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8 Abstract:

This is the second of a two-part New Zealand Journal of Geology and 

10 Geophysics Special Issue on understanding sedimentary systems in Aotearoa-New 

Zealand’s Hikurangi Subduction Margin (HSM).  This volume includes six research 

12 papers that explore sediment-tectonic interactions operating over a range of spatio-

temporal scales.  We take a distinctive perspective moving from the subduction 

14 deformation front in the Hikurangi Trough, upslope to the subduction wedge, and 

onshore to the Coastal Ranges. Temporally, papers span the onset of subduction in 

16 the Miocene, to disentangling provenance of turbidity currents triggered by the 2016 

CE Kaikōura Earthquake.  Collectively, the studies in the special issue reveal a 

18 complicated and continually evolving margin, where active tectonics and volcanism, 

coupled with vigorous climatic and oceanographic drivers, modulate erosion, 

20 transport, and depositional cycles of vast volumes of terrigenous sediment into 

ocean basins. Despite decades of significant research advances in our knowledge of 

22 the HSM, considerable scope remains for future work. A deeper understanding of 

fundamental tectonic-sediment interactions operating on active margins, along with 

24 the significant geohazards they pose, remain outstanding research needs.  
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Collectively, Volumes 1 and 2 highlight enduring interest in the HSM as a globally 

26 important natural laboratory for the study of subduction zone geoscience.

Keywords: 

28 Hikurangi Subduction Margin, sedimentary basins, SW Pacific, Miocene, 

Quaternary, IODP, biostratigraphy, New Zealand

30 Introduction

This is the second and final volume of the special issue dedicated to the 

32 understanding of sedimentary systems of the Hikurangi Subduction Margin (HSM). 

This region, located on and offshore of eastern Aotearoa-New Zealand (Figure 1), is 

34 one of Earth’s youngest and most seismically complex subduction systems (Wallace 

et al. 2004; Wallace et al. 2014; Wallace et al. 2016; Barnes et al. 2020; Davidson et 

36 al. 2020; Gase et al. 2022).  Here the oceanic Pacific plate obliquely subducts 

beneath the continental Australian plate (Wallace et al. 2004).  The HSM region 

38 encompasses a broad deformation zone >200 km across, stretching from the 

offshore Hikurangi Trough to the onshore Taupō Volcanic Zone (Ballance 1976; 

40 Lewis et al. 1993; Nicol et al. 2007; Pedley et al. 2010; Strachan et al. 2022; Figure 

1).  A range of sedimentary basins on the HSM, encompassing variable geometries, 

42 spatial dimensions, and depositional systems, preserve a record of subduction 

evolution over the last ~25 Ma (e.g. Beanland et al. 1998; Proust et al. 2005; Orpin et 

44 al. 2006; Giba et al. 2010; Paquet et al. 2011; Pouderoux et al. 2012;Bailleul et al. 

2013; Burgreen and Graham 2014; Bland et al. 2015; Kuehl et al. 2016; McArthur 

46 and Tek 2021; McArthur et al. 2021; Griffin et al. 2022; McArthur et al. 2022a; 

Claussmann et al. 2023; Hines; et al. 2023; Bland et al. 2024; Figure 1).
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48 The inception, propagation, and ongoing tectonic convergence associated with 

the dynamic HSM is arguably the most profound geodynamic process to have 

50 affected Aotearoa-New Zealand in the last 25 Ma.  Rapid crustal shortening and 

uplift has resulted in dramatic exhumation of much of today’s landmass (Litchfield et 

52 al. 2007; Mortimer et al. 2017), which continues to be influenced by frequent 

earthquakes (e.g. Wallace et al. 2016; Wallace 2020; Pizer et al. 2023), volcanic 

54 eruptions (e.g. Wilson et al. 1995; Hopkins et al. 2020), tsunamis (e.g. Power et al. 

2016; Clark et al. 2019), vigorous climate events (e.g. Orpin et al. 2010), and 

56 associated surface processes (e.g. Fuller et al. 2016; Howarth et al. 2021). These 

myriad geohazards pose real risks to Aotearoa-New Zealand’s inhabitants and 

58 nearest neighbours across the Tasman Sea and Pacific Ocean (Stirling et al. 2012; 

Gerstenberger et al. 2020; Bull et al. 2022).

60 This volume includes six original research papers, from a range of global 

researchers (Table 1).  The papers explore sedimentary dynamics operating over a 

62 range of scales, from basin evolution initiated by the onset of subduction in the 

Miocene (Bland et al. 2022), to disentangling provenance of laterally extensive 

64 Hikurangi Channel focussed turbidity currents triggered by the 2016 CE Kaikōura 

Earthquake (Hayward et al. 2022).

66 This volume includes four chronostratigraphic studies (Crundwell and 

Woodhouse 2022a,b; Noda et al. 2022; Woodhouse et al. 2022) that leverage off 

68 margin histories recovered during Integrated Ocean Drilling Program (IODP) 

Expeditions 372 and 375 (Wallace et al. 2019).  These expeditions brought together 

70 61 scientists from around the world sailing between November 2017 CE and May 

2018 CE (Wallace et al. 2019).  The voyages produced a wide array of datasets (e.g. 

72 petrophysics, density, paleomagnetism, sedimentology, biostratigraphy, radiocarbon 
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dating, tephrostratigraphy), including recovery of up to a >1 km long sediment core 

74 (IODP Site U1520, Wallace et al. 2019).  The core sites spanned an upper slope to 

Hikurangi Trough transect, allowing researchers to address myriad questions from 

76 both incoming- and overriding-plate sedimentary successions (Figure 1).  These 

expeditions build on several decades of marine geology research, requiring 

78 cumulative years of fieldwork, numerous voyages, and continue to drive a high level 

of interest, and focussed research on the HSM (Lewis et al. 1993; Lewis et al. 1998; 

80 Lewis and Barnes 1999; Barnes et al. 2010; Pouderoux et al. 2014; Mountjoy et al. 

2018; Howarth et al. 2021; Schwarze et al. 2023; Maier et al. In press).

82 To that end, fundamental advances in our geological understanding of processes 

operating on the HSM were leveraged from a series of large international research 

84 initiatives. A key finding was the varied nature of the convergent margin along its 

length, and the range of geometries in the resulting structural fabric and sedimentary 

86 basins. The 1993 GeodyNZ programme provided the first detailed geomorphic map 

of the margin, from the Kermadec Trench to Kaikōura Canyon (Collot et al. 1996).  

88 Numerous geophysical initiatives have since provided unprecedented detail of the 

overriding accretionary prism tectonics and deformed backstop (e.g. Barnes et al. 

90 2010 and references therein; Ghisetti et al. 2016), the incoming plate and basin 

sequence, seamount subduction (e.g. Lewis et al. 1998 and references within), gas 

92 hydrates and the interplay between imbricate fault systems and slope basins. A 

small selection of recent research initiatives includes: 05CM and NIGHT seismic 

94 surveys (Barker et al. 2009), MARGINS Source-to-Sink (Kuehl et al. 2016); 

GeoPRISMS; MANGO (Bassett et al. 2016); HOBITSS (Wallace et al. 2016); NZ3D-

96 FWI (Davy et al. 2021); SHIRE (Gase et al. 2022; Bassett et al. 2023) and numerous 

NZ Ministry of Business, Innovation and Employment (MBIE) funded voyages and 
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98 research programmes (Endeavour, Oceans2020, Strategic Science Investment 

Fund), RV Sonne (e.g. SO191, 192, 213, 247) surveys, Marion Dufresne coring 

100 campaigns (e.g. MD97, MD152), and OPD (181; Carter et al. 2004) and IODP 

expeditions (372 and 375; Wallace et al. 2019). Today, the HSM represents one of 

102 Earth’s great geoscience laboratories, evidenced by the history of national and 

international science initiatives and ongoing globally significant research.

104 The dominantly marine geology focussed papers in this volume (Table 1) allows 

us to take a distinctive perspective moving from the subduction deformation front in 

106 the Hikurangi Trough (Hayward et al. 2022; Noda et al. 2022; Woodhouse et al. 

2022), up slope to the subduction wedge/lower trench slope (Crundwell and 

108 Woodhouse 2022a; b), and continuing to ancient exhumed marine strata in the 

onshore Coastal Ranges (Bland et al. 2022; Figures 1 and 2), corresponding roughly 

110 to the trench-slope break of the margin (McArthur et al. 2020; Strachan et al. 2022). 

In addition, the study by Hayward et al. (2022) provides an insight into axial 

112 Hikurangi Trough processes, whilst the studies by Crundwell and Woodhouse 

(2022a; b) compare subduction wedge biostratigraphic records with distal records 

114 from Ocean Drilling Program (ODP) Site 181-1123 (Carter et al. 2004), located on 

the deep northeastern slopes of the Chatham Rise some ~900 km ESE of the 

116 deformation front (Figures 1 and 2).

Hikurangi Trough

118 The study by Noda et al. (2022) uses detrital magnetic minerals to explore 

diagenetic processes recorded from IODP Expedition 375, Hole U1520D (Figure 3). 

120 The authors use 67 Late Pleistocene to Holocene aged samples from between 0-510 

metres below seafloor (mbsf).  The focus of this study is identification of magnetic 
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122 “clusters” to define different types of turbidites; essentially thicker-bedded and 

coarser versus thinner-bedded and finer grained beds. Their analysis includes brief 

124 descriptions of the strata but omits turbidite muds from the presented statistics. A 

real strength of this study is that they show how magnetic properties change with 

126 depth, interpreted as a result of diagenetic processes (Figure 3). These findings are 

interpreted in terms of differences in sulfidization, whereby Unit 1 (0-110 mbsf) has a 

128 lack of sulfidization, which is ascribed to high sedimentation rates related to the 

thicker-bedded and coarser turbidites (Figure 3). This is despite the sulfate-methane 

130 transition zone occurring at 27.8 mbsf (Barnes et al. 2019). The authors develop an 

insightful conceptual model to explain their findings in terms of sedimentation and 

132 diagenesis (Figure 3).

The study by Woodhouse et al. (2022) offers a comprehensive, high-resolution 

134 assessment of Hikurangi Trough sedimentation from IODP Site U1520D (Figure 1).  

The authors focus on the upper stratigraphic unit, Unit 1 (0-110 mbsf), dated in this 

136 paper as spanning the last 45 kyrs (Figure 4).  The paper focuses on understanding 

the response to major glacio-eustatic sea-level cyclicity, as the record spans Marine 

138 Isotope Stages 1, 2, and part of 3 (Figure 4). Central to their thesis is development of 

a new age model that integrates radiocarbon dates, tephrochronology, and oxygen 

140 isotope stratigraphy (Figure 4).  These chronological data are supplemented with 

detailed lithofacies and foraminiferal analyses that allow the authors to speculate on 

142 past gravity flow processes, sediment sources, triggers, and controls through glacial-

interglacial periods.  To interrogate frequency-magnitude relationships, they quantify 

144 bed recurrence intervals and changing sediment accumulation rates over time.  

Dramatic changes in sediment flux, frequency, and depositional processes are 

146 evident between glacial and interglacial periods.  Results show that turbidite 
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recurrence varies from ∼49 to ∼322 years depending on the Marine Isotope Stage 

148 (Figure 4).  A global comparison suggests that the HSM had one of the highest 

terrigenous sediment fluxes of any continental margin during the Last Glacial 

150 Maximum.

Building on the Early Miocene to Quaternary aged deep-marine gravity flow and 

152 mass-transport deposit insights of Noda et al. (2022) and Woodhouse et al. (2022), 

the 2016 CE Mw 7.8 Kaikōura Earthquake (Hamling et al. 2017) triggered sediment 

154 collapse and flow transformation (Fisher 1983; Strachan 2008) to turbidity currents in 

at least 10 submarine canyons (Mountjoy et al. 2018; Howarth et al. 2021; Maier et 

156 al. In press).  This provided Hayward et al. (2022) the opportunity to take a novel 

approach to disentangling sediment provenance from the 2016 CE Kaikōura 

158 Earthquake triggered turbidity current. They analysed intra-turbidite foraminiferal 

faunal variability within the laterally extensive, Hikurangi Channel focussed, Kaikōura 

160 event bed to determine the sediment-source history of the deposit.  Data from 17 

event bed cores record a down-flow axial transect along the HSM (Figure 5). Results 

162 identify water depths of sediment-source areas along with likely geographic source 

regions of landslide collapse from within contributing distributary systems (Figure 5). 

164 They suggest that two regionally distinct compositions can be resolved: a Kaikōura 

Canyon distributary system, and a more northern Cook Strait-Opouawe canyon 

166 distributary system (Figure 5). At ~600 km from the Kaikōura Canyon head and 

within the Hikurangi Channel, a composite deposit sourced from the Cook Strait-

168 Opouawe canyons is overlain by Kaikōura Canyon sourced material (Figure 5). This 

bed preserves evidence of temporal flow evolution and offers new insights into 

170 sedimentary processes operating within the Hikurangi Channel system (Tek et al. 

2022).
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172 Subduction wedge/lower trench slope

Crundwell and Woodhouse (2022a) present new biostratigraphic age models 

174 (Table 2) for the suite of drill holes acquired during IODP Expeditions 372 and 375 

(Wallace et al. 2019).  They develop a detailed biostratigraphic framework to improve 

176 the chronological dating of Middle to Late Quaternary strata in northeastern 

Zealandia (Table 2). In general, Zealandia is thought to have very few deep-marine 

178 Pleistocene-Holocene aged Quaternary biostratigraphic markers, resulting in 

insufficient biostratigraphic detail and age control to unravel the complex depositional 

180 and deformational histories. The framework presented is based on well documented 

and dated 0–1.2 Ma planktic foraminiferal records from Ocean Drilling Project (ODP) 

182 Site 181–1123 (Carter et al. 2004). To overcome the problem of biostratigraphic 

uniqueness, Crundwell and Woodhouse (2022a) employ sequences of secondary 

184 foraminiferal-based biostratigraphic markers, rather than individual biostratigraphic 

markers, and use them within the contextual chronological framework of traditional 

186 keystone biostratigraphic markers (Table 2). These models are likely to underpin 

future studies examining Middle to Late Quaternary core records from the HSM and 

188 elsewhere in the southern hemisphere, where high-resolution chronostratigraphic 

correlations are required.

190 The second study by Crundwell and Woodhouse (2022b) applies a modified 

series of new biostratigraphically constrained chronologies to elucidate the 

192 sedimentary and tectonic history of Quaternary sequences on the northern HSM 

(Figure 6). The authors use all the core sites across the entire upper slope to deep-

194 water trough transect of IODP Expeditions 372-375 (Wallace et al. 2019; Figure 6).  

The fidelity of the records varies with site, along with the impact of downslope 
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196 sediment reworking, and sampling resolution.  Their analysis suggests that hiatuses 

in the chronological records reflect tectonic deformation of the accretionary prism, 

198 and at the Hikurangi Trough core sites, the influence of proximality as a 

consequence of ongoing subduction convergence (Figure 6). Improvements to the 

200 biostratigraphic framework first proposed by (Crundwell and Woodhouse, 2022a) 

now offer an unprecedented level of biostratigraphic detail and accompanying 

202 chronological control (Figure 6; Table 2). Modifications to the biostratigraphic 

framework include the introduction of three new subzones: the Tr. truncatulinoides 

204 Marine Isotope Stage (MIS) 1 (0–11 ka), and the Pulleniatina/Gr. tumida MIS-21e 

(842–851 ka) and MIS-21g (856–867 ka) subzones.

206 Onshore Coastal Ranges/Trench-slope break

The study by Bland et al. (2022) investigates a fundamental period for the HSM, 

208 the onset of subduction initiation beneath the eastern North Island. They disentangle 

the complex sedimentary and stratigraphic records of mass-transport deposits 

210 (MTDs). Here, Bland et al. (2022) use field-based stratigraphic descriptions, 

mineralogy, and biostratigraphic analyses of benthic and planktic foraminifera from 

212 several outcrops, collated over ~40 years of fieldwork, to propose an amended 

regional lithostratigraphy.  They describe the regional distribution of the highly 

214 calcareous early Waitakian (latest Oligocene) Weber Formation.  Evidence of MTDs 

is widespread and imply critical evidence of an important episode of margin 

216 destabilization, with olistoliths of the Weber Formation preserved in the overlying 

Coast Road and Whakataki formations (Figure 7). They propose that these MTDs 

218 are derived directly from collapse of thrust-controlled structural highs, and the onset 
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of subduction-related compression which the authors tie biostratigraphically to within 

220 the mid-Waitakian, ~ 23 Ma (Figure 7).

Future Research Directions

222 The wealth of data-rich studies presented here showcases the natural laboratory 

that is the HSM, one of the few subduction margins on Earth to be readily accessible 

224 to geoscientists, both on and offshore (Strachan et al. 2022). Although great 

advances have been made regarding understanding the effects of subduction on 

226 HSM sedimentation (Bland et al. 2022; Crundwell and Woodhouse 2022b; 

Woodhouse et al. 2022), it remains a fertile region for ongoing and future study.

228 Many research opportunities exist within the HSM to better understand, quantify, 

and predict interconnections between tectonics, oceanic processes, and sediment 

230 dynamics.  Here we focus on four potential avenues of research: (1) 

landscape/seascape pre-conditioning; (2) glacio-eustatic controls; (3) the Hikurangi 

232 Channel; and (4) sedimentary influences on deformation style.

1. Landscape pre-conditioning is a well-established concept in terrestrial surface 

234 processes generally, and within the terrestrial components of the HSM (Fuller 

et al. 2016).  The concept focuses on the interconnectivity and influence of 

236 depositional processes, deposits, and triggers points over time. The HSM is 

host to numerous submarine canyons, channels, and gullies (Barnes 1992; 

238 Carter and McCave 1992; Lewis 1994; Lewis et al. 1998; Lewis and Barnes 

1999; Lewis and Pantin 2002; Mountjoy et al. 2018; Howarth et al. 2021), 

240 many of which could act as potential sites for real-time observatories of 

canyon processes (e.g. Paull et al. 2003; Xu et al. 2008; Maier et al. 2019). 

242 With a range of orientations, connectivity to littoral currents, river mouths, 
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ocean conditions, and varying shelf widths and canyon head indentations, the 

244 HSM’s network of distributary systems could serve as ideal locations to 

assess active processes along an entire margin. For example, quantifying the 

246 balance of bio-physical processes in carbon burial and nourishment of deep 

ocean basins. Studies from other canyons globally now reveal a wider range 

248 of previously unrecognised depositional processes. Examples that collectively 

shape and build the seascape include the influence of incremental downslope 

250 and alongslope current processes and interactions, internal-tide and-wave 

processes, and catastrophically triggered (earthquakes and storm) gravity 

252 flow events (e.g. Liu et al. 2016; Azpiroz-Zabala et al. 2017; Gavey et al. 

2017; Maier et al. 2019; Miramontes et al. 2021; Bailey et al. 2021; Talling et 

254 al. 2022).  In addition, because the HSM hosts distal deposits of co-located 

volcanic eruptions, predominantly sourced from the Coromandel- (CVZ) 

256 (Shane et al. 1996; Shane et al. 1998; Carter et al. 2003) and Taupō-volcanic 

zones (TVZ) (Houghton et al. 1995; Wilson et al. 1995; Alloway et al. 2005; 

258 Allan et al. 2008), it is ideally located to investigate eruption histories and 

environmental recovery along with tephra dispersal and depositional 

260 processes (Hopkins and Seward, 2019; Hopkins et al. 2020).

2. Outcropping shallow-marine strata of Pliocene–Pleistocene age within the 

262 HSM preserve valuable records of 41 kyr and 100 kyr glacio-eustatic sea-level 

cyclicity.  Characterisation of stratal and paleoenvironmental changes 

264 validated sequence stratigraphic concepts and approaches within an 

Aotearoa-New Zealand context (Vella, 1963; Beu and Edwards, 1984; 

266 Haywick et al. 1992; Bland et al. 2004; Caron et al. 2004). Continuing this 

work, improved depth-age models are presented within this Special Volume 

Page 11 of 34

URL: http://mc.manuscriptcentral.com/nzjg

New Zealand Journal of Geology and Geophysics



For Peer Review
 O

nly

268 (Crundwell and Woodhouse 2022a, b; Woodhouse et al. 2022) and will 

facilitate coupled studies of sedimentary responses to glacio-eustatic forcing.  

270 Due to the extremely high sedimentation rates of the HSM (up to ~10 m/kyr, 

Woodhouse et al. 2022) the sedimentary record is expanded, allowing for 

272 development of high-resolution chronologies and age models.  The fidelity of 

the combined radiocarbon, biostratigraphic, and oxygen isotope records now 

274 allow potentially millennial-scale reconstructions of past climate and 

oceanographic conditions during the last 50 kyrs.  Long IODP sediment cores 

276 are thought to record near continuous deposition over the last ~2 Myrs, 

including trench slope and Hikurangi Trough sites (Crundwell and Woodhouse 

278 2022a). Collectively, these allow for deeper time considerations of glacio-

eustatic forcing over multiple sea-level cycles, including through the mid-

280 Pleistocene transition (Elderfield et al. 2012). 

3. The Hikurangi Channel remains one of the most enigmatic sediment transport 

282 systems on Earth, with some of the longest tracking of turbidity currents ever 

reported (Lewis 1994; Carter et al. 1996; Maier et al. In press). An excellent 

284 framework exists regarding both the modern sedimentology (Lewis et al. 

1998; Lewis and Pantin 2002; Mountjoy et al. 2018; Howarth et al. 2021) and 

286 ancient architecture of the channel and its levees (McArthur and Tek 2021; 

Tek et al. 2022; McArthur et al. 2024). Much of the existing work has focused 

288 on the proximal and mid-reaches of the channel (0–700 km from the Kaikōura 

Canyon), leaving scope for future work on sediment transport processes, 

290 dispersal of organic carbon and pollutants, and potential nourishment of the 

distal Southwest Pacific Basin, well beyond the HSM.
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292 4. Distinct from the record of deformation that sediments provide (Bailleul et al. 

2007; Bland et al. 2022; Claussmann et al. 2022), studies are now revealing 

294 the role that sedimentation may have on modulating structural deformation 

(de Sagazan and Olive 2021; McArthur et al. 2021; McArthur et al. 2022b). 

296 Fundamentally, the type of sediment, hence its density, strain thresholds etc., 

present in a deforming sequence may dictate the nature and timing of 

298 deformation (Butler 2020). Recent work has documented the role of sediment 

type and thickness in effecting the type of deformation seen along the HSM, 

300 with areas of slow-slip partly dictated by sediments and fluid escape in the 

subducting plate (Gase et al. 2022; Bangs et al. 2023). Developing an 

302 integrated understanding of how subduction margins evolve should be a 

critical point of future research, on the HSM and other subduction margins.

304 The HSM also affords the opportunity for more applied research, specifically in 

relation to the current energy transition and geohazards.  Both represent some of the 

306 most pressing issues of our time. As Aotearoa-New Zealand continues to transition 

its electricity generation network towards increasingly renewable and low-emission 

308 sources, porous rocks within the HSM may provide potential for 'Earth-battery’ 

storage opportunities, e.g., sub-surface temporary storage of compressed air, 

310 hydrogen, or the long-term geological sequestration of atmospheric CO2 (Funnell et 

al. 2009).

312 The HSM is a nexus for multiple natural geohazards including earthquakes 

(Wallace et al. 2004; Stirling et al. 2012; Wallace et al. 2014; Gerstenberger et al. 

314 2020; Wallace, 2020), tsunami (Bell et al. 2014; Power et al. 2016; Clark et al. 2019), 

and both terrestrial and submarine landslides (Mountjoy et al. 2014; Watson et al. 
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316 2020; Cook et al. 2023; McArthur et al. 2024). Given the southwest Pacific’s 

dominant weather patterns and storm tracks, the region is also prone to cyclones, 

318 associated large-scale surface flooding (Tunnicliffe et al. 2018), and following 

explosive CVZ and TVZ volcanism, inundation of volcanic ash via atmospheric 

320 plume and surface processes (Hopkins and Seward 2019; Hopkins et al. 2020).

Current national seismic hazard modelling (Stirling et al. 2012; Gerstenberger et 

322 al. 2020) suggests that the HSM is thought to have the potential to generate a Mw 

9.1 EQ in the next 25 years, that could result in tens of thousands of deaths, 

324 hundreds of thousands displaced, and the cost of building and infrastructure damage 

could exceed $100 billion.  The basis for such models relates to ongoing seismic 

326 monitoring, historical earthquake and tsunami records, and paleoseismic records 

that use preserved co-seismic deposits to predict likely future earthquake magnitude 

328 and likely recurrence.  The historic records are relatively short in Aotearoa-New 

Zealand, at best extending back 180 years, and current paleoseismic records mainly 

330 form preserved onshore records that extend the records back several thousands of 

years (Litchfield et al. 2007; Clark et al. 2019; Ninis et al. 2023; Pizer et al. 2023).  

332 There is much potential for linked onshore to offshore records of paleoseismic, 

paleotsunami, and paleotempestite deposits on the margin at a range of timescales 

334 to help improve national hazard and risk modelling and planning into the future.

Conclusions

336 This data-rich special issue comprises of two volumes showcasing 15 original 

research papers by a total of 67 authors and co-authors from around the globe.  The 

338 overarching theme of both volumes is subduction and its indelible impact on the 

spatio-temporal evolution of sedimentary systems along and across the HSM (Figure 
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340 1).  The papers within Volumes 1 and 2 fall into two distinct themes: Miocene, and 

Quaternary sedimentary systems, allowing for easy comparison between ancient 

342 reconstructions and modern active processes and controls. The work in the special 

issue builds on many decades of focussed research and reveals a vastly complex 

344 evolving margin where active tectonics and volcanism, coupled with vigorous climatic 

and oceanographic stressors are driving erosion, transport, deposition and reworking 

346 of vast volumes of sediment into offshore basins.  The impact of IODP Expeditions 

372 and 375 has been hugely important for the special issue, with 6 papers across 

348 Volumes 1 and 2 using the depositional histories retrieved.  There is scope for much 

future work focussed on understanding both fundamental processes on active 

350 margins, and potential future applications.  Collectively, the papers within Volumes 1 

and 2 highlight the enduring international interest in the HSM as a natural laboratory 

352 for the study of earth science of subduction zones, which provides ample scope for 

future research on the sedimentation of active margins.
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790 Figures

Figure 1. Bathymetric and topographic map of the North Island of Aotearoa-New 

792 Zealand, showing the main morpho-structural and -sedimentary elements of the 

HSM, together with the location of the study areas in this paper, and the location of 

794 the regional cross-section in Figure 2.  Mapping data from the 250 m 2016 NIWA 

grid.

796 Figure 2. Schematic cross-section of the HSM showing the distribution of the study 

sites within this volume. Modified from Bailleul et al. (2007). Subdivisions of the 
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798 subduction wedge follow McArthur et al. (2019). C.R. – coastal ranges; A.P – 

accretionary prism.

800 Figure 3. This figure, from Noda et al. (2022) shows their conceptual model for 

sulfidization under fast deposition (A) and slow deposition (image provided courtesy 

802 of Noda et al. (2022) and with permission from the Royal Society of New Zealand. 

https://www.tandfonline.com/doi/full/10.1080/00288306.2022.2099910). 

804 Figure 4. This figure, from Woodhouse et al. (2022) shows their integrated age 

model for the upper 110 m of IODP Site U1520 (image provided courtesy of 

806 Woodhouse et al. (2022) and with permission from the Royal Society of New 

Zealand. https://www.tandfonline.com/doi/full/10.1080/00288306.2022.2099432). 

808 Figure 5. This figure, from Hayward et al. (2022) shows their summary model 

showing the sediment cores and inferred sources and sequences of turbidity 

810 currents based on foraminiferal analyses (image provided courtesy of Hayward et al. 

(2022) and with permission from the Royal Society of New Zealand. 

812 https://doi.org/10.1080/00288306.2022.2103157). 

Figure 6. This figure, from Crundwell and Woodhouse (2022b) shows their 

814 combined chronostratigraphy for IODP Expeditions 372 and 375, correlated with the 

Global Geochronological Scale (image provided courtesy of Crundwell and 

816 Woodhouse (2022) and with permission from the Royal Society of New Zealand. 

https://doi.org/10.1080/00288306.2022.2101481). 

818 Figure 7. This figure, from Bland et al. (2022) shows their summary schematic 

interpretations of the evolving Miocene depositional setting (image provided courtesy 

820 of Bland et al. (2022) and with permission from the Royal Society of New Zealand. 

https://doi.org/10.1080/00288306.2022.2108069). 
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822 Table

Table 1. Summary of the main themes covered by the scientific contributions to the 

824 New Zealand Journal of Geology and Geophysics Special Issue: Understanding 

Sedimentary Systems and Processes of the Hikurangi Subduction Margin; from 

826 Trench to Back-Arc. Volume 2.

Table 2. This table, from Crundwell and Woodhouse (2022a) shows the Quaternary 

828 biostratigraphic markers for IODP Expeditions 372 and 375 (image provided 

courtesy of Crundwell and Woodhouse (2022) and with permission from the Royal 

830 Society of New Zealand. https://doi.org/10.1080/00288306.2022.2054828). 
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Figure 1. Bathymetric and topographic map of the North Island of Aotearoa-New Zealand, showing the main 

morpho-structural and -sedimentary elements of the HSM, together with the location of the study areas in 

this paper, and the location of the regional cross-section in Figure 2.  Mapping data from the 250 m 2016 

NIWA grid. 

300x347mm (300 x 300 DPI) 

Page 27 of 34

URL: http://mc.manuscriptcentral.com/nzjg

New Zealand Journal of Geology and Geophysics



For Peer Review
 O

nly

 

Figure 2. Schematic cross-section of the HSM showing the distribution of the study sites within this volume. 

Modified from Bailleul et al. (2007). Subdivisions of the subduction wedge follow McArthur et al. (2019). C.R. 

– coastal ranges; A.P – accretionary prism. 
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Figure 3. This figure, from Noda et al. (2022) shows their conceptual model for sulfidization under fast 

deposition (A) and slow deposition (image provided courtesy of Noda et al. (2022) and with permission from 

the Royal Society of New Zealand. 

https://www.tandfonline.com/doi/full/10.1080/00288306.2022.2099910). 
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Figure 4. This figure, from Woodhouse et al. (2022) shows their integrated age model for the upper 110 m 

of IODP Site U1520 (image provided courtesy of Woodhouse et al. (2022) and with permission from the 

Royal Society of New Zealand. https://www.tandfonline.com/doi/full/10.1080/00288306.2022.2099432). 
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Figure 5. This figure, from Hayward et al. (2022) shows their summary model showing the sediment cores 

and inferred sources and sequences of turbidity currents based on foraminiferal analyses (image provided 

courtesy of Hayward et al. (2022) and with permission from the Royal Society of New Zealand. 

https://doi.org/10.1080/00288306.2022.2103157) 
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Figure 6. This figure, from Crundwell and Woodhouse (2022b) shows their combined chronostratigraphy for 

IODP Expeditions 372 and 375, correlated with the Global Geochronological Scale (image provided courtesy 

of Crundwell and Woodhouse (2022) and with permission from the Royal Society of New Zealand. 

https://doi.org/10.1080/00288306.2022.2101481). 
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Table 2. This table, from Crundwell and Woodhouse (2022a) shows the Quaternary biostratigraphic markers 

for IODP Expeditions 372 and 375 (image provided courtesy of Crundwell and Woodhouse (2022) and with 

permission from the Royal Society of New Zealand. https://doi.org/10.1080/00288306.2022.2054828). 
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