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Abstract
Platinum and ruthenium nanoparticles stabilised by an amine modified polymer immobilised ionic liquid (MNP@NH2-
PEGPIILS, M = Pt, Ru) catalyse the hydrolytic liberation of hydrogen from dimethylamine borane (DMAB), ammonia borane 
(AB) and NaBH4 under mild conditions. While RuNP@NH2-PEGPIILS and PtNP@NH2-PEGPIILS catalyse the hydro-
lytic evolution of hydrogen from NaBH4 with comparable initial TOFs of 6,250 molesH2.molcat−1.h−1 and 5,900 molesH2.
molcat−1.h−1, respectively, based on the total metal content, RuNP@NH2-PEGPIILS is a markedly more efficient catalyst 
for the dehydrogenation of DMAB and AB than its platinum counterpart, as RuNP@NH2-PEGPIILS gave initial TOFs of 
8,300 molesH2.molcat−1.h−1 and 21,200 molesH2.molcat−1.h−1, respectively, compared with 3,050 molesH2.molcat−1.h−1 
and 8,500 molesH2.molcat−1.h−1, respectively, for PtNP@NH2-PEGPIILS. Gratifyingly, for each substrate tested RuNP@
NH2-PEGPIILS and PtNP@NH2-PEGPIILS were markedly more active than commercial 5wt % Ru/C and 5wt% Pt/C, 
respectively. The apparent activation energies of 55.7 kJ mol−1 and 27.9 kJ mol−1 for the catalytic hydrolysis of DMAB and 
AB, respectively, with RuNP@NH2-PEGPIILS are significantly lower than the respective activation energies of 74.6 kJ mol−1 
and 35.7 kJ mol−1 for its platinum counterpart, commensurate with the markedly higher initial rates obtained with the RuNPs. 
In comparison, the apparent activation energies of 44.1 kJ mol−1 and 46.5 kJ mol−1, for the hydrolysis NaBH4 reflect the 
similar initial TOFs obtained for both catalysts. The difference in apparent activation energies for the hydrolysis of DMAB 
compared with AB also reflect the higher rates of hydrolysis for the latter. Stability and reuse studies revealed that RuNP@
NH2-PEGPIILS recycled efficiently as high conversions for the hydrolysis of DMAB were maintained across five runs with 
the catalyst retaining 97% of its activity.
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1  Introduction

The limited reserves of fossil fuels coupled with the negative 
environmental impact resulting from our continued reliance 
as a major source of energy is placing increasing pressure 
on developing an alternative clean and sustainable energy 
vector [1–4]. To this end, green hydrogen has attractive cre-
dentials as a clean and sustainable energy carrier for use 
in stationary and transport applications as it has a suitable 
gravimetric energy density (142 MJ kg−1 vs 54 MJ kg−1 for 
natural gas) and can be generated either from the electrolysis 
of water or from water splitting, generating oxygen as the 
only by-product [5–14]. However, the safe large-scale stor-
age and transportation of such a highly flammable gas and 
its low volumetric energy density are major challenges that 
must be addressed if this technology is to become a practical 
reality and viable [15, 16]. One potential solution is to store 
the hydrogen either in the form of a low molecular weight 
solid or liquid hydride or to absorb it within the channels 
of a porous material [17–24]. In this regard, in addition to 
sodium borohydride [25–30], amine boranes have attracted 
significant interest as possible hydrogen storage materials 
because they are highly stable, have a high hydrogen con-
tent and are non-toxic and water soluble [31–39]. While 
ammonia borane (AB) has the highest hydrogen content 
(19.6 wt%), dimethylamine borane (DMAB) is ca. 30 times 
less expensive and as such considerable effort is currently 
being committed to developing cost effective catalysts for 
the facile and controlled liberation of hydrogen from this 
substrate [40–61].

The dehydrogenation of one mole of DMAB in organic 
media only liberates 1 mol of H2 (Eq. 1) and while high 
rates of hydrogen production have been achieved with homo-
geneous catalysts under relatively mild conditions, they 

suffer from poor long-term stability, often require expen-
sive ligands and are difficult to recover after use [62–76]. 
Heterogeneous catalysts offer several advantages in terms 
of good thermal stability, range of operating temperatures, 
ease of recovery and integration into a device [77–82]. To 
the end, nanoparticle-based catalysts have attracted particu-
lar attention as their activity can be controlled through their 
size, and thereby surface area to volume ratio and number of 
active sites, as well as their morphology, however, the high 
surface area of metal NPs can lead to self-aggregation under 
the conditions of catalysis, forming larger species that are 
less active [83–93]. One approach with the potential to pre-
vent aggregation has been to stabilize the nanoparticles by 
encapsulation into a suitable support such as a metal oxide 
or zeolite, a porous carbon material e.g. graphene oxide 
or reduced graphene oxide, polymers or porous organic 
cages and MOF [94]. To this end, there have been several 
recent examples of NPs that catalyse the dehydrogenation 
of DMAB with encouraging performance profiles either 
solventless or in organic media including mono-, bi and tri-
metallic systems encapsulated in PVP [41, 42, 55, 56, 95, 
96], graphene oxide and reduced graphene oxide [44–46, 
58, 97–99], Vulcan carbon [49], ceria, alumina or titania 
[100–103], MOFs [104–109], hydrophilic polymers [110], 
and MW carbon nanotubes [111]. Moreover, it is becom-
ing increasingly more evident that the encapsulation of NPs 
has additional benefits for catalysis; these include control of 
the growth and morphology due to confinement [112–117], 
dramatic enhancements in catalyst performance arising from 
strong metal support interactions [118–123], and significant 
improvements in activity and selectivity by incorporating 
surface functionality or organic modifiers/ligands to modu-
late the surface electronic structure and/or steric environ-
ment as well as the solubility of the reactants [124–127]. In 
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contrast to the dehydrogenation in organic media, the hydro-
lytic release of hydrogen from DMAB liberates three moles 
of H2 (Eq. 2), however, there are surprisingly few reports of 
this hydrolysis catalysed by ruthenium nanoparticles and as 
such there is still a need to identify cost effective catalysts 
for the rapid and controlled hydrolysis of DMAB under mild 
conditions and to develop an understanding of the factors 
that influence catalyst efficacy.

While ionic liquids have also been used for the stabilisa-
tion of metal nanoparticles [128–130] and their applications 
in a broad range of fundamentally important transformations 
explored [131–134], there do not appear to be any reports of 
the use of ionic liquid stabilised NPs for the catalytic release 
of hydrogen from DMAB, which is somewhat surprising as 
amine boranes have been widely used as hydrogen donors 
for catalytic transfer hydrogenations [135–151]. This is even 
more surprising considering that ionic liquids promote the 
dehydrogenation of ammonia borane and as such might be 
expected to show a cooperative or synergistic effect with NPs 
[152–157]. Ionic liquids have also been grafted to supports 
such as polymers [158–167], mesoporous silica [168–171] 
and MOFs [172–179] to combine their favourable character-
istics, such as the stabilization of nanoparticles through weak 
electrostatic interactions in the same manner as an IL, with 
covalent attachment to a support which would immobilise 
the ionic liquid, facilitate recovery of the catalyst and reduce 
the amount of ionic liquid as the catalyst would be confined 
within the support. Moreover, the tuneable physicochemi-
cal properties and modular synthesis of PIILs should enable 
the ionic environment, charge density and distribution to be 
modified, additional surface functionality to be introduced 
and the stoichiometry of the metal precursor to be controlled 
to facilitate the synthesis of synergetic bi- and multimetal-
lic nanoparticles and thereby improve catalyst efficacy and 
develop new processes and technology to meet the criteria 
required for commercial applications. Although support-
grafted ionic liquids are finding wide ranging applications 
for the stabilisation of NPs and molecular catalysts there are 
only a few reports of their use as supports to stabilise NPs 
for the hydrolytic release of hydrogen from storage materi-
als. In the first of these, highly dispersed PdAuNPs stabilized 
by an imidazolium-modified porous organic polymer cataly-
ses the hydrolytic release of H2 from AB more efficiently 
than either of its monometallic counterparts [180], while 
RuNPs supported on a polymeric ionic liquid catalyses the 
synthesis of benzimidazole from CO2 and 1,2-diamines by 
reductive dehydrogenation of DMAB as well as the DMAB-
mediated reduction of olefins and nitroarenes [181, 182]. We 
have been developing heteroatom donor functionalised PIILs 
as supports for the stabilisation of NPs to determine whether 
the heteroatom donor can supplement the weak stabilisation 
provided by the ionic liquid fragment, influence the growth 
of the NPs or modify the surface electronic structure and 

steric properties and thereby exploit the beneficial influence 
that ligands can impart on the performance of heterogeneous 
nanocatalysts [183–189]. To this end, we recently reported 
that platinum and ruthenium NPs stabilised by phosphine or 
amine-modified PIILs catalyse the hydrolytic dehydrogena-
tion of NaBH4 [190, 191]. In a subsequent study to explore 
the efficacy of amino-modified PIIL stabilised Pt and Ru 
nanoparticles as catalysts for the DMAB-mediated reduction 
of quinoline, we discovered that their disparate efficiency 
may be associated with the different rates of hydrogen evolu-
tion from the DMAB as this would influence the availability 
of surface hydride species [192]. We have now conducted 
a thorough and detailed comparison of the performance of 
amino-functionalised PEG-modified PIIL stabilised ruthe-
nium and platinum NPs as catalysts for the hydrolytic dehy-
drogenation of DMAB, AB and NaBH4 and herein report 
the results of this study. Surprisingly, RuNP@NH2-PEG-
PIILS is a markedly more active catalyst for the hydrolysis 
of DMAB and AB than its platinum counterpart whereas 
both catalysts gave comparable rates for the hydrolysis of 
NaBH4. Moreover, the TOF of 8,300 h−1 for the aqueous 
phase dehydrogenation of DMAB using RuNPs stabilised 
by PEG-modified amine-decorated polymer immobilized 
ionic liquid is among the highest to be reported under mild 
conditions but lower than the 14,926 h−1 obtained with a 
PtRu nanocatalyst stabilised by Vulcan carbon; currently 
the most efficient state-of-the-art catalyst for the aqueous 
phase dehydrogenation of this substrate [49]. In addition, 
regardless of the catalyst, the hydrolytic dehydrogenation 
of ammonia borane was substantially faster than DMAB. 
Preliminary, kinetic studies with deuterium isotope effects 
were undertaken to probe the mechanism of hydrolysis and 
possible pathways are discussed.

2 � Results and Discussion

2.1 � Synthesis and Characterisation of Precatalyst 1a 
and Nanoparticle Catalysts 2a‑b

The composition of the tetrachloroplatinate loaded precursor 
[PtCl4]@NH2-PEGPIILS (1a) and the polymer immobilised 
ionic liquid stabilised platinum and ruthenium nanoparticles 
2a-b required for this study are summarised in Fig. 1. Pre-
cursor 1a was prepared by impregnation of the correspond-
ing polymer NH2-PEGPIIL with the tetrachloroplatinate 
anion such that complete exchange of all the bromide and 
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chloride would afford an amine to platinum ratio of one; 
the resulting precursor 1a was isolated as a dark red solid 
in near quantitative yield. Quantitative analysis of the Cl 2p 
and Br 3d components of the XPS spectrum of 1a revealed 
that the exchange was not complete as evidenced by the pres-
ence of both bromide and chloride, although as expected 
impregnation of NH2-PEGPIIL with [PtCl4]2− resulted in 
a significant reduction of the bromide content as evidenced 
by a comparison of the bromide to chloride ratio of 1:0.22 
for NH2-PEGPIIL and 1:1.75 for 1a; this was supported by 
ICP OES analysis of the precursor which gave a bromide 
to chloride ratio of 1:2.2. The corresponding amine deco-
rated polymer immobilised ionic liquid stabilised platinum 
nanoparticles PtNP@NH2-PEGPIILS (2a) was obtained by 
sodium borohydride mediated reduction of 1a in ethanol and 
isolated as a free-flowing black powder and its ruthenium 
counterpart 2b was prepared as previously described [191]. 
The solid state 13C NMR spectrum of 1a contains a series of 
signals associated with the carbon atoms of the imidazolium 
ring and the aromatic carbons at δ 124 and δ 146 ppm, high 
field signals at δ 11–49 ppm for the methyl group on the 
imidazolium ring and the methylene units of the polymer 
backbone and the benzylamine as well as an intense signal 
at δ 71 ppm for the methylene units of the PEG and a weaker 
signal at δ 58 ppm for the terminal OMe. The solid-state 
13C NMR spectra of 2a-b were identical that of the polymer 
support. Comparison of the solid state 15N NMR spectrum 
for the polymer support, NH2-PEGPIIL, with that for 1a pro-
vided convincing evidence for a Pt–-N interaction as the for-
mer contains three signals at δ -195/-207 and δ -332 ppm for 
the nitrogen atoms in the imidazolium ring and the amine, 
respectively, while the latter contains an additional signal 
at δ -291 ppm; the 41 ppm shift to low field is indicative of 
a platinum coordinated amine (Fig. S13 in the supporting 
information). The IR spectra of the polymer, NH2-PEGPIIL, 
precatalyst 1a and catalysts 2a-b each contain bands at ca. 
1580 cm−1 and 1605 cm−1 characteristic of C = C and C = N 
stretching vibrations of the imidazolium ring and a band 
at ca. 1450 cm−1 due to the C-N(imidazolium or amine) 

stretching vibration confirming that the ionic liquid mono-
mer was incorporated into the polymer. The thermal stability 
of the NH2-PEGPIIL support was investigated by thermo-
gravimetric analysis which showed an initial weight loss just 
below 100 °C associated with removal of a minor amount 
of physiosorbed ethanol and/or water; this was followed by 
three major degradation pathways between 260–650 °C, 
confirming its suitability as a support for the stabilisation of 
nanoparticles for use in catalysis. Moreover, the TGA pro-
files for 2a-b revealed that these catalysts begin to decom-
pose close to 210 °C, which is well below the temperatures 
typically required for the release of hydrogen from storage 
materials. The platinum and ruthenium loadings in 1a and 
2a-b were determined using ICP-OES. In addition, since 
NH2-PEGPIIL is a mixed bromide/chloride salt and 2a and 
2b were generated by reduction of the corresponding metal 
chloride impregnated precursors, ICP-OES analysis was also 
undertaken to establish the chloride and bromide composi-
tion of 2a-b as the amount and type of halide is likely to 
influence their efficacy. To this end, the chloride to bromide 
ratios of 6.25:1 and 7.0:1 in 2a and 2b, respectively, confirm 
that both contain similar amounts of residual bromide. This 
was supported by quantitative analysis of the Cl 2p and Br 
3d components of 2a and 2b which was used to determine 
the relative amounts of chloride and bromide retained after 
reduction of the metal halide impregnated precursor; reas-
suringly, the ratios of 7.2:1 and 7.9:1 for 2a and 2b, respec-
tively, support those determined by ICP-EOS.

Surface characterisation of the polymer, precatalyst 1a 
and catalysts 2a-b was undertaken by X-ray photoelectron 
spectroscopy (XPS). Due to the limitations associated with 
using advantageous carbon as the references [193], peak 
assignments were mainly based on the characteristic BE 
separations between the elements. The local nitrogen envi-
ronment of the polymer was fitted to two peaks at 397.4 eV 
and 395.6 eV characteristic of nitrogen in an imidazolium 
ring and an amine, respectively (see Fig. S15 in the support 
information). The C 1 s region was also consistent with the 
polymer composition as it was fitted to three peaks, one at 

Fig. 1   Composition of [PtCl4]2− 
impregnated amine-decorated 
PIIL, PtCl4@NH2-PEGPIILS 
(1a) and the correspond-
ing PIIL-stabilised platinum 
nanoparticles PtNP@NH2-
PEGPIILS (2a) and correspond-
ing ruthenium nanoparticles 
RuNP@NH2-PEGPIILS (2b)
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280.6 eV for C–C/C-H species and two at 282.3 eV and 
281.2 eV characteristic of C-O and C-N species, respec-
tively [189]. The N 1 s region of the tetrachloroplatinate 
loaded precatalyst 1a was also fitted to two major peaks at 
397.4 eV and 395.6 eV corresponding to imidazolium and 
amine species, respectively (see Fig. S21 in the support-
ing information) [189]; both peaks do not appear to shift 
relative those in the polymer suggesting that the chemical 
environment is unchanged. An additional minor component 
was also fitted at 395.0 eV, which may be indicative of a 
Pt–-N interaction. The Pt 4f region of the tetrachloroplat-
inate-loaded precursor was fitted to two pairs of 4f7/2 and 
4f5/2 spin orbit doublets, consistent with two Pt 4f electronic 
environments (Fig. 2a). The binding energies of the major 
4f5/2 and 4f7/2 peaks at 71.5 eV and 68.2 eV correspond to 
Pt(II) coordinated to chloride as the Pt 4f5/2 and Cl 2p3/2 and 
Pt 4f7/2 and Cl 2p3/2 separation of 121.3 eV and 124.6 eV, 
respectively, are comparable to literature reported values for 
a Pt(II)-Cl species [194–199], while the minor 4f5/2 and 4f7/2 
doublet at 72.8 eV and 69.5 eV is shifted to higher binding 
energy and most likely corresponds to platinum coordinated 
to amine, as the separation of 3.3 eV between these peaks 
and the difference on the BE scale of 326.7 eV between the 
4f7/2 state and the N 1 s is comparable to values previously 
reported for a Pt–-N interaction [200–203]. Such a peak shift 
to higher binding energy indicates that the formation of a 
Pt–-N interaction renders the platinum more electron defi-
cient, which may be a result of the lower negative charge at 
platinum due to substitution of a chloride in [PtCl4]2− for 
a neutral amine. The peak with a binding energy centred 
at 64.2 eV corresponds to residual bromide, derived from 
the PEG-modified imidazolium monomer, and was fitted to 
two pairs of 3d5/2 and 3d3/2 doublets, which mostly likely 
correspond to bromide anion and Pt-coordinated bromide 
[197]. The Pt 4f region of the XPS spectrum of catalyst 2a 
(Fig. 2b) was fitted to two pairs of 4f7/2 and 4f5/2 doublets 
and the separation between the BEs of the Pt 4f7/2 peaks 
and the O 1 s peak of 465.4 eV and 463.8 eV is consist-
ent with Pt metal and PtO2, respectively [204–206]. In the 
case of catalyst 2b, the Ru 3p region was analysed due to 
overlap of the C 1 s and Ru 3d regions and the broad peak 
at 459.5 eV was fitted to two Ru 3p3/2 peaks; the peak at 

higher BE was assigned to RuO2 while the one at lower BE 
was attributed to Ru(0) (Fig. 2c). This assignment was based 
on the separation between these peaks and the aliphatic C 
1 s peak as the values of 177.7 eV and 180.2 eV for this dif-
ference are consistent with previously reported values for 
metallic ruthenium and RuO2, respectively [207–211]. The 
peaks assigned to RuO2 species are probably due to surface 
oxidation of the preformed ruthenium nanoparticles. Finally, 
while Na and B 1 s peaks in the XPS spectra for 2a and 2b 
confirmed the presence of a borate salt such as NaBO2 or 
NaB(OH)4 these were subsequently removed by extraction 
with water. The powder XRD pattern for 2b contained dif-
fraction peaks at 2θ = 28.1°, 35.2°, 40.3°, 54.5°, 58.1°, 59.6°, 
65.8°, 67.2°, 69.8° and 74.3° which index to the (110), 
(101), (200), (210), (211), (220), (002), (310), (112), (301) 
and (202) lattice planes of the tetragonal phase of RuO2 
with the P42/mmm space group (ICDD No. 00–040-1290), 
consistent with the reported literature. The absence of dif-
fraction peaks for metallic ruthenium suggest that the nano-
particles are highly dispersed with sizes < 2.5 nm, which 
was supported by TEM analysis. Similarly, the powder XRD 
pattern for 2a contained characteristic diffraction peaks at 
2θ = 27.9°, 34.7°, 34.8°, 39.6°, 40.2°, 40.3°, 53.8°, 57.7°, 
58.8°, 65.0°, 65.6° which index to (110), (011), (101), (020), 
(200), (111), (121), (220), (002), (130), (221) lattice planes 
for the orthorhombic phase of β-PtO2 (ICDD No. 01–073-
2361) and the absence of diffraction peaks associated with 
metallic PtNPs is also consistent with their small size and 
high dispersion, as described below. TEM micrographs of 
2a and 2b showed that the platinum and ruthenium nano-
particles were ultrafine and near monodisperse with average 
diameters of 1.70 ± 0.5 nm and 2.46 ± 0.4 nm, respectively; 
illustrative micrographs and the corresponding distribu-
tion histograms resulting from sizing of > 100 particles are 
shown in Fig. 3 a-f.

2.2 � PtNP and RuNP Catalysed Hydrogen Evolution 
from Dimethylamine Borane, Ammonia Borane 
and NaBH4

Having recently reported that PtNPs and RuNPs stabilised 
by heteroatom donor decorated polymer immobilised ionic 

Fig. 2   Pt 4f core level XPS 
spectra of (a) 1a and (b) 2a and 
(c) Ru 3p XPS spectrum of 2b 
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liquids are efficient catalysts for the hydrolytic evolution 
of hydrogen from sodium borohydride, this project was 
extended to compare the catalytic efficacy of amino-deco-
rated PIIL-stabilized Pt and Ru nanoparticles for the hydrol-
ysis of DMAB, an inexpensive model substrate for ammonia 
borane, and discovered that RuNP@NH2PEGPIILS (2b) was 
a markedly more efficient catalyst than its platinum counter-
part 2a. Preliminary testing was conducted using 0.25 mol% 
of 2a-b to catalyse the hydrolytic liberation of hydrogen 
from 0.27 M DMAB at 313 K (Fig. 4a). Reactions were 
monitored by measuring the amount of hydrogen liberated 
with time by displacement of water from an inverted burette; 
the data was subsequently corrected by accounting for the 
background volume of hydrogen liberated under the same 
conditions at the same time in the absence of catalyst. The 
data in Fig. 4a shows that RuNP@NH2-PEGPIILS (2b) is a 
markedly more efficient catalyst for the hydrolysis of DMAB 

than its platinum counterpart (2a) as the former reached ca. 
99% completion after 20 min with an initial total turnover 
frequency (TOF) of 8,300 moleH2.molRu

−1.h−1, whereas the 
latter only reached 22% conversion after the same time and 
38% conversion when the reaction time was extended to 
60 min, with an initial total TOF of 3,050 moleH2.molPt

−1.
h−1. This difference in efficiency between 2a and 2b is even 
more evident when the initial TOFs are determined based on 
the estimated surface metal atoms (Table 1). For compari-
son, a catalytic hydrolysis conducted with 0.25 mol% Ru/C 
(5 wt%) only achieved 46% conversion after 20 min with an 
initial TOF of 2,800 moleH2.molRu

−1.h−1 while 0.25 mol% 
Pt/C (5 wt%) only reached 24% conversion after 35 min with 
an initial TOF of 2,200 moleH2.molPt

−1.h−1 (Fig. S1 in the 
supporting information). Moreover, pre-stirring the Ru/C 
and Pt/C with a homogeneous solution of NH2-PEGPIIL 
in water for 12 h prior to performing the hydrolysis only 

Fig. 3   TEM images and corresponding sizing histograms of (a-c) PtNPs for 2a and (d-f) RuNPs for 2b determined by counting > 100 particles

Fig. 4   Hydrolytic liberation 
of hydrogen from a 0.27 M 
solution of (a) dimethylamine 
borane (b) ammonia borane 
and (c) NaBH4 as a function 
of time at 313 K catalysed by 
0.25 mol% 2a and 2b 
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resulted in a marginal improvement in the initial TOF to 
3,050 moleH2.molRu

−1.h−1 and 2,300 moleH2.molPt
−1.h−1, 

respectively. A reference hydrolysis conducted by replacing 
the catalyst with 0.25 mol% NH2PEG-PIIL confirmed that 
the metal nanoparticles were necessary for catalysis.

Having established that 2a-b catalyse the hydrolysis of 
DMAB, the same protocol was applied to the hydrolysis of 
0.27 M ammonia borane (AB) to assess their relative effi-
cacy and compare their performance as a function of the 
substrate. Under the same conditions, 2b was also signifi-
cantly more active than 2a, as measured by the volume of 
hydrogen released at the onset of the reaction, and the initial 
total TOFs of 21,200 moleH2.molRu

−1.h−1 and 8,500 moleH2.
molPt

−1.h−1, respectively, and the relative difference in these 
TOFs as measured by their ratio, is comparable to that for 
the hydrolysis of DMAB (Table 1). Moreover, the initial 
rates of hydrolysis of AB for catalysts 2a and 2b are con-
siderably faster than those for the hydrolysis of DMAB and 
near complete conversions were obtained in much shorter 
reaction times (Table 1). Reassuringly, 2a and 2b are both 
markedly more active as catalysts for the hydrolytic dehydro-
genation of AB than commercially available 5 wt% Ru/C and 
Pt/C, which both reached 93% conversion, with initial TOFs 
of 7,750 moleH2.molRu

−1.h−1 and 5,700 moleH2.molPt
−1.

h−1, respectively; the higher activity obtained with Ru/C is 
in keeping with its efficacy for the hydrolysis of DMAB 
described above. A review of the literature revealed that ini-
tial TOFs for the PtNP-catalysed hydrolysis of AB have been 
reported from 1,962 h−1 up to 28,800 h−1 whereas those for 
RuNP based catalysts range from 2,400 h−1 to 43,000 h−1; 
gratifyingly, 2a and 2b clearly compete with the more 
active of these. Although a comparison of the relative rates 
of hydrolysis of DMAB and AB described here with those 
reported in the literature should be treated with a degree of 
caution, this survey revealed the same trend in rates in that 
the hydrolysis of AB is typically much faster than DMAB 

with both ruthenium and platinum nanoparticles [97, 105, 
212–239]. However, while there do not appear to be any 
direct comparisons between the efficacy of platinum and 
ruthenium nanoparticles stabilised or confined on the same 
support, ruthenium nanoparticle-based catalysts appear to 
give higher initial rates than platinum nanoparticles.

Finally, as NaBH4 is also a promising hydrogen storage 
material, the efficacy of 2a and 2b as catalysts for the hydro-
lytic liberation of hydrogen from aqueous 0.27 M sodium 
borohydride was examined. In stark contrast to DMAB 
and AB, the initial total TOFs of 5,900 moleH2.molRu

−1.
h−1 and 6,250 moleH2.molPt

−1.h−1 for the hydrolysis of 
NaBH4, catalysed by 2a and 2b, respectively, are compa-
rable to each other and any difference in catalyst efficacy 
only manifested itself in the final conversions which reached 
92% for 2b and 68% for 2a. The corresponding comparison 
for the hydrolysis of NaBH4 catalysed by 0.25 mol% Pt/C 
and Ru/C is consistent with the performance of 2a and 2b 
as reactions reached 45% and 67% conversion, respectively, 
and the initial total TOFs of 5,050 moleH2.molPt

−1.h−1 and 
5,400 moleH2.molRu

−1.h−1, respectively, were comparable to 
each other. In addition, these initial rates are only slightly 
lower than those obtained with the same catalyst loading of 
2a and 2b; whereas, in contrast, 2a and 2b were distinctly 
more active as catalysts for the hydrolytic dehydrogenation 
of DMAB and AB than their Ru/C and Pt/C counterparts.

While evaluation of the efficiency of 2a-b as catalysts for 
the hydrolysis of DMAB against literature reports of other 
ruthenium nanoparticle-based systems may have limited 
credibility or value due the disparate protocols and condi-
tions, a review of the most recent literature revealed that 2b 
appears to be among the most active ruthenium nanoparti-
cle-based catalysts for the aqueous phase dehydrogenation 
of DMAB. For example, the initial TOF of 8,300 h−1 is a 
considerable improvement on 896 h−1, 403 h−1 362 h−1, 
obtained with RuNPs stabilised by a PVP-graphene hybrd 

Table 1   Summary of the initial turn over frequencies and conversions for the hydrolysis of 0.27 M DMAB, AB and NaBH4 catalysed by 2a, 2b, 
Pt/C and Ru/C at 313 K.a

a  Reaction conditions: 2.0 mL of 0.27 M substrate, temp = 313 K, 0.25 mol% 2a, 2b, Pd/C, Ru/C. b Total turnover frequency in moleH2.molcat−1.
h−1 based on total metal loading and determined at ca. 20% conversion. c Turnover frequency in moleH2.molcat−1.h−1 based on the estimated sur-
face metal atoms; full details of this calculation are provided on pages S12 and S13 of the supporting information. d % Conversion determined at 
the time given in the parentheses

Initial total TOFb and (TOF)c

Conversion (%)d

Substrate 2a Pt/C 2b Ru/C

DMAB 3,050 (7,625)
38% (60 min)

2,200
24% (35 min)

8,300 (29,122)
100% (20 min)

2,800
46% (20 min)

AB 8,500 (21,250)
99% (15 min)

5,700
93% (11 min)

21,200 (74,200)
98% (5 min)

7,750
93% (7 min)

NaBH4 5,900 (14,750)
68% (30 min)

5,050
45% (20 min)

6,250 (21,875)
92% (18 min)

5,400
67% (18 min)
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support, PVP and GO, respectively [240], 812  h−1 with 
ceria supported RuNPs [52], 51 h−1 and 56 h˗1 for Ru(acac)3 
derived nanoclusters generated in the presence of Al2O3 and 
PVP, respectively [56], 282 h−1 with a graphite-supported 
ruthenium nanocatalyst [241], 59 h−1 for RuNPs stabilized 
by confinement in the metal organic framework ZIF-8 [109], 
173 h−1 for starch stabilised RuNPs [242], and 46 h−1 for 
the solventless dehydrogenation of DMAB with RuNPs 
loaded on cellulose [54], as well as a host of bi- and tri-
metallic nanoparticles stabilised by reduced graphene oxide 
[45], PVP [41, 42, 95, 96], multi-walled carbon nanotubes 
[111], graphene oxide [58, 97–99, 243], polymer hydro-
gels [244], and silica [50]. While it is also slightly greater 
than the 7,500 h−1 obtained with PtNPs immobilised onto 
Ni(OH)2 colloid [40] it is significantly lower than 14,926 h−1 
for platinum-ruthenium nanoparticles decorated on Vulcan 
carbon, which is currently the most efficient supported nan-
oparticle catalyst for the hydrolytic evolution of hydrogen 
from DMAB [49]. To the best of our knowledge, the ini-
tial TOF of 8,300 h−1 obtained with 2b is the highest to be 
reported for the aqueous phase hydrolytic dehydrogenation 
of DMAB catalysed by a monometallic RuNP-based cata-
lyst, which may be due to a combination of the small size of 
the nanoparticles and the hydrophilic environment created 
by the PEGylated support which would affect dispersion of 
the catalyst in the aqueous phase as well as facilitate for-
mation of the surface-coordinated hydrogen bonded array 
[NMe2HBH2-H–-H-OH] responsible for activation of one 

of the H-OH bonds in water. While there are relatively few 
literature reports of the hydrolysis of DMAB using PtNP 
based catalysts, the total TOF of 3,050 h−1 obtained with 2a 
is markedly higher than 49.2 h−1 with PtNPs decorated with 
a polyaniline-reduced graphene oxide composite [97] and 
59 h−1 with platinum supported on Vulcan carbon [49] but 
lower than that of 4,151 h−1 obtained with Pt/C alloyed with 
nickel and 7,500 h−1 for PtNPs immobilised onto Ni(OH)2 
colloid [40].

The disparate performance of 2a and 2b as catalysts for 
the hydrolysis of DMAB and AB compared with their com-
parable performance for the hydrolysis of NaBH4 prompted 
us to conduct a comparison of the kinetics on each of the 
reactions to investigate the rates as a function of temperature 
to determine the activation energies and to explore the effect 
of the catalyst and the DMAB/AB/NaBH4 concentration on 
the rate of the hydrolysis. A series of hydrolytic reactions 
were performed over a range of temperatures between 294 
and 318 K and the initial rate of hydrogen evolution moni-
tored as a function of time. The apparent activation energies 
(Ea) for the hydrolysis of 0.27 M DMAB using a 0.25 mol% 
loading of 2a and 2b were calculated to be 74.6 kJ mol−1 
and 55.7 kJ mol−1, respectively, from the Arrhenius plot of 
ln(k) against 1/T shown in Fig. 5c-d; the initial rates were 
obtained from the linear region of the graphs in Fig. 5a-b. 
Such disparate activation energies are entirely consistent 
with the relative catalytic efficacy of 2a and 2b, as meas-
ured by the initial TOFs of 3050 moleH2.molPt

−1.h−1 and 

Fig. 5   a Plots of volume of 
hydrogen liberated against 
reaction time for the hydrolysis 
of 2 mL of 0.27 M DMAB 
across a range of temperatures 
catalysed by (a) 0.25 mol% 2a 
and (b) 0.25 mol% 2b and the 
corresponding Arrhenius plots 
for the hydrolysis of DMAB 
catalysed by (c) 2a and (d) 2b; 
the initial rates (k) were cal-
culated from the slopes of the 
fitted lines. Each hydrolysis was 
conducted in triplicate. Initial 
rate (k) = molH2.min−1
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8,300 moleH2.molRu
−1.h−1, respectively (vide supra). The 

corresponding activation energies for the hydrolysis of 
aqueous 0.27 M ammonia borane under otherwise identi-
cal conditions and across a similar range of temperatures, 
were determined to be 35.7 kJ mol−1 and 27.9 kJ mol−1 
for 2a and 2b, respectively; these values are substantially 
lower than those for the hydrolysis of DMAB and reflect 
the higher rates of hydrolysis of AB under similar condi-
tions. For comparison, the apparent activation energies of 
44.1 kJ mol−1 and 46.5 kJ mol−1 for the hydrolysis of 0.27 M 
sodium borohydride catalysed by 2a and 2b, respectively, 
are similar and consistent with their comparable initial TOFs 
of 6,200 moleH2.molRu

−1.h−1 and 5,900 moleH2.molPt
−1.h−1, 

respectively. The Arrhenius plots and the graphs showing 
the volume of hydrogen against time associated with the 
hydrolytic dehydrogenation of AB and NaBH4 are available 
in the supporting information (Figs. S2-S3).

The hydrolytic dehydrogenation of DMAB was further 
explored by investigating the activity as a function of the 
concentration of 2a and 2b across various catalyst con-
centrations in 0.27 M DMAB. The logarithmic plot of the 
initial hydrogen generation rate against the catalyst loading 
were straight lines with slopes of 1.04 for 2a and 0.96 for 
2b, confirming that the hydrolysis of DMAB is first order 
with respect to both catalysts (Fig. 6c-d). Similarly, kinetic 
studies for the hydrolysis of AB conducted with different 
concentrations of 2a and 2b were consistent with first order 
kinetics as evidenced from the slopes of 0.98 and 0.91, 
respectively, for the plot of the hydrogen generation rate 
against the catalyst concentration on the logarithmic scale 

(Fig. S4). A review of the recent literature revealed that this 
data is in line with related reports of noble metal nanoparti-
cle catalysed hydrolysis of DMAB and AB including slopes 
of 1.08 for ceria supported RuNPs [52], 1.03 for RuNPs 
loaded on cellulose [54], 0.86 for RuNP stabilised by a gra-
phene oxide-PVP hybrid support [240], 1.01 for RuCu alloy 
NPs immobilised on reduced graphene oxide [45], 0.98 for 
RuPd@GO and 1.04 for RuNiPd nanoclusters immobilised 
on horse chestnut seed [51]. The corresponding study for 
the hydrolysis of a 0.27 M solution of sodium borohydride 
as a function of the concentration of 2a and 2b also gave 
straight line plots for the logarithm of the initial hydrogen 
generation rate against catalyst loading with slopes of 1.07 
and 0.99, respectively, again these slopes indicate first order 
kinetics; details of which are available in Figures S4-S5 of 
the supporting information.

A study of the effect of the initial substrate concentra-
tion on the rate of hydrolysis of DMAB was also performed 
with 17 μmol of 2a and 2b and changing the initial con-
centration of DMAB ([DMAB]0 = 0.085 mM to 0.51 mM) 
to obtain comparative kinetic data across catalyst/substrate 
ratios between 1:1 and 1:5 (Fig. 7); such low catalyst to sub-
strate mole ratios were used to avoid saturation of the surface 
active sites, which would otherwise give zero order kinet-
ics. The plot of the volume of hydrogen generated against 
time for each substrate concentration (Fig. 7a-b) was used 
to determine the initial rates. The corresponding logarith-
mic plots of the hydrogen generation rate against DMAB 
concentration gave slopes of 0.99 and 1.12 for 2a and 2b, 
respectively, confirming that the hydrolysis is first order 

Fig. 6   a and (b) Volume of 
hydrogen generated as a func-
tion of time for the hydrolytic 
dehydrogenation of 2 mL of 
aqueous 0.27 M DMAB at 
303 K catalysed by various 
concentrations of 2a and 2b, 
respectively; c and (d) plots of 
initial hydrogen generation rate 
versus logarithm of the catalyst 
loading for 2a and 2b, respec-
tively. The initial rates (k) were 
determined from the slopes of 
the fitted lines. Each hydrolysis 
was conducted in triplicate. 
Initial rate (k) = molH2.min−1
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in substrate and that activation of DMAB is integral to the 
rate limiting step (Fig. 7c-d). Similar first order kinetics 
for the hydrolysis of DMAB or ethylenediamine bisborane 
have been reported for RuNPs supported on graphene oxide 
[58], cellulose [54], 2-hydroxyethyl starch-p-(2-acrylamide-
2-methyl-1-propanesulfonic acid) hydrogel network [61], 
monodisperse graphite [241], a graphene oxide PVP hybrid 
[240], and oleylamine [245], as well as PtRu nanocatalysts 
supported on Vulcan carbon [49], graphene oxide stabilised 
PdCoNPs [44], monodispersed palladium-ruthenium alloy 
nanoparticles assembled on PVP [42], silica-based gold-
nickel nanohybrid [50], a MOF decorated with monodisperse 
palladium-cobalt nanohybrids [104] and RuCu nanomateri-
als on reduced graphene oxide [45]. The corresponding 
study on the kinetics of hydrolysis of AB as a function of 
the substrate concentration also gave straight line plots for 
the logarithm of the initial hydrogen generation rate versus 
the concentration of AB with slopes of 1.08 and 1.03 for 2a 
and 2b, respectively; consistent with activation of AB in the 
rate limiting step (Fig. S6 in the supporting information). 
However, interestingly, while there have been reports of first 
order kinetics for the hydrolysis AB [232], the majority of 
studies appear to report that the rate of hydrolysis of AB does 
not depend on the substrate concentration, i.e. activation of 
AB is not involved in the rate determining step; in such cases 
the rate limiting step has been proposed to involve activation 
of an O–H bond of water, which may well be facilitated by 
a hydrogen bonding interaction between a hydrogen atom of 
water and either a hydridic B-H bond of a surface coordi-
nated AB [246–249] or a hydridic NP-H [250, 251]. Under 
the same conditions, the corresponding kinetic studies for 

the hydrolytic dehydrogenation of NaBH4 using 26 μmol of 
catalysts 2a and 2b and changing the initial concentration of 
NaBH4 to afford catalyst:substrate ratios ranging from 1:1 to 
1:6 gave slopes of 1.01 and 0.97 for 2a and 2b, respectively, 
for the logarithmic plot of the initial hydrogen generation rate 
versus concentration of NaBH4, meaning that this hydrolysis 
is also first order in NaBH4; complete details are available in 
Figure S7 of the supporting information.

Kinetic isotope effect studies have proven to be an informa-
tive tool for elucidating information about the key rate limiting 
step (RLS) of the nanoparticle catalysed hydrolytic liberation 
of hydrogen from ammonia borane and sodium borohydride. 
While several mechanistic scenarios have been proposed for 
the hydrolysis of ammonia boranes including (1) rate limit-
ing formation of an activated surface coordinated ammonia 
borane followed by attack of water to cleave the B-N bond 
and hydrolysis of the BH3 [252], (2) formation of BH3OHNH4 
by attack of water held proximal to a surface coordinated 
AB [253], and (3) dissociation of the B-N bond by attack 
of water at an activated surface bound ammonia borane fol-
lowed by release of H2 through attack of water on a transient 
hydridic NP-H, in much the same manner as the metal cata-
lysed hydrolysis of NaBH4 [254], and (4) rate limiting activa-
tion of one of the O–H bonds of water in a hydrogen-bonded 
array involving a hydridic B-H bond of a surface-coordinated 
ammonia borane and a water proton [246–248], it is clear that 
ammonia borane and NaBH4 both act as sources of hydride 
and provide one hydrogen atom to the derived hydrogen while 
water provides the other in the form of a proton.

The role of water in the hydrolysis of DMAB catalysed by 
2a and 2b was investigated by performing reactions in H2O 

Fig. 7    a-b Plots of vol-
ume of hydrogen liberated 
against time for the hydrolytic 
dehydrogenation of DMAB at 
303 K catalysed by 2a and 2b 
(17 μmol) in water (200 mL), 
initial concentrations of DMAB 
([DMAB]0 = 0.085, 0.17, 0.25, 
0.34, 0.42, 0.51 mM); c-d plots 
of the hydrogen generation rate 
against initial concentration of 
DMAB in logarithmic scale. 
The initial rates (k) were deter-
mined from the slopes of the 
fitted lines. Each hydrolysis was 
conducted in triplicate. Initial 
rate (k) = molH2.min−1
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and D2O and monitoring the amount of hydrogen liberated 
with time to compare the initial rates and thereby determine 
the KIE. Reactions were conducted under the same condi-
tions described above using 0.25 mol% 2a and 2b to catalyse 
the hydrolysis of 0.27 M DMAB at 303 K. A comparison 
of the initial rates of hydrolysis of DMAB in H2O and D2O 
catalysed by 2a and 2b showed that reactions were faster 
in H2O than in D2O with primary kinetic isotope effects 
(kH/kD) of 2.5 and 3.8, respectively (Fig. 8a-b); similar val-
ues of kH/kD were also obtained for the catalytic hydrolysis of 
a 0.27 M  solution of AB in H2O and D2O using 0.25 mol% 
2a (kH/kD = 2.6) and 2b (kH/kD = 4.0) and the associated data 
is presented in Figure S8a-b while that for the hydrolysis of 
0.27 M NaBH4 in H2O and D2O is presented in Figure S9a-
b. These values for the KIE are comparable to that of 4.95 
reported for the Ni2Pt@ZIF-8 catalysed hydrolysis of ammo-
nia borane [255] as well as atomically disperse platinum 
on the surface of Ni particles (kH/kD = 4.0) [224], CoNPs 

supported on a covalent triazene framework (kH/kD = 2.8) 
[256], ultrasmall Pt nanoclusters on heterostructured NiO/
Ni (kH/kD = 2.8) [257], CoPt nanocatalysts encapsulated in 
click dendrimer (kH/kD = 2.46) [249] and graphene oxide sup-
ported RhNPs (kH/kD = 2.6) [258] and is consistent with a 
mechanism involving rate limiting activation of one of the 
O–H (or O-D) bonds in water, which is activated/weakened 
by hydrogen bonding to one of the hydridic hydrogen atoms 
in DMAB.

While these KIE values are consistent with previously 
reported mechanisms in which a surface-coordinated hydro-
gen bonded array of the type Me2NH-BH2-H–––H––OH, 
involving a hydridic B-H hydrogen and a proton on water, 
activates the O–H bond toward oxidative addition to gener-
ate a water derived M-H and a surface-coordinated DMAB, 
as shown in Fig. 9, it does not distinguish between oxi-
dative addition of an O–H bond coupled with concerted 
hydride transfer from the DMAB (Fig.  9 path a) and a 

Fig. 8   Hydrogen evolution from 
2 mL of a 0.27 M solution of 
DMAB in H2O (red) and D2O 
(blue) at 303 K catalysed by 
0.25 mol% (a) 2a and (b) 2b 

Fig. 9   Proposed pathways for the metal nanoparticle catalysed 
hydrolytic evolution of hydrogen from the hydrogen bonded array 
Me2NH-BH2-H–––H––OH via; a-b rate limiting oxidative addition 
of an O–H bond and hydride transfer followed by reductive elimina-
tion of H2 and abstraction of a surface hydroxide (c-d) double oxida-

tive addition involving O–H and B-H bonds and subsequent reductive 
elimination of H2 and [HO-BH2NMe2H] and (e–f) activation of an 
O–H bond followed by a σ-bond metathesis type process between the 
water derived M-H and the weakly σ-coordinated B-H of a DMAB
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double oxidative addition of O–H and B-H bonds (Fig. 9 
path c). The former pathway would liberate the hydrogen 
via reductive elimination of a water derived M-H and a 
DMAB derived M-H and generate NMe2HBH2-OH as an 
intermediate via electrophilic abstraction of a surface coor-
dinated M-OH by the [NMe2HBH2]+ cation (Fig. 9 path b), 
while the latter pathway would liberate the hydrogen and 
Me2HBH2-OH via reductive elimination (Fig. 9 path d). The 
remaining two B-H bonds in the monohydroxylated boron 
intermediate would subsequently activate in a similar man-
ner to ultimately afford [NMe2H]2[BO2]. While the above 
pathways are initiated by rate limiting oxidative addition of 
an O–H bond of water in a cooperative surface-coordinated 
hydrogen bonded array, we cannot unambiguously exclude 
the possibility that an O–H bond could be activated by 
hydrogen bonding between a surface adsorbed water and 
a DMAB-derived transient metal hydride, as described by 
Jagidar for the copper and Cu@Cu2O core shell nanoparti-
cle catalysed hydrolysis of sodium borohydride [254] and 
Guella for the palladium catalysed hydrolysis of NaBH4 
[259]. Alternatively, the hydrogen may be liberated via rate 
limiting activation of an O–H bond in water followed by 
a concerted σ-bond metathesis-type process between the 
resulting water-derived M-H and the σ-bonded B-H of a 
surface-coordinated DMAB (Fig. 9 path e–f).

Recycle studies were conducted using 2b to catalyse the 
catalytic hydrolytic evolution of DMAB to assess its activ-
ity profile as a function of reuse and thereby determine its 
longevity and potential for integration into a flow-based sys-
tem. The practical challenges encountered with filtering and 
recovering the small quantity of catalyst required for these 
reactions (2.0 mg, 0.25 mol%) meant that it was not feasible 
to conduct a recycle study on this scale. Thus, a catalytic 
reaction using 2 mol% 2b to hydrolyse 20 mL of 0.027 M 
DMAB was monitored until gas evolution ceased after which 
the aqueous solution was charged with an additional por-
tion of DMAB, and the progress of the reaction monitored; 
this sequence was repeated to chart the hydrogen evolution 

against time as a function of run number. The resulting data 
in Fig. 10a shows the hydrogen evolution time profile as a 
function of run number while the initial TOFs in Fig. 10b 
were determined from the first 3 min of the hydrolysis to 
provide a reliable comparison of the initial rates between 
successive runs. While high conversions were obtained 
across five reuses (84–88%), the initial TOF increased from 
505 h−1 in the first run to 781 h−1 in the second run but then 
remained relatively constant in subsequent runs (Fig. 10b), 
retaining 97% of its initial activity across the next 4 runs. 
Such an increase in activity during the first run could be 
due either to reduction of surface ruthenium oxide species 
increasing the number of active sites or a structural change. 
Good conversions and stable activity profiles during reuse 
have also been reported for the catalytic hydrolytic evolu-
tion of hydrogen from DMAB using supported nanoparti-
cles including ultrafine RuNPs anchored on porous g-C3N4, 
[230], cellulose [54], PVP [56] and Amberlyst-15 [226–239], 
nickel-polymer nanogel hybrid particles [47], reduced gra-
phene oxide decorated with monodisperse RuCu alloy nano-
particles [45] whereas the initial activity of ceria supported 
RuNPs [52], PVP supported Ru and RuNi nanoparticles [41, 
57] and monodisperse PdNPs as well as bimetallic PdCo and 
PdRu nanoparticles anchored on graphene oxide [44, 46, 58] 
all showed a significant reduction in activity across four or 
five reuses.

The heterogenous nature of the active species was investi-
gated with a hot filtration study in which a catalytic hydroly-
sis of 0.27 M DMAB using 0.25 ml% 2b was allowed to 
reach ca. 50% conversion after which the reaction mixture 
was then filtered through a syringe filter and the evolution of 
hydrogen from the recovered filtrate monitored for a further 
30 min. Figure 11a shows that there was no evidence of post 
filtration gas evolution which is a strong indication that the 
active ruthenium species had been removed by the filtration. 
In a separate parallel hot filtration test, a catalytic hydroly-
sis of 0.27 M DMAB was allowed to reach completion and 
the reaction mixture subsequently filtered through a syringe 

Fig. 10   a Plot of volume of hydrogen liberated against time for the 
catalytic hydrolysis of 0.027  M DMAB using 2  mol% 2b to map 
catalyst performance during a reusability study across 5 runs; b ini-

tial TOF in moleH2.molRu
−1.h−1 for each run. Volumes are an average 

of two runs. Conditions: 0.54  mmol DMAB (0.032  g), 2  mol% 2b 
(0.0149 g, 0.0103 mmol), water (20 mL), 303 K
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filter, the filtrate was then re-charged with an additional por-
tion of DMAB, and the gas evolution monitored. The amount 
of hydrogen liberated after filtration was quantified and found 
to correspond to background hydrolysis, providing additional 
support that the active species was heterogeneous. Moreover, 
the ruthenium content of the aqueous phase retrieved after 
the hot filtration was below the detection limit of the ICP-
OES (< 0.1 mg L−1), which also suggests that leaching of 
the ruthenium to generate inactive or less active homogene-
ous species is unlikely. However, these experiments do not 
differentiate between heterogeneous catalysis at defect sites 
on the surface of the NP and homogeneous catalysis via a 
process involving rapid leaching to generate active homoge-
neous species that are subsequently redeposited. While the 
PEG-modified imidazolium component was designed with a 
C2-methyl substituent to prevent the formation of metal car-
benes, we cannot unequivocally exclude the formation of an 
abnormal N-heterocyclic carbene (aNHC) species [260] from 
the leached ruthenium which would then be supported and 
retained by the polymer; as such there would be no appar-
ent leaching of the metal as it would all be immobilised in 
the form of RuNPs and molecular carbene species. To this 
end, there have been numerous reports of the serendipitous 
formation of ruthenium-based abnormal carbenes during 
the attempted synthesis of normal N-heterocyclic carbene 
complexes as well as targeted synthesis for applications in 
catalysis as their strong σ-donor character is expected to 
improve performance [261–266]. Finally, TEM analysis of 
the catalyst recovered after the 5th run revealed that the nano-
particles remained near monodisperse with a mean diameter 

of 1.96 ± 0.4 nm, comparable to that of 2.46 ± 0.4 nm for 
freshly prepared 2b, confirming that agglomeration does not 
occur and that leaching and re-deposition is unlikely as this 
would probably result in an obvious change in the size and/
or distribution of the NPs (Fig. 11b-d).

3 � Conclusions

In conclusion, a systematic comparison of the efficacy 
of amino-modified PIIL stabilised platinum and ruthe-
nium nanoparticles as catalysts for the hydrolytic evolu-
tion of hydrogen from DMAB and AB and NABH4 has 
been undertaken. Interestingly, while the RuNP@NH2-
PEGPIILS is significantly more active than its platinum 
counterpart for the hydrolysis of DMAB and AB, both 
catalysts gave comparable initial TOFs and conversions 
for the hydrolysis of NaBH4. Kinetic studies revealed 
that the hydrolysis of DMAB, AB and NaBH4 were all 
first order in catalyst and substrate. The apparent activa-
tion energies of 55.7 kJ mol−1 and 27.9 kJ mol−1 for the 
hydrolysis of DMAB and AB, respectively, with RuNP@
NH2-PEGPIILS as the catalyst are significantly lower than 
those of 74.6 kJ mol−1 and 35.7 kJ mol−1 for its platinum 
counterpart, which is consistent with the markedly higher 
initial TOFs obtained with the RuNPs for both substrates. 
Moreover, both activation energies for the hydrolysis of 
AB are markedly lower than the respective activation 
energies for the hydrolysis of DMAB which is consistent 
with the markedly higher rates of hydrogen evolution from 

Fig. 11   a Hot filtration test 
for the hydrolysis of 0.27 M 
DMAB catalysed by 0.25 mol% 
2b showing that the activity 
is quenched after filtering at 
t = 12 min. Red line – reaction 
in the presence of catalyst; blue 
line – reaction catalysed by 
2b and filtered at t = 12 min. b 
Sizing histogram of RuNPs for 
2b after 5 hydrolysis cycles. c-d 
TEM images of the material
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the former. In stark contrast to the hydrolysis of DMAB 
and AB, both catalysts gave comparable initial rates for 
the hydrolysis of NaBH4 which was supported by their 
similar apparent activation energies. One of the remain-
ing challenges hampering the implementation of sodium 
borohydride for hydrogen storage is the need to close the 
loop by effecting its regeneration from the hydrolysis prod-
uct, NaBO2. To this end, facile regeneration of NaBH4 
has recently been achieved by reacting NaBO2 with CO2 
to form Na2B4O7.10H2O and Na2CO3 both of which can 
be ball-milled with magnesium under ambient conditions 
to afford NaBH4 in high yield [267]. This is an efficient, 
low-cost procedure compared to previously reported meth-
ods which either require an expensive reducing agent such 
as MgH2, an energy intensive dehydration step or a high 
pressure of hydrogen [26]. As the modular synthesis of 
the PIIL support will facilitate further diversification we 
will next explore the influence of varying the amine and 
its loading as well as the ionic environment, porosity, and 
hydrophilicity on catalyst efficacy. Catalyst modifications 
coupled with in operando surface studies and the synthesis 
of multimetallic nanoparticles will also be the focus of 
future endeavours to develop a detailed understanding of 
this system and to identify more active and robust catalysts 
for use in scale-up.
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