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A B S T R A C T   

Following its identification in late 2019, COVID-19 has spread around the globe, and been declared a pandemic. 
With this in mind, modelling the spread of COVID-19 remains important for responding effectively. To date 
research has focused primarily on modelling the spread of COVID-19 on national and regional scales with just a 
few studies doing so on a city and sub-city scale. However, no attempts have yet been made to design and 
optimize a model explicitly for accurately forecasting the spread of COVID-19 at sub-city scale. This research 
aimed to address this research gap by developing an experimental LSTM-ANN deep learning model. The model is 
largely autoregressive in nature as it considers temporally lagged borough-level COVID-19 cases data from the 
last 9 days, but also considers temporally lagged (i) borough-level NO2 concentration data, (ii) government 
stringency data, and (iii) climatic data from the last 9 days, as well as non-temporally variable borough-level 
urban characteristics data when modelling and forecasting the spread of the disease. The model was also 
encouraged to learn the spatial relationships between boroughs with regards to the spread of COVID-19 by a 
novel MSE-Moran’s I loss function. Overall, the model’s performance appears promising and so the model 
represents a useful tool for assisting the decision making and interventions of governing bodies within cities. A 
sensitivity analysis also indicated that of the non COVID-19 variables, the government stringency is particularly 
important in the modelling process, with this being closely followed by the climatic variables, the NO2 con
centration data, and finally the urban characteristics data. Additionally, the introduction of the novel MSE- 
Moran’s I loss function appeared to improve the model’s forecasting performance, and so this research has 
implications at the intersection of deep learning and disease modelling. It may also have implications within 
spatio-temporal forecasting more generally because such a feature may have the potential to improve forecasting 
in other spatio-temporal applications   

Introduction 

Alongside continuing advancements in healthcare and epidemi
ology, the management, understanding, modelling, and prediction of 
disease within human society has remained prominent within literature 
in recent years (e.g Mao & Bian, 2010; Mei et al., 2015; Erraguntla et al., 
2019; Scarpino & Petri, 2019; Feng & Jiao, 2021). At present the 
importance of this literature is exceptionally apparent with a new 
β-coronavirus called SARS-CoV-2 (Lake, 2020) having spread a respi
ratory disease called COVID-19 around the world, infecting 77,864,273 
and killing 1,712,072 as of 22nd December 2020 (Worldometer, 2020). 
The disease received pandemic status (WHO, 2020) and presents a 
considerable challenge to human society, and so requires that societies 
and governments worldwide respond effectively. 

The academic community has responded to the threat presented by 
COVID-19 with numerous forecasting studies. These studies vary in 
scope and purpose, with some aiming to accurately forecast future 
values in order to highlight where and when COVID-19 will be most 
prevalent, whilst others aim to analyse the effectiveness of responses, 
and others to assess the impact of future measures. These forecasting 
studies operate on various different spatial scales. Of these scales, 
perhaps the most extensively studied is the country scale. Examples of 
this include Chimmula & Zhang (2020), Parbat & Chakraborty (2020), 
Shastri et al. (2020), Ballı (2020), Wang et al. (2020), Yonar et al. 
(2020), Fanelli & Piazza (2020) and Semenova et al. (2020) as well as 
preprints Dehesh et al. (2020), De Castro (2020), Toda (2020) and 
Ibrahim et al. (2020). Also covered is the regional scale within countries, 
with examples including Ribeiro et al. (2020), Roosa et al. (2020), Yang 
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et al. (2020) and Melo et al. (2020). Below the regional scale, a few 
studies have made forecasts on the city scale. Examples of this include 
Ramasamy et al. (2020) as well as preprints Sugishita et al. (2020) and 
Yan et al. (2020). 

On an even smaller scale such as within cities, literature is even more 
sparse. The only study found is Goscé et al. (2020) which studied the 
impact of the early lockdown measures at the beginning of the pandemic 
and then calibrated a simple model to consider the impact of different 
scenarios in London. However, Goscé et al. (2020) made no attempt to 
evaluate this fitted model’s predictive ability by comparing its fore
casted future values against unseen observed values. Furthermore, 
Goscé et al. (2020) made use of a simple model designed to evaluate the 
impact of different scenarios and so it would likely not perform well with 
this purpose in mind. Therefore, there remains a research gap for a study 
which aims to develop a novel forecasting model designed and opti
mized explicitly to provide accurate borough-level forecasts within a 
city. 

The poor coverage of research into this area is perhaps somewhat 
surprising considering that more than 4 billion people worldwide live in 
urban areas (Ritchie, 2018). Furthermore, cities often exhibit high 
population densities and high internal mobility which can result in 
frequent intimate contact between individuals (Yang et al., 2008). As 
noted by Mao & Bian (2010), cities and urban areas therefore often play 
an important role in fostering the transmission of infectious diseases. 
Additionally, the dramatic inequality often observed within cities 
related to variables such as wealth, population density and deprivation 
(Lee, 2019) may lend itself to a spatially heterogenous response between 
boroughs/districts. A geospatial approach to managing COVID-19 
within cities could therefore be important for improving public health 
by identifying where and when COVID-19 will be most prevalent within 
an already vulnerable environment and enabling the spatial units that 
require intervention and assistance to receive it. 

With a research gap identified, it is important to consider models 
within infectious disease epidemiology literature to address this gap. 
Perhaps the most popular is the Susceptible-Infected-Recovered (SIR) 
model, originally proposed by Kermack and McKendrick (1927), which 
is an epidemiological compartmental model that divides the population 
into three categories: (i) susceptible, (ii) infected, and (iii) recovered. By 
considering the rate at which individuals move between them over time, 
the proportion of individuals belonging to each category within a pop
ulation can be computed (Johnson and McQuarrie, 2009). This can then 

be applied to simulate system behaviours and forecast disease epide
miology over time. Various adaptations of the SIR model have already 
been applied by the likes of Yang et al. (2020) and Sugishita et al. (2020) 
to provide forecasts specifically of COVID-19 data. The main advantage 
of the SIR model is that it is not computationally intensive. However, the 
model requires many assumptions concerning the rates of movements 
between categories and the initial structure of the system, with the 
model only being valid under these assumptions (Ibrahim et al., 2020). 
For this reason, the SIR model is rejected. 

Statistical models explicitly designed for time series forecasting can 
also be used. The most popular are the (i) Autoregressive-Integrated- 
Moving-Average (ARIMA) and (ii) Exponential Smoothing (ES) models 
(Hyndman & Athanasopoulos, 2018) which make linear assumptions 
over past values to predict those in the future. The ARIMA model has 
already been applied by the likes of Ribeiro et al. (2020), Yonar et al. 
(2020) and Dehesh et al. (2020) whilst the ES model has been applied by 
the likes of Petropoulos & Makridakis (2020) and Yonar et al. (2020) to 
forecast COVID-19 data. Advantages of both the ARIMA and ES models 
include not being computationally intensive and not requiring large 
datasets. They are also particularly effective at forecasting a time series 
with linear properties as they make linear assumptions. However, they 
often struggle to capture non-linear components within data (Abbasi
mehr et al., 2020). Such a criticism is also noted by Chimmula & Zhang 
(2020), which states that since infectious disease time series data dis
plays complex non-linear patterns, models that make linear assumptions 
may not be appropriate for forecasting COVID-19 data. As such these 
models are not favored. 

Machine Learning (ML) is a subsection of computer science and a 
branch of artificial intelligence (AI) concerned with the construction and 
study of systems that can learn from datasets without explicit pro
gramming (Voyant et al., 2017). ML models can be deployed to forecast 
a time series, with the most prevalent being based upon (i) Support 
Vector Machines (SVMs) and (ii) Artificial Neural Networks (ANNs). 
SVMs are based upon statistical learning theory (Vapnik, 2013) and are 
used for solving classification and regression tasks (Han et al., 2011). 
SVMs aim to determine a hyperplane that can separate classes of data 
points with a maximal margin before mapping data to higher dimen
sional feature space with kernel functions where classes are not linearly 
separable (Wu et al., 2004; Han et al., 2011; Parmezan et al., 2019). 
SVMs can be applied to time series forecasting using Support Vector 
Regression (SVR) (Wu et al., 2004). ANNs refer to a set of methods which 

Figure 1. Showing the total confirmed COVID-19 cases per 100,000 people of each borough within London as of 2020-10-16. Data sourced from GLA (2020a) and 
GLA (2020b). 
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process input signals and transform them into outputs (Wesolowski & 
Suchacz, 2012) using collections of connected artificial neurons in a 
similar way to animal brains (Haykin, 2010). ANNs are diverse in terms 
of architectures and applications, with the likes of Ghosh & Guha (2010) 
using a simple Multilayer Perceptron (MLP) network, and Ture & Kurt 
(2006) using both an MLP and Time Delay Neural Network to predict 
viral infections. However, at present state-of-the-art Recurrent Neural 
Networks (RNNs) are often favored for time series applications as they 
feature recursive, self-reflective connections which provide the network 
with a ‘memory’ and enable them to effectively capture long-term 
temporal dependencies and variable length observations (Che et al., 
2018). Of the RNNs available, Long Short-term Memory (LSTM) net
works are especially popular and effective (Greff et al., 2016), largely 
due to their solution to the exploding/vanishing gradient problems 
encountered with other RNNs (Parmezan et al., 2019). SVR has been 
applied by the likes of Parbat & Chakraborty (2020), Ballı (2020) and 
Ribeiro et al. (2020), whilst LSTM networks have been applied by the 
likes of Chimmula & Zhang (2020), Shastri et al. (2020), Wang et al. 
(2020) and Yan et al. (2020) as well as Ibrahim et al. (2020) which 
applied a Variational LSTM-Autoencoder model to forecasts COVID-19 
case data. Additionally, Convolutional Neural Networks have been 
successfully used in environmental sciences (James et al., 2021), fire 
susceptibility modelling (Anderson-Bell et al., 2021), sustainability is
sues (Kizilcec et al., 2022) and networking (Schelbourne et al., 2022). 
The main advantage of both ML methods over others presented is their 
ability to capture non-linear data components which makes them 
appropriate for forecasting disease epidemiology (Chimmula & Zhang, 
2020). Therefore, despite being computationally intensive and often 
requiring larger datasets, a machine learning approach is favored. Of the 
two methods, ANNs are favored over SVMs because they offer greater 
flexibility due to the possibility of model architecture combination/ 
hybridisation and universal approximation (Abbasimehr et al., 2020). 

The aim of this research is therefore to develop a novel COVID-19 
forecasting model capable of modelling the spread of COVID-19 at 
borough-level within a city using machine learning methods with the 
intention of accurately predicting future values. The following inter
mediate objectives have been identified in order to support this: 

1) Design a forecasting model capable of making borough-level fore
casts within a city multiple time-steps into the future.  

2) Apply the model to make forecasts using unseen data.  
3) Evaluate the performance of the model. 

Materials and methods 

Study Area 

This experiment is conducted within the city of London primarily 
because borough-level COVID-19 data is available. Also, London dis
plays a spatially heterogenous impact (see Figure 1, with boroughs 
behaving differently from others within the city. For example, boroughs 
such as Greenwich and Islington display comparatively low COVID-19 
cases per 100,000 (671.19 and 676.47 respectively) compared to the 
likes of Harrow (1008.32) and Ealing (1001.99). London therefore 
provides a suitable study area for testing a borough-level forecasting 
system that aims to model the individual way that each borough 
behaves. 

Model assumptions 

The model makes 6 key assumptions in order to provide COVID-19 
forecasts. The first is that features can be extracted from historical 
COVID-19 data in order to predict future values in an autoregressive 
context. This assumption is informed by the identification of statistically 
significant temporal autocorrelation and statistically significant tem
poral partial autocorrelation in the historical COVID-19 data. 

The second assumption is that the intensity of COVID-19 within a 
given borough is likely to be similar to others that are located nearby due 
to the spatially constituted nature of infectious disease epidemiology, 
and as such the spatial relationships between boroughs with regards to 
COVID-19 intensity should be extracted when predicting future values. 
This assumption was also informed by the identification of statistically 
significant space-time autocorrelation and statistically significant space- 
time partial autocorrelation within the COVID-19 data, indicating that 
borough-wise COVID-19 new case values are correlated with temporally 
lagged values at geometrically adjacent boroughs. 

The third assumption is that the spread of COVID-19 is affected by 
mobility within a city, and so borough-wise historical mobility data 
should be considered when making predictions as it is hypothesized that 
during periods of higher mobility people are more likely to come into 
close contact with others and facilitate the spread of COVID-19. Such an 
assumption is informed by Cartenì et al. (2020) which identified a 
relationship between mobility and the spread of COVID-19. 

The fourth assumption is that the spread of COVID-19 is affected by 
climatic features such as precipitation and temperature, and so historical 
climatic data can be considered when making predictions. This 
assumption is informed by the likes of Ahmadi et al. (2020) identifying a 
negative relationship between humidity and the spread of COVID-19 
and Cartenì et al. (2020) a negative relationship between temperature 
and COVID-19. However, it is also hypothesized that climate acts as a 
proxy for mobility, whereby during periods of low precipitation and/or 
higher temperatures people are more likely to leave their homes and 
come into close contact with others, thus facilitating the spread of 
COVID-19. 

The fifth assumption is that the measures taken by governing bodies 
over time affects the spread of COVID-19, and so the historical gov
ernment response measures should be considered when making 
borough-wise COVID-19 predictions. This is informed by the likes of 
Achuo (2020) and Kim & Castro (2020) which identified that stricter 
government responses to contain the spread of COVID-19 were suc
cessful in doing so. 

The sixth and last assumption is that the urban/demographic fea
tures of each borough should be considered when making predictions. 
This assumption is informed by the likes of Ahmadi et al. (2020), Ibra
him et al. (2020), Guan et al. (2020), Ho et al. (2020), Prats-Uribe et al. 
(2020) which identified relationships between the spread of COVID-19 
and variables such as population density, age and ethnic backgrounds. 

Data types and preprocessing 

This research made use of temporal data, urban characteristics data 
and geographic data (shapefile). Temporal data refers to that which 
changes over time (time series), and a total of four different classes of 
temporal data were used, all of which were of daily temporal resolution 
and cover the 248 days between 2020-02-11 and 2020-10-16. Non- 
temporal features representing the urban characteristics of each bor
ough were also used as it was expected that they may contribute to the 
dynamics of the spread of COVID-19 amongst boroughs. The geographic 
data was used for geometric operations and was obtained from Greater 
London Authority (GLA, 2020c) which contained GIS boundaries of 
London boroughs. 

Temporal data 
The first temporal dataset is the borough-level COVID-19 historical 

data provided by Public Health England (although downloaded from 
GLA(2020a)) which contains the daily new and total confirmed cases of 
each London borough. 

The second temporal dataset is the climatic data provided by Na
tional Centers for Environmental Information (NOAA, 2020), which 
contains both precipitation (inches) and temperature (F) collected daily 
at Heathrow. 

The third dataset is the government response dataset provided by the 
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Oxford COVID-19 Government Response Tracker (Hale et al., 2020) 
which collects numerous temporally variable indicators which quantify 
the stringency/effectiveness of a national government’s response to 
COVID-19. Specifically, this research made use of the ‘stringency index’ 
which considers (i) school closures, (ii) workplace closure, (iii) cancel
lation of public events, (iv) gathering restrictions, (v) public transport 
closure, (vi) staying at home requirements, (vii) internal movement 
restrictions, (viii) international travel restrictions, and (ix) public in
formation campaigns. 

The final temporal dataset is that of Nitrogen Dioxide (NO2) con
centrations, which acts as a proxy for mobility whereby decreases in NO2 
concentrations may indicate decreases in mobility and vice versa. This 
dataset is provided by London Air (LAQN, 2020), and contains daily NO2 
concentrations (ppb) from meters collected throughout London, and so 
represents borough-level recordings. 

Urban characteristics data 
The features used were (i) Population, (ii) Population density, (iii) 

Percentage of population aged 65 and over, (iv) Percentage of popula
tion from BAME (Black, Asian, Minority Ethnic) backgrounds, (v) Cars 
per person, (vi) Persons per dwelling, and (vii) Supermarkets per 
100,000 people. Features (i)-(iv) were downloaded from Greater London 
Authority (GLA, 2020b) whilst features (v), (vi) and (vii) were down
loaded from Department for Transport (DT, 2020), Ministry of Housing, 

Communities & Local Government (MHCLG, 2020) and Pope (2017) 
respectively. 

The selection of features (ii), (iii) and (iv) were informed by litera
ture, with both Ahmadi et al. (2020) and Ibrahim et al. (2020) identi
fying positive relationships between population density and the spread 
of COVID-19 whilst Ho et al. (2020) observed that older adults are more 
likely to test positive for COVID-19, and both Ho et al. (2020) and Prats- 
Uribe et al. (2020) observed that those of BAME backgrounds within the 
UK are more likely to test positive. 

Meanwhile features (i), (v), (vi) and (vii) are selected with a hy
pothesized relationship. In the case of (i), it is hypothesized that bor
oughs with larger populations will exhibit more COVID-19 cases because 
there are more people who are at risk of contracting the virus. In the case 
of feature (v), it was initially hypothesized that a negative correlation 
would exist due to boroughs with more cars per person being wealthier 
and individuals with access to more cars being less likely to use public 
transport. For feature (vi), it was hypothesized that households with 
more members would have a higher likelihood of a household member 
coming into contact with another infected individual due to more people 
coming and going from the household, and so boroughs with more 
people per dwelling would more likely encounter COVID-19. Finally, in 
the case of variable (vii) it was hypothesized that fewer supermarkets 
per 100,000 people may lead to more frequent contact between in
dividuals because more people would be required to converge on one 

Figure 2. A conceptualisation of the proposed model  
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supermarket to shop, with the supermarket acting as a ‘hub’ for more 
people. In this way, fewer supermarkets per 100,000 people in a bor
ough would likely facilitate the spread of COVID-19. 

Data extraction and feature engineering 
Temporal data was extracted between the dates 2020-02-11 and 

2020-10-16 for each feature. In the case of the borough-level COVID-19 
data, the ‘new case’ data was used for modelling due to better results and 
because the model otherwise had a tendency to occasionally predict 
decreases in total case values, which is impossible given what total cases 
represent. However, the total case forecasts were converted back into 
total case forecasts for evaluation. Furthermore, the NO2 data was not 
entirely complete, with some boroughs missing time series values, and 
some boroughs not featuring working stations. In the case of missing 
values, they were mathematically imputed using linear interpolation. 
For boroughs without working stations, values at each time-step were 
calculated as the averages of the boroughs which geometrically shared a 
border as adjacent boroughs would be expected to exhibit similar NO2 
concentrations. The government stringency and climatic data did not 
require any adjustments to be made. 

Regarding the urban characteristics data, the features Population, 
Population density, Percentage of population aged 65 and over, Per
centage of population from BAME (Black, Asian, Minority Ethnic) 
backgrounds and Persons per dwelling required no adjustments or al
terations to be made and were systematically extracted in their raw 
formats. However, the Car data from DT (2020) in its raw form repre
sented absolute values and so following extraction the values were 
divided by Population to produce values which represented Cars per 
Person. The Supermarkets per 100,000 people feature required more 
dramatic feature engineering, with the raw data representing point data. 
In this case, the number of supermarkets located in each borough were 
calculated geometrically. With the supermarkets per borough counted, 
the values were divided by respective borough populations and multi
plied by 100,000 to yield a representation of Supermarkets per 100,000 
people. 

Data scaling 
Data scaling is required to accelerate the calculations involved in the 

ML algorithms (Thara et al., 2019). The COVID-19 data was scaled 
logarithmically, although the presence of zero-values meant that the 
logarithm of each value plus one was used, since the logarithm of 0 is 
mathematically impossible (equation 1). Meanwhile, all other data was 
scaled with a min-max scaler within the range of 0-1 (equation 2). 

xs = log(x + 1)#(1)

xs =
x − min(x)

max(x) − min(x)
#(2)

Where:  

• xs is the scaled value  
• x is the original value 

Model Architecture 

An LSTM-ANN hybrid model architecture is proposed, which has 
three main components which transform input data into outputs (see 
Figure 2. The components are (i) the LSTM component, (ii) the LSTM 
output MLP component, and (iii) the urban characteristics MLP 
component. Hyperparameters were selected based upon what gave the 
optimal performance on a validation set. 

LSTM component 
The LSTM component represents the principal component of the 

model and aims to capture the long-term temporal dependencies both 
within each temporal feature, and between different temporal features. 

The LSTM component itself is an RNN, and its main features are (i) a 
memory cell, which maintains its state over time, and (ii) non-linear 
gating units which regulate the flow of information into and out of the 
cell (Greff et al., 2016). 

The LSTM forward learning can be summarized as follows: 

a(ti) = σ(wax(ti) + whah(ti − 1) + ba )#(3)

f (ti) = σ
(
wf x(ti) + whf h(ti − 1) + bf

)
#(4)

c(ti) = ft × c(ti − 1) + at × tanh(wcx(ti) + whc(h(ti − 1) + bc ) )#(5)

o(ti) = σ(wox(ti) + whoh(ti − 1) + bo )#(6)

h(ti) = o(ti) × tanh(c(ti) )#(7)

Where:  

• x(ti) is the input value.  
• h(ti − 1) and h(ti) are the output values at times ti − 1 and ti 

respectively.  
• c(ti − 1) and c(ti) are the cell states at times ti − 1 and ti respectively.  
• b =

{
ba, bf , bc, bo

}
are the biases of the input, forget, internal and 

output gate.  
• W1
̅→

=
{
wa,wf ,wc,wo

}
are the weight matrices of the input gate, 

forget gate, internal state and output gate.  
• W2
̅→

= {wha,whf ,whc,who} are recurrent weights.  
• a→= {a(ti), f(ti), c(ti), o(ti) } are the output results for the input gate, 

forget gate, internal state and output gate.  
• Σ and tanh are activation functions.  
• × represents point-wise multiplication. 

And so using the notations outlined above, the LSTM operates as (i) 
the forget gate f(ti) receives inputs of x(ti) and h(ti − 1) and uses a sig
moid activation to compute the information stored in c(ti − 1) , (ii) the 
input gate a(ti) receives x(ti) and h(ti − 1) to compute c(ti) , and (iii) the 
output gate o(ti) regulates the output from the LSTM cell by considering 
c(ti) and applying sigmoid and tanh layers. 

The LSTM component of this model featured a single layered LSTM 
which received inputs of size 67, corresponding to the 67 temporal 
features (32 x borough-level COVID-19 features, 32 x borough-level NO2 
features, 2 x climatic features, 1 x government response feature), along 
with the 9 previous timestamps (sequence length selected based upon 
the performance upon a validation set) of each of the 67 features. This 
LSTM also had a hidden layer size of 600 and so a corresponding output 
size of 600. 

LSTM output MLP component 
The LSTM output MLP component is an MLP and so is formed of 

perceptrons, which can each be summarized as follows: 

net =
∑l

i=1
wixi + b#(8)

y = f (net)#(9)

Where:  

• The single neuron comprises l data inputs xi ∈ X .  
• The ith element of X is associated with a synaptic weight wi , which 

can assume a negative or positive value reflecting the importance of 
the input.  

• b refers to a ‘bias’.  
• net refers to the net value.  
• f() refers to an activation function  
• y refers to the output 

And so a perceptron computes net as the result of the linear combi
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nation of inputs with weights and the addition of b , which is the passed 
to an activation function which introduces non-linear properties to 
produce output y . 

The LSTM output MLP component received the 600 outputs from the 
LSTM component and transformed these signals into 67 output signals 
via a hidden layer of size 1200 with ReLU activation, thus extracting 
features from the outputs of the LSTM component. 

Urban characteristics MLP component 
The urban feature MLP component was also composed of layers of 

perceptrons like that outlined in equations 8 and 9. The input signals to 
this component were (i) the 67 output signals of the LSTM output MLP 
component, and (ii) the 7 urban features of each of the 32 boroughs, 
which was flattened to form 224 signals, thus totaling to an input size of 
291. These inputs were transformed into 67 output signals via two 
hidden layers of size 800 and 290, both with ReLU activation. This 
component thus enabled the model to consider the urban characteristics 
features associated with each borough and the individual way each 
borough behaves with respect to each feature alongside the output sig
nals of the LSTM output MLP component and modify the predictions 
appropriately to provide outputs of all temporal features. 

Feedback mechanism 
Each forward pass through the components outlined outputs a pre

diction of all temporal variables which correspond to the next time-step 
which is one day ahead (single-step) of the input sequence. However, 
this alone does not enable forecasts more than one step ahead to be 
made. Therefore, a feedback mechanism was also developed which 
concatenates the outputs of a forward pass onto the original input 
sequence whilst removing the most temporally distant existing input 
from the sequence and feeds the new sequence back into the model. This 
enables the model to also make predictions that correspond to time-steps 
which are multiple days (multi-step) into the future. 

Model Training and the MSE-Moran’s I loss function 

The model was trained by feeding batches of inputs to the model, 
calculating loss, backpropagating error, and updating parameters. This 
enabled the model to ‘learn’ from the training data. This was executed 
for a total of 80 epochs whilst making use of Adam’s optimizer at a 
learning rate of 0.001. However, the model’s training process also 
featured a novel MSE-Moran’s I loss function. This function aimed to use 
Moran’s I computations alongside standard Mean Squared Error (MSE) 
to further encourage the model to more correctly learn the spatial re
lationships and spatial autocorrelation structures in line with the second 
model assumption. 

MSE is a common loss function used in regression and time series 
forecasting which represents the sum of squared distances between a 
target variable and predicted values. The MSE calculation can be sum
marized as follows: 

MSE =

∑n

t=1
(Yt − Yt)

2

n
#(10)

Where:  

• Yt is the actual value of a point for time period t  
• Yt is the predicted value for time period t  
• n is the total number of fitted points 

Moran’s I is a correlation coefficient that measures the overall spatial 
autocorrelation within a dataset. Similar to correlation coefficients it has 
values between -1, which represents perfect clustering of dissimilar 
values and +1 which represents perfect clustering of similar values. 
Moran’s I is calculated as follows: 

I =
N
S
×

∑

i

∑

j
wij(xi − x)

(
xj − x

)

∑

i
(xi − x)2 #(11)

Where:  

• N is the number of spatial units indexed by i and j  
• x is the variable of interest  
• x is the mean of x  
• wij is a spatial weight matrix  
• S is the sum of all wij 

By computing the Moran’s I correlation coefficient for the model 
predictions and comparing the coefficient to that observed within the 
training data an indication of the similarity in spatial autocorrelation 
between the two can be observed. Specifically, this was undertaken by 
computing the Moran’s I coefficient for each index along the batch 
dimension, and averaging to provide a mean Moran’s I coefficient 
amongst the batch of COVID-19 predictions. This value was then sub
tracted from the mean Moran’s I correlation coefficient observed 
throughout the training data and squared to produce a ‘Moran’s I loss’, 
and finally multiplied by an adjustable coefficient θ (hyperparameter) as 
follows: 

MIloss = θ ×
(
MIpred − MIobs

)2
#(12)

Where:  

• MIloss represents the Moran’s I loss.  
• θ represents an adjustable coefficient, which represents a 

hyperparameter.  
• MIpred represents the mean Moran’s I value calculated along the batch 

dimension using equation 11 of the model’s outputs.  
• MIobs represents the mean Moran’s I value calculated using equation 

11 across the training data. 

Therefore, the similarity in spatial autocorrelation between the batch 
of predictions and that observed across the actual data is computed and 
weighted by the θ coefficient to produce a Moran’s I loss, with a greater 
loss representing a greater difference between the spatial autocorrela
tion of the predictions and actual data. A θ value of 0.003 was used in 
this experiment because it yielded the best results on a validation set. 
However, prior to performing the calculation in equations 11 and 12 it is 
worth noting that the model’s borough-wise predictions were first 
reversed transformed, divided by their respective borough populations 
and multiplied by 100,000 to represent the predicted borough-wise 
daily new cases per 100,000 people. The decision to convert to the 
rate (cases per 100,000 people) rather than using the actual values was 
made because different boroughs have different populations (often 
considerably). In this way we would expect adjacent boroughs to exhibit 
greater similarity in rate than absolute values which themselves are also 
likely to be proportional to borough population as well as intensity of 
COVID-19 at a given time and so are a poorer representation of COVID- 
19 intensity. Naturally, this was then also compared to the mean daily 
cases per 100,000 people Moran’s I coefficient observed across the 
training data (0.0996) rather than that for the actual value data. 

Finally, with both the MSE (MSE) and Moran’s I loss (MIloss) calcu
lated, the two were added together to produce a total loss (Ltotal): 

Ltotal = MSE + MIloss#(13)

Therefore, the total loss represents both the distances between the 
target values and predictions (MSE), and also the difference between the 
Moran’s I coefficient of the predicted cases per 100,000 people and that 
observed within the training data, the contribution of which is weighted 
by θ (MIloss). 
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Model Evaluation 

The model was trained and applied to forecast the next 14 days, with 
these predictions then being converted into total case forecasts for the 
purpose of evaluation and compared to the testing set which corre
sponded to the last 14 days of the observed data. Due to model weights 
being randomly set when defining the model and the stochastic nature of 
gradient descent these model outputs were not the same each time the 
program was run. Therefore, the program was run 50 times and the 
accuracy of these outputs evaluated both step-wise and borough-wise 
over each re-run using the R-squared (R2), Root Mean Squared Error 
(RMSE) and Normalized Mean Squared Error (NRMSE) metrics to yield 
mean step-wise and borough-wise metrics representative across the 50 
re-runs. 

The R2 metric measures the goodness of fit between two variables by 
measuring the proportion of the variance in the dependent variable that 
is predictable from the independent variable. R2 is the square of r which 
is calculated as follows: 

r =
n(

∑
xy) − (

∑
x)(

∑
y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[
n
∑

x2 −
(∑

x
)2

][

n
∑

y2 −
(∑

y
)2

]√ #(14)

Where:  

• r is the correlation coefficient  
• n is the number in the given dataset  
• x is the first variable  
• y is the second variable 

The RMSE metric is similar to MSE in that it measures distances 
between a target variable and predicted values, only is equivalent to the 
square root of MSE: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

t=1
(Yt − Yt)

2

n

√

#(15)

Where:  

• Yt is the actual value of a point for a given time period t  
• n is the total number of fitted points  
• Yt is the fitted forecast value for t 

The third metric is NRMSE, which is equivalent to RMSE, but with 
the values normalized by dividing by the range of observed y values. 
This aids comparison between boroughs because it represents error 
proportional to magnitude of change: 

NRMSE =
RMSE

Ry
#(16)

Where:  

• Ry is the range of observed y values 

The novel MSE-Moran’s I loss function was also investigated further 
with a step-wise evaluation which compared the mean step-wise RMSE 
of the model when it was trained with the θ value at 0.003 (base model) 
versus 0 (thus effectively disabling the Moran’s I component and 
reverting the loss function back to that of standard MSE), again calcu
lated across the 50 re-runs. 

Furthermore, a sensitivity analysis was conducted which systemati
cally ablated various features and components from the model (except 
for the COVID-19 data which could not be removed due to the structure 
of the model) and evaluated the model across 50 re-runs in their 
respective absence. This analysis was conducted in order to better un
derstand the relative importance of the variables used with regards to 
their contribution towards the spread of the disease. 

Figure 3. A lineplot showing the total cases and daily new cases single-step forecasts for the whole of London.  

Figure 4. A scatterplot showing all of the single-step predicted values for all 
boroughs against their actual values 
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Results 

Single-step forecasting results 

Overall, the single-step forecasts appear to be fairly accurate. This is 
evidenced by the high R2 value for the whole of London (sum of all 
borough forecasts at each time step) total case forecasts (Figure 3 as well 
as the visually clear similarity between the true and predicted values. 

Visualisation of every single-step prediction (448 total) for all indi
vidual boroughs in Figure 2 also communicates a similar message of 
accuracy to Figure 4 with an R2 of 0.999 (3 d.p) and an RMSE of 1.344 (3 
d.p) between the observed and predicted total case values. 

Analysis of the residuals (Figure 5 and Table 1 of all 14 single-step 
forecasts made for each borough (448 in total) also suggest consider
able accuracy with a median value of 0 and an interquartile range (IQR) 
of 1 stretching between -1 to 0, indicating that half of the predictions are 
either +1 or equal to the actual values. However, despite the median 
value of 0, the residual analysis does indicate a tendency for the model to 
slightly overpredict single-step forecasts. This is evidenced by the IQR, 
stretching from -1 to 0, but also by the actual residual distribution, with 
220 residual values being negative and just 88 positive (with 140 
equalling 0). This may largely be due to the dramatic overprediction 
through steps 11-14 where the actual number of new cases declines from 

31 towards 0 (refer back to Figure 3. 

Summary of results 
This research proposed a hybrid LSTM-MLP deep learning model 

which is capable of providing borough-level short and long term COVID- 
19 forecasts within the city of London. This model was applied to pro
duce 14 single-step forecasts as well as 14-day multi-step forecasts for 
each borough, the evaluation metrics of which are summarised in Ta
bles 2,3 and 4. 

Model predictions 

Step-wise analysis 
Generally, the model output step-wise RMSE (Figure 6 increases 

across the time-steps indicating decreasing accuracy. The proportion by 
which the RMSE increases across each time-step also appears roughly 
constant. However, this is with the exception of steps 7-9, whereby the 
increase in RMSE between steps is far lower than observed between 
time-steps elsewhere. 

Borough-wise analysis 
Regarding the borough-wise 14 day forecast RMSE (Figure 7a and 

Table 5, the mean and median RMSE values recorded across all boroughs 
were 100.120 and 95.991 respectively. It is worth noting that visually 
there generally appears to be an East-West axis of increasing RMSE 
whereby Western boroughs often exhibit a higher RMSE than the 
Eastern counterparts. This also evident with the two worst performing 
boroughs being situated in the West, with Ealing and Richmond upon 
Thames exhibiting the highest RMSE of 240.915 and 176.645 respec
tively. Equally, the best performing borough was also situated in the 
East, with Bexley exhibiting an RMSE of 36.418, although the next best 
performing borough was situated in the South with Sutton exhibiting an 
RMSE of 49.321. 

Regarding the error relative to the magnitude of change (Figure 7b, 
the mean and median NRMSE values recorded across the borough-wise 
14-day forecasts were 0.177 and 0.164 respectively. Similar to the RMSE 
metric, an East-West axis can be observed visually with the NRMSE 
generally increasing towards the West. Consistent with the RMSE, the 
two worst performing boroughs are situated in the West with Richmond 
upon Thames and Kingston upon Thames exhibiting the highest NRMSE 
of 0.311 and 0.259 respectively. The two best performing boroughs are 
also in the Eastern direction, with Waltham Forest (North-East) 
recording the lowest NRMSE of 0.106 and Bexley (East) recording the 

Figure 5. A histogram showing the distribution of the residuals calculated for 
all singlestep borough-level predictions for all time steps 

Figure 6. Showing the change in RMSE observed across each time-step.  
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Figure 7. Maps showing the mean borough-wise RMSE (a), NRMSE (b) and R2 (c) metrics.  
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next lowest at 0.112. 
With respect to the goodness of fit (Figure 7c, the mean and median 

R2 values were 0.547 and 0.609 respectively. Consistent with both the 
RMSE and NRMSE, an East-West axis is visually clear with Western 
boroughs exhibiting lower R2 values indicating a poorer goodness of fit 
between the observed and forecasted values. Inspection of the worst 
performing boroughs also broadly follows this axis, with the worst 
performing borough being Richmond upon Thames (West) with an R2 of 
-0.112, although the next worst performing borough is situated centrally 
with Southwark recording an R2 of 0.047. The best performing boroughs 
also broadly follow this trend, with the best performing borough being 
Waltham Forest (North-East), and the next best being Bexley (East) with 
R2 values of 0.835 and 0.822 respectively. 

MSE-Moran’s I loss function 

The use of the MSE-Moran’s I loss function with θ set to 0.003 overall 
appears to improve the accuracy of forecasts (Figure 8 when compared 

to θ at 0 (thus effectively removing the Moran’s I component and 
reverting the loss function back to that of standard MSE). Specifically, 
improvements range from 0.596% (step 1) to 6.274% (step 10), with 
improvements being observed across all time-steps with the exception of 
step 2 whereby the addition of the Moran’s I component to the loss 
function actually resulted in a small 1.528% increase in RMSE compared 
to the outputs with θ at 0. 

Sensitivity analysis 

Regarding the systematic ablation of various parts of the model 
(Figure 9, the removal of (i) the urban characteristics MLP, (ii) the NO2 
data, (iii) the climatic data, and (iv) the government stringency data all 
appear to result in lower output accuracy than the base model. Of all 
parts analysed, the removal of the government stringency index from the 
LSTM component appears to result in the greatest decrease in accuracy, 
with an 8.394% increase in RMSE. This is closely followed by the cli
matic data (7.031% increase in RMSE) and then NO2 data (5.627% 

Figure 8. Showing a step-wise comparison of the model outputs with different MSE-Moran’s I loss function θ values.  

Figure 9. Comparing the mean output RMSE from 50 re-runs with the ablation of respective parts of the model against the base model.  
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increase in RMSE), and finally the urban characteristics component 
(4.483% increase in RMSE). 

Hyperparameters 

The hyperparameters which optimised the model’s performance are 
summarised in Table 6. 

Discussion 

Model performance 

As mentioned in the results, the step-wise RMSE of the model’s 
outputs increases as the time-step increases. This is perhaps to be ex
pected as model output inaccuracy accumulates and uncertainty in
creases as the time-step increases. However, despite the increase 
between steps generally appearing proportional, it is interesting to note 
that the increase in RMSE between steps 7 and 9 is considerably less than 
the others. Regarding the borough-level forecasts, since the model is the 
first to provide borough-level forecasts up to 14 days into the future, it 
remains somewhat difficult to definitively state how accurate these 
forecasts are since no comparable borough-level predictive modelling 
studies exist. However, the mean and median R2 values of 0.547 and 
0.609 recorded amongst boroughs as well the high accuracy amongst 
many boroughs despite being expected to predict highly noisy data for 
up to 14 time-steps into the future may suggest that this model has 
considerable predictive potential. It is also interesting to note that there 
is a clear East-West axis amongst borough forecasting accuracy, whereby 
the model appears to provide a more accurate 14 days forecast for the 
boroughs situated in the East of London than the west. 

The decrease in RMSE observed over 13 of the 14 time-steps with the 
MSE-Moran’s I loss function θ value at 0.003 (base model) versus 
0 (disabling the Moran’s I component) also justifies the inclusion of the 
novel loss function as it indicates improved accuracy. It is interesting to 
note that the RMSE recorded was higher with the Moran’s I component 
enabled at step 2, indicating reduced accuracy. However, given that this 
increase in RMSE was small (1.528%) and only took place at one time- 
step it is possible that this could be due to noise. 

With respect to the sensitivity analysis, the increase in RMSE 
incurred by the removal of various components compared to the base 
model justifies their inclusion. Furthermore, the ordering of the increase 
in error incurred when parts were removed by ablation may also reflect 
the importance of features, with the government stringency data being 
the most important (excluding the COVID-19 data), followed by the 
climatic data, the NO2 data and finally the urban characteristics 
component, which represented the least important part of the model. 

Model implications 

This research and the development of this model has implications. 
The first, and perhaps most obvious is that it fills a research gap by being 
the first explicitly designed to provide COVID-19 forecasts at a spatial 
scale lower than the city, such as at borough/district level and thus 
contributes to existing COVID-19 forecasting literature. Second, in a 
more applied context, this research and model may have the potential to 
aid governing bodies within cities in responding to COVID-19 by 
informing decision-making and enabling the vulnerable areas of a city to 
receive support at the right time. 

This research also has implications at the intersection between deep 
learning and disease modelling because it introduced a novel MSE- 
Moran’s I loss function which was overall demonstrated to improve the 
model’s predictive potential. Furthermore, it may also have implications 
at the intersection of deep learning and spatio-temporal modelling more 
generally because it may have the potential to also improve the pre
dictive potential of other spatio-temporal deep learning models if spatial 
autocorrelation is present. However, this remains to be proven and so 

could warrant future investigation. 

Model limitations 

As with many ML experiments, the performance of this framework is 
affected by the quality of the training data available which represents a 
limitation. With this in mind, it should be noted that the borough-level 
COVID-19 data represents the number of COVID-19 cases confirmed by 
Pillar 1 and Pillar 2 testing. Therefore, whilst the data values are pro
portional to the prevalence of COVID-19 over time, it is also propor
tional to the availability of tests/ the number of tests being conducted 
over time. This is problematic because the testing capacity has often not 
met demand (Wise, 2020; Iacobucci, 2020), meaning that particularly in 
the early periods of COVID-19 waves the data may be under
representative. Furthermore, the number of tests being conducted has 
increased overtime (Gov, 2020), with considerably fewer tests being 
conducted during the first wave (roughly prior to June) compared to the 
second (roughly September/October), which makes modelling the dy
namics of the second wave increasingly difficult using data from the first 
wave. This is especially problematic for the evaluation of this model 
because the testing set fell within the early stages of the second wave. 

Future work 

As mentioned, this model made use of a novel MSE-Moran’s I loss 
function which improved the model’s forecasts over all time-steps 
except 2 (although this may be noise). With this in mind, a future 
research opportunity could be to further experiment with this loss 
function/concept with other spatio-temporal datasets to both further 
validate it as an effective feature of spatio-temporal forecasts, but also to 
experiment with different variations/methods of deploying such a 
component. Also, regarding the performance of this model, whilst the 
metrics may suggest that this model has good predictive potential, the 
absence of sub-city level studies means that the predictive potential 
cannot be determined conclusively. Therefore, future research oppor
tunities could also involve attempting to provide sub-city level forecasts 
but using different models and comparing the two. Another future 
avenue of work could also be to apply a similar model to this one within 
other cities perhaps of different sizes or in different parts of the world 
which have been affected by COVID-19 in order to further evaluate this 
framework. 

Conclusions 

This article introduced a novel LSTM-ANN deep learning model 
capable of producing borough-level COVID-19 forecasts up to 14 days 
into the future for the city of London, thus fundamentally addressing a 
research gap within COVID-19 modelling literature by being the first 
model designed and optimized explicitly to forecast future values at 
borough-level within a city. Specifically, the model was designed to do 
so by considering temporally lagged borough-level COVID-19 data, as 
well as temporally lagged borough-level NO2 concentrations, govern
ment stringency data, and climatic data, and additionally the urban 
characteristics of each borough. The model was also encouraged to learn 
the spatial relationships between boroughs with regards to the spread of 
COVID-19 by a novel MSE-Moran’s I Ioss function applied in the training 
process. 

Owing to the lack of comparable studies due to this model being the 
first of its kind, it remains difficult to confidently state just how accurate 
it is. However, the step-wise and borough-wise model evaluation metrics 
show promise despite the model being expected to predict noisy data for 
up to 14 time-steps into the future, suggesting that this model has 
considerable predictive potential. As such, the model represents a useful 
tool for assisting the decision making and interventions of governing 
bodies within cities which remains the main implication of this research. 
Also, the sensitivity analysis indicates that the government stringency 
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data is particularly important in the modelling process, with this being 
closely followed by the climatic variables, the NO2 concentration data, 
and finally the urban characteristics data. Furthermore, this research 
also introduced a novel MSE-Moran’s I Ioss function which was 
demonstrated to improve the forecasting accuracy across all 14 future 
time-steps with the exception of the second. As such, this research has 
implications at the intersection of deep learning and disease epidemio
logical modelling. Such a function may also have secondary implications 
at the intersection of deep learning and spatio-temporal analytics more 
generally because this technique may help improve the accuracy in 
other spatio-temporal forecasting applications. [1,2,3,4,5,6,7,8,9,10,11, 
12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33, 
34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55, 
56,57,58,59,60,61,62,63,64,65,66,67,68,69,70] 
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