
This is a repository copy of Model independent refusal trace testing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214702/

Version: Published Version

Article:

Gazda, M. and Hierons, R.M. orcid.org/0000-0002-4771-1446 (2025) Model independent
refusal trace testing. Science of Computer Programming, 239. 103173. ISSN 0167-6423

https://doi.org/10.1016/j.scico.2024.103173

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Science of Computer Programming 239 (2025) 103173

Available online 23 July 2024
0167-6423/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Model independent refusal trace testing

Maciej Gazda ∗, Robert M. Hierons
Department of Computer Science, The University of Sheffield, Sheffield, S1 4DP, UK

A B S T R A C T

Software Testing is normally one of the main forms of verification and validation used in software development but it is often manual and so
expensive and error prone. One of the proposed solutions to this is to use model-based testing, in which testing is based on a model of how the
system should behave. If the model has a formal semantics, then there is potential to automate systematic test generation. In this paper we consider
the case where the semantics of the model is a set of refusal traces, also called failure traces. We show how the notions of fundamental refusal
and fundamental refusal trace can be used to derive a normalised transition system, which we call an observation transition system (OTS), from the
semantics. We then show how, if this OTS has finitely many states, and we are given a bound 𝑚, one can produce a corresponding complete test
suite: one that is guaranteed to determine correctness as long as the number of states of the OTS defined by the semantics of the system under test
has no more than 𝑚 states. In practice, the choice of value for 𝑚 might be based on domain knowledge or a cost-benefit analysis. As far as we are
aware, this is the first work to show how a finite complete test suite can be derived when the semantics under consideration is a set of refusal traces.

1. Introduction

Software testing is the process of executing the system under test (SUT) with test cases and checking that the observed behaviours
are allowed by the specification. Software testing is typically one of the main verification and validation approaches used in software
development. Even if formal verification is used (and this certainly has merit!), such verification only ever checks that a model of
the system behaves correctly. For example, if the source code is verified against a specification then verification assumes that the
compiler and hardware behave as expected; one should still test. In addition, where a system is black-box (we do not have access to
the code), it typically is not possible to apply formal verification techniques.

Unfortunately, software testing is often a manual process and so expensive and error prone. This issue has been addressed in model
based testing (MBT), where testing is based on a model or specification of the required behaviour of the SUT. Ideally, the model used
has a formal semantics and then there is potential to reason about test effectiveness [5,12]. Such reasoning requires one to assume
that the SUT behaves like an unknown model 𝐼 and typically one also assumes that 𝐼 can be described using the same formalism as
the specification (the minimum hypothesis [5]). Testing can then be seen as a process of executing the SUT in order to compare two
models: the specification 𝑆 and an unknown model 𝐼 of the SUT and there is potential to automate systematic test generation (see,
for example, [10,23]).

Much of the MBT work concerns state-based systems that have an internal state and so behaviours are sequences (traces). Many
systems are state-based, with examples including communications protocols, CPUs, and embedded control systems used in areas such
as avionics and the automotive industry. Testing is then normally based on models expressed as either a finite state machine (FSM) or
labelled transition system (LTS); software development might use a higher-level/more abstract formalism whose semantics is expressed
as an LTS or FSM (see, for example, [3,9]).

* Corresponding author.
E-mail addresses: m.gazda@sheffield.ac.uk (M. Gazda), r.hierons@sheffield.ac.uk (R.M. Hierons).

https://doi.org/10.1016/j.scico.2024.103173
Received 25 October 2023; Received in revised form 5 July 2024; Accepted 10 July 2024

Science of Computer Programming 239 (2025) 103173

2

M. Gazda and R.M. Hierons

Reference process

𝑜𝑛 𝑜𝑛

𝑐𝑜𝑓 𝑡𝑒𝑎

Implementation

𝑜𝑛 𝑜𝑛
𝑜𝑛

𝑐𝑜𝑓 𝑡𝑒𝑎 𝑐𝑜𝑓

Fig. 1. Specification of a simple coffee machine (left) and an incorrect implementation w.r.t. refusal trace semantics (right).

Most work on FSM-based testing has concerned test generation algorithms, with FSM-based testing research going back to work
by Moore in the 1950s [17]. The early work concerned deterministic FSMs (DFSMs). The semantics of an FSM is given by the
corresponding regular languages (all states are ‘final’ states and so the language is prefix closed). In order to reason about test
effectiveness, most work on testing from an FSM 𝑀 assumes that the SUT behaves like an unknown FSM 𝑀𝐼 that has the same input
and output alphabets as 𝑀 . Testing thus involves choosing a set of input sequences and then applying them to the SUT in order to
check whether 𝑀 and 𝑀𝐼 agree on these input sequences.

In FSM testing, there has been significant interest in test generation techniques that are complete in the sense that the resultant test
suites are guaranteed to determine whether the SUT is correct as long as the SUT satisfies a stated test hypothesis. The test hypothesis
is usually either that the FSM 𝑀𝐼 representing the SUT has no more states than the specification 𝑀𝑆 or there is a known upper
bound 𝑚 on the number of states of 𝑀𝐼 . There are FSM-based test generation algorithms that return finite complete test suites (see,
for example, [4,11,16,24,26]). Possibly the best known such technique for testing from a DFSM is the W-method [4,26]. Although
this technique was devised for testing from a DFSM, we will see that it can be extended to LTSs.

It is worth briefly explaining why we chose to adapt the W-method, despite there being many other DFSM-based test techniques.
First, we wanted to adapt a test generation technique that returns a complete test suite and is general in the sense that it can be used
to test from any (complete, minimal) DFSM. There are several such test generation techniques (see, for example, [16,20]). However,
the W-method is arguably the simplest of these techniques, with its use avoiding additional complexity. In addition, the core building
blocks of the W-method (reaching and separating states) are used in many other FSM-based test generation techniques. Thus, it should
be possible to extend the approach taken in this paper to adapt other DFSM-based test generation techniques.

In FSM-based testing, an observation is a trace: a sequence of events. LTS-based work, however, often allows the tester to observe
the refusal of a set 𝑋 of events [25,19,23]; a refusal occurs if the LTS is in a (stable) state in which none of the events in 𝑋 can
occur. A tester can observe the refusal of 𝑋 by offering the events in 𝑋 and observing a deadlock, with the deadlock normally being
observed through a timeout. There is a range of implementation relations, which state how the behaviours (possible observations) of
the SUT and specification must relate in order for the SUT to be correct [8]. The implementation relation used in testing will depend
upon the types of observations that a tester, or system environment/user, can make. In this paper we assume that an observation
is a refusal trace, also called a failure trace: a sequence that includes events and refusals [22]. It has been noted that this provides
the finest implementation relation that is consistent with testing [25]; stronger implementation relations require backtracking and
normally this is not possible in testing. Refusal traces are particularly important in the context of (discrete) timed systems, where it
is essential that refusal information is recorded at every point where time progresses [1,18].

In this paper we consider the problem of testing to determine whether the sets of refusal traces 𝑆 and 𝐼 , of the specification
and SUT respectively, are the same.

A simple example, depicted in Fig. 1, demonstrates the distinguishing capability of refusal trace semantics. The specification on
the left is a simple coffee machine that, after being activated with the on button, either offers the user a choice between coffee and
tea, or no beverage at all (the latter in case when the user is e.g. not authorised or payment has not been made – for simplicity, we
abstract from this aspect here). Refusal trace semantics allows us to specify the requirement that a correct machine must always offer
(to an authorised user) both coffee and tea; indeed, the implementation on the right that may in some circumstance offer only coffee,
is incorrect, since it has a refusal trace 𝑜𝑛.{𝑡𝑒𝑎}.𝑐𝑜𝑓 that does not belong to the specification. We note that the above processes are
equivalent w.r.t. coarser semantics such as failures or traces.

We take inspiration from the work of Huang and Peleska [14] that concerns traces-based testing. Their approach maps a set
of traces (the semantics of the specification or SUT)  to a canonical LTS. They use the Nerode-congruence: two traces 𝜎1 and 𝜎2
reach the same state of the induced LTS if and only if 𝜎1 and 𝜎2 have the same continuations in . Testing then involves comparing
the corresponding LTSs for 𝑆 and 𝐼 . They observe that an advantage of this approach is that it is based on the semantics of
the specification and not the form of its model; this contrasts with other techniques that would produce different test suites from
different specifications even if these specifications had the same semantics. They then show how, if the derived LTS is finite, the
classical W-method [4,26], for testing from an FSM, can be extended to derive finite complete test suites.

Science of Computer Programming 239 (2025) 103173

3

M. Gazda and R.M. Hierons

The aim of this paper is to generalise the approach of Huang and Peleska to the case where observations are refusal traces. An
initial challenge was that it is not possible to directly use the Nerode-congruence because the set of continuations of a refusal trace 𝜎
might not correspond to any possible state: as a result of non-determinism, it might be possible, in language  under consideration,
to follow 𝜎 by event 𝑎 and also by the refusal of 𝑎. In order to address this issue, we draw on the recently introduced notion of
a fundamental refusal: 𝑋 is a fundamental refusal after 𝜎 if 𝜎.𝑋 is in  and for every event 𝑎 ∉ 𝑋 we have that 𝜎.𝑋.𝑎 is also in
 [6,7]. We used fundamental refusal traces, which are refusal traces in which all refusals are fundamental, as the basis for deriving
a special normalised transition structure, called an observation transition system (), from a language . Conceptually, OTS is to
a certain extent similar to the language LTS of Huang and Peleska [14], however, its structure corresponds more closely to the testing
experiment one can perform on the correct/canonical LTS.

Having shown how () can be derived, the next problem is to show how a complete test suite can be generated from
(𝑆), where 𝑆 is the language (set of refusal traces) of the specification. Similar to FSM-based testing, we use the test hypothesis
that the derived OTS of the language 𝐼 of the SUT has at most 𝑚 states for some given 𝑚. We show how the concepts of state cover
and characterising set, used in the W-method for testing from an FSM [4,26], can be extended to our setting if (𝑆) has finitely
many states. These are then used in order to construct a complete test suite, with us separately considering two cases: 𝑚 = 𝑛, where
𝑛 is the number of states of (𝑆), and 𝑚 > 𝑛. Finally, we then show how we can considerably reduce the test suite size by
restricting it to traces whose prefixes are fundamental refusal traces of the specification.

Similar to FSM-based testing, the tester will be faced with the standard problem of choosing a value of 𝑚 to use in test generation.
Such a choice can be based on a mixture of domain knowledge and also a cost-benefit assessment, with both the effectiveness and
cost of testing increasing as 𝑚 increases.

This paper makes several contributions.

• We develop a theory of refusal traces based solely on healthy languages of refusal traces (sets of refusal traces representing
semantics of valid computational models). In particular:
– we define a local equivalence that identifies refusals in the context of a specific trace (adapting the theory of [6,7] to pure
language-based setting) (Section 3.1)

– we provide a language state space construction for healthy languages of refusal traces (based broadly on the suffix language
solution [14] but more involved due to the presence of refusals) (Section 3.2)

• We draw on FSM-based test generation techniques (Section 5).
– These allow one to produce a finite set 𝑇 of finite behaviours (refusal traces), with this finite set acting as a complete test suite
(one guaranteed to determine correctness as long as the SUT satisfies the stated test hypotheses).

– FSM-based test generation techniques are defined for traces and so there is the challenge of generalising them to refusal traces.
– The tests contain both positive test cases (behaviours that the SUT should have) and negative test cases (behaviours that the
SUT should not have).

– Using fundamental refusal traces, one can substantially reduce the size of a test suite.

Related work As far as we are aware, this is the first work that directly shows how a finite complete test suite can be constructed
when testing for refusal trace equivalence. Note that [6,7] also provides a (minimal) complete test suite construction, however, it differs
in two important aspects: the conformance is refinement rather than equivalence, and it is parameterised by a bound on the trace
length (i.e. refinement up-to-𝐾 steps) whereas in this work, the conformance relation itself is not bounded, but bounds are assumed
on the specification and implementation. While in theory one could decide equivalence by performing two refinement checks, it is
undesirable for reasons of efficiency, in particular in the realm of testing where there is asymmetry in access between the specification
and implementation. Because of this, test suites in [6,7] can only check whether an implementation refines the specification, but not
the other way round.

As mentioned, a closely related work is [14], where the conformance relation is trace equivalence (i.e. based on sequences of
events with no refusals). In [19], finite complete test suites are constructed for trace and failures refinement (the latter is based on
sequences of traces that potentially end in refusals). Complete test suites for refusal trace refinement with inputs and outputs has
been provided in [3]; however, they are not finite. Regarding ioco work, test suites for a relation similar to refusal trace refinement,
mioco, have been defined in [10]; they are, however, not finite for the general (unbounded) conformance.

2. Preliminaries

Here, we briefly introduce our semantic model (labelled transition systems), and refusal trace semantics. We shall use Σ to denote
the alphabet of visible actions. A labelled transition system (LTS) is a tuple  = ⟨𝑆, →, Σ ∪{𝜏}⟩ where 𝑆 is a finite set of states, Σ a finite
set of visible/external actions, 𝜏 a special silent/internal action, and →⊆ 𝑆 ×Σ ∪ {𝜏} ×𝑆 a transition relation. We use the shorthand

notation 𝑠
𝛼

⟶ [resp. 𝑠 ̸
𝛼

⟶] whenever there exists [does not exist] a state 𝑠′ such that 𝑠
𝛼

⟶ 𝑠′. A state 𝑠 is stable if 𝑠 ̸
𝜏

⟶.

We use the notation
𝜖

⟹ for the reflexive transitive closure of
𝜏

⟶, i.e. 𝑠
𝜖

⟹ 𝑠′ iff 𝑠 = 𝑠′ or there is a chain of states and transitions

𝑠 = 𝑠0
𝜏

⟶…
𝜏

⟶ 𝑠𝑛 = 𝑠′. Moreover, 𝑠
𝑎

⟹ 𝑠′ denotes that 𝑠
𝜖

⟹ 𝑡
𝑎

⟶ 𝑡′
𝜖

⟹ 𝑠′ for some states 𝑡, 𝑡′.
A process can be defined by indicating a set of its possible initial states within a certain LTS. Formally, a process is a tuple

𝑃 = ⟨𝑆𝐼 , ⟩, where  = ⟨𝑆, →, Σ ∪ {𝜏}⟩ and 𝑆𝐼 ⊆ 𝑆 . Typically, the underlying LTS should be clear from the context and we shall

Science of Computer Programming 239 (2025) 103173

4

M. Gazda and R.M. Hierons

identify a process 𝑃 with the set 𝑆𝐼 . Moreover, the internal closure of 𝑃 , notation I𝜏 (𝑃), is the set of states reachable from initial

states of 𝑃 with internal actions, i.e. I𝜏 (𝑃) = {𝑠′ | ∃𝑠 ∈ 𝑃 ∶ 𝑠
𝜖

⟹ 𝑠′} [here, we identify the process 𝑃 with its set of initial states].
An important assumption that we make throughout the paper is divergence-freedom, that is, in all systems under consideration we

assume that there are no infinite paths of 𝜏-labelled transitions. This is a reasonable assumption since: 1) divergence in a specification
normally represents a fault; and 2) for a system under test, divergence looks the same1 (to the tester) as deadlock and so is not needed.

For a stable state 𝑠, a set 𝑋 ⊆ Σ is a stable refusal, or simply refusal of 𝑠, if for all 𝑎 ∈𝑋, 𝑠 ̸
𝑎

⟶. The set of all refusals of 𝑠 is denoted
with R(𝑠). Note that R(𝑠) = ∅ for unstable states. The state refusal of 𝑠 is the largest refusal of 𝑠, denoted with SR(𝑠).

Since all refusals 𝑋 ⊆ Σ, including ∅, can be observed in stable states only, an additional refusal observation is required that can be
made in any state (including unstable states). We shall use ∙ to denote such null refusal observation. A refusal trace (failure trace) 𝜎 of
a state 𝑠 is a sequence that is either an empty word 𝜖, or a word of the form 𝑋0𝑎1𝑋1𝑎2… 𝑋𝑛−1𝑎𝑛𝑋𝑛, or 𝑋0𝑎1𝑋1𝑎2… 𝑋𝑛−1𝑎𝑛, where

𝑎𝑖 range over Σ and 𝑋𝑖 range over (Σ) ∪ {∙}, such that there is a chain of transitions 𝑠
𝜖

⟹ 𝑠0
𝑎1
⟹ 𝑠1

𝑎2
⟹…

𝑎𝑛−1
⟹ 𝑠𝑛−1

𝑎𝑛
⟹ 𝑠𝑛

𝜖
⟹ 𝑞

and for all 𝑘 ∈ {0, … , 𝑛 − 1, [𝑛]}, 𝑋𝑘 ∈ R(𝑠𝑘) or 𝑋𝑘 = ∙. We denote the existence of such a chain of transitions by 𝑠
𝜎

⟹ 𝑞.
We define the length of a refusal trace in one of the above forms as the number of refusals occurring in the trace, that is

|𝜖| ≜ 0

|𝑋0𝑎1…𝑋𝑛−1𝑎𝑛| ≜ 𝑛

|𝑋0𝑎1…𝑋𝑛−1𝑎𝑛𝑋𝑛| ≜ 𝑛+ 1

Observe that in particular the length of a trace ending in refusal 𝑋𝑛 is 𝑛 + 1.
The set of refusal traces originating from a state 𝑠 [of length ≤ 𝑙] is denoted with RT(𝑠) [resp. RT

𝑙(𝑠)]; the notation is lifted to
processes. The language of well-formed refusal traces over alphabet Σ is defined as:

RT[Σ] ≜ {𝜖}∪ {𝜎 ∈ ((Σ) ∪ {∙}) × (Σ × ((Σ) ∪ {∙}))∗ ∪ (((Σ) ∪ {∙}) × Σ)∗

| 𝜎 = 𝜌.𝑋𝑖.𝑎𝑖+1.𝜌
′
⟹𝑋𝑖 = ∙ ∨ 𝑎𝑖+1 ∉𝑋𝑖}

The alphabet annotation will often be dropped when the alphabet is clear from the context. In addition, we define the following
subclasses of refusal traces, determined by the type of the terminal symbol.

RTR[Σ] ≜ {𝜋.𝑋 ∈ RT[Σ]} RTA[Σ] ≜ {𝜖} ∪ {𝜋.𝑎 ∈ RT[Σ]}

Refusal traces in RTR[Σ] [RTA[Σ]] will also be referred to as proper [partial] refusal traces. Sometimes we shall also use the following
type of suffixes:

RTA-SUF ≜ {𝜆 |∃𝜋 ∈ RTR |𝜋.𝜆 ∈ RTR}

Note that, since 𝜏 represents an unobservable event, all observations of a process 𝑃 are precisely those of its internal closure I𝜏 (𝑃) –
the two processes are indistinguishable in this observational model. Moreover, we use internal closure to formally lift the notions of
refusal and refusal trace from states to processes:

R(𝑃) ≜
⋃

𝑞∈I𝜏 (𝑃) R(𝑞)

RT(𝑃) ≜
⋃

𝑞∈I𝜏 (𝑃) RT(𝑞)

A process 𝑄 is a refusal trace refinement of a process 𝑃 , notation 𝑃 ⊑RT 𝑄, iff RT(𝑄) ⊆ RT(𝑃). 𝑃 and 𝑄 are refusal trace equivalent,
notation 𝑃 =RT 𝑄 iff RT(𝑃) = RT(𝑄).

For a process 𝑃 and refusal trace 𝜎, the process 𝑃 after 𝜎, denoted with 𝑃 ||𝜎, is the set {𝑞 ∈ 𝑆 | ∃𝑠 ∈ 𝑃 ∶ 𝑠
𝜎

⟹ 𝑞}. On a formal
note, observe that for all 𝑃 we have 𝑃 || 𝜖 = I𝜏 (𝑃).

Example 2.0.1. Consider the LTS from Fig. 2, representing a process 𝑃 . Refusals of the process 𝑃 are all subsets of {𝑏, 𝑐}, i.e.
R(𝑃) = {{𝑏, 𝑐}, {𝑏}, {𝑐}, ∅}}. Refusals of the process 𝑄 = 𝑃 ||{𝑏, 𝑐}.𝑎 are the respective maximal refusals of states comprising 𝑄, i.e.
{𝑏} and {𝑐}, as well as all of their proper subsets, in this case only the empty set, hence R(𝑄) = {{𝑏}, {𝑐}, ∅}.

3. Refusal traces: a language-based approach

In this work, we focus on a more abstract language-based view, in which processes are represented solely by their refusal trace
semantics, that is languages (sets) of refusal traces. Hence our primary objects of interest are the so-called healthy languages of refusal
traces. Healthiness conditions are syntactic constraints on a language that, ideally, provide a sufficient and necessary conditions for
a language to represent actual semantics of a process.

1 Note that although divergence and deadlock look the same to the tester, since there are no visible actions/observations, they would not look the same if the tester
was able to determine whether a process is active (divergence involves progress, while deadlock does not).

Science of Computer Programming 239 (2025) 103173

5

M. Gazda and R.M. Hierons

𝑠0{𝐛, 𝐜}

𝑠1
{𝐛}

𝑠2
{𝐜}

𝑎

𝑎

𝑎, 𝑐

𝑎

𝑎, 𝑏

Fig. 2. A labelled transition system underlying a process 𝑃 . States are labelled with their maximal refusals (the so-called state refusals). The initial state of 𝑃 is 𝑠0 .

We first define a natural preorder on refusal traces, denoted by ≤RT, which combines prefix order and pointwise inclusion:

𝑋 ≤RT 𝑌 ⟺ (𝑋 = ∙) ∨ (𝑋 ≠ ∙ ∧𝑋 ⊆ 𝑌)

𝑋0𝑎1…𝑎𝑛[𝑋𝑛] ≤RT 𝑌0𝑎1…𝑎𝑚[𝑌𝑚]
𝑑𝑒𝑓
⟺ 𝑛 ≤𝑚 ∧ ∀𝑖 ∈ {0,… , 𝑛− 1, [𝑛]}𝑋𝑖 ≤RT 𝑌𝑖

Intuitively, 𝜋1 ≤RT 𝜋2 indicates that 𝜋1 contains no more information on system behaviour than 𝜋2 , for instance: 𝜖 ≤RT 𝜋 for any
𝜋, and {𝑎}.𝑏.∅.𝑑 ≤RT {𝑎, 𝑐}.𝑏.∅.𝑑.{𝑎, 𝑏, 𝑐}.

The healthiness conditions for a language  ⊆ RT can now be defined as follows:

RT0 𝜖 ∈
RT1 𝜋2 ∈ ∧ 𝜋1 ≤RT 𝜋2 ⟹ 𝜋1 ∈
RT2 𝑋, 𝑌 ∈ (Σ) ∧ 𝜋1.𝑋.𝜋2 ∈  ∧ (∀𝑎 ∈ 𝑌 𝜋1.𝑋.𝑎 ∉) ⟹ 𝜋1.(𝑋 ∪ 𝑌).𝜋2 ∈ 
RT3 ∙ ∈  ∧ (𝜋.𝑎 ∈ ⟹ 𝜋.𝑎.∙ ∈ )
RTC ∅ ∈ ∧ (𝜋.𝑎 ∈  ⟹ 𝜋.𝑎.∅ ∈ )

In particular, the condition RT2 intuitively states that if, in a given context, no action from 𝑌 can take place, then this must be
reflected in the language by the presence of refusal 𝑌 in the same context. We note that the last condition RTC is only required/valid
in case we assume convergence (divergence freedom) of the underlying model (as we do in this work).

From hereon, by  ⊆ RT we shall always denote a healthy language, i.e. satisfying syntactic healthiness conditions RT0–RT3+
RTC.

By RT
𝑙() we shall denote a sublanguage of  consisting of traces of length not exceeding 𝑙.

3.1. Fundamental refusals and equivalence

In this section, we introduce the notions of fundamental refusals and equivalence [6,7]. In [6], fundamental refusals were intro-
duced as intersections of state refusals (i.e. maximal refusals of states) and subsequently shown to have an equivalent characterisation
based solely on the syntax of refusal traces. Since in our setting we work with a specification language not tied to an explicit model,
we use the latter syntax-based definition as the default one. In fact, we show how one can arrive at the theory from [7] while only
having a language of refusal traces at our disposal.

3.1.1. Behaviour after a partial trace
We first focus on the behaviour after partial traces (RTA), in particular the local structure of refusals after such traces: we identify

classes of refusals that are equivalent in the context of a partial trace.

Definition 3.1. For 𝜋 ∈ RTA, we define:

• the language  after 𝜋 as:

 ||𝜋 ≜ {𝜆 ∈ RT | 𝜋.𝜆 ∈ }

• the set of refusals of  after 𝜋 as:

R(𝜋) = {𝑋 ⊆ (Σ) | 𝜋.𝑋 ∈ }

We also define R() ≜ R(𝜖).

Science of Computer Programming 239 (2025) 103173

6

M. Gazda and R.M. Hierons

We sometimes refer to a language after a partial trace as a language process.
It is straightforward to observe that suffix languages after partial traces are of the same kind as the language under consideration

 (i.e. healthiness conditions are satisfied in suffix languages).

Lemma 3.1. If  is a healthy language, then for any 𝜎 ∈,  ||𝜎 is healthy as well.

Proof. The proof is very straightforward and we shall only provide it for one case (healthiness condition RT2); proofs of the remaining
cases follow the same pattern.

Suppose that 𝑋, 𝑌 ∈ (Σ), 𝜋1.𝑋.𝜋2 ∈ ||𝜎, and for all 𝑎 ∈ 𝑌 we have 𝜋1.𝑋.𝑎 ∉ ||𝜎. From the definition of  ||𝜎, this in particular
entails 𝜎.𝜋1.𝑋.𝜋2 ∈ and 𝜎.𝜋1.𝑋.𝑎 ∉  for all 𝑎 ∈ 𝑌 . Since  is healthy, we have 𝜎.𝜋1.(𝑋 ∪𝑌).𝜋2 ∈, from which and the definition
of  ||𝜎 follows 𝜋1.(𝑋 ∪ 𝑌).𝜋2 ∈ ||𝜎. Hence RT2 holds for  ||𝜎. □

Definition 3.2. A refusal observation 𝑋 ∈ R() ∪ {∙} entails 𝑌 in the context of  and 𝜋 ∈ RTA ∩ , notation 𝑋 ⪰,𝜋 𝑌 , if either
𝑌 = ∙, or 𝑋, 𝑌 ⊆ Σ, and

∀𝑎 ∈ 𝑌 𝜋.𝑋.𝑎 ∉

In other words, for any 𝑋 ∈ R(𝜋), 𝑋 entails 𝑌 if any event in 𝑌 is always forbidden by  after 𝜋.𝑋 (note that this includes the
case when 𝑌 is a subset of 𝑋). The interpretation of entailment in model-based testing is as follows: suppose we are testing if an
implementation satisfies a specification , and we have already executed/observed a trace 𝜋 in the implementation. If we observe a
subsequent refusal 𝑋, then the current state of a correct implementation must also exhibit any refusal 𝑌 such that 𝑋 ⪰,𝜋 𝑌 .

We can now define the fundamental equivalence of refusals in the context of  and 𝜋 ∈ RTA as:

𝑋 ≈,𝜋 𝑌
𝑑𝑒𝑓
⟺ 𝑋 ⪰,𝜋 𝑌 ∧ 𝑌 ⪰,𝜋 𝑋

We proceed to show that refusal entailment is a preorder, and fundamental equivalence an actual equivalence relation. We start
with the following simple property.

Lemma 3.2. If 𝑋, 𝑌 ∈ (Σ) and 𝑋 ⪰,𝜋 𝑌 , then for any 𝜆 ∈ RTA-SUF:

𝜋.𝑋.𝜆 ∈ ⟹ 𝜋.𝑋 ∪ 𝑌 .𝜆 ∈

Proof. In the context described above, suppose 𝜋.𝑋.𝜆 ∈ . Since 𝑋 ⪰,𝜋 𝑌 , for all 𝑏 ∈ 𝑌 ⧵𝑋 we have 𝜋.𝑋.𝑏 ∉ . This, combined
with the healthiness condition RT2, yields 𝜋.𝑋 ∪ 𝑌 .𝜆 = 𝜋.𝑋 ∪ (𝑌 ⧵𝑋).𝜆 ∈. □

The above lemma has an important corollary – equivalent refusals are interchangeable in the context of a trace.

Corollary 3.2.1. For any 𝑋, 𝑌 ∈ (Σ) ∪ {∙}:

1. 𝑋 ⪰,𝜋 𝑌 ⟹ ∀𝜆 ∈ RTA-SUF (𝜋.𝑋.𝜆 ∈  ⟹ 𝜋.𝑌 .𝜆 ∈)
2. 𝑋 ≈,𝜋 𝑌 ⟹ ∀𝜆 ∈ RTA-SUF (𝜋.𝑋.𝜆 ∈  ⟺ 𝜋.𝑌 .𝜆 ∈ )

Proof. We only need to show the first property, as the latter follows immediately. Take any 𝑋, 𝑌 such that 𝑋 ⪰,𝜋 𝑌 and suppose
that 𝜋.𝑋.𝜆 ∈ . The case when 𝑌 = ∙ is trivial; otherwise we must have 𝑋, 𝑌 ⊆ Σ. From Lemma 3.2 we have 𝜋.(𝑋 ∪ 𝑌).𝜆 ∈ , and
from the closure condition (RT1) of  we obtain 𝜋.𝑌 .𝜆 ∈ . □

The above property can be generalised as follows.

Proposition 3.3. Consider two traces 𝜋1 and 𝜋2 of the same length, with the same actions appearing at the corresponding positions, and
moreover such that refusal observations at the corresponding positions are equivalent. That is, formally we have: 𝜋1 =𝑋0𝑎1𝑋1… 𝑎𝑛[𝑋𝑛], 𝜋2 =
𝑌0𝑎1𝑌1… 𝑎𝑛[𝑌𝑛], and for all 𝑖 ∈ {0, … , 𝑛 − 1, [𝑛]} 𝑋𝑖 ≈,𝑋0𝑎1…𝑎𝑖−1

𝑌𝑖. Then

𝜋1 ∈ ⟺ 𝜋2 ∈

Proof. Starting with 𝜋1 = 𝑋0… 𝑎𝑛−1[𝑋𝑛], we can modify the trace by iteratively substituting 𝑋𝑖 with 𝑌𝑖 for each position 𝑖 ∈
{0, … , 𝑛 − 1, [𝑛]}. Due to Corollary 3.2.1, after each such substitution the modified trace is contained in  if and only if the original
one (𝜋1) is. The chain of modified traces ultimately results in the trace 𝜋2 . □

We are now in position to establish that refusal entailment is a preorder.

Science of Computer Programming 239 (2025) 103173

7

M. Gazda and R.M. Hierons

Proposition 3.4. For any healthy  and 𝜋 ∈ RTA ∩, ⪰,𝜋 is a preorder. As a consequence, its kernel ≈,𝜋 is an equivalence relation.

Proof. Suppose 𝑋 ⪰,𝜋 𝑌 and 𝑌 ⪰,𝜋 𝑍 . Take any 𝑎 ∈𝑍 ⧵𝑋; we need to show that 𝜋.𝑋.𝑎 ∉. There are two cases:

• if 𝑎 ∈ 𝑌 , then 𝑎 ∈ 𝑌 ⧵𝑋, and from 𝑌 ⪰,𝜋 𝑋 follows 𝜋.𝑋.𝑎 ∉ 
• if 𝑎 ∉ 𝑌 , then 𝑎 ∈𝑍 ⧵ 𝑌 , and hence 𝜋.𝑌 .𝑎 ∉.
Suppose, towards contradiction, that 𝜋.𝑋.𝑎 ∈ . Then from 𝑋 ⪰,𝜋 𝑌 and Lemma 3.2 we would have 𝜋.(𝑋 ∪ 𝑌).𝑎 ∈ , which
contradicts 𝜋.𝑌 .𝑎 ∉ (violation of subset closure of  – RT1). We have thus shown that 𝜋.𝑋.𝑎 ∉ . □

Refusal entailment and equivalence are lifted to refusal traces in a natural way:
𝑋0𝑎1𝑋1… 𝑎𝑛[𝑋𝑛] ⪰ 𝑌0𝑎1𝑌1… 𝑎𝑛[𝑌𝑛]
𝑑𝑒𝑓
⟺ ∀𝑖 ∈ {0, … , 𝑛 − 1, [𝑛]} 𝑋𝑖 ⪰,𝑋0…𝑎𝑖−1

𝑌𝑖
The pointwise lifting of refusal equivalence to traces, denoted with ≈ , is defined similarly (just substitute relation symbols in the

above definition).

3.1.2. Fundamental refusals and fundamental refusal traces

Definition 3.3. Given a healthy language , and a trace 𝜋 ∈ RTA, we define the set of fundamental refusals [of ] after 𝜋 as:

FR(𝜋) = {𝑋 ∈ R(𝜋) | ∀𝑎 ∈ Σ ⧵𝑋 𝜋.𝑋.𝑎 ∈}

We also define FR() ≜ FR(𝜖).

Intuitively, a refusal 𝑋 is fundamental after 𝜋 if there is a valid model for  that, after performing 𝜋, can reach a state with a
state refusal 𝑋 i.e. state which refuses precisely the actions in 𝑋 (and where all actions in Σ ⧵𝑋 are enabled).

Example 3.4.1. Let  be the refusal semantics of process 𝑃 from Fig. 2 in the context of Σ = {𝑎, 𝑏, 𝑐}. Observe that all nonempty
traces in  are of the form 𝑋 or 𝑋.𝑎.𝜎, where 𝑋 = ∙ or 𝑋 ⊆ {𝑏, 𝑐}. We therefore have FR() = {{𝑏, 𝑐}}, since {𝑏, 𝑐}.𝑎 ∈ , and {𝑏, 𝑐}
is the only refusal meeting the condition from the definition of FR.

Consider now the context after the trace {𝑏, 𝑐}.𝑎. Its extensions in  are of the form:

• {𝑏, 𝑐}.𝑎.𝑋.𝑎.𝜎, {𝑏, 𝑐}.𝑎.𝑋.𝑐.𝜎 for 𝑋 ⊆ {𝑏}

(traces contributed by paths of the form 𝑠0.𝑠1. …)
• {𝑏, 𝑐}.𝑎.𝑋.𝑎.𝜎, {𝑏, 𝑐}.𝑎.𝑋.𝑏.𝜎 for 𝑋 ⊆ {𝑐} (traces contributed by paths of the form 𝑠0.𝑠2. …)

We have thus FR({𝑏, 𝑐}.𝑎) = {{𝑏}, {𝑐}, ∅}. Observe in particular that ∅ is a fundamental refusal due to {𝑏, 𝑐}.𝑎.∅.𝑎, {𝑏, 𝑐}.𝑎.∅.𝑏 and
{𝑏, 𝑐}.𝑎.∅.𝑐 being present in .

Definition 3.4. The set of fundamental refusal traces (or fundamental traces for short) of  is defined as:

FRT() ≜ {𝜖} ∪ {𝑋0𝑎1…𝑋𝑛[𝑎𝑛+1] ∈ |𝑋0 = ∙ ∨𝑋0 ∈ FR()
∧∀𝑖 ∶𝑋𝑖 = ∙ ∨ 𝑋𝑖 ∈ FR(𝑋0𝑎1…𝑎𝑖) }

We also define, for a given 𝑋 ∈ R(𝜋), the so-called top refusal for 𝑋:

top,𝜋(𝑋) = {𝑎 ∈ Σ | 𝜋.𝑋.𝑎 ∉ }

Observe that for any 𝜋.𝑋 ∈, we also have 𝜋.top,𝜋(𝑋) ∈ – this is due to the healthiness condition RT2.
The top refusal for 𝑋 is the largest refusal entailed by 𝑋, as well as the least fundamental refusal that contains 𝑋, as witnessed

by, respectively, Lemma 3.5 and Lemma 3.6.

Lemma 3.5. For any refusal 𝑋 ⊆ (Σ), top,𝜋(𝑋) is the largest refusal entailed by 𝑋, i.e. 𝑋 ⪰,𝜋 top,𝜋(𝑋) and

∀𝑌 𝑋 ⪰,𝜋 𝑌 ⟹ 𝑌 ≤RT top,𝜋(𝑋)

Similarly, top,𝜋(𝑋) is the largest refusal equivalent to 𝑋, i.e. top,𝜋(𝑋) ≈,𝜋 𝑋 and

∀𝑌 𝑋 ≈,𝜋 𝑌 ⟹ 𝑌 ≤RT top,𝜋(𝑋)

Proof. We first show that 𝑋 ⪰,𝜋 top,𝜋(𝑋) and top,𝜋(𝑋) ≈,𝜋 𝑋.

Science of Computer Programming 239 (2025) 103173

8

M. Gazda and R.M. Hierons

For any 𝑎 ∈ top,𝜋(𝑋), we have 𝜋.𝑋.𝑎 ∉  directly from the definition of top,𝜋 ; hence 𝑋 ⪰,𝜋 top,𝜋(𝑋). Moreover, from the
definition of top and the well-formedness condition for RT, we have 𝑋 ⊆ top,𝜋(𝑋). From this and the well-formedness condition for
RT, follows top,𝜋(𝑋) ⪰,𝜋 𝑋, and hence we obtain top,𝜋(𝑋) ≈,𝜋 𝑋.

Take any refusal observation 𝑌 such that 𝑋 ⪰,𝜋 𝑌 [𝑌 ≈,𝜋 𝑋]. If 𝑌 = ∙, then 𝑌 ≤RT top,𝜋(𝑋) holds immediately. We thus assume
that 𝑌 ∈ (Σ).

Take an arbitrary 𝑎 ∈ 𝑌 . From 𝑋 ⪰,𝜋 𝑌 it follows that 𝜋.𝑋.𝑎 ∉ . This entails 𝑎 ∈ top,𝜋(𝑋). □

Lemma 3.6. top,𝜋(𝑋) is the least refusal in the set {𝑌 ∈ FR(𝜋) | 𝑋 ⊆ 𝑌 }, that is, it is the least fundamental refusal that contains 𝑋.

Proof. That 𝜋.top,𝜋(𝑋) ∈  follows from 𝜋.𝑋 ∈ , definition of top,𝜋(𝑋), and the healthiness condition RT2. Hence top,𝜋(𝑋) ∈
R(𝜋).

We proceed to prove that top,𝜋(𝑋) ∈ FR(𝜋). Consider any 𝑎 ∈ Σ ⧵ top,𝜋(𝑋); from the definition of top,𝜋(𝑋)we have 𝜋.𝑋.𝑎 ∈.
From this, the definition of top,𝜋(𝑋), and the healthiness condition RT2, we obtain 𝜋.top,𝜋(𝑋).𝑎 ∈ . Hence we have shown that
top,𝜋(𝑋) ∈ FR(𝜋).

Finally, let 𝑌 ∈ FR(𝜋) be such that 𝑋 ⊆ 𝑌 . Take any 𝑎 ∈ Σ such that 𝜋.𝑋.𝑎 ∉ . From RT1 we have 𝜋.𝑌 .𝑎 ∉ , and since
𝑌 ∈ FR(𝜋), it must be the case that 𝑎 ∈ 𝑌 . Hence we obtain

top,𝜋(𝑋) = {𝑎 ∈ Σ | 𝜋.𝑋.𝑎 ∉ } ⊆ 𝑌 □

For technical convenience, we extend the definition of top operator to null refusals:

top,𝜋(∙) ≜ ∙

Furthermore, we also extend the definition of the top operator to all refusal traces of a given language in a natural way. Namely,
given a language , we define top(𝜖) ≜ 𝜖, and for all nonempty refusal traces of :

top(𝑋0𝑎1…𝑎𝑛[𝑋𝑛]) ≜ top0
(𝑋0)𝑎1…𝑎𝑛[top𝑛

(𝑋𝑛)]

where: 𝑋0𝑎1… 𝑋𝑛−1𝑎𝑛[𝑋𝑛] ∈, 0 = and 𝑖 = ||𝑋0𝑎1… 𝑎𝑖 for 𝑖 ∈ {1, … , 𝑛}.
It is straightforward to see that for any 𝜋 ∈, we have top(𝜋) ∈ .

Corollary 3.6.1. Given a language  and refusal trace 𝜎 ∈ ∩ RTA, we have:

 ||𝜎 =  || top(𝜎)

Proof. Follows from top,𝜋(𝑋) ≈,𝜋 𝑋 (Lemma 3.5) and Proposition 3.3. □

We have now arrived at the following corollary, which essentially states that fundamental refusal traces determine the refusal
trace semantics: two healthy languages are equal whenever their respective restrictions to fundamental refusal traces are equal.

Corollary 3.6.2. For all healthy 1, 2 ⊆ RT

1 =2 ⟺ FRT(1) = FRT(2)

Proof. The direction from left to right is immediate, since FRT() is a function of . For the other direction, assume that FRT(1) =
FRT(2) and w.l.o.g. take any 𝜋 ∈ 1; we need to show that 𝜋 ∈ 2. Let 𝜋 = top(𝜋); we have 𝜋 ≤RT 𝜋. From FRT(1) = FRT(2)

we have 𝜋 ∈ FRT(2) ⊆ 2. That 𝜋 ∈ 2 follows now from downward closure property (RT1) of 2. □

In the final part of this section, we recall the result from [7] stating that the syntactic notion of fundamental refusals coincides
with the original, model-dependent notion based on intersections of state refusals, introduced in [7].

Given a state 𝑠 of an LTS, the state refusal of 𝑠, denoted with SR(𝑠), is the largest refusal of 𝑠, i.e. the largest element of R(𝑠). Note
that state refusals are complements of the so-called initial sets (or ready sets) of individual states. State refusals of a process 𝑃 are all
state refusals of states comprising 𝑃 , i.e. SR(𝑃) =

⋃
𝑠∈𝑃 {SR(𝑠)}.

Let 𝑃 be a process and 𝜋 ∈ RTA(𝑃). A refusal 𝑋 is a fundamental refusal in the sense of [7] of 𝑃 after 𝜎 iff it is an intersection of
some state refusals in 𝑃 ||𝜋, i.e. iff there exist state refusals 𝑋1, … , 𝑋𝑛 ∈ SR(𝑃 ||𝜋) such that 𝑋 =𝑋1 ∩⋯ ∩𝑋𝑛. As has been shown in
[7], the two notions of fundamental refusals are equivalent, i.e. the following holds:

Proposition 3.7. Let 𝑃 be a process,  = RT(𝑃) be the refusal trace semantics of 𝑃 , and 𝜋 ∈ RTA. For any refusal 𝑋 ⊆ Σ we have:

𝑋 ∈ FR( ||𝜋) ⟺ 𝑋 ∈ {𝑋1 ∩⋯ ∩𝑋𝑛 |𝑋1,… ,𝑋𝑛 ∈ SR(𝑃 ||𝜋)}

Science of Computer Programming 239 (2025) 103173

9

M. Gazda and R.M. Hierons

3.2. Observation transition system

In this section, we define a normalised canonical model for a language that is particularly suitable for testing purposes. It is a
specific type of labelled transition system whose labels correspond to observations that can be made during a testing experiment,
hence its labels contain refusals as well as actions. We found this approach simplest to work with, as it avoids a lot of redundant
technical overhead that would otherwise be necessary to manage the structure of a more standard labelled transition system.

We note that the size of an observation transition system is in worst case exponential in the size of the original model (e.g. LTS).

Definition 3.5. For a healthy language , the observation transition system (OTS) induced by  is defined as:

() ≜ (() ∪ {𝑞⊤}, 𝑞
𝐼 (),⟶)

where:

• () ≜ { ||𝜋 | 𝜋 ∈ ∩ RTA}

• 𝑞⊤ = ∅ is the terminal state
• 𝑞𝐼 is the initial (language) state of  defined as:

𝑞𝐼 () ≜  || 𝜖 = 

• the transition relation ⟶ is defined as:

𝑞
𝑋.𝑎
⟶ 𝑞′

𝑑𝑒𝑓
⟺ 𝑋.𝑎 ∈ 𝑞 ∧ 𝑞′ = 𝑞 ||𝑋.𝑎

𝑞
𝑋
⟶ 𝑞⊤

𝑑𝑒𝑓
⟺ 𝑋 ∈ 𝑞

Note that the state 𝑞⊤ represents termination of a testing experiment after observing a refusal, and it is considered separate from
the language states (): it is in particular not a healthy language.

Note that 𝑞𝐼 () ≠ ∅ due to the healthiness condition RT0 holding for .
We shall use the notion of observation traces of an OTS and its states, which are essentially their standard traces. Formally we

define OT(𝑞⊤) ≜ {𝜖}, and for every 𝑞 ∈():

OT(𝑞) ≜{𝜖}

∪ {𝑋.𝑎.𝜋 |∃𝑞′ ∶ 𝑞
𝑋.𝑎
⟶ 𝑞′ ∧ 𝜋 ∈ OT(𝑞

′)}

∪ {𝑋 | 𝑞
𝑋
⟶ 𝑞⊤}

The validity of our construction can be now established with the following result.

Proposition 3.8. Given a language  and 𝑞 ∈(), we have:

OT(𝑞) = 𝑞

Proof. We shall prove that for any 𝜋 ∈ RT, we have

𝜋 ∈ OT(𝑞) ⟺ 𝜋 ∈ 𝑞

using induction on the structure of 𝜋.

• Base:
– 𝜋 = 𝜖: we have 𝜖 ∈ OT(𝑞) directly from the definition of OT(𝑞). Since 𝑞 =  ||𝜋 for some 𝜋 ∈ , from Lemma 3.1 and
healthiness condition RT0 we obtain 𝜖 ∈ 𝑞.

– 𝜋 =𝑋: We have:
𝑋 ∈ OT(𝑞) ⟺ (def. of OT(𝑞))

𝑞
𝑋
⟶ 𝑞⊤ ⟺ (def. of ⟶)

𝑋 ∈ 𝑞

– Inductive step:
Let 𝜋 =𝑋.𝑎.𝜌. We have:
𝑋.𝑎.𝜌 ∈ OT(𝑞) ⟺ (def. of OT(𝑞))

∃𝑞′ ∶ 𝑞
𝑋.𝑎
⟶ 𝑞′ ∧ 𝜌 ∈ OT(𝑞

′) ⟺ (def. of ⟶)
∃𝑞′ ∶𝑋.𝑎 ∈ 𝑞 ∧ 𝑞′ = 𝑞 ||𝑋.𝑎 ∧ 𝜌 ∈ OT(𝑞

′) ⟺ (IH)
∃𝑞′ ∶𝑋.𝑎 ∈ 𝑞 ∧ 𝑞′ = 𝑞 ||𝑋.𝑎 ∧ 𝜌 ∈ 𝑞′ ⟺ (def. of 𝑞 ||𝑋.𝑎)
∃𝑞′ ∶𝑋.𝑎 ∈ 𝑞 ∧ 𝑞′ = {𝜆 | 𝑋.𝑎.𝜆 ∈ 𝑞} ∧ 𝜌 ∈ 𝑞′ ⟺

𝑋.𝑎.𝜌 ∈ 𝑞 □

Science of Computer Programming 239 (2025) 103173

10

M. Gazda and R.M. Hierons

Corollary 3.8.1. For any language of refusal traces 

OT(𝑞
𝐼 ()) =

Next, we formally state a very straightforward and useful property regarding the relationship between (fundamental) traces of a
language and (fundamental) traces of its language states.

Lemma 3.9. Given a language , some 𝑣 ∈, and a language state 𝑠 = ||𝑣, we have:

1. For any 𝜎 ∈ RT

𝜎 ∈ 𝑠 ⟺ 𝑣.𝜎 ∈ 

2. If 𝑣 ∈ FRT(), then

𝜎 ∈ FRT(𝑠) ⟺ 𝑣.𝜎 ∈ FRT()

Proof. 1. Immediate, since 𝑠 =  ||𝑣 = {𝜆 ∈ RT | 𝑣.𝜆 ∈ }
2. First, observe that we can state the definition of fundamental refusal traces in the following way:

𝜋 ∈ FRT() ⟺ ∀𝜋′.𝑋 ∶ 𝜋 = 𝜋′.𝑋.𝜆 ⟹𝑋 ∈ FR( ||𝜋′)

Furthermore, it is straightforward to observe that for any 𝜋 ∈ RTA, 𝜌 ∈ RT:
(*)  ||𝜋.𝜌 = ( ||𝜋) ||𝜌 Since we have assumed that 𝑣 ∈ FRT(), we have:
𝑣.𝜎 ∈ FRT() ⟺ [def. of FRT]
∀𝜋.𝑋 ∶ 𝑣.𝜎 = 𝜋.𝑋.𝜆 ⟹𝑋 ∈ FR( ||𝜋) ⟺ [𝑣 ∈ FRT()]
∀𝑣.𝜋′.𝑋 ∶ 𝑣.𝜎 = 𝑣.𝜋′.𝑋.𝜆 ⟹𝑋 ∈ FR( ||𝑣.𝜋′) ⟺
∀𝜋′.𝑋 ∶ 𝜎 = 𝜋′.𝑋.𝜆 ⟹𝑋 ∈ FR( ||𝑣.𝜋′) ⟺ [(*)]
∀𝜋′.𝑋 ∶ 𝜎 = 𝜋′.𝑋.𝜆 ⟹𝑋 ∈ FR(𝑠 ||𝜋′) ⟺ [def. of FRT]
𝜎 ∈ FRT(𝑠) □

We can work with transitions of an OTS modulo fundamental equivalence, as witnessed by the following proposition.

Proposition 3.10. Suppose 𝑞 = ||𝜋. For all 𝑋, 𝑌 such that 𝑋 ≈,𝜋 𝑌 and 𝜋.𝑋, 𝜋.𝑌 ∈, we have:

𝑞
𝑋.𝑎
⟶ 𝑞′ ⟺ 𝑞

𝑌 .𝑎
⟶ 𝑞′

𝑞
𝑋
⟶ 𝑞⊤ ⟺ 𝑞′

𝑌
⟶ 𝑞⊤

Proof. Follows from Corollary 3.2.1. □

Example 3.10.1. Let  be the language consisting of refusal traces of process 𝑃 from Fig. 2. () is depicted on Fig. 3.

4. Testing framework

Here, we describe the testing framework. In Section 4.1 we explain how testing can be seen as comparing two OTSs. Section 4.2
explains how, given refusal trace 𝜎, one can test to determine whether 𝜎 is a refusal trace of the SUT. Test generation can then
be defined in terms of choosing suitable traces. Sections 4.3 and 4.4 then define what we mean for traces to reach states of the
specification and also to identify a state; these definitions will be used in the test generation technique (Section 5).

4.1. Basic test hypotheses

In order to formally reason about test effectiveness one needs to consider formal entities. It is thus normal to assume that the SUT
behaves like an unknown model that can be expressed in the language used to write the specification (the minimum hypothesis [5]).
We therefore have a scenario in which we have a specification, with language 𝑆 , an SUT with unknown language 𝐼 and we would
like to test to determine whether 𝑆 = 𝐼 . We also assume that 𝐼 induces an unknown OTS (𝐼) with the same alphabet as
the specification.

When testing from an FSM, an additional test hypothesis is usually made: that the SUT behaves like an unknown FSM with at most
𝑚 states, for some given 𝑚. This defines a fault domain: the set of FSMs, with the same input and output alphabets as the specification,
that have no more than 𝑚 states. We use the corresponding test hypothesis, which is that there is a given 𝑚 such that the unknown
OTS (𝐼) has at most 𝑚 states.

Non-determinism creates a problem in testing since, even if 𝑋.𝑎.𝜎 is a refusal trace of the SUT, the SUT might have a state that
can be reached through 𝑋.𝑎 but that does not allow 𝜎: one can then test arbitrarily many times without observing 𝑋.𝑎.𝜎. This issue

Science of Computer Programming 239 (2025) 103173

11

M. Gazda and R.M. Hierons

𝑞0
{𝑠0}

𝑞1
{𝑠1, 𝑠2}

𝑞2
{𝑠0, 𝑠2}

𝑞3
{𝑠0, 𝑠1, 𝑠2}

∙.𝑎, {𝑏, 𝑐}.𝑎

∙.𝑏, ∙.𝑐, ∅.𝑏, ∅.𝑐,
{𝑏}.𝑎, {𝑏}.𝑐,{𝑐}.𝑎, {𝑐}.𝑏

∙.𝑎

∅.𝑎
{𝑏, 𝑐}.𝑎

∙.𝑏,{𝑐}.𝑏

∙.𝑎,{𝑐}.𝑎
∙.𝑎,∅.𝑎,{𝑐}.𝑎

∙.𝑏, ∙.𝑐, ∅.𝑏, ∅.𝑐,
{𝑏}.𝑎, {𝑏}.𝑐, {𝑐}.𝑏

{𝑏, 𝑐}.𝑎

Fig. 3. Observation transition system of a language induced by process 𝑃 from Fig. 2. Only the proper language states (without the terminal state 𝑞⊤) are shown;
moreover, transition labels of the form 𝑋.𝑎 are only included if either X is fundamental, or 𝑋 = ∙.

also arises for testing based on traces. Clearly, in the presence of possible non-determinism one cannot make guarantees about test
effectiveness without additional assumptions.

The standard solution is to make a fairness assumption that, for some given 𝑘, it is sufficient to apply a test case 𝑘 times to observe
all possible responses of the SUT (see, for example, [16,21]; Huang and Peleska also make a similar assumption [13,14]). The choice
of 𝑘 could depend on criticality/risk or domain knowledge, and there is also the potential to use probabilistic arguments. We therefore
assume that a fairness assumption is being made.

To summarise, we assume that language 𝐼 of the SUT induces an unknown OTS (𝐼) that has the same alphabet as the
specification, that (𝐼) has at most 𝑚 states, and that a fairness assumption can be made.

4.2. Testing for refusal traces

We will consider test generation as a process of choosing a set of refusal traces and determining whether these are refusal traces
of the SUT. One could use refusal traces in 𝑆 or refusal traces not allowed (not in 𝑆). Here, we briefly address how one can test
whether the language of the SUT includes a refusal trace 𝜎.

First consider the problem of testing to decide whether 𝑋 ∈ (Σ) is a refusal in the current state of the SUT. The normal process
is for the tester to offer the set 𝑋 of actions to the SUT and check whether there is a deadlock. The tester thus behaves like a process
that provides an external choice between the events in 𝑋. In testing, deadlock is normally observed through the use of a timeout,
with the choice of time used being problem specific.

Now let us suppose that we wish to test to determine whether 𝑋.𝑎.𝜎 is a refusal trace of the SUT, for some refusal trace 𝜎. As
before, the tester provides an external choice between the events in 𝑋. If deadlock is observed (there is a timeout) then the tester offers
event 𝑎. If 𝑎 is observed then we recurse, testing to check whether 𝜎 is a possible refusal trace in the current state of the SUT (that has
been reached by 𝑋.𝑎). In the presence of (possible) non-determinism, if 𝑋.𝑎.𝜎 is not observed then the overall process/experiment
is repeated a sufficient number of times to use the fairness assumption.

4.3. State covers

In FSM-based testing, many techniques use the notion of a state cover: a set of input sequences that, between them, reach all of
the states of the FSM specification. Based on the material above, we can now adapt this concept to language states.

Definition 4.1. Given language  and language state 𝑞 ∈(), a refusal trace 𝜋 ∈ ∩ RTA reaches 𝑞 if  ||𝜋 = 𝑞.

It is straightforward to say what it means for a set of refusal traces to be a state cover.

Definition 4.2. A set 𝑉 ⊆ RTA ∩ of refusal traces is a state cover for language  if the following conditions hold:

1. For all 𝑞 ∈(), there is some 𝜋𝑞 ∈ 𝑉 that reaches 𝑞; and
2. 𝜖 ∈ 𝑉

Science of Computer Programming 239 (2025) 103173

12

M. Gazda and R.M. Hierons

The second condition is a natural property (we use the shortest refusal trace that reaches the initial state) and will be required by
the test generation algorithm.

If () is finite and the alphabet is finite then one can use a breadth-first search to generate a state cover.

Proposition 4.1. Given language , if () is finite such that 𝑛 = |()|, then there is a state cover 𝑉 such that:

• 𝑉 contains 𝑛 refusal traces
• 𝑉 contains only fundamental refusal traces of 
• each refusal trace has length at most 𝑛
• 𝑉 is prefix-closed w.r.t. RTA

• each refusal trace 𝑣 ∈ 𝑉 has minimal length among all refusal traces in RTA ∩ that reach  ||𝑣.

We shall use the term normal state cover for any state cover with the above properties.

Proof. That a state cover has |()| refusal traces follows immediately from its definition, requiring one refusal trace for each
language state. Moreover, from every state cover 𝑉 ′ we can obtain a state cover 𝑉 with the same relevant properties and in addition
consisting of fundamental refusals only by taking 𝑉 = {top(𝜎) | 𝜎 ∈ 𝑉 ′}.

The existence of a state cover with the remaining properties can be shown constructively using a breadth-first search approach.
Let 𝑇 be an arbitrary breadth-first search tree rooted in 𝑞𝐼 (). Observe that, for a given state 𝑞 ∈ (), the length of the path

from the root 𝑞𝐼 () to 𝑞 in 𝑇 is equal to the minimal length of a refusal trace that reaches 𝑞.
Thus let 𝑉 be a collection of refusal traces corresponding to all paths in 𝑇 from the root 𝑞𝐼 () to the states in (). Since a

collection of (nontrivial) paths in a tree is prefix-closed, then so is 𝑉 , and furthermore, since the path lengths in 𝑇 obviously do not
exceed 𝑛, the same holds for traces in 𝑉 . □

Example 4.1.1. Consider the  induced by a language  from Fig. 3. The set 𝑉 = {𝜖, {𝑏, 𝑐}.𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎} is a
normal state cover for .

4.4. State identification

One can use a state cover to reach the states of the specification and so devise tests that execute transitions of the SUT that
correspond to those of the specification. However, such tests need not find faults that entail a transition of the SUT going to the
wrong state (state transfer faults). In order to detect state transfer faults we use refusal traces that separate two language states [15].

Definition 4.3. Refusal trace 𝜋 is said to separate language states 𝑞1 and 𝑞2 of  if either 𝜋 ∈ 𝑞1 ⧵ 𝑞2 or 𝜋 ∈ 𝑞2 ⧵ 𝑞1.

A characterising set is a set of traces that separates all pairs of states.

Definition 4.4. A set 𝑊 of refusal traces is a characterising set for language  if for every pair 𝑞1, 𝑞2 of distinct language states in
(), there is some 𝜋 ∈𝑊 that separates 𝑞1 and 𝑞2.

One can place an upper bound on the size of the smallest characterisation set.

Proposition 4.2. If () is finite, with 𝑛 = |()|, then  has a characterising set 𝑊 such that:

1. 𝑊 contains at most 𝑛 − 1 refusal traces; and
2. Every trace in 𝑊 has length at most 𝑛 − 1.

Proof. By definition, two different language states 𝑞1 and 𝑞2 define different sets of refusal traces and so are separable. As a result,
since () is finite,  has a finite characterising set.

We now prove that given two language states 𝑞1 and 𝑞2, there is a refusal trace 𝑤 that separates 𝑞1 and 𝑞2 such that |𝑤| ≤ 𝑛 − 1.
Let us fix a context of some language  and its corresponding OTS (). For pairs of states in (), we define 𝑚𝑖𝑛𝑠𝑒𝑝(𝑞, 𝑞′)

as the length of a minimal trace separating 𝑞 and 𝑞′. We shall prove the following statement:
(*) 𝑚𝑖𝑛𝑠𝑒𝑝(𝑞, 𝑞′) > 1 ⟹ ∃𝑠, 𝑠′ ∈() ∶𝑚𝑖𝑛𝑠𝑒𝑝(𝑠, 𝑠′) =𝑚𝑖𝑛𝑠𝑒𝑝(𝑞, 𝑞′) − 1

Take any 𝑞1, 𝑞2 ∈ () such that 𝑚𝑖𝑛𝑠𝑒𝑝(𝑞1, 𝑞2) > 1 and let 𝜋 be their separating trace of minimal length. Assume w.l.o.g. that
𝜋 ∈ OT(𝑞1) ⧵ OT(𝑞2).

Let 𝜋 =𝑋.𝑎.𝜋′ (note that |𝜋′| ≥ 1 hence 𝜋′ ≠ 𝜖). Let 𝑞′
1
= 𝑞1 ||𝑋.𝑎.

Observe that 𝑋.𝑎 is a refusal trace of 𝑞2 (otherwise 𝜋 would not be a minimal trace separating 𝑞1 and 𝑞2). Let 𝑞
′
2
= 𝑞2 ||𝑋.𝑎. Observe

that the trace 𝜋′ separates 𝑞′
1
and 𝑞′

2
and there is no shorter trace separating 𝑞′

1
and 𝑞′

2
. Indeed, if there was such 𝜆, then 𝑋.𝑎.𝜆 would

separate 𝑞1 and 𝑞2, contradicting the minimality of 𝜋. Since |𝜋′| = |𝑋.𝑎.𝜋′| −1 = |𝜋| −1, we obtain 𝑚𝑖𝑛𝑠𝑒𝑝(𝑞′
1
, 𝑞′

2
) =𝑚𝑖𝑛𝑠𝑒𝑝(𝑞1, 𝑞2) −1.

We have thus shown that (*) holds.

Science of Computer Programming 239 (2025) 103173

13

M. Gazda and R.M. Hierons

Let us define a family of equivalence relations ∼𝑖 on language states by: 𝑞 ∼𝑖 𝑞′ if and only if 𝑞 and 𝑞′ are not separated by
any refusal trace of length at most 𝑖. Observe that for any 𝑞, 𝑞′ such that 𝑘 = 𝑚𝑖𝑛𝑠𝑒𝑝(𝑞, 𝑞′) > 1 we have 𝑞 ≁𝑘 𝑞′ and 𝑞 ∼𝑖 𝑞′ for all
𝑖 ∈ {1, … , 𝑘 − 1}.

Let 𝑞 and 𝑞′ be a pair of states for which the value 𝑚𝑖𝑛𝑠𝑒𝑝(𝑞, 𝑞′) is maximal. Let 𝑘 = 𝑚𝑖𝑛𝑠𝑒𝑝(𝑞, 𝑞′). Suppose that 𝑘 > 1 (the other
case is trivial). From (∗) we know that there is a sequence of pairs of states {(𝑠𝑖, 𝑠

′
𝑖
) | 𝑖 ∈ {1, … , 𝑘}} such that 𝑚𝑖𝑛𝑠𝑒𝑝(𝑠𝑖, 𝑠

′
𝑖
) = 𝑖. This

means that for all 𝑖 ∈ {2, … , 𝑘}, ∼𝑖 has more equivalence classes than ∼𝑖−1. Moreover, since 𝑠1 ≁
1 𝑠′

1
, we know that ∼1 has at least

two equivalence classes. Since the number of equivalence classes is bounded by the number of states 𝑛, we thus obtain that 𝑘 ≤ 𝑛 −1.
What remains to be shown is that there is a characterising set 𝑊 that contains at most 𝑛 −1 refusal traces and where every refusal

trace in 𝑊 contains at most 𝑛 − 1 refusals. Let us suppose that 𝑊 = {𝑤1, … , 𝑤𝑘} is a minimal (smallest) characterising set whose
refusal traces all contain at most 𝑛 − 1 actions. For all 1 ≤ 𝑖 ≤ 𝑘. let 𝑊𝑖 = {𝑤1, … , 𝑤𝑖}. Further, we define the equivalence relation
∼𝑖 by: 𝑞1 ∼𝑖 𝑞2 if 𝑞1 and 𝑞2 are not separated by any refusal trace in 𝑊𝑖. Since 𝑊 is minimal, the equivalence relations ∼1, … , ∼𝑘

are distinct and have different (increasing) numbers of equivalence classes. Now observe that ∼1 has at least two equivalence classes
and so ∼𝑘 has at least 𝑘 + 1 equivalence classes. It is now sufficient to note that the number of equivalence classes is bounded above
by 𝑛 and so 𝑘 + 1 ≤ 𝑛 as required. □

Example 4.2.1. Consider the  induced by a language  from Fig. 3. The set 𝑊 = {{𝑏, 𝑐}, ∙.𝑏, ∙.𝑐} is a characterising set for .
Indeed, observe that:

• {𝑏, 𝑐} separates 𝑞1 from every other state in () ⧵ {𝑞1}
• ∙.𝑏 separates 𝑞0 from every other state in () ⧵ {𝑞0}
• ∙.𝑐 separates states in {𝑞1, 𝑞3} from states in {𝑞0, 𝑞2}.

5. Test generation

In this section we introduce a complete test generation technique for testing from a (finite) OTS induced by a specification language
𝑆 . The aim is to test whether the implementation defines the same language as the specification; we are testing for equivalence.

We now show how one can test to check properties of the state cover 𝑉 and characterising set 𝑊 . We will use the notion of two
languages 1 and 2, normally the specification and SUT languages, agreeing on a set 𝐴 of refusal traces.

Definition 5.1. Given set 𝐴 of refusal traces, languages 1 and 2 agree on 𝐴, written 1 ≡𝐴 2, if 1 ∩𝐴 =2 ∩𝐴.

Proposition 5.1. Let us suppose that the specification language 𝑆 induces finite state OTS (𝑆), with state set (𝑆) of cardinality
𝑛 = |(𝑆)|, and the implementation language 𝐼 induces OTS (𝐼), with state set (𝐼). Further, let us suppose that 𝑉 is a state
cover for (𝑆) and 𝑊 is a characterising set for (𝑆). If 𝑆 ≡𝑉 ∪𝑉 .𝑊 𝐼 then the following hold.

1. 𝑉 ⊆ 𝐼 and 𝑉 reaches 𝑛 distinct language states of (𝐼).
2. 𝑊 separates the language states of (𝐼) reached by 𝑉 .

Proof. That 𝑉 ⊆𝐼 follows immediately from 𝑆 ≡𝑉 ∪𝑉 .𝑊 𝐼 .
By definition, each refusal trace in 𝑉 must reach a unique specification state in (𝑆). Now consider two language states 𝑠 and

𝑠′ of 𝑆 reached by distinct refusal traces 𝑣, 𝑣′ ∈ 𝑉 . Let us suppose that 𝑞 and 𝑞′ are the language states of (𝐼) reached by 𝑣
and 𝑣′ respectively.

Since 𝑊 is a characterising set for (𝑆), there must exist 𝜎 ∈ 𝑊 that separates 𝑠 and 𝑠′. Without loss of generality, we
assume that 𝜎 ∈ 𝑠 ⧵ 𝑠′. Then 𝑣.𝜎 ∈ 𝑆 and 𝑣′.𝜎 ∉ 𝑆 . Since 𝑆 ≡𝑉 .𝑊 𝐼 , we therefore have that 𝑣.𝜎 ∈ 𝐼 and 𝑣

′.𝜎 ∉ 𝐼 , hence
𝜎 ∈ 𝑞 ⧵ 𝑞′, and so 𝜎 separates 𝑞 and 𝑞′.

We now know that the language states of (𝐼) reached by 𝑉 are separated by 𝑊 . This also implies that these language states
must be distinct as required. □

5.1. A simplified scenario

We now adapt the W-method to our scenario. We start by first considering a simplified setting where the number of language
states of the implementation does not exceed that of the specification.

Using the notions of a state cover and a characterising set, our test suite needs to ensure that the transitions are properly executed.
As a result of non-determinism, when testing from the OTS induced by 𝑆 , there may be more than one transition that can be followed
if an event 𝑎 is received in state 𝑠. We therefore define a set of refusal traces that extends 𝑉 to execute the transitions of (𝑆).

Definition 5.2. Given specification 𝑆 and normal state cover 𝑉 for 𝑆 , we let 𝑅𝑒𝑞𝑇 𝑟(𝑉 , 𝑆) and 𝑅𝑒𝑞𝑅𝑒𝑓 (𝑉 , 𝑆) be defined as
follows.

𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆) = {𝑣.𝑋.𝑎 ∈ FRT(𝑆) |𝑣 ∈ 𝑉 ∧ 𝑎 ∈ Σ ∧𝑋 ∈ (Σ) ∪ {∙}}

𝑅𝑒𝑞𝑅𝑒𝑓 (𝑉 ,𝑆) = {𝑣.𝑋 ∈ FRT(𝑆) |𝑣 ∈ 𝑉 ∧𝑋 ∈ (Σ) ∪ {∙}}

Science of Computer Programming 239 (2025) 103173

14

M. Gazda and R.M. Hierons

Note that all refusal traces in the above sets are required to be present in the implementation (corresponding to, respectively,
required transitions and refusals). We use these sets, as well as 𝑉 and 𝑊 , to construct the following test suite that contains both
positive tests (refusal traces of the specification language) and negative tests (refusal traces that are not refusal traces of the specification
language).

Definition 5.3. Given specification 𝑆 , state cover 𝑉 for 𝑆 , and characterising set 𝑊 for 𝑆 :

𝑇 1(𝑆 , 𝑉 ,𝑊) = 𝑉 ∪ 𝑉 .𝑊 ∪𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆) ∪𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆).𝑊 ∪𝑅𝑒𝑞𝑅𝑒𝑓 (𝑉 ,𝑆)

The above tests will be used to check for the presence of required transitions and refusals, as well as the absence of transitions
to incorrect states, but it is also necessary to check that the SUT does not have any additional, forbidden behaviours: refusal traces
of the form 𝑣.𝑋 or 𝑣.𝑋.𝑎 that are not refusal traces of the specification. We therefore define the following set of additional negative
tests: refusal traces that the SUT should not have.

Definition 5.4. Given specification 𝑆 and state cover 𝑉 for 𝑆 :

𝐹𝑜𝑟𝑏𝑅𝑒𝑓 (𝑆 , 𝑉) = {𝑣.𝑋 ∉𝑆 |𝑣 ∈ 𝑉 ∧𝑋 ∈ (Σ)}

𝐹𝑜𝑟𝑏𝑇 𝑟(𝑆 , 𝑉) = {𝑣.𝑋.𝑎 ∉𝑆 |𝑣 ∈ 𝑉 ∧𝑋 ∈ (Σ) ∪ {∙} ∧ 𝑣.𝑋 ∈ 𝑆}

𝑇 2(𝑆 , 𝑉) = 𝐹𝑜𝑟𝑏𝑅𝑒𝑓 (𝑆 , 𝑉) ∪ 𝐹𝑜𝑟𝑏𝑇 𝑟(𝑆 , 𝑉)

𝑠𝑖𝑚𝑝𝑙𝑒(𝑆 , 𝑉 ,𝑊) = 𝑇 1(𝑆 , 𝑉 ,𝑊) ∪ 𝑇 2(𝑆 , 𝑉)

Theorem 5.2. Let us suppose that 𝑆 and 𝐼 are languages, (𝑆) is finite, and (𝐼) has no more states than (𝑆). Further,
let us suppose that 𝑉 is a state cover and 𝑊 is a characterising set for (𝑆). If 𝑆 ≡𝑠𝑖𝑚𝑝𝑙𝑒(𝑆 ,𝑉 ,𝑊) 𝐼 then (𝑆) and (𝐼)

are isomorphic.

Proof. From Proposition 5.1 we know that 𝑉 ⊆𝐼 , the refusal traces in 𝑉 reach |(𝑆)| distinct states of (𝐼), and that these
states are separated by 𝑊 . This in particular means that |(𝑆)| = |(𝐼)|, and hence 𝑉 reaches all states in (𝐼). Since also
𝜖 ∈ 𝑉 , 𝑉 is a state cover for (𝐼).

𝑉 induces a relation ∼𝑉 ⊆(𝑆) ×(𝐼) defined by: 𝑠 ∼𝑉 𝑞 if and only if there exists 𝑣 ∈ 𝑉 such that 𝑣 reaches 𝑠 in (𝑆)

and 𝑣 reaches 𝑞 in (𝐼). Since 𝑉 is a state cover of both (𝑆) and (𝐼), one can easily observe that ∼𝑉 is in fact a
bijection.

By Proposition 5.1 and |(𝑆)| = |(𝐼)|, we have that 𝑊 separates the states of (𝐼). As a result, 𝑊 induces the relation
≃𝑊 ⊆ (𝑆) ×(𝐼) defined by 𝑠 ≃𝑊 𝑞 if and only if 𝑠 ≡𝑊 𝑞. Again, since 𝑊 is a characterising set of both 𝑆 and 𝐼 , one can
easily show that ≃𝑊 is a bijection.

From 𝑆 ≡𝑉 .𝑊 𝐼 we have ∼𝑉 ⊆≃𝑊 , and since ∼𝑉 and ≃𝑊 are both bijections between (𝑆) and (𝐼), we have in fact
∼𝑉 =≃𝑊 . We now need to prove that the bijection is an isomorphism, that is, preserves initial states, and transitions.

Due to 𝜖 ∈ 𝑉 , ∼𝑉 =≃𝑊 obviously preserves the initial states; we proceed to show that transitions are preserved as well.
Take any 𝑣 ∈ 𝑉 and let 𝑠 and 𝑞 be the states of (𝑆) and (𝐼) respectively that are reached by 𝑣.
The first important observation is that FR(𝑠) = FR(𝑞). Indeed, we have:
𝑋 ∈ FR(𝑠) ⟺ [def. of FR]
𝑋 ∈ 𝑠 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑋.𝑎 ∈ 𝑠 ⟺ [𝑠 =𝑆 ||𝑣]
𝑣.𝑋 ∈ 𝑆 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝑋.𝑎 ∈𝑆 ⟺ [𝑆 ≡𝑅𝑒𝑞𝑅𝑒𝑓 (𝑉 ,𝑆)∪𝐹𝑜𝑟𝑏𝑅𝑒𝑓 (𝑉 ,𝑆)

𝐼]
𝑣.𝑋 ∈ 𝐼 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝑋.𝑎 ∈ 𝑆 ⟺ [𝑆 ≡𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆)∪𝐹𝑜𝑟𝑏𝑇 𝑟(𝑉 ,𝑆)

𝐼]
𝑣.𝑋 ∈ 𝐼 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝑋.𝑎 ∈ 𝐼 ⟺ [𝑞 = 𝐼 ||𝑣]
𝑋 ∈ 𝑞 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑋.𝑎 ∈ 𝑞 ⟺ [def. of FR]
𝑋 ∈ FR(𝑞)

We now proceed to show that all pairs of successor states of 𝑠 and 𝑞 in their respective OTSs are related by ≃𝑊 .
Consider an arbitrary 𝑋.𝑎 ∈ 𝑠 ∪ 𝑞. We will first show that 𝑋.𝑎 ∈ 𝑠 ∩ 𝑞. There are two cases:

• if 𝑋.𝑎 ∈ 𝑠, then also top𝑠(𝑋) ∈ 𝑠, hence 𝑣.top𝑠(𝑋).𝑎 ∈𝑆 . Since 𝑆 ≡𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆)
𝐼 , we have 𝑣.top𝑠(𝑋).𝑎 ∈ 𝐼 , hence top𝑠(𝑋).𝑎 ∈

𝑞, and we obtain 𝑋.𝑎 ∈ 𝑞 from RT1.
• if 𝑋.𝑎 ∈ 𝑞, then 𝑣.𝑋.𝑎 ∈ 𝐼 . Were it the case that 𝑣.𝑋.𝑎 ∉ 𝑆 , we would have either 𝑣.𝑋.𝑎 ∈ 𝐹𝑜𝑟𝑏𝑇 𝑟(𝑉 , 𝑆) or 𝑣.𝑋 ∈

𝐹𝑜𝑟𝑏𝑅𝑒𝑓 (𝑉 , 𝑆), but since 𝑆 ≡𝐹𝑜𝑟𝑏𝑇 𝑟(𝑉 ,𝑆)
𝐼 and 𝑆 ≡𝐹𝑜𝑟𝑏𝑅𝑒𝑓 (𝑉 ,𝑆)

𝐼 , this would entail either 𝑣.𝑋.𝑎 ∉ 𝐼 or 𝑣.𝑋 ∉ 𝐼 ,
a contradiction. Hence 𝑣.𝑋.𝑎 ∈ 𝑆 , from which we obtain 𝑋.𝑎 ∈ 𝑠.

Hence we have shown in particular that transition labelled with 𝑋.𝑎 is defined for both 𝑠 and 𝑞.
Since FR(𝑠) = FR(𝑞), 𝑠 ||𝑋.𝑎 = 𝑠 || top𝑠(𝑋).𝑎, and 𝑞 ||𝑋.𝑎 = 𝑞 || top𝑞(𝑋).𝑎, we can further assume that 𝑋 ∈ FR(𝑠) = FR(𝑞). This in

particular means that 𝑋.𝑎 ∈𝑅𝑒𝑞𝑇 𝑟(𝑉 , 𝑆).
Let 𝑠′ = 𝑠 ||𝑋.𝑎 =𝑆 ||𝑣.𝑋.𝑎 and 𝑞′ = 𝑞 ||𝑋.𝑎 =𝐼 ||𝑣.𝑋.𝑎. Take an arbitrary 𝑤 ∈𝑊 .
We have:

Science of Computer Programming 239 (2025) 103173

15

M. Gazda and R.M. Hierons

𝑤 ∈ 𝑠′ ⟺

𝑣.𝑋.𝑎.𝑤 ∈ 𝑆 ⟺ [𝑆 ≡𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆).𝑊
𝐼]

𝑣.𝑋.𝑎.𝑤 ∈ 𝐼 ⟺

𝑤 ∈ 𝑞′

We therefore have that 𝑠′ ≡𝑊 𝑞′ and so 𝑠′ ≃𝑊 𝑞′. Therefore ≃𝑊 (and so also ∼𝑉) is preserved under transitions and hence is an
isomorphism between (𝑆) and (𝐼) as required. □

Example 5.2.1. We shall now generate the test suite for our running example, i.e. language  of LTS from Fig. 2, whose () is
shown in Fig. 3.

Recall from Examples 4.1.1 and 4.2.1 that we have the following state cover and characterising set for :

𝑉 = {𝜖, {𝑏, 𝑐}.𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎}

𝑊 = {{𝑏, 𝑐}, ∙.𝑏, ∙.𝑐}

We therefore obtain:

𝑉 .𝑊 = {{𝑏, 𝑐}, ∙.𝑏, ∙.𝑐,

{𝑏, 𝑐}.𝑎.{𝑏, 𝑐}, {𝑏, 𝑐}.𝑎. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑐,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑏, 𝑐}, {𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑐,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑏, 𝑐}, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎. ∙ .𝑐}

For convenience in further construction, the following table lists, in the respective columns: all traces 𝑣 in 𝑉 , their corresponding
states in (), and for each 𝑣, all fundamental refusals in  ||𝑣.

𝑣 state in () FR( ||𝑣)
𝜖 𝑞0 {𝑏, 𝑐}

{𝑏, 𝑐}.𝑎 𝑞1 ∅,{𝑏},{𝑐}

{𝑏, 𝑐}.𝑎. ∙ .𝑎 𝑞2 {𝑐},{𝑏, 𝑐}

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎 𝑞3 ∅,{𝑏},{𝑐},{𝑏, 𝑐}

The set 𝑅𝑒𝑞𝑅𝑒𝑓 (𝑉 , 𝑆) can be constructed by taking, for each trace 𝑣 ∈ 𝑉 (first column above), all its extensions 𝑣.𝑋 where 𝑋 ∈

FR( ||𝑣) (last column), plus the trace 𝑣.∙:

𝑅𝑒𝑞𝑅𝑒𝑓 (𝑉 ,𝑆) = {∙, {𝑏, 𝑐},

{𝑏, 𝑐}.𝑎.∙, {𝑏, 𝑐}.𝑎.∅, {𝑏, 𝑐}.𝑎.{𝑏}, {𝑏, 𝑐}.𝑎.{𝑐},

{𝑏, 𝑐}.𝑎. ∙ .𝑎.∙, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑏, 𝑐},

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.∙, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.∅,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑏}, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑐},

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑏, 𝑐}}

The set 𝑅𝑒𝑞𝑇 𝑟(𝑉 , 𝑆) can be derived in a simple manner by taking each 𝑣.𝑋 in the (already generated) 𝑅𝑒𝑞𝑅𝑒𝑓 (𝑉 , 𝑆) and
including, for each action 𝑎, the trace 𝑣.𝑋.𝑎 whenever 𝑣.𝑋.𝑎 ∈  (this in turn can be checked by e.g. inspecting the transitions in
Fig. 3):

𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆) = {∙.𝑎, {𝑏, 𝑐}.𝑎,

{𝑏, 𝑐}.𝑎. ∙ .𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑐,

{𝑏, 𝑐}.𝑎.∅.𝑎, {𝑏, 𝑐}.𝑎.∅.𝑏, {𝑏, 𝑐}.𝑎.∅.𝑐,

{𝑏, 𝑐}.𝑎.{𝑏}.𝑎, {𝑏, 𝑐}.𝑎.{𝑏}.𝑐,

{𝑏, 𝑐}.𝑎.{𝑐}.𝑎 {𝑏, 𝑐}.𝑎.{𝑐}.𝑏,

{𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑏,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑏,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑏, 𝑐}.𝑎,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎. ∙ .𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎. ∙ .𝑐,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.∅.𝑎, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.∅.𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.∅.𝑐,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑏}.𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑏}.𝑐,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑐}.𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑐}.𝑎,

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑏, 𝑐}.𝑎}

The remaining component of the first part of our test suite, i.e. 𝑇 1(𝑆 , 𝑉 , 𝑊) is the concatenation 𝑅𝑒𝑞𝑇 𝑟(𝑉 , 𝑆).𝑊 For brevity, we
only show its fragment:

Science of Computer Programming 239 (2025) 103173

16

M. Gazda and R.M. Hierons

𝑞′
0

{𝑠′
0
}

𝑞′
1

{𝑠′
1
, 𝑠′

2
}

𝑞′
2

{𝑠′
0
, 𝑠′

1
}

𝑞′
3

{𝑠′
0
, 𝑠′

1
, 𝑠′

2
}

∙.𝑎, {𝑏, 𝑐}.𝑎

∙.𝑏, ∙.𝑐, ∅.𝑏, ∅.𝑐,
{𝑏}.𝑎, {𝑏}.𝑐,{𝑐}.𝑎, {𝑐}.𝑏

∙.𝑎

∅.𝑎
{𝑏, 𝑐}.𝑎

∙.𝑐,{𝑏}.𝑐

∙.𝑎,{𝑏}.𝑎

∙.𝑎,∅.𝑎,{𝑐}.𝑎

∙.𝑏, ∙.𝑐, ∅.𝑏, ∅.𝑐,
{𝑏}.𝑎, {𝑏}.𝑐, {𝑐}.𝑏

{𝑏, 𝑐}.𝑎

Fig. 4. OTS induced by a language consisting of a faulty candidate implementation. Transitions differing from those of the specification OTS in Fig. 3 have been
highlighted.

𝑅𝑒𝑞𝑇 𝑟(𝑉 ,𝑆).𝑊 = {∙.𝑎.{𝑏, 𝑐}, {𝑏, 𝑐}.𝑎.{𝑏, 𝑐},

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑏, 𝑐}, {𝑏, 𝑐}.𝑎. ∙ .𝑏.{𝑏, 𝑐}, {𝑏, 𝑐}.𝑎. ∙ .𝑐.{𝑏, 𝑐},

…

∙.𝑎. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑏,

{𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑏. ∙ .𝑏, {𝑏, 𝑐}.𝑎. ∙ .𝑐. ∙ .𝑏,

…

∙.𝑎. ∙ .𝑐, {𝑏, 𝑐}.𝑎. ∙ .𝑐,

{𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑐, {𝑏, 𝑐}.𝑎. ∙ .𝑏. ∙ .𝑐, {𝑏, 𝑐}.𝑎. ∙ .𝑐. ∙ .𝑐,

…

}

We now proceed to generate the second part of the test suite 𝑇 2(𝑆 , 𝑉), which consists of two sets of forbidden behaviours.
𝐹𝑜𝑟𝑏𝑅𝑒𝑓 (𝑆 , 𝑉) contains, for each 𝑣 ∈ 𝑉 , all forbidden refusal extensions 𝑣.𝑋. Note that we can optimise this set by including
only minimal refusals 𝑋 forbidden after 𝑣. The second set, 𝐹𝑜𝑟𝑏𝑇 𝑟(𝑆 , 𝑉), consists of forbidden continuations of 𝑣 of the form 𝑋.𝑎.

𝑣 minimal forbidden refusals
in  || 𝑣

forbidden transitions after 𝑣

𝜖 {𝑎} {𝑏}.𝑐,{𝑐}.𝑏

{𝑏, 𝑐}.𝑎 {𝑎}, {𝑏, 𝑐}
{𝑏, 𝑐}.𝑎. ∙ .𝑎 {𝑎}, {𝑏} ∙.𝑐,{𝑏}.𝑐

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎 {𝑎}

We therefore obtain:

𝐹𝑜𝑟𝑏𝑅𝑒𝑓 (𝑆 , 𝑉) = {{𝑎},

{𝑏, 𝑐}.𝑎.{𝑎}, {𝑏, 𝑐}.𝑎.{𝑏, 𝑐},

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑎}, {𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑏},

{𝑏, 𝑐}.𝑎. ∙ .𝑎.{𝑐}.𝑎.{𝑎}}

𝐹𝑜𝑟𝑏𝑇 𝑟(𝑆 , 𝑉) = {{𝑏}.𝑐, {𝑐}.𝑏,

{𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑐}

Example 5.2.2. Suppose an incorrect candidate implementation 𝐼 results from a modified LTS from Fig. 2, where the direction of
the 𝑎-transition from 𝑠1 to 𝑠2 has been switched. The corresponding  induced by the language 𝐼 is given in Fig. 4. Observe
that in particular, for 𝑣 = {𝑏, 𝑐}.𝑎. ∙ .𝑎 and 𝑤 = ∙.𝑐 we have a negative test {𝑏, 𝑐}.𝑎. ∙ .𝑎. ∙ .𝑐 ∈ 𝑉 .𝑊 ∩𝐼 , proving 𝐼 ≠ .

Science of Computer Programming 239 (2025) 103173

17

M. Gazda and R.M. Hierons

5.2. The general case

We now extend our approach to the general case where there is an (arbitrary but fixed in advance) upper bound 𝑚 ≥ 𝑛 on the
number of states of (𝐼). To handle the possible larger number of states in (𝐼), an exhaustive exploration with arbitrary
(sub)traces outside 𝑉 and 𝑊 is required.

We start by defining some sets of traces, parameterised with a number 𝑘, which corresponds to the difference between the
aforementioned bounds on the number of OTS states i.e. 𝑚 − 𝑛, as well as the length of the additional arbitrary subtraces that need
to be added to the tests.

Definition 5.5. Given specification 𝑆 and state cover 𝑉 for 𝑆 , we let 𝑅𝑒𝑞𝑇 𝑟𝑘(𝑉 , 𝑆) and 𝑅𝑒𝑞𝑅𝑒𝑓𝑘(𝑉 , 𝑆) be defined as follows.

𝑅𝑒𝑞𝑇 𝑟𝑘(𝑉 ,𝑆) = {𝑣.𝜎.𝑋.𝑎 ∈𝑆 ∩ RTA |𝑣 ∈ 𝑉 ∧ |𝜎| ≤ 𝑘}

𝑅𝑒𝑞𝑅𝑒𝑓𝑘(𝑉 ,𝑆) = {𝑣.𝜎.𝑋 ∈𝑆 ∩ RTR |𝑣 ∈ 𝑉 ∧ |𝜎| ≤ 𝑘}

We then obtain the following (partial) test suite that checks that the required transitions have been implemented.

Definition 5.6. Given specification 𝑆 , state cover 𝑉 for 𝑆 , and characterising set 𝑊 for 𝑆 , we define:

𝑇 1𝑘(𝑆 , 𝑉 ,𝑊) = 𝑉 ∪ 𝑉 .𝑊 ∪ 𝑅𝑒𝑞𝑇 𝑟𝑘(𝑉 ,𝑆) ∪ 𝑅𝑒𝑞𝑅𝑒𝑓𝑘(𝑉 ,𝑆)

∪𝑅𝑒𝑞𝑇 𝑟𝑘(𝑉 ,𝑆).𝑊

Naturally, we also need to extend the set of negative tests defined earlier, so that it includes longer refusal traces that follow 𝑉 .

Definition 5.7. Given specification 𝑆 and state cover 𝑉 for 𝑆 , we define:

𝐹𝑜𝑟𝑏𝑇 𝑟𝑘(𝑆 , 𝑉) ={𝑣.𝜎.𝑋.𝑎 ∈ RTA |𝜎 ∈ RT
𝑘(𝑆 ||𝑣) ∧ 𝑣.𝜎.𝑋 ∈ 𝑆

∧ 𝑣.𝜎.𝑋.𝑎 ∉ RT(𝑆)}

𝐹𝑜𝑟𝑏𝑅𝑒𝑓𝑘(𝑆 , 𝑉) = ∪ {𝑣.𝜎.𝑋 ∈ RTR |𝜎 ∈ RT
𝑘(𝑆 ||𝑣)

∧ 𝑣.𝜎.𝑋 ∉ RT(𝑆)}

𝑇 2𝑘(𝑆 , 𝑉) =𝐹𝑜𝑟𝑏𝑇 𝑟𝑘(𝑆 , 𝑉) ∪ 𝐹𝑜𝑟𝑏𝑅𝑒𝑓𝑘(𝑆 , 𝑉)

𝑘(𝑆 , 𝑉 ,𝑊) =𝑇 1𝑘(𝑆 , 𝑉 ,𝑊) ∪ 𝑇 2𝑘(𝑆 , 𝑉)

We can now prove that the generalised test suite is complete for 𝑘 = 𝑚 − 𝑛.

Theorem 5.3. Let us suppose that 𝑆 and 𝐼 are languages, (𝑆) has 𝑛 states, and (𝐼) has no more than 𝑚 states for some 𝑚 ≥ 𝑛.
Further, let us suppose that 𝑉 is a normal state cover and 𝑊 is a characterising set for (𝑆). Let 𝑘 = 𝑚 − 𝑛. If 𝑆 ≡𝑘(𝑆 ,𝑉 ,𝑊) 𝐼 ,
then 𝑆 =𝐼 .

Proof. Observe first that we only need to prove the statement for 𝑚 strictly greater than 𝑛, since if 𝑚 = 𝑛, our test suite is contained
in the one defined in Section 5.1, and hence the result follows from Theorem 5.2. We thus assume throughout the proof that 𝑚 > 𝑛,
and hence 𝑘 > 2.

Suppose that 𝑆 ≡𝑘(𝑆 ,𝑉 ,𝑊) 𝐼 . Recall relations ≃𝑊 and ∼𝑉 from the proof of Theorem 5.2; using a similar reasoning, we can
show that ≃𝑊 and ∼𝑉 coincide – with the proviso that codomains are restricted to the image of (1) under ∼𝑉 ; in other words,
≃𝑊 and ∼𝑉 are bijections and coincide when restricted to (𝑆) × {𝐼 ||𝑣 | 𝑣 ∈ 𝑉 }.

We now proceed to prove the main statement. We will use proof by contradiction, assuming that 𝑆 ≠ 𝐼 . Since 𝜖 ∈ 𝑉 , we know
that every 𝜎 ∈ RT(𝑆) ∪ RT(𝐼) is of the form 𝑣.𝜎′ for some 𝑣 ∈ 𝑉 .

Since 𝑆 ≠ 𝐼 , we can choose some shortest refusal trace 𝜎 such that either of the following holds:

1. there is some 𝑣𝜎 ∈ 𝑉 where 𝑣𝜎 .𝜎 separates 𝑆 and 𝐼 , or
2. there is some 𝑣𝜎 ∈ 𝑉 and 𝑤 ∈𝑊 such that 𝑣𝜎 .𝜎.𝑤 separates 𝑆 and 𝐼 .

Since 𝑆 ≡𝑘(𝑆 ,𝑉 ,𝑊) 𝐼 and 𝑘 ≥ 1, we have that |𝜎| ≥ 1. Let 𝜎 = 𝜎1.𝜒 where 𝜒 is of the form 𝜒 =𝑋.𝑎 or 𝜒 =𝑋. In the remainder of
the proof, we will reason about two subsets of (𝐼): language states reached by 𝑉 , and language states reached by extensions of 𝑣𝜎
with prefixes of 𝜎1. Formally, we define:

𝑄𝑉 ≜ {𝐼 ||𝑣 | 𝑣 ∈ 𝑉 }

𝑄+
𝑉

≜ {𝐼 ||𝑣𝜎 .𝜎′1 | 𝜎
′
1
is a nonempty prefix of 𝜎1}

Science of Computer Programming 239 (2025) 103173

18

M. Gazda and R.M. Hierons

Observe that by Proposition 5.1, 𝑄𝑉 contains 𝑛 states and these are all in different equivalence classes of ∼𝑊 .
Consider some non-empty 𝜎2 with 𝜎1 = 𝜎2.𝜎3 and the state 𝑠

′ of the specification reached by the trace 𝑣𝜎 .𝜎2. Let 𝑞
′ denote the

state of (𝐼) reached by 𝑣𝜎 .𝜎2. By the minimality of 𝜎, we have that 𝑠
′ ≃𝑊 𝑞′. By the definition of 𝜎, we have that either 𝜎3.𝑋.𝑎

separates 𝑠′ and 𝑞′ or there is some 𝑤 ∈𝑊 such that 𝜎3.𝑋.𝑎.𝑤 separates 𝑠′ and 𝑞′. Let 𝑣′ ∈ 𝑉 be such that 𝑠′ =𝑆 ||𝑣′.
If 𝑞′ is a state in 𝑄𝑉 , then 𝑞

′ must be the state in 𝑄𝑉 that is reached by 𝑣′; otherwise we would have 𝑠′ ≁𝑉 𝑞′, contradicting
𝑠′ ≃𝑊 𝑞′. But then either 𝑣′.𝜎3.𝑋.𝑎 separates 𝐼 and 𝑆 or there is some 𝑤 ∈𝑊 such that 𝑣′.𝜎3.𝑋.𝑎.𝑤 separates 𝐼 and 𝑆 and this
contradictions the minimality of 𝜎. We therefore have that 𝑄𝑉 ∩𝑄+

𝑉
= ∅.

Now let us suppose that 𝜎2 and 𝜎3 are distinct non-empty prefixes of 𝜎1, |𝜎2| < |𝜎3|, 𝑣𝜎 .𝜎2 reaches state 𝑞2 of (𝐼) and
𝑣𝜎 .𝜎3 reaches state 𝑞3 of (𝐼). We will consider two cases, in each case proving that 𝑞2 ≠ 𝑞3. First, if 𝑣𝜎 .𝜎2 and 𝑣𝜎 .𝜎3 reach
different states of the specification then 𝑞2 and 𝑞3 must be separated by 𝑊 and so 𝑞2 ≠ 𝑞3 is immediate. In the second case, 𝑣𝜎 .𝜎2
and 𝑣𝜎 .𝜎3 reach the same state 𝑠 of the specification. Let us suppose that 𝑞2 = 𝑞3 and define 𝜎4 as the (possibly empty) trace such
that 𝜎1 = 𝜎3.𝜎4. By the definition of 𝜎, either 𝑣𝜎 .𝜎3.𝜎4.𝑋.𝑎 separates the specification and SUT or there is some 𝑤 ∈ 𝑊 such that
𝑣𝜎 .𝜎3.𝜎4.𝑋.𝑎.𝑤 separates the specification and SUT. But then, since 𝑞2 = 𝑞3, we must have that either 𝑣𝜎 .𝜎2.𝜎4.𝑋.𝑎 separates the
specification and SUT or there is some 𝑤 ∈ 𝑊 such that 𝑣𝜎 .𝜎2.𝜎4.𝑋.𝑎.𝑤 separates the specification and SUT. This contradicts the
minimality of 𝜎 and so we must have that 𝑞2 ≠ 𝑞3.

As a result of the above, we know that for any two distinct non-empty prefixes 𝜎2 and 𝜎3 of 𝜎1, we have that 𝑣𝜎 .𝜎2 and 𝑣𝜎 .𝜎3
reach distinct states of (𝐼). We therefore have that |𝑄+

𝑉
| = |𝜎1|.

We now have that |𝑄𝑉 | = 𝑛, |𝑄+
𝑉
| = |𝜎1|, and 𝑄𝑉 ∩𝑄+

𝑉
= ∅. Thus, |𝑄+

𝑉
∪𝑄𝑉 | = 𝑛 + |𝜎1|. Since (𝐼) has at most 𝑚 states,

we therefore have that 𝑛 + |𝜎1| ≤𝑚, and so |𝜎1| ≤𝑚 − 𝑛. But this means that 𝑣.𝜎 is of the form 𝑣.𝜎1.𝜒 where |𝜎1| ≤ 𝑘 and 𝜒 is of the
form 𝜒 =𝑋.𝑎 or 𝜒 =𝑋. Hence 𝑣.𝜎 ∈ 𝑘(𝑆 , 𝑉 , 𝑊), providing a contradiction as required. □

5.3. An optimised test suite

In this section, we present an optimisation to our test suite for the general case. One component that can particularly contribute
to its size is the enumeration of arbitrary traces of length 𝑘. We will show that, apart from possibly final refusals, we can restrict
ourselves to traces containing fundamental refusals (of the specification) only.

We start by defining the optimised test suite.

Definition 5.8. Given specification 𝑆 and normal state cover 𝑉 for 𝑆 , we let 𝑅𝑒𝑞𝑇 𝑟o
𝑘
(𝑉 , 𝑆) and 𝑅𝑒𝑞𝑅𝑒𝑓o

𝑘
(𝑉 , 𝑆) be defined as

follows.

𝑅𝑒𝑞𝑇 𝑟o
𝑘
(𝑉 ,𝑆) = {𝑣.𝜎.𝑋.𝑎 ∈ FRT(𝑆) ∩ RTA |𝑣 ∈ 𝑉 ∧ |𝜎| ≤ 𝑘}

𝑅𝑒𝑞𝑅𝑒𝑓o
𝑘
(𝑉 ,𝑆) = {𝑣.𝜎.𝑋 ∈ FRT(𝑆) ∩ RTR |𝑣 ∈ 𝑉 ∧ |𝜎| ≤ 𝑘}

Furthermore, we define:

𝑇 1o
𝑘
(𝑆 , 𝑉 ,𝑊) = 𝑉 ∪ 𝑉 .𝑊 ∪𝑅𝑒𝑞𝑇 𝑟o

𝑘
(𝑉 ,𝑆) ∪𝑅𝑒𝑞𝑅𝑒𝑓o

𝑘
(𝑉 ,𝑆) ∪𝑅𝑒𝑞𝑇 𝑟o

𝑘
(𝑉 ,𝑆).𝑊

Definition 5.9. Given specification 𝑆 and normal state cover 𝑉 for 𝑆 , we define:

𝐹𝑜𝑟𝑏𝑇 𝑟o
𝑘
(𝑆 , 𝑉) ={𝑣.𝜎.𝑋.𝑎 ∈ RTA |𝜎 ∈ FRT

𝑘(𝑆 ||𝑣) ∧ 𝑣.𝜎.𝑋 ∈𝑆

∧ 𝑣.𝜎.𝑋.𝑎 ∉ RT(𝑆)}

𝐹𝑜𝑟𝑏𝑅𝑒𝑓o
𝑘
(𝑆 , 𝑉) = ∪ {𝑣.𝜎.𝑋 ∈ RTR |𝜎 ∈ FRT

𝑘(𝑆 ||𝑣)

∧ 𝑣.𝜎.𝑋 ∉ RT(𝑆)}

𝑇 2o
𝑘
(𝑆 , 𝑉) =𝐹𝑜𝑟𝑏𝑇 𝑟o

𝑘
(𝑆 , 𝑉) ∪ 𝐹𝑜𝑟𝑏𝑅𝑒𝑓o

𝑘
(𝑆 , 𝑉)

 o
𝑘
(𝑆 , 𝑉 ,𝑊) =𝑇 1o

𝑘
(𝑆 , 𝑉) ∪ 𝑇 2o

𝑘
(𝑆 , 𝑉)

We shall need the following technical lemmas.

Lemma 5.4. For any two languages 1 and 2 we have:

FR(1) = FR(2) ⟺ RT
1(1) = RT

1(2)

Proof. We shall use the following simple observation

(∗) 𝑋 ∈ ⟺ ∃𝑋 ∈ FR() ∶𝑋 ≤RT 𝑋

The above can be shown immediately by considering 𝑋 = top(𝑋).
“⟹”: Suppose FR(1) = FR(2). Take any 𝜎 ∈ RT

1. There are two possible cases:

Science of Computer Programming 239 (2025) 103173

19

M. Gazda and R.M. Hierons

• 𝜎 =𝑋: We have:
𝑋 ∈ RT

1(1) ⟺ [(*)]
∃𝑋 ∈ FR(1) ∶𝑋 ≤RT 𝑋 ⟺ [FR(1) = FR(2)]
∃𝑋 ∈ FR(2) ∶𝑋 ≤RT 𝑋 ⟺ [(*)]
𝑋 ∈ RT

1(2)

– 𝜎 =𝑋.𝑎: First, observe that:

(†) 𝑋 ∈ FR() ∧𝑋.𝑎 ∈ ⟺ 𝑋 ∈ FR() ∧ 𝑎 ∉𝑋

We have:
𝑋.𝑎 ∈ RT

1(1) ⟺ [(*)]
∃𝑋 ∈ FR(1) ∶𝑋 ≤RT 𝑋 ∧𝑋.𝑎 ∈1 ⟺ [(†)]
∃𝑋 ∈ FR(1) ∶𝑋 ≤RT 𝑋 ∧ 𝑎 ∉𝑋 ⟺ [FR(1) = FR(2)]
∃𝑋 ∈ FR(2) ∶𝑋 ≤RT 𝑋 ∧ 𝑎 ∉𝑋 ⟺ [(†)]
∃𝑋 ∈ FR(2) ∶𝑋 ≤RT 𝑋 ∧𝑋.𝑎 ∈2 ⟺ [(*)]
𝑋.𝑎 ∈ RT

1(2)

• “⟸”: Immediate, as the predicate defining “𝑋 ∈ FR()” contains only refusal traces from RT
1(). □

Lemma 5.5. For any two languages 1 and 2, and any 𝓁 ≥ 1 we have:

RT
𝓁(1) = RT

𝓁(2) ⟺ RT
𝓁−1(1) = RT

𝓁−1(2)

∧ ∀𝜎 ∈ FRT
𝓁−1(1) ∶ FR(1 ||𝜎) = FR(2 ||𝜎)

Proof. We only need to show the direction from right to left, as the other one is very straightforward.
Suppose that RT

𝓁−1(1) = RT
𝓁−1(2) and for all 𝜎 ∈ FRT

𝓁−1(1), we have FR(1 ||𝜎) = FR(2 ||𝜎). We shall prove that
RT

𝓁(1) ⊆ RT
𝓁(2) (the proof of other inclusion is symmetric).

Observe first that we in fact have FR(1 ||𝜎) = FR(2 ||𝜎) for an arbitrary 𝜎 ∈ RT
𝓁−1(1). Indeed, from Corollary 3.6.1 it follows

that FR(1 ||𝜎) = FR(1 || top(𝜎)) = FR(2 || top(𝜎)) = FR(2 ||𝜎).
Let 𝜎 ∈ RT

𝓁(1). If 𝜎 ∈ RT
𝓁−1(1), then immediately from the initial assumption we have 𝜎 ∈ RT

𝓁−1(2) ⊆ RT
𝓁(2). Hence we

assume that |𝜎| = 𝓁 and 𝜎 = 𝜎0.𝜒 where |𝜎0| = 𝓁 − 1.
From the initial assumption we know that FR(1 ||𝜎0) = FR(2 ||𝜎0); furthermore, from Lemma 5.4, we obtain RT

1(1 ||𝜎0) =
RT

1(2 ||𝜎0). Since 𝜒 ∈ RT
1(1 ||𝜎0), we therefore have 𝜒 ∈ RT

1(2 ||𝜎0), from which 𝜎 = 𝜎0.𝜒 ∈ RT
𝓁(2 ||𝜎0) follows. □

Theorem 5.6. Let us suppose that 𝑆 and 𝐼 are languages, (𝑆) has 𝑛 states, and (𝐼) has no more than 𝑚 states for some 𝑚 ≥ 𝑛.
Further, let us suppose that 𝑉 is a normal state cover and 𝑊 is a characterising set for (𝑆). Let 𝑘 = 𝑚 − 𝑛. If 𝑆 ≡ o

𝑘
(𝑆 ,𝑉 ,𝑊) 𝐼 ,

then 𝑆 =𝐼 .

Proof. The proof boils down to showing that 𝑆 ≡𝑘(𝑆 ,𝑉 ,𝑊) 𝐼 ; the statement will then follow immediately from Theorem 5.3.
We shall first prove the following statement:
(*) For any 𝑠 ∈(𝑆) and 𝑞 ∈(𝐼) such that 𝑠 ∼𝑉 𝑞, we have RT

𝑘+1(𝑠) = RT
𝑘+1(𝑞).

We prove (*) by showing that RT
𝓁(𝑠) = RT

𝓁(𝑞) for all 0 ≤ 𝓁 ≤ 𝑘 + 1 by induction on 𝓁. For 𝓁 = 0 the statement holds trivially.
For 𝓁 = 1, we have already shown in the proof of Theorem 5.2 that FR(𝑠) = FR(𝑞), and from Lemma 5.4 we obtain RT

1(𝑠) = RT
1(𝑞).

Hence the base case holds.
For the inductive step, we assume that RT

𝓁(𝑠) = RT
𝓁(𝑞) for some 1 ≤ 𝓁 ≤ 𝑘; we need to show that RT

𝓁+1(𝑠) = RT
𝓁+1(𝑞). Due to

Lemma 5.5, it suffices to show that for all 𝜎 ∈ FRT
𝓁(𝑠), we have FR(𝑠 ||𝜎) = FR(𝑞 ||𝜎).

Let 𝑣 ∈ 𝑉 be such that 𝑠 = 𝑆 ||𝑣 and 𝑞 = 𝐼 ||𝑣. We start by unfolding the two statements in the bi-implication that we need to
show, i.e. 𝑋 ∈ FR(𝑠 ||𝜎) ⟺ 𝑋 ∈ FR(𝑞 ||𝜎).

We have:
𝑋 ∈ FR(𝑠 ||𝜎) ⟺ [def. of FR]
𝑋 ∈ 𝑠 ||𝜎 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑋.𝑎 ∈ 𝑠 ||𝜎 ⟺ [def. of 𝑠 ||𝜎]
𝜎.𝑋 ∈ 𝑠 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝜎.𝑋.𝑎 ∈ 𝑠 ⟺ [𝑠 =𝑆 ||𝑣]
𝑣.𝜎.𝑋 ∈ 𝑆 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈ 𝑆

On the other hand:
𝑋 ∈ FR(𝑞 ||𝜎) ⟺ [def. of FR]
𝑋 ∈ 𝑞 ||𝜎 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑋.𝑎 ∈ 𝑞 ||𝜎 ⟺ [def. of 𝑞 ||𝜎]
𝜎.𝑋 ∈ 𝑞 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝜎.𝑋.𝑎 ∈ 𝑞 ⟺ [𝑞 =𝐼 ||𝑣]
𝑣.𝜎.𝑋 ∈ 𝐼 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈ 𝐼

Hence it suffices to show that:

(†) 𝑣.𝜎.𝑋 ∈𝑆 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈𝑆 ⟺

𝑣.𝜎.𝑋 ∈𝐼 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈ 𝐼

Science of Computer Programming 239 (2025) 103173

20

M. Gazda and R.M. Hierons

• “⟹”: Suppose that

𝑣.𝜎.𝑋 ∈ 𝑆 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈𝑆

Observe that, since 𝑣.𝜎.𝑋 ∈ FRT(𝑆), and |𝜎| ≤ 𝓁 ≤ 𝑘, we have 𝑣.𝜎.𝑋 ∈ 𝑅𝑒𝑞𝑅𝑒𝑓o
𝑘
(𝑉 , 𝑆), hence from 𝑆 ≡𝑅𝑒𝑞𝑅𝑒𝑓o

𝑘
(𝑉 ,𝑆)

𝐼 ,

we obtain

𝑣.𝜎.𝑋 ∈ 𝐼 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈ 𝑆

Moreover, for any 𝑎 ∈ Σ ⧵ 𝑋, from 𝑣.𝜎.𝑋.𝑎 ∈ FRT(𝑆) and |𝜎| ≤ 𝓁 ≤ 𝑘, we have 𝑣.𝜎.𝑋.𝑎 ∈ 𝑅𝑒𝑞𝑇 𝑟o
𝑘
(𝑉 , 𝑆). Hence from

𝑆 ≡𝑅𝑒𝑞𝑇 𝑟o
𝑘
(𝑉 ,𝑆)

𝐼 and 𝓁 + 1 ≤ 𝑘, we obtain

𝑣.𝜎.𝑋 ∈ 𝐼 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈ 𝐼

• “⟸”: Suppose that

𝑣.𝜎.𝑋 ∈ 𝐼 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈ 𝐼

Observe first that it must be the case that 𝑣.𝜎.𝑋 ∈𝑆 ; otherwise, as 𝑣.𝜎 ∈ FRT(𝑆), we would have 𝑣.𝜎.𝑋 ∈ 𝐹𝑜𝑟𝑏𝑅𝑒𝑓o
𝑘
(𝑉 , 𝑆),

which, combined with 𝑣.𝜎.𝑋 ∈𝐼 , would contradict 𝑆 ≡𝐹𝑜𝑟𝑏𝑅𝑒𝑓o
𝑘
(𝑉 ,𝑆)

𝐼 .

Let 𝑋 = top𝑆 ,𝑣.𝜎
(𝑋). We will show that 𝑋 = 𝑋. Suppose, towards contradiction, that 𝑋 ⧵ 𝑋 ≠ ∅, and let 𝑎 ∈ 𝑋 ⧵ 𝑋. From

the definition of top𝑆 ,𝑣.𝜎
, we have 𝑣.𝜎.𝑋.𝑎 ∉ 𝑆 . Observe that 𝑣.𝜎.𝑋.𝑎 also meets other conditions from the definition of

𝐹𝑜𝑟𝑏𝑇 𝑟o
𝑘
(𝑉 , 𝑆), hence 𝑣.𝜎.𝑋.𝑎 ∈ 𝐹𝑜𝑟𝑏𝑇 𝑟o

𝑘
(𝑉 , 𝑆). However, 𝑣.𝜎.𝑋.𝑎 ∉ 𝑆 and 𝑣.𝜎.𝑋.𝑎 ∈ 𝐼 contradicts 𝑆 ≡𝐹𝑜𝑟𝑏𝑇 𝑟o

𝑘
(𝑉 ,𝑆)

𝐼 .

We have thus shown that 𝑋 = top𝑆 ,𝑣.𝜎
(𝑋), hence 𝑋 ∈ FR(𝑆 ||𝑣.𝜎), and from the definition of FR we have ∀𝑎 ∈ Σ ⧵ 𝑋 ∶

𝑣.𝜎.𝑋.𝑎 ∈ 𝑆 . We have thus finally established that

𝑣.𝜎.𝑋 ∈ 𝑆 ∧ ∀𝑎 ∈ Σ ⧵𝑋 ∶ 𝑣.𝜎.𝑋.𝑎 ∈𝑆

concluding the proof of (†) and (∗).
We now proceed to prove that 𝑆 ≡𝑘(𝑆 ,𝑉 ,𝑊) 𝐼 .
Take any 𝜋 ∈ (𝑘(𝑆 , 𝑉 , 𝑊)) ⧵ ( o

𝑘
(𝑆 , 𝑉 , 𝑊)). Observe that 𝜋 must be of the form 𝜋 = 𝑣.𝜎.𝜒 where 𝑣 ∈ 𝑉 and |𝜎| ≤ 𝑘. Let

𝑠 =𝑆 ||𝑣 and 𝑞 =𝐼 ||𝑣.
We have:
𝑣.𝜎.𝜒 ∈𝑆 ⟺

𝜎.𝜒 ∈ 𝑠 ⟺ [Corollary 3.6.1]
top𝑠(𝜎).𝜒 ∈ 𝑠 ⟺
𝑣.top𝑠(𝜎).𝜒 ∈𝑆 ⟺ [𝑆 ≡ o

𝑘
(𝑆 ,𝑉 ,𝑊) 𝐼]

𝑣.top𝑠(𝜎).𝜒 ∈𝐼 ⟺ [(*) implies FRT
𝑘+1(𝑠) = FRT

𝑘+1(𝑞)]
𝑣.top𝑞(𝜎).𝜒 ∈𝐼 ⟺

top𝑞(𝜎).𝜒 ∈ 𝑞 ⟺ [Corollary 3.6.1]
𝜎.𝜒 ∈ 𝑞 ⟺

𝑣.𝜎.𝜒 ∈𝐼 □

5.4. Coffee machine example

In this section, we consider an example of a simple coffee machine whose idea is based on the system from Fig. 1, i.e. a machine
that offers both tea and coffee, or no beverage at all. We shall start by defining a somewhat improved specification; in particular,
we wish to work with a system that operates perpetually rather than terminating after one beverage is produced. To this end, we
consider the system given in Fig. 5. Its initial state (𝑠0) can be seen as a “sleeping” mode, from which it can be activated by pressing
the on button. After that the system proceeds to one of two active states: 𝑠1 , in which the user is offered to choose between tea and
coffee, or 𝑠2 that models an active state without authorisation to use the machine. After a beverage is provided, the system returns to
the original sleeping state, which may also happen after a period of inactivity (𝑠𝑙𝑒𝑒𝑝 action). Note that the 𝑜𝑛 button can be pressed
in active states (𝑠1 and 𝑠2 as well); in such case, the system remains in its current state.

We can provide the following state cover 𝑉 and characterising set 𝑊 :

𝑉 = {𝜖, {𝑐, 𝑡, 𝑠}.𝑜𝑛, {𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑐, 𝑡}.𝑜𝑛}

𝑊 = {{𝑠}, {𝑐, 𝑡}}

𝑊 is a characterising set since:

• {𝑠} separates 𝑞0 from 𝑞1 and 𝑞2
• {𝑐, 𝑡} separates 𝑞2 from 𝑞1

Science of Computer Programming 239 (2025) 103173

21

M. Gazda and R.M. Hierons

𝑠0
{𝐜𝐨𝐟 , 𝐭𝐞𝐚, 𝐬𝐥𝐞𝐞𝐩}

𝑠1
∅

𝑠2
{𝐜𝐨𝐟 , 𝐭𝐞𝐚}

𝑜𝑛 𝑜𝑛

𝑐𝑜𝑓 , 𝑡𝑒𝑎,
𝑠𝑙𝑒𝑒𝑝

𝑜𝑛

𝑠𝑙𝑒𝑒𝑝

𝑜𝑛

𝑞0
{𝑠0}

𝑞1
{𝑠1, 𝑠2}

𝑞2
{𝑠2}

∙.𝑜𝑛,
{𝑐, 𝑡, 𝑠}.𝑜𝑛

∙.𝑐𝑜𝑓 , ∙.𝑡𝑒𝑎,
∙.𝑠𝑙𝑒𝑒𝑝, ∅.𝑐𝑜𝑓 ,
∅.𝑡𝑒𝑎, ∅.𝑠𝑙𝑒𝑒𝑝,
{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝

{𝑐, 𝑡}.𝑜𝑛

∙.𝑠𝑙𝑒𝑒𝑝,{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝

∙.𝑜𝑛,∅.𝑜𝑛
∙.𝑜𝑛,{𝑐, 𝑡}.𝑜𝑛

Fig. 5. Specification of a simple coffee machine (above) and its corresponding OTS (below).

We further obtain:

𝑉 .𝑊 = {{𝑠}, {𝑐, 𝑡},

{𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑠}, {𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑐, 𝑡},

{𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑐, 𝑡}.𝑜𝑛.{𝑠}, {𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑐, 𝑡}.𝑜𝑛.{𝑐, 𝑡}}

We shall assume that an implementation OTS may have at most two more states than the specification OTS (𝑛 = 3), hence 𝑚 = 5,
and 𝑘 = 5 − 3 = 2. This means that our test suite needs to contain additional trace components resulting from exhaustive exploration
of paths up to length 2. This, combined with the presence of multiple labels for paths between the same states, makes it undesirable
to provide tests with such a level of detail as in Example 5.2.1. We shall therefore present only the general idea and some examples
of tests, and subsequently demonstrate the way the faults are uncovered on two instances of erroneous implementations.

Compared with the simple test suite from Example 5.2.1, the additional feature in our test suite will be subtraces of length 2
(denoted in the test suite Definitions 5.8 and 5.9 by 𝜎) that can be added in between 𝑣 and the remainder of the trace. To give some
idea of how this affects the size of the test suite (even on such a small example and value of 𝑘) while not enumerating all the possible
𝜎-subtraces, we instead list all the possible sequences/paths of OTS states that can be traversed with OTS transitions:

𝑣 state in
()

State paths contributing additional
subtraces 𝜎

𝜖 𝑞0 𝑞0.𝑞1, 𝑞0.𝑞1.𝑞0, 𝑞0.𝑞1.𝑞1, 𝑞0.𝑞1.𝑞2

{𝑐, 𝑡, 𝑠}.𝑜𝑛 𝑞1 𝑞1.𝑞0, 𝑞1.𝑞1, 𝑞1.𝑞2, 𝑞1.𝑞0.𝑞1, 𝑞1.𝑞1.𝑞0,
𝑞1.𝑞1.𝑞1, 𝑞1.𝑞1.𝑞2, 𝑞1.𝑞2.𝑞0, 𝑞1.𝑞2.𝑞2

{𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑐, 𝑡}.𝑜𝑛 𝑞2 𝑞2.𝑞0, 𝑞2.𝑞2, 𝑞2.𝑞0.𝑞1, 𝑞2.𝑞2.𝑞0, 𝑞2.𝑞2.𝑞2

Science of Computer Programming 239 (2025) 103173

22

M. Gazda and R.M. Hierons

𝑠′
0

{𝐜𝐨𝐟 , 𝐭𝐞𝐚, 𝐬𝐥𝐞𝐞𝐩}

𝑠′
1

∅
𝑠′
2

{𝐜𝐨𝐟 , 𝐭𝐞𝐚}
𝑠′
3

{𝐭𝐞𝐚}

𝑜𝑛
𝑜𝑛

𝑜𝑛

𝑐𝑜𝑓 , 𝑡𝑒𝑎,
𝑠𝑙𝑒𝑒𝑝

𝑜𝑛

𝑠𝑙𝑒𝑒𝑝

𝑐𝑜𝑓 ,
𝑠𝑙𝑒𝑒𝑝

𝑜𝑛 𝑜𝑛

𝑞′
0

{𝑠′
0
}

𝑞′
1

{𝑠′
1
, 𝑠′

2
, 𝑠′

3
}

𝑞′
2

{𝑠′
2
}

𝑞′
3

{𝑠′
2
, 𝑠′

3
}

∙.𝑜𝑛,
{𝑐, 𝑡, 𝑠}.𝑜𝑛

∙.𝑐𝑜𝑓 , ∙.𝑡𝑒𝑎, ∙.𝑠𝑙𝑒𝑒𝑝,
∅.𝑐𝑜𝑓 , ∅.𝑡𝑒𝑎, ∅.𝑠𝑙𝑒𝑒𝑝,
{𝑡}.𝑐𝑜𝑓 , {𝑡}.𝑠𝑙𝑒𝑒𝑝

{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝

{𝑐, 𝑡}.𝑜𝑛

{𝑡}.𝑜𝑛 {𝑐, 𝑡}.𝑜𝑛

∙.𝑠𝑙𝑒𝑒𝑝,{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝

∙.𝑠𝑙𝑒𝑒𝑝,
{𝑡}.𝑠𝑙𝑒𝑒𝑝,
{𝑡}.𝑐𝑜𝑓

∙.𝑜𝑛,
∅.𝑜𝑛

∙.𝑜𝑛,
{𝑐, 𝑡}.𝑜𝑛

∙.𝑜𝑛,{𝑡}.𝑜𝑛

Fig. 6. LTS illustrating an erroneous implementation of the coffee machine from Fig. 5 (above) and its corresponding OTS (below).

Each state path in the last column contributes potentially multiple subtraces 𝜎: for instance, for the path 𝑞1 .𝑞0.𝑞1, we have 14
corresponding 𝜎 traces, since there are 7 distinct transitions from 𝑞1 to 𝑞0 and 2 transitions in the opposite direction. Below, we
provide examples of tests generated for 𝑣 = {𝑐, 𝑡, 𝑠}.𝑜𝑛 involving some of the aforementioned subtraces 𝜎 contributed by the path
𝑞1.𝑞0.𝑞1:

• 𝑅𝑒𝑞𝑇 𝑟o
2
(𝑉 , 𝑆): {𝑐, 𝑡, 𝑠}.𝑜𝑛. ∙ .𝑐𝑜𝑓 . ∙ .𝑜𝑛.{𝑐, 𝑡}.𝑜𝑛,

{𝑐, 𝑡, 𝑠}.𝑜𝑛. ∙ .𝑡𝑒𝑎.{𝑐, 𝑡, 𝑠}.𝑜𝑛.∅.𝑜𝑛, {𝑐, 𝑡, 𝑠}.𝑜𝑛. ∙ .𝑠𝑙𝑒𝑒𝑝. ∙ .𝑜𝑛. ∙ .𝑜𝑛
• 𝑅𝑒𝑞𝑅𝑒𝑓o

2
(𝑉 , 𝑆): {𝑐, 𝑡, 𝑠}.𝑜𝑛.∅.𝑐𝑜𝑓 .{𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑐, 𝑡}

• 𝐹𝑜𝑟𝑏𝑇 𝑟o
2
(𝑆 , 𝑉): {𝑐, 𝑡, 𝑠}.𝑜𝑛.∅.𝑠𝑙𝑒𝑒𝑝.{𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑡}.𝑐𝑜𝑓 ,

{𝑐, 𝑡, 𝑠}.𝑜𝑛.{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝. ∙ .𝑜𝑛.{𝑐}.𝑡𝑒𝑎

Example 5.6.1. Fig. 6 depicts an incorrect candidate implementation 𝐼 of the specification  given in Fig. 5. Observe that in
particular, for 𝑣 = {𝑐𝑜𝑓 , 𝑡𝑒𝑎, 𝑠𝑙𝑒𝑒𝑝}.𝑜𝑛, 𝜎 = 𝜖, we have

Science of Computer Programming 239 (2025) 103173

23

M. Gazda and R.M. Hierons

𝑠′
0

{𝐜𝐨𝐟 , 𝐭𝐞𝐚, 𝐬𝐥𝐞𝐞𝐩}

𝑠′
1

∅

𝑠′
2

{𝐜𝐨𝐟 , 𝐭𝐞𝐚}

𝑠′
3

{𝐜𝐨𝐟 , 𝐭𝐞𝐚}

𝑜𝑛
𝑜𝑛

𝑐𝑜𝑓 , 𝑡𝑒𝑎,
𝑠𝑙𝑒𝑒𝑝

𝑜𝑛

𝑠𝑙𝑒𝑒𝑝

𝑠𝑙𝑒𝑒𝑝 𝑜𝑛

𝑜𝑛

𝑞′
0

{𝑠′
0
}

𝑞′
1

{𝑠′
1
, 𝑠′

2
}

𝑞′
2

{𝑠′
2
}

𝑞′
3

{𝑠′
0
, 𝑠′

3
}

𝑞′
4

{𝑠′
0
, 𝑠′

1
, 𝑠′

2
}

{𝑠𝑙𝑒𝑒𝑝}

∙.𝑜𝑛,
{𝑐, 𝑡, 𝑠}.𝑜𝑛

∙.𝑐𝑜𝑓 , ∙.𝑡𝑒𝑎,
∅.𝑐𝑜𝑓 , ∅.𝑡𝑒𝑎

{𝑐, 𝑡}.𝑜𝑛

∙.𝑠𝑙𝑒𝑒𝑝,{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝

{𝑐, 𝑡}.𝑜𝑛

∙.𝑜𝑛,{𝑐, 𝑡, 𝑠}.𝑜𝑛

{𝑐, 𝑡, 𝑠}.𝑜𝑛

∙.𝑠𝑙𝑒𝑒𝑝, ∅.𝑠𝑙𝑒𝑒𝑝

{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝

∙.𝑐𝑜𝑓 , ∙.𝑡𝑒𝑎

∅.𝑐𝑜𝑓 , ∅.𝑡𝑒𝑎

∙.𝑠𝑙𝑒𝑒𝑝,{𝑐, 𝑡}.𝑠𝑙𝑒𝑒𝑝

∙.𝑜𝑛,
{𝑐, 𝑡}.𝑜𝑛

Fig. 7. LTS illustrating an erroneous implementation of the coffee machine from Fig. 5 (above) and its corresponding OTS (below).

𝑣.𝜎.{𝑡𝑒𝑎}.𝑐𝑜𝑓 = {𝑐𝑜𝑓 , 𝑡𝑒𝑎, 𝑠𝑙𝑒𝑒𝑝}.𝑜𝑛.{𝑡𝑒𝑎}.𝑐𝑜𝑓 ∈ 𝐹𝑜𝑟𝑏𝑇 𝑟o
2
(𝑆 , 𝑉) ∩𝐼

proving 𝐼 ≠ . We note that in fact we have

{𝑐𝑜𝑓 , 𝑡𝑒𝑎, 𝑠𝑙𝑒𝑒𝑝}.𝑜𝑛.{𝑡𝑒𝑎}.𝑐𝑜𝑓 ∈ 𝐹𝑜𝑟𝑏𝑇 𝑟o
0
(𝑆 , 𝑉) ∩𝐼

hence the fault is revealed in this instance by the simplest test suite for , i.e. 𝑠𝑖𝑚𝑝𝑙𝑒(, 𝑉 , 𝑊) = 0(, 𝑉 , 𝑊).

Example 5.6.2. Fig. 7 depicts an incorrect candidate implementation ′
𝐼
of the specification  given in Fig. 5. Observe that in

particular, for 𝑣 = {𝑐𝑜𝑓 , 𝑡𝑒𝑎, 𝑠𝑙𝑒𝑒𝑝}.𝑜𝑛, 𝜎 = ∙.𝑠𝑙𝑒𝑒𝑝. ∙ .𝑜𝑛 and refusal {𝑠𝑙𝑒𝑒𝑝}, forbidden after 𝑣.𝜎, we have

𝑣.𝜎.{𝑠𝑙𝑒𝑒𝑝} = {𝑐𝑜𝑓 , 𝑡𝑒𝑎, 𝑠𝑙𝑒𝑒𝑝}.𝑜𝑛. ∙ .𝑠𝑙𝑒𝑒𝑝. ∙ .𝑜𝑛.{𝑠𝑙𝑒𝑒𝑝} ∈ 𝐹𝑜𝑟𝑏𝑅𝑒𝑓o
2
(𝑆 , 𝑉) ∩𝐼

proving ′
𝐼
≠ .

We note that, in contrast to the previous example, the simplest test suite 𝑠𝑖𝑚𝑝𝑙𝑒(, 𝑉 , 𝑊) does not uncover the fault.

Science of Computer Programming 239 (2025) 103173

24

M. Gazda and R.M. Hierons

6. Conclusions

In this work, we have developed a model-independent method of generating finite test suites for refusal trace semantics, based
on languages of refusal traces alone. We set off by showing how to produce an observation transition system from a given language
of refusal traces. Subsequently, we have provided a method of generating a finite complete test suite from a language LTS, provided
that the LTS is finite. The method is inspired by the W method from the realm of finite state machines.

There are a number of potential lines for future research. Firstly, we can explore the possibility to further reduce the size of
test suites through equivalence-based testing [14] that utilises alphabet equivalence. Another type of optimisation could be accom-
plished by employing methods from [6,7] to remove redundant traces. We also wish to extend the scope of our work so that it can
accommodate inputs and outputs. Another interesting extension involves discrete time, where a special action tock is used [2].

CRediT authorship contribution statement

Maciej Gazda: Writing – review & editing, Writing – original draft. Robert M. Hierons: Writing – review & editing, Writing –
original draft, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported by EPSRC grant EP/R025134/2, RoboTest: Systematic Model-Based Testing and Simulation of Mobile
Autonomous Robots.

References

[1] Philip J. Armstrong, Gavin Lowe, Joël Ouaknine, Bill Roscoe, Model checking timed CSP, in: Andrei Voronkov, Margarita V. Korovina (Eds.), HOWARD-60: A
Festschrift on the Occasion of Howard Barringer’s 60th Birthday, in: EPiC Series in Computing, vol. 42, EasyChair, 2014, pp. 13–33.

[2] James Baxter, Ana Cavalcanti, Maciej Gazda, Robert M. Hierons, Testing using CSP models: time, inputs, and outputs, ACM Trans. Comput. Log. 24 (2) (Jan
2023), https://doi .org /10 .1145 /3572837.

[3] Ana Cavalcanti, Robert M. Hierons, Sidney C. Nogueira, Inputs and outputs in CSP: a model and a testing theory, ACM Trans. Comput. Log. 21 (3) (2020)
24:1–24:53, https://doi .org /10 .1145 /3379508.

[4] Tsun S. Chow, Testing software design modelled by finite state machines, IEEE Trans. Softw. Eng. 4 (1978) 178–187.
[5] Marie-Claude Gaudel, Testing can be formal too, in: 6th International Joint Conference CAAP/FASE Theory and Practice of Software Development (TAPSOFT’95),

in: Lecture Notes in Computer Science, vol. 915, Springer, 1995, pp. 82–96.
[6] Maciej Gazda, Robert M. Hierons, Removing redundant refusals: minimal complete test suites for failure trace semantics, in: 2021 36th Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), 2021, pp. 1–13.
[7] Maciej Gazda, Robert M. Hierons, Removing redundant refusals: minimal complete test suites for failure trace semantics, Inf. Comput. 291 (2023) 105009,

https://doi .org /10 .1016 /j .ic .2023 .105009.
[8] R. van Glabbeek, The linear time-branching time spectrum I. The semantics of concrete, sequential processes, in: J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.),

Handbook of Process Algebra, North Holland, 2001, Chapter 1.
[9] Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, Victor Braberman, Model-based quality assurance of protocol documentation: tools and methodology, J.

Softw. Testing Verif. Reliability 21 (1) (2011) 55–71.
[10] Lex Heerink, Jan Tretmans, Refusal testing for classes of transition systems with inputs and outputs, in: Formal Description Techniques and Protocol Specification,

Testing and Verification (FORTE X/PSTV XVII), in: IFIP Conference Proceedings, vol. 107, Chapman & Hall, 1997, pp. 23–38.
[11] F.C. Hennie, Fault-detecting experiments for sequential circuits, in: Proceedings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,

Princeton, New Jersey, November 1964, pp. 95–110.
[12] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul

Krause, Gerald Lüttgen, Anthony J.H. Simons, Sergiy A. Vilkomir, Martin R. Woodward, Hussein Zedan, Using formal specifications to support testing, ACM
Comput. Surv. 41 (2) (2009) 9:1–9:76.

[13] Wen-ling Huang, Jan Peleska, Complete model-based equivalence class testing for nondeterministic systems, Form. Asp. Comput. 29 (2) (2017) 335–364, https://
doi .org /10 .1007 /s00165 -016 -0402 -2.

[14] Wen-ling Huang, Jan Peleska, Model-based testing strategies and their (in)dependence on syntactic model representations, Int. J. Softw. Tools Technol. Transf.
20 (4) (2018) 441–465, https://doi .org /10 .1007 /s10009 -017 -0479 -9.

[15] David Lee, Mihalis Yannakakis, Testing finite-state machines: state identification and verification, IEEE Trans. Comput. 43 (3) (1994) 306–320.
[16] G.L. Luo, G.v. Bochmann, A. Petrenko, Test selection based on communicating nondeterministic finite-state machines using a generalized wp-method, IEEE Trans.

Softw. Eng. 20 (2) (1994) 149–161.
[17] E.F. Moore, Gedanken-experiments, in: C. Shannon, J. McCarthy (Eds.), Automata Studies, Princeton University Press, 1956.
[18] Joël Ouaknine, Discrete analysis of continuous behaviour in real-time concurrent systems, PhD thesis, University of Oxford, UK, 2000, https://ethos .bl .uk /

OrderDetails .do ?uin =uk .bl .ethos .365293.
[19] Jan Peleska, Wen-ling Huang, Ana Cavalcanti, Finite complete suites for CSP refinement testing, Sci. Comput. Program. 179 (2019) 1–23.
[20] A. Petrenko, N. Yevtushenko, A. Lebedev, A. Das, Nondeterministic state machines in protocol conformance testing, in: Proceedings of Protocol Test Systems, VI

(C-19), 28–30 September, Elsevier Science (North-Holland), Pau, France, 1994, pp. 363–378.
[21] Alexandre Petrenko, Nina Yevtushenko, Adaptive testing of nondeterministic systems with FSM, in: 15th International IEEE Symposium on High-Assurance

Systems Engineering, HASE 2014, Miami Beach, FL, USA, January 9-11, 2014, IEEE Computer Society, 2014, pp. 224–228.
[22] I. Phillips, Refusal testing, Theor. Comput. Sci. 50 (3) (1987) 241–284.

Science of Computer Programming 239 (2025) 103173

25

M. Gazda and R.M. Hierons

[23] Jan Tretmans, Model based testing with labelled transition systems, in: Formal Methods and Testing, in: Lecture Notes in Computer Science, vol. 4949, Springer,
2008, pp. 1–38.

[24] H. Ural, X. Wu, F. Zhang, On minimizing the lengths of checking sequences, IEEE Trans. Comput. 46 (1) (1997) 93–99.
[25] Rob van Glabbeek, Reactive bisimulation semantics for a process algebra with time-outs, in: 31st International Conference on Concurrency Theory (CONCUR

2020), in: LIPIcs, vol. 171, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 6:1–6:23.
[26] M.P. Vasilevskii, Failure diagnosis of automata, Cybernetics 4 (1973) 653–665.

	Model independent refusal trace testing
	1 Introduction
	2 Preliminaries
	3 Refusal traces: a language-based approach
	3.1 Fundamental refusals and equivalence
	3.1.1 Behaviour after a partial trace
	3.1.2 Fundamental refusals and fundamental refusal traces

	3.2 Observation transition system

	4 Testing framework
	4.1 Basic test hypotheses
	4.2 Testing for refusal traces
	4.3 State covers
	4.4 State identification

	5 Test generation
	5.1 A simplified scenario
	5.2 The general case
	5.3 An optimised test suite
	5.4 Coffee machine example

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

