifying 
the correct dosage for a patient’s medication 
(Jalalimanesh et al., 2017). Compared to the above 
studies, examples of applied ABM and RL in housing 
market research are rare (only four articles with the 
terms “housing market”, “reinforcement learning”, 
and “agent-based”, source Web of Science). The arti
cles (Cincotti et al., 2005; Suzuki et al., 2014; Zhou, 
Wu, et al., 2017) utilise RL as an optimisation method 
to identify the most efficient strategies in power-to- 
power (P2P) sharing of energy between households 
and companies. Kang et al. (2019), on the other 
hand, uses data assimilation and RL to fit real-world 
Korean housing market data to an ABM. In the light of 
these advances, this article contributes to the literature 
by integrating an RL decision-making algorithm in 
a housing market ABM focusing on shocks. It is 
worth noting that the work proposed here is purely 
experimental at this stage and acts as a proof of 
concept.

In this article, the artificial “central bank” agent 
observes data streams from the housing market ABM 
(Olmez, 2022) and makes dynamic decisions that 
impact the market (such as raising, holding or reducing 
interest rates), demonstrating how RL can be used to 
stabilise a market effectively in real-time in simulation. 
The opportunities for using RL and ABM are consider
able. For example, this article demonstrates how RL can 
support decision-making in stabilising the housing 
market during volatile times. However, in future stu
dies, it may be used to identify early signals of 
a recession or a financial crisis and alleviate the negative 
impact of exogenous shocks such as pandemics.

3. The housing market model

The housing-market model simulates the characteristics 
of the UK housing market. The model contains agents 
that are either buyers, sellers, estate agents or houses. An 
aggregate distribution of these agents interact in the 
environment where agent-environment and agent-agent 
interactions grow micro and macro emergent properties. 
The model simulates the interactions between buyers and 
sellers, who utilise information from local estate agents 
Figure 1. Buyers make offers depending on budget and 
successful acquisition of mortgages, while sellers depend 
on valuations from estate agents, who evaluate 
a property’s price depending on past sales and a markup.

The proposed ABM in Figure 2 is a reproduced 
version of (Gilbert et al., 2009). The purpose of this 
reproduction in the Python programming language 
(Olmez, 2022) was to access a broader set of novel 
ML algorithms and tools which the Netlogo frame
work was not able to harness. The model described in 
the following paragraphs was inspired by the works 
from (Gilbert et al., 2009).

3.1. Model environment

The environment generates a 60 × 60 grid, which can be 
changed depending on computing power – producing 
3600 cells that can either be a house, occupied house, 
unoccupied space or an estate agent. Houses are ran
domly distributed and, depending on density, in the 
case of Figure 2 70% of the space is occupied. The 
initialVacancyRate sets the proportion of unoccupied 
houses at the start, making these houses available to 
buy. The price of these unoccupied houses follows the 
same rules outlined earlier. Estate agents find the highest 
valuation from previous sale records. The house prices 
are randomly distributed using a uniform random dis
tribution, as is the case in Figure 2. Each house has 
a quality index calculated upon initialisation. This mea
sure is a ratio of the average price of other houses within 
the locality of the constructed house’s sale price. The 
process mentioned above adheres to Tobler’s first law of 
geography (Miller, 2004) which states that nearer things 
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are more likely to be similar than those farther apart. 
Every output parameter is described in Appendix A, 
Table A1.

3.2. Seller agents

Every step, the model moves forward in time; a step is 3  
months defined by the TicksPerYear parameter Figure 2. 

A percentage of homeowners (ExitRate parameter) 
vacate and try to sell the house at a price set by the estate 
agent valuation. If the house does not sell at the current 
timestep, it remains on the market for the next period. 
Every homeowner agent has an initial income deter
mined randomly using a gamma distribution from para
meters 1.3 and 5� 10� 5 multiplied by the MeanIncome 
parameter. Furthermore, a mortgage is calculated by the 

Figure 1. Flowchart presenting decisions the Seller, Buyer and Realtor (Estate) agents undertake.
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ratio of the Affordability parameter, divided by 
interestPerTick multiplied by the owner’s income. 
Initially, the mortgage duration is 25 years. However, 
this can be changed. People borrowing money must 
have some deposit from their capital determined by 
MaxLoanToValue parameter and their mortgage. At 
every step, a percentage of homeowners suffer income 
shocks determined by the Shocked parameter, which is 
+20%, and the same percentage suffers a shock of −20%. 
This leads to some homeowners having their income 
increase or decrease by this percentage permanently. 
When the ratio of the mortgage repayment is higher 
than twice the affordability, the homeowner trades 
down. Conversely, they trade up when the ratio is less 
than half the affordability.

3.3. Estate agents

The term estate agents is used interchangeably with 
realtors. Every realtor agent has a coverage radius 
called the RealtorTerritory. Any house outside 
a realtor’s territory is assigned the closest realtor 

calculated by the Euclidean distance. Each realtor 
keeps records of the previous sale. These records 
contain the following information: record ID, the 
house sold, selling price and date of sale. At the 
start, the mortgage value of each house is sent to 
one local realtor, providing realtors with a starting 
point for their valuations (Gilbert et al., 2009). When 
a seller asks for a valuation, the realtor looks through 
their records within the last RealtorMemory time
steps and gathers all the house prices of houses sold 
locally multiplied by the quality index of these 
houses. It then calculates the median house price of 
these previous sales as a valuation. If no sales have 
been made within the locality and period, any past 
sales made within the locality are considered regard
less of time. Every valuation made is increased by the 
RealtorOptimism percentage, allowing realtors to try 
to sell a house more than the going rate. Lastly, if 
a house fails to sell at timestep N, the selling price of 
this house is reduced by PriceDropRate %, and it 
remains on the market for N + 1 until it is sold or 
demolished.

Figure 2. The user interface of the model, the parameters that can be changed on the left, the visual representation of the ABM in 
the centre where the small squares represent houses. Yellow dots are occupants, red dots are estate agents, white grid cells 
represent free space. Output plots are on the right.
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3.4. Buyer agents

At each timestep, people arrive in town. The amount 
depends on the EntryRate parameter, which is 
a percentage of the current population Figure 2. New 
entrants and sellers who remain search the whole town 
for several timesteps defined by BuyerSearchLength 
parameter. Looking for vacant properties for sale that 
they can afford and which no offers have yet been 
made. Any accumulated capital from buying and sell
ing can be put towards the costs of the new property. 
Subsequently, buyers choose the nearest property in 
price to their maximum budget and make an offer at 
a price set by the seller. The first buyer to make an 
offer has their offer accepted.

3.5. Sales

A sale is only successful if the chain of buyers and 
sellers remains intact. A successful chain can only 
occur if the house being bought is either empty or 
the seller succeeds in purchasing a new house and 
moving to that house. The people leaving town move 
out, and potential buyers move into these vacant 
properties if their offers are successful. Once all 
sales down the chain are complete, the model 
moves forward one step in time. When a house is 
sold, the seller receives the sale price and uses as 
much of it as necessary to pay off any remaining 
mortgage. If money is in excess, this is added to 
capital and can be used as a partial or complete 
payment of the house being bought. Conversely, if 
the sale price is less than the amount remaining to 
pay off the mortgage, the seller is in negative equity 
and withdraws the house from the market. The estate 
agent records successful sales and uses these records 
(as discussed above) to value houses within the same 
area. Finally, if an offer falls through, it lapses 
(Gilbert et al., 2009).

3.6. Building new houses

New houses are constructed at random empty grid 
cells at every timestep. The number of houses depends 
on the HouseConstructionRate Figure 2 % of the total 
number of constructed houses unless there are no 
empty cells.

3.7. Demolition of houses

Every house has a lifetime set when it is created. This is 
drawn from a random exponential distribution with 
a mean of HouseMeanLifeTime. When a house 
reaches its lifetime, it is demolished, and the cell 
becomes vacant and available for new construction. 
If a house’s sale price falls below one-tenth of the 
median price of all houses, it is demolished. If 

someone occupies a house that is being demolished, 
they attempt to purchase a new home, and if they fail 
after MaxHomelessPeriod, they leave town.

3.8. Model outputs

The data produced from the model are presented 
below. Visually, houses are assigned a colour that 
reflects their current value. The lighter the shade, the 
cheaper the house and vice versa Figure 2. The quan
titative model outputs are the following:

● Number of houses, empty houses, and demol
ished houses. Number of people searching for 
a home, the number of people occupying 
a home in negative equity, and the number of 
transactions.

● The number of people in the model.
● The median house price of houses for sale and 

sold.
● The Gini index of the median house prices and 

median incomes.
● The ratios between median house price to med

ian income, and mortgage repayments to median 
income.

● The mortgage interest rate, inflation rate and 
median time houses have spent on the market.

3.9. Reinforcement learning agent

RL allows agents to learn without explicitly telling the 
agent what the task is or how it is completed. A feedback 
reward allows the agent to learn through trial-and-error 
by performing actions for each state in the environ
ment. If the reward is positive, the agent has enacted 
a desirable action. If the reward is negative, the action is 
undesirable (Sutton & Barto, 2018).

Given how well policy-gradient methods have per
formed (Agarwal et al., 2020; Schulze et al., 2017), this 
was an applicable approach. Put simply, we denote 
a policy as π, where πθðajsÞ is the probability of taking 
action a in state s and θ are the parameters of our 
policy. Our goal is to update θt to θtþ1 such that we 
reach the optimal policy. In our model, the optimal 
policy would be the state where the “healthy housing 
market” criteria (described below) are met. If we 
assume a� is the optimal action, i.e., raise interest 
rates by 0.01 at time t, then we want to perform 
gradient ascent on πθða � jsÞ (ascent as we want to 
increase our cumulative reward). Therefore, at each 
iteration, we update θ in the following way 
θtþ1 ¼ θt þ αÑπθtða � jsÞ this can be described as we 
keep “pushing” towards more of action a� in our 
policy, which is indeed what we want as raising the 
interest rate by 0.01 will mean we are closer to achiev
ing our “healthy housing market” criteria.
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This article proposes a novel application of RL to 
identify and counteract market shocks in the housing 
market in real-time in simulation. Several steps were 
taken to integrate RL with the housing market ABM:

(1) Re-producing the well-known housing market 
(Gilbert et al., 2009) in a new framework 
(Olmez, 2022) to use as our experimental 
sandbox.

(2) Replicating two experiments originally 
described and subsequently investigated in 
(Gilbert et al., 2009, p. 5) known as the loan- 
to-value experiments where, the 
MaxLoanToValue parameter is set to 80% and 
100% respectively. During these experiments, 
an exogenous shock known as “ratefall” where 
a sharp increase 7% to 10% in interest rates is 
triggered. These two experiments were selected, 
as in the original article, Gilbert et al. demon
strated how the impact varying interest rates on 
the market were prone to being less sensitive 
when loan-to-value was reduced compared to 
loan-to-value being 100%. These experiments 
are poised to test RL’s ability to adapt its beha
viour in two similar initial conditions but with 
very different outputs.

(3) Training the RL agent on the housing market 
scenarios over 100 episodes, this process can be 
observed in Figure 3.

Due to computational complexity of training RL 
agents with neural networks (Baker et al., 2019; 
Juliani et al., 2018; Olmez, Birks, et al., 2022; Sutton 
& Barto, 2018), the experiments are kept concise. It is 
worth noting that the proposed model is a proof-of- 
concept used to demonstrate how the adaptive 

qualities of cognitive models such as RL are suited to 
modelling housing market dynamics and supporting 
decision-making to counteract shock events.

This article models simplistic behaviours of 
a central bank agent. As discussed in Section 2. In 
reality, a central bank has more policy tools and 
goals to achieve beyond housing market stability. 
This simplicity is necessary to demonstrate a proof- 
of-concept. In future research, these behaviours will 
become more advanced.

To train the RL agent, we first identify the healthy 
housing market indicators. This way, the agent can 
learn to differentiate between an undesirable state and 
a desirable one. A healthy housing market is charac
terised by stability, affordability, and accessibility 
Maliene2008SustainableRelations (Cai & Lu, 2015; 
Maliene et al., 2008)., Stability is indicated by small 
fluctuations in house prices, suggesting a balance 
between supply and demand (Zhu, Betzinger, et al.,  
2017). Affordability is often affected by the house price 
to income ratio, with a lower ratio reflecting better 
affordability for the average household. Accessibility 
can be indirectly measured through the prevalence of 
negative equity, as excessive negative equity rates can 
imply barriers to entry or exit from the housing 
market.

In line with these principles, we have set the follow
ing indicators to define a healthy housing market 
within our model:

● Stable median house prices for sale with small 
fluctuations up to �400; 000.

● Median house price to income ratio �7.
● Number of people in negative equity is � 5%

(123) where N people ¼ 2466.

Figure 3. RL central bank agent neural network, that determines the central bank agent’s decision regarding interest rates, in the 
current instance, an action with high probability may be to raise interest rates as a sharp increase in house price to income ratio is 
observed.
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If the above conditions are met, we have 
a desirable state (reward returned to the central 
bank agent, 0). If all but one of these conditions 
are not met, we are in an undesirable state (reward 
returned, −1).

The results from the RL process are presented and 
compared to base case scenarios in the following 
section. The RL outputs illustrate the central bank 
agent’s learning process during training and how the 
RL agent adapts to the LTV scenarios. We compare 
findings to those discussed in the original article to 
demonstrate how RL has or has not benefitted the 
housing market in alleviating shocks and fulfilling 
goal criteria.

3.10. Training methodology

The RL agent was trained using an offline training 
methodology, as this allows for controlled and 
repeatable experiments essential for rigorous scien
tific evaluation. Training involved the following 
steps:

(1) The agent observed state-action pairs from 
a pre-simulated dataset generated by the ABM 
representing the housing market dynamics over 
multiple historical scenarios.

(2) Based on the feedback (rewards) calculated 
from these scenarios, the agent learned optimal 
policies using the Proximal Policy Optimisation 
(PPO) algorithm, aimed at maximising long- 
term rewards.

(3) The training phase consisted of 100 episodes, 
with each episode representing a complete 
simulation run from start to finish of the hous
ing market model.

(4) Convergence of the agent’s learning was deter
mined by a consistent increase in rewards and 
stabilisation of policy outputs across episodes.

Post-training, the agent was tested in a simulated 
environment that replicated emerging housing market 
trends to evaluate its real-time decision-making 
capabilities.

4. Model validation

The proposed model (Olmez, 2022) was reproduced 
by interpreting (Gilbert et al., 2009) source code, 
refer to Appendix B, Figure B1 for class diagram. 
The behaviour of our model must be compared and 
deemed similar to the original, whereby model out
puts produce similar trends in data. If the model 
outputs differ, we have deviated from the original at 
some point in the development. Suppose the model 
produces similar trends in the data outputs. We can 
be confident in our model’s behaviour in producing 

realistic trends of the UK housing market. Model 
replication is an important topic in the ABM litera
ture, as discussed by (Donkin et al., 2017, p. 1) 
“model replication remains rare, yet is vital to asses
sing the repeatability of existing ABMs”.

Two housing market scenarios were simulated for 
both models using input parameters in Appendix A, 
Table A2. In scenario one, no shock is introduced, and 
in scenario two, a shock is introduced mid-simulation 
run. This allows us to compare behaviours in two 
unrelated scenarios to quantify two completely differ
ent outcomes.

To compare both models, we adopt a visual statis
tical approach known as quantile-quantile (Q-Q) plot, 
the benefits of which have been thoroughly discussed 
in the following literature (Dhar et al., 2014; Oldford,  
2016). Where, two probability distributions are com
pared using their quantiles. In our case, one variable in 
(Olmez, 2022) is compared to the same variable in 
(Gilbert et al., 2009). Furthermore, over 100 model 
runs over 100 simulation years are drawn for each 
scenario providing a large sample size to quantify the 
stochasticity produced and output-variability (Bogdoll 
et al., 2012; Lelei & McCalla, 2019). A one-degree 
gradient (45�) reference line is plotted to compare 
variables. If x ¼ y, each point sits on the reference 
line, then both variables compared are identical and 
vice versa.

Due to the large volume of output variables (18) 
Figure 2. We select a sub-set of Q-Q plots to use in the 
results. These include parameters that capture the 
housing market’s health, for example, the median 
house price to income ratio and the median price of 
houses for sale.

Figure 4 presents (Gilbert et al., 2009) on the x-axis 
and (Olmez, 2022) on the y-axis. Each column and 
row represents the scenario and variable respectively. 
These results show a normal distribution and results 
are correlated which quantitatively replicate similar 
trends, that sometimes deviate due to stochasticity, 
such as (Olmez, 2022) overestimating (Figures 4(c,f)) 
or underestimating (Figures 4(g,h)). Note, due to 
model architectures, frameworks and other factors, 
models cannot be replicated perfectly as highlighted 
by (Donkin et al., 2017; Yingfei, 2009).

The descriptive statistics Appendix B, Figure B2 
show that 79% of the output variables returned 
a positively correlated Pearson’s correlation coeffi
cient, where 11 of these from scenario two had 
r > 0:60 which were all statistically significant 
p< 0:01. In scenario one, eight variables had r > 0:60 
and p< 0:01.

In scenario two, all variables returned an 
0:659 � r � 0:992, all statistically significant, 
Figure 4. In scenario one, 0:235 � r � 0:839 four vari
ables were statistically significant. The only variable 
that was not statistically significant was the mean 
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Figure 4. Q-Q plots comparing the distributions of model output variables. The solid line indicates x ¼ y for reference. Where 
(a-b): Median house price to income ratio (Scenarios 1–2), (c-d): Median house price for sale (Scenarios 1–2), (e-f): Number of 
households in negative equity (Scenarios 1–2), (g-h): Mean mortgage to income ratio (Scenarios 1–2), (i-j): Number of transactions 
(Scenarios 1–2).
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mortgage-to-income ratio for scenario one. The most 
likely reason could be stochasticity, where the algo
rithm has more steps to process (Donkin et al., 2017).

Overall, the proposed model demonstrates the UK 
housing market characteristics observed in the origi
nal (Gilbert et al., 2009). Trends develop when exter
nal tweaks to the market are made, showing that 
indicators are sensitive to these changes in both mod
els. The next stage is to integrate RL, to test whether an 
intelligent observer agent can learn to identify shocks 
to the market and deploy countermeasures to mini
mise their effects in real-time in simulation.

5. Results

This section describes the market shock, provides an 
overview of central bank decisions to deal with 
shocks, and outlines the healthy housing market con
ditions. This is followed by a detailed analysis of 
findings from original housing market research con
ducted in 2008 (Gilbert et al., 2009) emphasising the 
experiments we aim to conduct in this article to 
gauge the strengths and weaknesses of RL. Lastly, 
experiments and subsequent results show how intel
ligent RL agents can learn and make decisions in real- 
time in simulation to counteract induced shocks. 
Note that actions the RL agent can undertake sim
plify how decisions are made in the real world. We 
aim to explore the strengths and weaknesses of this 
methodology in a simplified housing market, hoping 
to identify the potential for future applications.

Shocks come in various forms, as described in 
Section 2. To manage shocks, central banks often 
enforce a monetary policy which stabilises and 
counteracts the aftermath of the shock (Martin 
et al., 2022). From 2007 to 2009, the world endured 

a financial shock resulting in a crash in the UK 
housing market (Whitehead & Williams, 2011). In 
Figure 5, the house price to income ratio in 
England and Wales dropped from 7.17 in 2007 to 
6.35 in 2009. Furthermore, a drop of 18.7% in 
house prices (Munro, 2018), from Q3 2007 to Q1 
2009. To counteract the pressures, the central bank 
reduced interest rates from 5.25 in Jan 2007 to 1.50 
in Jan 2009 (Tse et al., 2014). In contrast, a healthy 
housing market trend may look like Figure 2, 
where mortgage repayment to income ratio is 
20%, and the median house price to income ratio 
oscillates between 3.5 and 4.0. House prices 
increase gradually as people move in and out of 
the market. The number of people in negative 
equity is as small as possible (Been et al., 2021; 
Melzer, 2010; Morescalchi et al., 2018).

Gilbert et al. (2009) conducted several experiments 
using their UK housing market model in 2008, where 
the model showed how properties of the UK housing 
market are emergent. Some crucial findings that 
aligned with empirically observed behaviours of the 
UK housing market were:

● House price to income ratio showed a stable rela
tionship given mortgage interest rates and the 
loan-to-value ratio. For example, if interest rates 
are reduced or loan to value increased, house 
price to income rises in response.

● When the loan-to-value ratio is 100%, and the 
market experiences an exogenous interest rate 
hike from 7% to 10%, a sharp drop in the house 
price-to-income ratio is observed. However, if 
loan-to-value is set at 80% and the same increase 
in the interest rate is observed, the effect is much 
weaker (Gilbert et al., 2009, p. 5).

Figure 5. The median house price to income ratio in England and Wales from 1997 to 2021 (source: (Housing Team, 2022)).

10 S. OLMEZ ET AL.



These findings were also explored in other housing 
market research, such as (Narayan & Narayan, 2011; 
Tse et al., 2014; White, 2015). The experiments 
(Gilbert et al., 2009) make for a well-documented 
comparator for this article, where the strengths and 
weaknesses of RL can be tested in relation to the earlier 
assertions. Given these original experiments and 
results, in this article, we expect RL to behave in 
a certain way when adjusting interest rates in the 
100% LTV scenario compared to the 80% scenario. 
The goal is to test if the RL central bank agent can 
adapt to these scenarios and fulfil its goals. In the next 
paragraph, we describe the experiments in detail.

We replicate two experiments; these are “loan-to- 
value A and B”. In the A experiment, the 
MaxLoanToValue parameter (refer to Table A1) is 
100, and in the B experiment, it is set to 80. In both 
experiments, an exogenous shock occurs at timestep 
200, where mortgage interest rates suddenly increase 
from 7% to 10%. In the base case experiments (no RL), 

we observe findings from the (Gilbert et al., 2009). In 
the RL experiments, we observe behavioural differ
ences and consequences of actions taken by the RL 
agent in achieving the “healthy housing market” cri
teria. As our results show, we believe there is value in 
utilising these contemporary methods to support 
future research in modelling housing markets.

Given the computational complexity in these mod
els and the nature of RL training, we run the experi
ments for 100 iterations to capture a distribution of 
results quantifying model stochasticity. Moreover, 
during training, we found that the “healthy housing 
market” criteria were met.

To recap, the experiments were run for 400 simula
tion timesteps. At 200th timestep, a shock impacts key 
indicators to varying extents as observed in (Gilbert 
et al., 2009, p. 4) and presented in Figure 6. The ratefall 
shock severity is greater in 100% LTV compared to 
80% LTV; this can be observed in Figures 6(g,h). 
Similar behaviour is observed for median house prices 

Figure 6. Line graphs showing the last model run (99th due to index starting at 0) and the average with a confidence interval for all 
previous runs (< 99) aggregated for each experiment condition, including base case conditions. Each row is a tracked variable, and 
the column is the experiment, where IR = Interest Rates, HP/IR = House Price to Income ratio and H-Eq = Houses in Negative 
Equity.
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for sale and the number of households in negative 
equity (Figures 6(k,l,o,p)).

Interestingly, the RL agent learns to approach the 
100% LTV experiment conservatively with slight 
adjustments but mainly holding interest rates evi
denced in Figure 6(b) compared to the 80% experi
ment Figure 6(a). This is a response to the sensitivity 
of indicators of the housing market to prevailing inter
est rates. This particular finding demonstrates the 
adaptive capabilities of RL, where slight environmen
tal changes in a model can be responded to by learning 
and experiences. Furthermore, on average the RL 
agent reduces interest rates for the LTV 80% scenario 
(see Figure 6(a)), conversely, in the 100% LTV sce
nario, it increases interest rates on average (see 
Figure 6(b)).

Another finding from Figure 6 when analysing RL 
behaviours, in particular, is that leading up to and 
right after the shock at timestep 200, the confidence 
intervals are much wider (further from the mean). 
This means the RL agent has explored more state 
space at these crucial points during training. This 
behaviour can be observed most clearly in Figures 6 
(a,b). In the 100% LTV experiment, the variance sta
tistic for interest rates is 2.691 (mean 9.095, std 1.640) 
compared to the 80% experiment 4.521 (mean 7.607, 
std 2.126), where RL agent is exploring more and 
subsequently adjusting interest rates more often in 
the 80% compared to the 100% LTV experiment.

RL trains iteratively across several simulation runs, 
also known as episodes. The latest episode in the 
training phase is the most recent behavioural output, 
usually representing the stage at which RL has learned 
the most optimal set of behaviours to achieve some 
goal. Conversely, the most recent episodes are those in 
which RL is yet to learn effective behaviours (Sutton & 
Barto, 2018). The data observed at the 99th model-run 
(episode) are the outputs for when the RL was most 
trained. Therefore, we compare these to our goal cri
teria for a healthy housing market state. For some 
indicators, the RL agent was better at achieving the 
healthy housing market goals than others, which 
would be expected as some indicators are more sensi
tive to interest rates than others. For both loan-to- 
value experiments, RL successfully ensured the house 
price-to-income ratio was below seven even after the 
ratefall shock, refer to Figures 6(e,f). The median- 
house-price-for-sale indicator shows that RL was 
more effective in achieving the � 400; 000 goal in the 
80% experiment (Figure 6(i)) compared to the 100% 
experiment (Figure 6(j)) which was only above 
400,000 for a short time at the earlier timesteps from 
0–100. A similar outcome was also observed in the 
base case Figure 6(l). The data show that the houses-in 
-negative-equity was a more complex indicator for RL 
to achieve the goal of � 123 where the shock exacer
bated the complexity as presented by the wide 

confidence intervals post-shock Figures 6(m,n). 
However, pre and post-shock, we observe 
a downward trend where the number of households 
in negative equity is less than 123, even achieving less 
than 50 near the end of the simulation. It is worth 
noting that while differences exist between the RL and 
base case scenarios, these can be considered small. 
However, this can result from the chosen healthy 
housing market goal conditions, and differences may 
be more significant if other goal conditions or 
a combination of conditions were chosen. These 
results also demonstrate the housing market’s ability 
to settle after a shock.

Overall, these experiments show that RL can 
achieve healthy housing market goal criteria and alle
viate the shock effect on the market, which varies in 
effectiveness across the different indicators. Given 
these results, we presume that as the number of goal 
indicators increases from 3 to 3þ i for some i, com
plexity in achieving these goals also increases. Given 
this complexity, we believe that RL’s housing market 
goals may be unachievable at some point. This may be 
due to equilibrium whereby increasing one indicator, 
the goal is met, but another indicator is reduced; thus, 
the goal is not met and vice-versa. This study has 
demonstrated that RL is a valuable technique that 
should be welcomed by housing-market and macro
economic researchers interested in utilising autono
mous decision-making methods to aid policy making 
in dealing with uncertainty like economic shocks. In 
the next section, we break down the learning process 
of RL and describe the strengths and weaknesses in 
utilising RL within this domain.

6. Discussion and conclusion

This article reproduces a well-known ABM of the UK 
housing market to integrate a novel RL algorithm that 
learns to counteract housing market shocks in real- 
time. We answer the following research questions: can 
RL be integrated with housing market ABMs? 
Moreover, can agents learn trends from the housing 
market and adapt to economic shocks by counteract
ing the impact of these shocks in real time? Findings 
show RL can be integrated with housing market 
ABMs, as evidenced in sub-Section 3.9 and does well, 
in learning to counteract shocks through monetary 
policies such as interest rate adjustments.

This article shows how RL could adapt its beha
viours and, over time, through training, learn beha
viours that enable it to achieve the goal state. 
Furthermore, the RL agent portrayed characteristics 
of the original model (Gilbert et al., 2009). One exam
ple is the effects of interest rates in the 80% loan-to- 
value (LTV) compared to the 100% loan-to-value 
environment. Responding to the impact of interest 
rates being more sensitive in the 100% LTV case 
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compared to 80%. The RL agent learned to explore 
a greater range of interest rates in the less-sensitive 
scenario (80%) compared to the more sensitive sce
nario (100%) intended to counteract the market’s sen
sitivity in these two conditions, which was purely 
learnt and not hard-coded.

A drawback of our approach is that the RL agent’s 
tools are limited. This is not indicative of a real-world 
central bank, which has more policies to counteract 
crises, such as regulatory, monetary, and fiscal policies. 
However, macroeconomic policies such as adjusting 
interest rates is a critical intervention central banks 
make (Martin et al., 2022; Popescu, 2014; Valadkhani 
et al., 2019) with the most recent example tackling 
inflation in the UK (Inman, 2022; Luhnow & 
Colchester, 2022; Lynch & Adam, 2022). Another 
caveat is that our model is, a simplified version of the 
real world. This would ensure computational tractabil
ity. Thus, this article only focuses on a single policy tool 
to demonstrate the application of RL in the housing 
market research domain and is exploratory in nature.

There are several weaknesses in RL methods, 
including overfitting, the exploration-exploitation 
trade-off (Sledge & Principe, 2017), and computa
tional demand. To address the exploration- 
exploitation issue, we used an objective function that 
was not greedy but balanced both aspects (Silver et al.,  
2014; Sutton & Barto, 2018). While computational 
demand was not a problem for our model, it could 
become an issue for more complex environments with 
more agents and action spaces. In these cases, 
advanced computational resources may be required.

There are several exciting directions for future 
research based on this work. For example, the findings 
can support housing market modelling, where 
researchers forecast the potential for exogenous shocks 
and identify policy decisions to alleviate economic 
downturns. The technique can also be adapted to simu
late a realistic case where the goal is to optimise the 
current state of the housing market through RL. 
Additionally, given the recent release of the 2021 UK 
census, researchers can enhance the model with this 
data to study the dynamics of the housing market. This 
is the first example in the literature that uses novel RL 
algorithms within housing market agent-based models 
to develop a methodology for autonomously counter
acting exogenous shocks to the market. There is also 
value in exploring this application in macroeconomics, 
where artificial intelligence-assisted policy-making and 
signal detection can have a significant impact. For 
example, it may help a central bank to detect 
a recession or financial crisis and take action early.

Notes

The RL model and associated agent-based model (ABM) 
code can be freely accessed at the following repositories 

respectively: (Barhate, 2021) and (Olmez, 2022), which 
includes detailed documentation and instructions for 
setup and execution. The datasets utilised for training 
and validating the model are publicly available at 
https://doi.org/10.6084/m9.figshare.21719879.v1, which 
includes comprehensive metadata and access guidelines.
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Table A1. Model input parameters and description (source (Gilbert et al., 2009)).
Parameter Description

InitialVacancyRate Proportion of empty houses.
nRealtors Number of realtors.
InterestRate Mortgage interest rates.
TicksPerYear Number of timesteps per year.
MaxHomelessPeriod Maximum number of timesteps a person can be homeless.
InterestPerTick Interest rate, after a cyclical variation has been applied.
MinPriceFraction If a house price falls below this fraction of the median price, it is demolished.
Inflation Inflation percentage per year.
CycleStrength Percentage of interest rate change periodically.
Affordability Owners trade down or up depending on the affordability ratio.
Savings The amount of capital a person has.
ExitRate Percentage of people exiting the market.
EntryRate Percentage of people entering the market.
MeanIncome average annual income.
Shocked percentage of person’s income increased or decreased.
BuyerSearchLength Length of time a buyer searches for a home.
RealtorTerritory The locality a realtor covers.
Locality Distance between houses used for valuations.
RealtorMemory Historical collection of records used for valuations.
PriceDropRate Percentage a house drops in price.
RealtorOptimism A fee added to the valuation.
InitialGeography Type of geography.
Density How clustered the agents are spatially.
HouseConstructionRate The rate at which houses are constructed.
HouseMeanLifetime The average lifetime of a house.
MaxLoanToValue The amount of deposit.
MortgageDuration The timeframe for mortgage repayment.
Stampduty A tax levied on house sales (UK only).

Table A2. Model input parameters for similarity testing.
Parameter Input Value

NumberOfRuns 100
Timesteps 400
CycleStrength 0%
MeanIncome £30000 pa
ExitRate 2%
Density 70%
StampDuty False
TicksPerYear 4
HouseMeanLifetime 101
MortgageDuration 25
HouseConstructionRate 0.30%
MaxLoanToValue 100%
Shocked 20%
BuyerSearchLength 10
EntryRate 5%
MaxHomelessPeriod 5
InitialGeography “Random”
PriceDropRate 3%
InterestRate 7%a
RealtorOptimism 3%
Inflation 0%
Affordability 25%
Savings 50%
RealtorTerritory 30
RealtorMemory 10
Locality 3

aFor scenario two, the interest rate will drop from 7% to 3% initiating a shock at timestep 
200.
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