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Abstract—An IDK classifier is a computational element that
classifies an input provided to it into one of a set of pre-
defined categories provided that it can achieve the necessary
confidence level to do so; otherwise, it outputs “I Don’t Know”
(IDK). The concept of IDK classifier cascades has emerged as
a strategy for striking a balance between the requirements of
rapid response and precise classification in machine perception.
Effective algorithms for constructing IDK classifier cascades have
recently been developed. Here we extend these prior approaches
by incorporating fault-tolerance: enabling classification that is
concurrently rapid and accurate even in the event of some of the
IDK classifiers exhibiting faulty behavior.

I. INTRODUCTION

A classifier is a software component that assigns each input

it receives to one of a predefined set of classes. In the realm

of autonomous mobile Cyber-Physical Systems (CPS), the

process of perception increasingly relies on classifiers founded

on Deep Learning and related AI technologies [8], [15], [6].

These classifiers are required to make accurate real-time pre-

dictions while working with limited computational resources.

A significant proportion of current machine learning research

tends to emphasize accuracy at the expense of real-time

considerations. This has led to the development of classifiers

with high accuracy that can be quite time-consuming when

processing even simple inputs that should be straightforward

to classify. For example, Wang et al. [17] demonstrated that for

a substantial proportion of the ImageNet 2012 benchmark [14],

a tenfold increase in classifier execution time resulted in

only a marginal enhancement in prediction accuracy. Their

recommendation was to strike a balance between accuracy and

processing speed by employing advanced (and hence slower)

classifiers exclusively for the more challenging cases, so that

the overall time required for successful classification would be

reduced without sacrificing accuracy. One approach aimed at

achieving appropriate accuracy-latency trade-offs is the use of

IDK classifiers [9], [16]. An IDK classifier can be derived

from any pre-existing base classifier; if the base classifier

fails to decide upon a classification with a confidence level

surpassing a specified confidence threshold, it instead outputs a

placeholder class, labeled as ‘IDK,’ signifying ‘I Don’t Know.’

For a given classification problem, it is possible to create

multiple distinct IDK classifiers, each with differing execution

times and probabilities of producing an actual class instead of

IDK. Wang et al. [17] suggested the organization of these

IDK classifiers into what they termed IDK cascades. These

cascades consist of sequences of IDK classifiers that function

as follows:

1) The initial classifier in the IDK cascade is the first to be

invoked when classifying any input.

2) If this classifier outputs a real class as opposed to IDK, then

the IDK cascade concludes, and the input is categorized

under the identified class.

3) If, on the other hand, the classifier outputs IDK, then the

next classifier in the IDK cascade is invoked, and the

process continues from step 2.

In scenarios where it is imperative that all inputs be clas-

sified (i.e., an IDK response from the cascade is unaccept-

able), IDK classifiers need to work in conjunction with a

more traditional deterministic classifier designed for the same

classification task. By placing a deterministic classifier as the

final component of an IDK cascade, it is ensured that the

IDK cascade will always yield a real class, since if all of the

IDK classifiers produce IDK for a particular input, then the

deterministic classifier will step in to provide a definitive clas-

sification, or alternatively, instigate an appropriate degraded

behavior.

This work. Recent research in the real-time systems commu-

nity (e.g., [1], [2], [4], [5]) has studied IDK classifiers from

the perspective of synthesizing IDK cascades that minimize the

expected execution duration needed to obtain a real (i.e., non-

IDK) classification, optionally within a specified latency con-

straint. In this paper we additionally allow for the possibility

that individual IDK classifiers may occasionally exhibit faulty

behavior on some inputs; in the sense that they may incorrectly

classify the input as belonging to a class that does not match

the ground truth. We seek to synthesize IDK cascades that are

tolerant to such faults. Specifically, the contributions of this

paper include the following:

1) In order to obtain an understanding of fault modeling for

real-time classification problems, we conduct a systematic

study that characterizes the sources of failures and the

means of mitigation.

2) Based on this study, we propose a framework for studying

fault-tolerance in IDK Cascades, by identifying a set of

distinguishing characteristics of any classification problem

that may be solved using IDK cascades, and seeking to

understand how these characteristics dictate the specific

modeling and mitigation strategy that needs to be used.



3) We instantiate this framework for a particular fault-

tolerant classification problem, deriving an algorithm for

synthesizing optimal fault-tolerant IDK cascades for this

instantiation (i.e., this particular problem).

4) We evaluate our algorithm on real-world data in order to

demonstrate its performance in practice.

Organization. The remainder of the paper is organized as

follows. In Section II, we describe the system model (largely

adapted from prior real-time systems research on IDK classi-

fiers [1], [2], [4], [5]) that we use, and briefly state how we plan

to extend it to incorporate considerations of fault tolerance. In

Section III, we survey prior publications related to our work. In

Section IV, we identify fault models for IDK classifiers, and in

Section V, outline a framework for defining fault-tolerant IDK

cascades. In Section VI, we explore a particular instantiation

of the framework proposed in Sections IV and V. We specify

a concrete fault-tolerance problem involving IDK classifiers

that we aim to solve, provide a detailed illustrative example,

and derive an optimal algorithm for solving the problem.

We provide an experimental evaluation of this algorithm in

Section VII, thereby demonstrating its applicability on a real

case study. We conclude in Section VIII with some directions

for future research.

II. MODEL

We first describe the formal model for IDK classifiers that

has previously been considered in the real-time literature,

before briefly discussing how we propose to extend the model

in order to account for the possible occurrence of faults.

Consider a scenario in which we have n IDK classifiers

denoted by K1,K2, . . . ,Kn, all for the same classification

problem. As mentioned in Section I, we assume that there is

a probability associated with each of these classifiers success-

fully classifying any given input. These classifiers may exhibit

various mutual dependences between their behaviors; they are

not obliged to be independent. In a conceptual framework, it

proves useful to envision the probability space for these n IDK

classifiers as a Venn Diagram divided into 2n distinct regions.

Each of these regions corresponds to one of the 2n potential

combinations of the n individual classifiers returning either a

real class or IDK for an input, see Figure 1 for the case of

n = 3 classifiers.

Abdelzaher et al. [1] provide a description of how profiling

using representative input data can be employed to estimate

the probability values linked to each of these 2n regions. In

essence, this methodology involves the following steps: (i)

maintaining a counter, initially set to zero, corresponding to

each of these 2n regions; (ii) processing each input sample

from the profiling data by having each of the n IDK classifiers

process it and observing the outcome, whether it is IDK or

not; (iii) incrementing the relevant counters based on these

outcomes; and (iv) after evaluating all profiling input samples,

dividing each counter value by the total number of samples,

hence computing the estimated probability for the precise

outcome associated with the respective region. For example,

(K1,K2,K3)

(K1,K2,K3)

(K1,K2,K3)

(K1,K2,K3) (K1,K2,K3)

(K1,K2,K3)

(K1,K2,K3) (K1,K2,K3)

Fig. 1. The 2n disjoint regions in the probability space for three IDK
classifiers (n = 3) and one deterministic classifier. The blue, red, and brown
ellipses respectively denote the regions of the probability space where the
classifiers K1, K2, and K3 are successful (i.e., do not output IDK). The
enclosing rectangle denotes the region in which the deterministic classifier is
successful (i.e., all inputs). Each of the 23 = 8 disjoint regions into which the
probability space is partitioned by the three ellipses is labeled with a 3-tuple,
with Ki (Ki, respectively) denoting that the the IDK classifier Ki returns a
real class (resp. IDK) in this region.

a region such as (K1,K2,K3), indicating that classifier K1

reports a real class while classifiers K2 and K3 output IDK,

is assigned an estimated probability of occurrence. Thus the

methodology characterizes the IDK classifiers by:

1) The expected (i.e., average) and the worst-case execution

times of each of the n classifiers; and

2) The 2n probability estimates, one corresponding to each of

the 2n possible combinations of the n individual classifiers

returning either a real class or IDK.

Note that the size of the model used to characterize the n

IDK classifiers is Θ(2n). This exponential model size is a

necessity when dealing with classifiers that exhibit arbitrary

inter-dependences between their behaviors. To encompass

these arbitrary dependences between all pairs of classifiers,

it is vital to quantify the probability of each of the 2n subsets

of classifiers successfully classifying inputs, as is done in [1].

The number of IDK classifiers, denoted as n, available for

solving a specific classification problem, is clearly application

dependent. For example, in the extensive Multi-Modal case

study detailed in [1], there are 9 classifiers. These classifiers

are constructed from various neural-network architectures and

employ multiple input modes (vision, acoustic, and seismic).

As a general guideline, values of n exceeding approximately

10 to 12 are unlikely to be commonly encountered in practical

applications. Therefore, the exponential model size, which is

viable up to approximately n = 20, is not a concern in

practice. We note that it is important to consider arbitrary

dependences between classifiers in this way, since classifiers

exhibit a range of dependences and degrees of correlation

in their outputs. By contrast, classifier execution times are

typically independent, as evidenced in [1].

Incorporating Faults. As stated in Section I, the main ob-

jective of this paper is to extend the IDK classifier model

described above (and studied in previous work such as [1],

[2], [4], [5]) to incorporate fault tolerance. Specifically, we say

that a fault occurs whenever, on some input, an IDK classifier

returns a real (i.e., non IDK) class that does not match the



ground truth (i.e., the true class to which that input actually

belongs). A fault model specifies what kinds of faults may

occur, and how faults in the outputs of different IDK classifiers

are correlated. This is discussed in detail in Section IV, where

the notion of exclusivity sets is introduced to formalize the

potential for common failures in different IDK classifiers.

III. RELATED WORK

In their pursuit of establishing a scheduling-theoretic frame-

work that facilitates the incorporation of AI-based algo-

rithms into hard real-time safety-critical systems, the real-time

scheduling theory community, starting from 2021, has directed

its attention towards the investigation of IDK classifiers [1],

[2], [4], [5]. Their objective is to develop the capability to

construct IDK cascades that minimize the expected execution

duration required to achieve successful classification, while

optionally adhering to a specified latency constraint. The work-

load model employed here (elaborated in Section II above)

is adopted from [1], which also provides a comprehensive

overview of previous research concerning the synthesis of IDK

cascades.

Simpler models compared to the one outlined in [1] have

been defined, but these models rely on specific assump-

tions concerning the inter-dependences among the behaviors

of different IDK classifiers. For example, an assumption is

made in [5] that all classifiers exhibit pair-wise independence,

whereas [4] allows for classifiers that are fully dependent

and also considers a combination of classifiers with both

independent and fully dependent behaviors.

A recognition that IDK classifiers do not perform perfectly

in such an idealized manner is taken into account in [2].

This work focuses on binary classes where false-negative

and false-positive behaviors are possible. IDK cascades are

synthesised that minimize the probability of false positives

while meeting both a latency constraint and a constraint on the

maximum acceptable probability of false negatives. Our work

also considers fault tolerance, but uses a more expressive fault

model, as described in Section IV.

A different perspective on non-idealized behavior was re-

cently examined in [3]. There, the probability values character-

izing the behavior of the IDK classifiers are taken to represent

predictions (i.e., estimates) of their true values, which are

assumed to be unknown. The objective is then to synthesize

IDK cascades that are robust to incorrect predictions. It would

be interesting to additionally incorporate the possibility of

faults into the model from [3]; however, doing so is outside

of the scope of this paper, and hence left for future research.

IV. FAULT MODELS FOR REAL-TIME CLASSIFIERS

This section provides an understanding of the categories of

failures that affect IDK classifier behavior, and hence how to

produce IDK cascades that mitigate the effects of the failures,

so that the overall classification process is fault tolerant.

A. Understanding the Categories of Failures

The first step in understanding the categories of failure is to

understand the faults that lead to them. A classical approach

for understanding how failures can occur is a fault tree. Fault

trees are widely used in the critical systems industry having

first been developed as part of justifying that Inter-Continental

Ballistic Missiles could not be launched inadvertently [18], [7].

A survey [13] of over 150 uses of the technique illustrates its

widespread adoption. Figure 2 shows a simplified version of a

fault tree for an IDK classifier. The top-level event starts with

the hazard of concern, Individual classifier provides plausible

incorrect result, which is then decomposed into failures that

cause the higher-level failure. At the bottom level are either

basic failure events, i.e., those that are not decomposed further,

or a failure that could be extended elsewhere in the case of

Insufficient training in the current context. The reason the

fault tree is considered simplified is that in practice all of

the bottom-level failures, e.g., Sensor(s) provides a distorted

representation of the object, have not been decomposed further

into what causes them.

Fig. 2. Fault Tree for an IDK classifier

The key information that can be taken from this fault tree

is that the left-hand side consists of random failures and the

right-hand side consists of systematic failures. This distinction

is important for a number of reasons. The main one being that

random failures are unpredictable in terms of the inputs that

they affect, hence these failures are more difficult to test for

and to eliminate. Random failures common to more than one

classifier can occur due to failure of, or interference with,

shared hardware components. For example, a fault or dirt on

an optical sensor distorts the image, wind over a microphone

distorts the audio signal, local vibrations interfere with the

readings from a seismometer. These failures have the potential

to affect the output from every classifier that uses that type

of input data. Systematic failures tend to be predictable in

terms of manifesting repeatedly given the same or similar

inputs. Systematic failures common to more than one classifier

can occur due to errors in the same large data sets used to

train them, inadequate training data for the specific operational



context, and software bugs affecting a common neural network

architecture.

B. Characterizing Mitigation Strategies

It is important to understand how failures may be tolerated.

System functions typically fall into two categories: ones where

fail safe is sufficient, i.e., in the event of a failure stopping

executing the function is acceptable; or fail operational where

even after a bounded number of failures the system should con-

tinue operating as expected. The difference can be explained

using the classical fault-tolerance architectural patterns that

are applied in this paper, see Figure 3. The pattern on the

left-hand side is the fail-safe version where in the case of

disagreement there is a deterministic classifier that can decide

which class should be output or instigate a fail-safe behavior,

e.g., an autonomous vehicle may need to park itself as soon

as possible or the driver must take control. The pattern on the

right-hand side is where in the case of a single failure, even

with a disagreement, a real class can be output and the faulty

classifier can be identified. We note that with more than three

classifiers, the pattern on the right-hand side can be extended,

so a real class and the faulty classifiers can be identified [10].

The fact that the faulty classifier can be identified means that

the system can be fail operational, e.g., an autonomous vehicle

can continue to operate as expected.

Fig. 3. Architectural Failure Patterns

Within the context of IDK classifiers, we know that they do

not necessarily exhibit independent behavior. It is therefore

not adequate to just run two arbitrary classifiers in order

to identify a fault. Rather, we require that common failure

of the classifiers is sufficiently unlikely for the application

under consideration. To derive the required evidence, the two

categories of failure, random and systematic, are dealt with

separately:

1) Random – A fault tree is produced for each classifier. Each

of the Basic Errors (events) is examined to identify which

classifiers have common error events i.e., the same single

error can cause two or more classifiers to produce the same

incorrect results.

2) Systematic – The profiling data is used directly to com-

pute the pair-wise correlation coefficients for each pair of

classifiers failing on the same input data.

For each classifier the above operations are used to identify

those other classifiers that may exhibit dependent failures.

Suppose, for example, that two classifiers both take input

from the same sensor; a failure of that sensor would cause

both classifiers to fail. We refer to such pairs of classifiers as

exclusivity pairs to denote that they cannot be used to validate

each other’s classification decisions. We note that exclusivity

pairs are not necessarily transitive: it is possible that classifiers

Ki and Kj form one exclusivity pair and classifiers Kj and

Kk another exclusivity pair, but classifiers Ki and Kk do not

form an exclusivity pair. (This can easily happen in practice,

if classifier Kj uses readings from two sensors, one of which

is also read by Ki, and the other by Kk).

We refer to the set of all classifiers that cannot be used

to validate the classification decisions of a classifier Ki as

its exclusivity set; denoted by E(Ki). Hence, if classifier Ki

outputs a real class, rather than IDK, then to identify a single

fault will require some other classifier not contained in E(Ki)
to also output a real class. If these classes are identical then

there is no fault; if they differ then one classifier has failed;

however, which one cannot be determined.

Since the exclusivity sets are based on exclusivity pairs,

it follows that if Ki ∈ E(Kj), then Kj ∈ E(Ki). We also

assume that Ki ∈ E(Ki); meaning that executing the same

classifier twice does not enable a fault to be identified; though

for some random failures this may not be the case.

V. A FRAMEWORK FOR DEFINING FAULT TOLERANT IDK

CASCADES

In this section we introduce a framework that allows a

wide range of classification problems to be specified. Each

specific problem, that requires a cascade of IDK classifiers to

be derived, is defined by the following characteristics:

• Output Class

• Timing Constraint

• Fault Model

• Data Model

• Fault Recovery Technique

• Optimization Criteria

These characteristics are described below.

Output Class. The output class can either be binary (e.g., Haz-

ard or Clear) or multi-class (e.g., Pedestrian, Cyclist, Car,

Truck). It can also include a class that indicates that the input

is void (e.g. Cat, Dog, NONE). The output can be a single

class, or an ordered list of the most likely classes.

Timing Constraint. The classification may be subject to a

latency constraint, i.e., an output must be produced by a

specified deadline. This deadline will usually apply to the

execution of the complete IDK cascade including the deter-

ministic classifier; however, in some problem instances the

deterministic classifier may have a later deadline.



Fault Model. A fault is an output that is not IDK and not the

ground truth. It could be caused by a random error (e.g., a

sensor failure) or a systematic error (e.g., an issue with the

training data). The fault model defines the number of faults to

be tolerated (fail safe or fail operational). The faults may be

considered independent or correlated.

We are concerned with systems in which one or more

potential failures may be critical. For example, with a class

that is either ‘Hazard’ or ‘Clear’, then outputting ‘Clear’ when

there is a ‘Hazard’ is usually critical. Outputting ‘Hazard’

when the correct output is ‘Clear’ may in some problem

instances also be critical, while in others it just represents

degraded performance, to be minimized.

Data Model. During profiling it is necessary to gather data that

will enable the optimal IDK cascade to be constructed. The

profiling process may constrain what data can be collected, and

this will restrict the choice of fault recovery techniques and

optimization criteria. Typical data collected for each classifier

during profiling includes: expected (i.e. average) execution

time, worst-case execution time, probability of outputting IDK,

and overall success rate. There may also be data collected

related to the correlated behavior of the classifiers, for example

enabling probability estimates to be determined corresponding

to each possible combination of the n individual classifiers

returning either a real class or IDK, as well as pair-wise

correlation coefficients describing the failure behavior.

Fault Recovery Technique. To identify a single fault requires

the execution of two classifiers whose failure behaviors are

sufficiently independent. To identify F faults requires F + 1
such classifiers. To recover from a single fault it is usually

enough to execute three sufficiently independent classifiers.

For F faults, 2F + 1 classifiers must be invoked. Within

the context of IDK classifiers, the above numbers apply to

classifiers outputting real classes, rather than IDK. Any IDK

output will require more classifiers to be executed. At any

stage during this process the deterministic classifier can be em-

ployed to complete classification. The deterministic classifier

may use information from a further classifier, extrapolate from

previous outputs, or invoke an application specific degraded

level of service that remains safe; for example assuming that

the class is ‘Hazard’ and responding accordingly.

Optimization Criteria. Given a set of classifiers, a fault

model, a data model, and a fault recovery technique, an IDK

cascade of classifiers must be synthesised that satisfies the

requirements of the fault model and the timing constraints.

As, in general, there is likely to be more than one solution,

this synthesis can also optimize some other aspect of the

problem (such as the likelihood of false positives/negatives or

the minimization of fault free execution duration). The IDK

cascade may be a linear sequence or more generally it may

have branching capabilities, and thus be represented by a DAG.

In the remainder of this paper, we focus on a simple specific

problem. The output class is binary, the fault model requires F

faults to be identified, and the recovery technique is handled

by the deterministic classifier. The optimization criterion is

to minimize the expected execution duration of fault free

behavior, i.e., the overall expected execution time of the IDK

cascade when no fault occurs. The data model consists of

classifier execution times (average case and worst case), and

classification output in terms of success/failure/IDK over the

profiling data. The required IDK cascade is a linear sequence,

with no branching. Dynamic solutions, skipping classifiers or

altering the sequence of classifiers based on the outputs of

previous classifiers in the cascade, are left for future research.

VI. SPECIFIC EXAMPLE AND ITS ANALYSIS

In this section we illustrate, on a small example, how to

synthesize an optimal IDK cascade. As noted above, we

consider a simple fault model, with F faults to be tolerated.

Recovery is handled by the deterministic classifier, which by

definition of the fault model is itself assumed to be fault-

free. Initially we assume no latency constraints (i.e., hard

deadlines), but later show how they can be incorporated.

A. The Problem Considered

Assume we have a collection K1,K2, . . . ,Kn of different

IDK classifiers, as well as a deterministic classifier Kd, for

the same classification problem. This collection of classifiers

is characterized by:

1) The average-case (i.e., expected) execution time and the

worst-case execution time for each of the classifiers, with

Ci denoting the expected execution time of classifier Ki.

2) The 2n probability estimates, one corresponding to each

of the 2n possible combinations of the n individual IDK

classifiers either returning a real class or IDK.

3) The n exclusivity sets E(K1), E(K2), . . . , E(Kn), with the

exclusivity set E(Ki) denoting the set of classifiers that

cannot be used to validate, for the purposes of fault

tolerance, a classification made by Ki.

Given this collection of classifiers, our goal is to synthesize

an IDK cascade, with the fault-free deterministic classifier Kd

as the last classifier in the cascade, that is able to tolerate

F faults. Since a faulty classification by F classifiers must

be tolerated, then either (i) F + 1 different IDK classifiers

that are not in each other’s exclusivity sets must agree upon

the real (i.e., non IDK) class to which any input belongs,

or (ii) the deterministic classifier must make an authoritative

classification. Our performance objective is to have this IDK

cascade perform the classification with the minimum expected

execution duration across all fault-free behaviors1.

At run-time, classifiers are executed sequentially in the order

in which they appear in the IDK cascade, until either: (i) F+1
classifiers that are not in each other’s exclusivity sets have

returned real (i.e., non-IDK) classes; or (ii) the deterministic

classifier Kd is executed, i.e., we have reached the end of

the IDK cascade. If Kd is indeed executed, then we return

the class that it outputs. Otherwise, once F +1 classifiers not

1Here, we are making the implicit assumption that faults are relatively rare,
and hence optimizing for expected execution duration in the presence of faults
is unlikely to be useful.
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2 0 0 1 0 0 0
3 0 0 1 1 0 0
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6 0 1 1 0 0.15 0.20
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8 1 0 0 0 0.05 0
9 1 0 0 1 0.05 0.05

10 1 0 1 0 0.25 0
11 1 0 1 1 0 0
12 1 1 0 0 0.20 0.25
13 1 1 0 1 0 0.35
14 1 1 1 0 0.05 0.40
15 1 1 1 1 0 0.50

Exclusivity Sets

IDK Classifier Ki Exclusivity set E(Ki)
K1 {K1,K3}
K2 {K2}
K3 {K1,K3}
K4 {K4}

Fig. 4. The 4-classifier example, discussed in Section VI-B. Left: Venn-diagram representation of the probabilities of each classifier returning a real class.
Center: The same information, in tabular form (Prob-S values), as well as computed intermediate probabilities (Prob-E). Right: The exclusivity sets.

in each other’s exclusivity sets return real classes, we check

whether or not these classifiers have returned the same class.

If so, we return this class and are done, otherwise a fault is

detected and we immediately call the deterministic classifier

Kd and return the class that is output by Kd.

B. An Example

We now work through a simple example in order to illustrate

the process of computing the expected execution duration,

in fault-free operation, of a given IDK cascade.2 To ease

understanding, the worked example considers that a single

fault must be tolerated, i.e., F = 1.

Suppose we have four IDK classifiers K1,K2,K3, and K4,

and a deterministic classifier Kd. The probabilities associated

with each of the 24 = 16 possible combinations of the

four IDK classifiers are provided in Figure 4, both as a

Venn diagram and in tabular form. In the table, the column

entitled Prob-S represents the probabilities associated with the

different combinations of outcomes when all of the classifiers

are run. This terminology is taken from [1]: “Prob-S [. . . ]

denotes the probability that exactly the specific pattern of IDK

classifiers indicated by 1’s will be able to classify an input,

and those indicated by 0’s will not and so will return IDK.”.

Their exclusivity sets are also specified in Figure 4 — these

essentially state that K1 and K3 comprise an exclusivity pair,

and that the remaining classifiers are independent from the

perspective of susceptibility to faulty behavior.

We also introduce an intermediate probability Prob-E

(shown in the table in Figure 4), with the following meaning.

Prob-E is the probability that when only those classifiers

indicated by 1’s in the associated row of the table are executed,

then at least F +1, i.e. two, of those classifiers that are not in

each other’s exclusivity sets will return a real class. In other

words, Prob-E is the probability that under fault-free operation,

2This example is contrived for illustrative purposes and is not intended
to be realistic. The probability values have been chosen to highlight salient
features of the problem and our proposed solutions, rather than to be faithful
to reality. Evaluations on real-world case studies are detailed in Section VII.

no further classifiers will need to execute. We return to how

the Prob-E values are computed later.

Let us compute the expected execution duration, assuming

fault-free operation, of the IDK cascade

⟨K1,K2,K3,K4,Kd⟩ (1)

Since we seek 1-fault tolerance, classifiers K1 and K2 will

always execute. It is evident from Figure 4 that they will

both succeed, i.e., return real classes, with probability 0.20 +
0.05 = 0.25. (Note, this is the Prob-E value in row 12 of the

table, corresponding to {K1,K2}). Hence, the probability that

classifier K3 will execute is equal to

1− 0.25 = 0.75

Further, classifier K4 will execute unless either or both of

K1 and K3, as well as K2, have returned real classes. From

the Venn diagram in Figure 4, we see that the probability of

this happening is equal to

1− (0.20 + 0.15 + 0.05) = 0.60

Here, 0.20 is the probability that only K1 and K2 return real

classes, 0.15 is the probability that only K3 and K2 return real

classes, and 0.05 is the probability that all three of K1,K2 and

K3 return real classes. (Note, these three values sum to 0.4,

which is the Prob-E value in row 14 of the table, corresponding

to {K1,K2,K3}).

Finally, the deterministic classifier Kd executes, in fault-free

operation, unless at least two of

(K1 ∨K3),K2,K4 (2)

return a real class. Let us refer to this happening as event A.

We see from Figure 4 that only K1 and K2 succeed with

probability 0.2, only K1 and K4 succeed with probability 0.05,

only K3 and K4 succeed with probability 0, and only K3

and K2 succeed with probability 0.15. Further, only K2 and

K4 succeed with probability 0.05, and only K1, K2 and K3

succeed with probability 0.05. Finally, there is zero probability



that K4 succeeds along with two or more other classifiers.

Hence the probability of event A happening is 0.5. (This

is the Prob-E value in row 15 of the table, corresponding

to {K1,K2,K3,K4}). Hence the probability of Kd being

executed is equal to

(1− 0.5) = 0.50

Putting the above pieces together, we have the following

expression for the expected execution duration of the IDK

cascade ⟨K1,K2,K3,K4,Kd⟩

K1 and K2

︷ ︸︸ ︷

(C1 + C2)+

K3

︷ ︸︸ ︷

0.75× C3 +

K4

︷ ︸︸ ︷

0.60× C4 +

Kd

︷ ︸︸ ︷

0.5× Cd (3)

Assuming that the expected execution times of the classifiers

K1, K2, K3, K4, and Kd are 10, 12, 20, 280, and 500

respectively, then the expected execution duration of the IDK

cascade is 455.

Next, let us repeat the exercise on the IDK cascade

⟨K1,K2,K4,K3,Kd⟩ (4)

and compute its expected execution duration, also assuming

fault-free operation. As before, K1 and K2 both always

execute. Next, K4 will execute unless both K1 and K2 return

a real class, this happens with probability

1− (0.20 + 0.05) = 0.75

Further, classifier K3 will execute unless two or more of

K1,K2, and K4 return real classes. From the Venn diagram

in Figure 4, we see that the probability of this happening is

equal to

1− (0.25 + 0.05 + 0.05) = 0.65

Here, 0.25 is the probability that, of those three classifiers,

only K1 and K2 return real classes, the first 0.05 is the

probability that only K1 and K4 return real classes, and the

second 0.05 is the probability that only K2 and K4 return

real classes. Further, there is zero probability that all three

classifiers will return real classes. (The sum of these values

is 0.35. This is the Prob-E value in row 13 of the table,

corresponding to {K1,K2,K4}).

Finally, we observe that the deterministic classifier Kd

executes unless at least two of

(K1 ∨K3),K2,K4

return a real class. Note that this is exactly the event A defined

in (2) above. As we have already computed the probability of

event A to be equal to 0.5; putting the above pieces together,

we have the following expression for the expected execution

duration of the IDK cascade ⟨K1,K2,K4,K3,Kd⟩

K1 and K2

︷ ︸︸ ︷

(C1 + C2)+

K4

︷ ︸︸ ︷

0.75× C4 +

K3

︷ ︸︸ ︷

0.65× C3 +

Kd

︷ ︸︸ ︷

0.5× Cd (5)

Assuming the same execution times for the classifiers

as before, this IDK cascade has an expected execution

duration of 495 compared to 455. for the IDK cascade

⟨K1,K2,K3,K4,Kd⟩.

C. Computing the Prob-E Probabilities

In the above example, we showed how the expected execu-

tion duration of a given IDK cascade may be computed. As

part of that example, we referred to how the Prob-E values

may be used as intermediate values, simplifying and speeding

up the calculation. We now describe how these values can

be computed from the Prob-S values, obtained via profiling.

In doing so, we cater for the general case of F faults,

and thus require that F + 1 classifiers that are not in each

other’s exclusivity sets return real classes in order to meet the

requirements for fault tolerance.

First, we provide a mathematical formulation of how the

Prob-E values can computed for each of the 2n subsets of

classifiers S. We then describe how these values can be

computed efficiently.

Recall that the probability space is divided into 2n regions

representing the probability, here referred to as Prob-S(T ),

of exactly the classifiers in the subset T returning a real

classification, and those classifiers that are not in T returning

IDK, when all of the classifiers are executed. Further, Prob-

E(S) is the probability that when only those classifiers in the

subset S are executed, then at least F + 1 of those classifiers

that are not in each other’s exclusivity sets will return a real

class. Prob-E(S) can be defined as a summation over the

regions of the probability space, represented by the 2n unique

subsets T , as follows:

Prob-E(S) = (6)
∑

∀T

Prob-S(T ) : ∃Q : Q ⊆ (S ∩ T ) ∧ |Q| = F + 1

∧ ∄Ki,Kj ∈ Q,Ki ̸= Kj ,Ki ∈ E(Ki)

In the above formulation, each region T of the probability

space contributes its probability, Prob-S(T ), to Prob-E(S) if

and only if there exists some subset Q of exactly F + 1
classifiers, Ki, Kj etc., that are not in each others exclusion

sets, and the classifiers in Q are in S, i.e., they are all executed,

and they are also in T , i.e., they all return a real class.

For each set of the 2n sets of classifiers S (identified by

1’s in the classifier columns in the table in Figure 4), we

can efficiently compute the corresponding Prob-E(S) value as

follows. First, we initialize Prob-E(S) to zero. Then, for each

of the 2n rows in the table representing a set of classifiers T ,

we determine the intersection V = S ∩ T , which represents

the set of classifiers in S that would return a real class in this

case. To cater for F faults, we use a validity table of Boolean

values, Valid(V ), indicating whether all of the classifiers in

V returning a real class would be sufficient to obtain at least

F +1 real classes from classifiers that are not in each other’s

exclusivity sets. The derivation of this lookup table is given

below. If Valid(V ) is true, then the Prob-S(T ) value is added

to Prob-E(S).

The validity table is computed from a further sufficiency

table of 2n Boolean values, Suffice(Q), which correspond to

the 2n distinct sets of classifiers Q. Suffice(Q) is defined to



be true if and only if the set Q contains exactly F + 1
classifiers and none of those classifiers are in each other’s

exclusivity sets. (This exclusivity requirement can be checked

by determining if there exists a pair of classifiers Ki,Kj ∈ Q,

Ki ̸= Kj , such that Ki ∈ E(Kj)).
The 2n Boolean values, Valid(V ), in the validity table are

computed as follows. First, Valid(V ) is initialized to false,

then for each of the 2n distinct sets Q, we determine if (i)

Suffice(Q) is true and (ii) Q is a subset of V , i.e., V ∩Q = Q.

If both of these conditions hold then Valid(V ) is set to true.

In other words, Valid(V ) is true if and only if there exists

some subset of V consisting of exactly F + 1 classifiers that

return real classes and are not in each others exclusivity sets.

Using a binary representation of the sets of classifiers, and

assuming that set operations such as intersection, counting the

number of members of a set, and table lookup based on set

membership can be done in O(1) time3, then (i) the complexity

of determining the 2n Prob-E values from the Prob-S values

and the validity table is O(2n · 2n) = O(4n); (ii) the com-

plexity of determining the 2n values in the validity table from

the 2n values in the sufficiency table is O(2n · 2n) = O(4n);
and (iii) the complexity of determining the 2n values in the

sufficiency table is O(n(n− 1) · 2n), which is trivially upper

bounded by O(4n), since n(n − 1) ≤ 2n. It follows that the

overall complexity involved in deriving the 2n Prob-E values is

O(4n). This is the same complexity as the case for zero faults

derived in [1]. Hence, this method caters for a requirement

to tolerate F faults, with no increase in complexity over

the no fault case.

We now return to our worked example, assuming that one

fault must be tolerated. Consider computing the Prob-E value

for S = {K1,K2,K3}, i.e., row 14 of the table in Figure 4.

For each set T (row in the table) we determine the intersection

set V = S ∩T , and whether there is a contribution from V to

the Prob-E value for S.

• Rows 0-5, 8, and 9, the intersection set V contains zero or

one classifiers, and so these rows trivially do not contribute.

• Rows 6 and 7, the intersection set V contains K2 and K3,

since these classifiers are not in each other’s exclusivity sets,

these rows contribute their Prob-S values (0.15 and 0).

• Rows 10 and 11, the intersection set V contains only K1

and K3, since these classifiers are in each other’s exclusivity

sets, these rows do not contribute.

• Rows 12-15, the intersection set V contains K1 and K2,

since these classifiers are not in each other’s exclusivity sets,

these rows contribute their Prob-S values (0.2, 0, 0.05, 0).

Summing the contributions, the Prob-E value for S =
{K1,K2,K3} is 0.4 (see row 14 of the table in Figure 4).

D. A Naı̈ve Algorithm

As shown above, it is straightforward to compute the

expected execution duration, assuming fault-free operation, for

any given IDK cascade. This observation immediately yields a

naı̈ve algorithm for determining the IDK cascade of minimum

3This is easily achievable for n ≤ 64 on a 64-bit computer architecture.
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Fig. 5. DAG: The first vertex represents the empty set of IDK classifiers, and
the last vertex represents the deterministic classifier Kd that terminates each
IDK cascade.

expected execution duration: simply examine all IDK cascades

that can be constructed from the available classifiers, and

choose the one with the smallest expected execution duration.

Unfortunately, such an approach of exhaustive enumeration is

computationally intractable even when the number of available

distinct classifiers is relatively small, since it is straightforward

to show that we can synthesize Θ(n!) distinct IDK cascades

from a given collection of n classifiers.

However, our example computations above illustrate an

important property: the probability of a particular classifier

in an IDK cascade executing or not is determined solely by

the set of classifiers that preceded it in the IDK cascade,

not the relative order in which they appear. For example,

observe that the terms corresponding to classifier Kd in both

(3) and (5) are the same. This is because the set of classifiers

preceding Kd in both the IDK cascades of (1) and (4) are the

same ({K1,K2,K3,K4}), even though these classifiers occur

in a different permutation in (1) and (4). A similar property

had previously been observed [1] when fault tolerance was

not considered. The fact that this property continues to hold

even in the presence of potential faults enables us to exploit

it. In Section VI-E, we derive an algorithm for identifying

the IDK cascade of minimum expected execution duration in

fault-free operation by implicitly examining only O(2n), rather

than Θ(n!), distinct IDK cascades. As pointed out in [1],

this improvement can be very significant; e.g., 210 = 1024
while 10! > 3.6 million; 220 is about one million whereas

20! ≈ 2.4× 1018; etc.

E. Synthesizing Optimal Cascades

In the previous section, we observed the important property

that the probability of a particular classifier in an IDK cascade

executing or not depends only on the set of classifiers that

preceded it in the IDK cascade, and not on their relative

ordering. We now describe how this property allows us to



represent individual IDK cascades as paths through a Directed

Acyclic Graph (DAG) in which the vertices represent sets of

classifiers and the edges correspond to adding a classifier to

the end of a partially-constructed IDK cascade.

Suppose we have n IDK classifiers K1,K2, . . . ,Kn, and a

deterministic classifier Kd. We construct a DAG with (2n+1)
vertices, arranged in (n+2) layers, as follows. (The DAG for

n = 4 is depicted in Figure 5).

• For each i ∈ {0, 1, . . . , n}, each vertex in layer i represents

a different subset, of cardinality i, of the set of available

IDK classifiers. The vertex in the lowest layer (layer n+1)

has a different interpretation: it represents the addition of the

deterministic classifier Kd to the end of an IDK cascade.

In the DAG for n = 4 depicted in Figure 5, each vertex

in layers 1-4 is labeled with a binary coding identifying

the classifiers in the subset that the vertex represents. (For

example, the vertex labeled “1011” represents the set of IDK

classifiers {K1,K3,K4}.)

• Let S denote the set of IDK classifiers represented by a

particular vertex in layer i, 0 ≤ i < n. We add an edge from

this vertex to each vertex in layer (i+1) that represents the

union of S and one additional IDK classifier ̸∈ S. The black

arrows in Figure 5 represent these edges.

• We also add an edge from each vertex in the layers num-

bered 0, 1, . . . , n to the sole vertex in the layer numbered

(n+1). (These edges are not explicitly depicted in Figure 5,

in order to enhance clarity).

• Now every IDK cascade can be represented as a path in

this DAG from the vertex in layer 0 to the vertex in layer

(n+1), with the vertex in this path that lies in the ith level

of the DAG representing the subset comprising the first i

classifiers in the IDK cascade for each i, 1 ≤ i ≤ n.

Some such paths are highlighted in Figure 5. Those

corresponding to the cascades (K3,K2,K1,Kd) and

(K1,K2,K3,K4,Kd), are completely shown, while the

path corresponding to the cascade (K1,K2,K4,K3,Kd)
overlaps with the path (K1,K2,K3,K4,Kd) for the first

two edges and the last edge, with the difference between

the two paths, “1100”→“1101”→“1111”, shown in red.

Next we label the edges of the DAG with the edge-costs,

such that the expected execution duration of any IDK cascade

is equal to the sum of the edge-costs on the corresponding

path in the DAG. (The construction of the DAG, as described

above, is essentially the same as described in [1]; however the

computation of the edge-costs is different, as detailed below).

Determining the edge-costs. Let S denote any set of IDK

classifiers, and consider the edge in the DAG from the vertex

corresponding to the set S to the vertex corresponding to
(
S ∪ {Kℓ}

)
, where Kℓ ̸∈ S is the classifier added along that

edge. The edge-cost is equal to Cℓ (the expected execution

time of classifier Kℓ) multiplied by the probability that clas-

sifier Kℓ will be executed in any IDK cascade in which S is

the set of classifiers that precede it. This probability is given

by (1 − P (S)), where P (S) is the Prob-E value associated

with the set S in the probability table, hence the edge cost is

given by (1− P (S))Cℓ.

Determining the optimal IDK cascade. The problem of

determining the IDK cascade with minimum expected exe-

cution duration over all fault-free executions is reduced to

the problem of finding the shortest path from the sole start

vertex in layer 0 to the exit vertex in layer (n + 1). This is

a well-studied problem in graph theory, and algorithms are

known for determining the shortest path in a DAG in time

linear in the number of vertices plus edges. By using such an

algorithm, we can determine the optimal IDK cascade, the one

with the minimum expected execution duration over all fault-

free executions, in O(n·2n) time4, assuming O(1) time for the

look-up of each Prob-E value. Recall, from Section VI-C, that

the pre-processing required to compute the 2n Prob-E values

from the 2n Prob-S values in the probability table is O(4n).
Thus the overall running time of the algorithm is dominated

by the pre-processing stage, and is O(4n).

Incorporating hard deadlines. The algorithm may be gener-

alized to additionally allow for the specification of a latency

constraint, i.e., if it is required that classification must com-

plete within a specified deadline under all circumstances. From

the first (n + 1) layers of the DAG, we simply remove all

vertices for which the sum of the worst-case execution times

of the set of classifiers represented by that vertex, plus the

worst-case execution time of the deterministic classifier Kd,

exceeds the specified deadline. Note, if this removes all of the

vertices, then that implies that no feasible solution exists.

F. Challenges to Optimality and Fault-tolerance

Determining the optimal IDK cascade depends on obtain-

ing profiling data and hence a table of probabilities that

is representative of the behavior of the particular system

of classifiers in its operational scenario. If the data is not

representative, then the probability values may differ, and the

expected execution time duration of the IDK cascade would

not be precisely optimized; however, any deadlines would still

be met, assuming that valid worst-case execution time values

were used.

Obtaining the desired fault-tolerant behavior depends on

the correctness of the exclusivity sets, which in turn depend

on the analysis of systematic and random failures among the

classifiers. It is questionable whether there would necessarily

be sufficient evidence to identify the classifiers involved in

systematic failures. The use of Fault Trees is intended to

supplement this evidence by considering random failures. In

both cases, 100% guarantees are not typically possible. Rather,

the analysis aims to reduce the likelihood of using incorrect

information As Low As Reasonably Practicable (ALARP).

VII. EVALUATION: MULTI-MODAL CASE STUDY

In this section we evaluate our approach by demonstrating

its applicability to a real-world, multi-modal case study.

4There are 2n vertices in the DAG, with at most n edges emanating from
each vertex, and hence O(n · 2n) edges in all.



The data used in this case study was collected previ-

ously [11] as part of a project that seeks to autonomously

detect the presence of a potentially hostile enemy vehicle in

a battlefield environment.5 Three different kinds of sensors

were deployed for this purpose: acoustic (a microphone array),

seismic (a vertical-axis geophone), and vision (a camera).

Based on this input data, the aim is for the classifiers to

determine if a vehicle of the designated target type is present in

the detection area. Such functionality is useful in “intelligent

tripwire” scenarios, where the system must act only when

a specific type of target is present, while ignoring other

passing traffic, hence the output class is effectively binary.

The application has safety implications, as false positives,

i.e., incorrectly identifying a vehicle as hostile, could have

consequences for the safety of friendly vehicles, as could false

negatives, i.e., mis-classifying a hostile vehicle as friendly.

An IDK cascade is required that can deliver a strong

constraint on the likelihood of a false-positive or false-negative

output even when a single fault has occurred. If execution

of the IDK cascade is fault free then its expected execution

duration should be minimized. If a fault occurs, then the

deterministic classifier must be called.

Data collection and pre-processing. The manner in which

the input samples were collected is described in [11] as

follows: “We deployed our devices on the grounds of the

DEVCOM Army Research Laboratory Robotics Research Col-

laboration Campus [. . . ] and collected seismic and acoustic

signals, while different ground vehicles were driven around

the site. Data of three different targets: a Polaris all-terrain

vehicle, a Chevrolet Silverado, and Warthog UGV were col-

lected. Each target repeatedly passed by the sensors. The total

length of the experiment was 115 minutes, spread roughly

equally across the three targets.[. . . ] A camera was employed

to simultaneously record video of the target.”

Following the procedures detailed in Sections 4.1 and 4.2

of [1], we processed the raw data outputs (class and confi-

dence) for each base classifier for each of 1800 randomly

chosen input samples6. We assumed a required precision of

0.95 and used this value to compute a confidence threshold

for each base classifier. An IDK classifier was then formed

from each base classifier: for any given input sample, if

the confidence level output by the base classifier met or

exceeded the confidence threshold, then a real class was

output, otherwise the output was IDK. The way in which the

classification thresholds were chosen ensured that the long run

probability of each IDK classifier outputting a real class that

did not match the ground truth was no more than 1 minus the

required precision, i.e. 0.05 in this case study.

Small Case Study. We first consider four IDK classifiers (out

of nine in all labelled from A to I):

5We thank the authors of [11] for providing us with the raw data for this
case study.

6From each input sample, the different base classifiers used as their input
the different kinds of information that were obtained by the different sensors.

• B: deepsense both: Based on the DeepSense neural network

architecture [19], trained using contrastive learning [12],

uses both seismic and acoustic data.

• D: deepsense seismic: Based on the DeepSense neural

network architecture [12], uses only seismic data.

• F : cnn acoustic: Based on a standard convolution neural

network, uses only acoustic data.

• I: yolov5s-compressed: Based on the YOLOv5 neural net-

work (small version) with image compression using the

DeepIoT neural network architecture compression frame-

work [20], uses only image (video) data.

Following the procedures detailed in Sections 4.1 and 4.2

of [1], we used the profiling data for the 1800 input samples

to construct, for each of the 16 possible outputs of the four

IDK classifiers (1 = real class, 0 = IDK), the probability

of occurrence, Prob-S. From those values, we computed the

probability, Prob-E, that each distinct subset of classifiers

would provide at least two real (i.e., not IDK) outputs from

classifiers that are not in each other’s exclusivity sets. This

information is shown in Table I, along with the average-case

and worst-case execution time7 parameters of the classifiers

on a Raspberry Pi 4, considering the 1800 runs, as well

as the arbitrarily assigned execution time of a hypothetical

deterministic classifier X that always returns a real class.

TABLE I
MULTIMODAL EXAMPLE

B F D I Count Prob-S Prob-E

0 0 0 0 56 0.0311 0
0 0 0 1 33 0.0183 0
0 0 1 0 35 0.0194 0
0 0 1 1 18 0.01 0.2178
0 1 0 0 11 0.0061 0
0 1 0 1 5 0.0028 0.0589
0 1 1 0 5 0.0028 0.15
0 1 1 1 4 0.0022 0.3489
1 0 0 0 181 0.1006 0
1 0 0 1 76 0.0422 0.265
1 0 1 0 698 0.3878 0
1 0 1 1 304 0.1689 0.2772
1 1 0 0 82 0.0456 0
1 1 0 1 31 0.0172 0.27
1 1 1 0 195 0.1083 0.15
1 1 1 1 66 0.0367 0.3911

TOTALS 1800 1.00

Classifier B F D I X

Average ET (ms) 17 3.9 11.4 1440.8 10000
WCET (ms) 19.6 5.3 13.7 1613.2 10000

Determining the exclusivity sets involves two distinct forms

of analysis, one for random failures and one for systematic

failures. First, fault trees for each classifier are constructed and

the common mode failures are identified. Next the classifiers

are profiled and Pearson’s correlation coefficient used in a

pair-wise analysis of failure independence. For this initial

look at just four classifiers we derive the exclusivity sets by

only considering the sensor failures. (In the larger case study

that follows, we also consider the pair-wise correlations). We

7The worst-case execution times are 95-percentile estimates, as also used
in [1]. They are close to the average-case execution times due to the fact that
the path taken in neural network classifier code is typically not data dependent.



assume that the sensors have no built-in fault tolerance, and

hence the allowed single failure, as sanctioned by the fault

model, can cause either the seismic data, the acoustic data or

the video data to be corrupted. Therefore, the exclusivity sets

are: E(B) = {B,D,F}, E(D) = {B,D}, E(F ) = {B,F},

and E(I) = {I}.
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The DAG algorithm, described in Section VI-E, was used to

synthesize the optimal IDK cascade. The expected execution

duration of each of the 65 possible IDK cascades is depicted

in Figure 6. The minimum expected execution duration is

7339.9ms and this is delivered by the pair of IDK cascades

⟨D,F, I, B,X⟩ and ⟨F,D, I,B,X⟩ that utilize all 5 classi-

fiers, including the deterministic one. (Recall that the order of

the first two classifiers has no effect on the expected execution

duration). The best IDK cascade with one or two classifiers

is simply ⟨X⟩, since no two IDK classifiers suffice on their

own, and using one IDK classifier along with the deterministic

classifier only adds to the expected duration. The best IDK

cascades with three classifiers are ⟨D,F,X⟩ and ⟨F,D,X⟩
with an expected execution duration of 8515.3ms. Finally, the

best IDK cascades with four classifiers are ⟨D,F, I,X⟩ and

⟨F,D, I,X⟩ with an expected execution duration of 7751.1ms.

Table II shows how the optimal IDK cascades and their

expected execution durations vary for a range of different

execution times CX for the deterministic classifier. As the

execution time of the deterministic classifier is reduced, so

the optimal IDK cascade is composed of fewer classifiers.

TABLE II
SMALL CASE STUDY: THE OPTIMAL IDK CASCADE FOR DIFFERENT

EXECUTION TIMES FOR THE DETERMINISTIC CLASSIFIER

CX Cascade Expected Duration (ms)

10000 ⟨D,F, I, B,X⟩ 7339.9
6000 ⟨D,F, I, B,X⟩ 4904.4
5000 ⟨D,F,X⟩ 4265.3
4000 ⟨D,F,X⟩ 3415.3
1000 ⟨D,F,X⟩ 865.3
250 ⟨D,F,X⟩ 227.9

Table III illustrates how the optimal IDK cascade changes

with a varying latency constraint or deadline. The Pareto

optimal IDK cascades are given along with their expected

execution durations and worst-case execution times. The latter

corresponds to the value of a latency constraint below which

the optimal IDK cascade changes. This table illustrates the

trade-off between a reduction in expected execution duration

and an increase in overall worst-case execution time.

TABLE III
SMALL CASE STUDY: PARETO OPTIMAL IDK CASCADES

IDK Cascade Worst-case (ms) Expected Duration (ms)

⟨X⟩ 10000 10000
⟨D,F,X⟩ 10019 8515.3

⟨D,F, I,X⟩ 11632.2 7751.1
⟨D,F, I, B,X⟩ 11651.8 7339.9

Large Case Study. We now turn to the complete case study

with nine IDK classifiers and a deterministic classifier. The

parameters of the IDK classifiers are given in Table IV. The

final column shows the probability that each classifier will

return a real class, as opposed to IDK. Note, these probabilities

are not independent.

TABLE IV
CHARACTERIZATION OF ALL NINE IDK CLASSIFIERS.

Name Classifier
Execution
time (ms)

WCET
(ms)

Probability
of real class

deepsense both A 17.5 21.4 89.9%
deepsense both contras B 17.0 19.6 90.7%
deepsense acoustic C 11.7 14.4 21.3%
deepsense seismic D 11.4 13.7 73.6%
cnn both E 4.0 4.8 59.6%
cnn acoustic F 3.9 5.3 22.1%
cnn seismic G 3.7 4.6 32.7%
yolov5s H 3145.9 3475.9 29.9%
yolov5s-compressed I 1440.8 1613.2 29.8%

The exclusivity sets were computed as follows. First, we

considered random failures. Fault trees for each classifier were

constructed and the common mode failures identified. These

common mode failures stem from shared sensors: audio for

classifiers A,B,C,E, F , seismic for classifiers A,B,D,E,G,

and video for classifiers H, I . Considering systematic failures,

the Pearson correlation coefficients between all pairs of clas-

sifiers were computed, see Table V.

TABLE V
LARGE CASE STUDY: PEARSON CORRELATION COEFFICIENTS

A B C D E F G H I

A 1 0.377 0.111 0.282 0.177 0.080 0.143 0.052 0.048

B 0.377 1 0.059 0.265 0.209 0.055 0.121 -0.043 -0.043

C 0.111 0.059 1 -0.067 0.219 0.701 -0.103 -0.028 -0.030

D 0.282 0.265 -0.067 1 0.127 -0.071 0.219 -0.005 -0.008

E 0.177 0.209 0.219 0.127 1 0.231 0.326 0.035 0.037

F 0.080 0.055 0.701 -0.071 0.231 1 -0.066 -0.036 -0.035

G 0.143 0.121 -0.103 0.219 0.326 -0.066 1 0.155 0.151

H 0.052 -0.043 -0.028 -0.005 0.035 -0.036 0.155 1 0.988

I 0.048 -0.043 -0.030 -0.008 0.037 -0.035 0.151 0.988 1

Observe that for many classifiers this measure is indicative

of pair-wise independent behavior, with absolute correlation



values ≤ 0.1 (green cells). Other pairs of classifiers have

correlated behavior and so cannot be trusted to verify that

each other’s outputs are correct. These pairs of classifiers are

thus placed in each other’s exclusivity sets.
Combining the information about random and systematic

failures, the exclusivity sets are as follows:

E(A) = {A,B,C,D,E, F,G} E(F ) = {A,B,C,E, F}
E(B) = {A,B,C,D,E, F,G} E(G) = {A,B,C,D,E,G}
E(C) = {A,B,C,E, F,G} E(H) = {H, I}
E(D) = {A,B,D,E,G} E(I) = {H, I}
E(E) = {A,B,C,D,E, F,G}

Here, almost all of the exclusions due to correlated systematic

failures are covered by the exclusions due to random (hard-

ware) failures. The only additional ones are between classifiers

C and G, where the correlation (−0.103) is only marginally

outside of the bound used. This is unsurprising, since shared

input types (audio, seismic, video) can also be a primary cause

of correlated systematic failures.

TABLE VI
LARGE CASE STUDY: THE OPTIMAL IDK CASCADE FOR DIFFERENT

EXECUTION TIMES FOR THE DETERMINISTIC CLASSIFIER

CX Cascade Expected Duration (ms)

10000 ⟨G,F,D,C, I, E,A,B,X⟩ 6883.5
6000 ⟨G,F,D,C, I, E,A,B,X⟩ 4616.9
5000 ⟨G,F,D,C, I, E,A,B,X⟩ 4050.2
4000 ⟨G,F,D,C,X⟩ 3266.0
1000 ⟨G,F,D,C,X⟩ 837.6
250 ⟨F,D,X⟩ 227.9

Table VI shows how the optimal IDK cascades and their

expected execution durations vary for a range of different

execution times, CX , for the deterministic classifier. As the

execution time of the deterministic classifier is reduced, so

the optimal IDK cascade is composed of fewer classifiers.

Intuitively, the DAG algorithm is making a trade-off between

fast classification (classifiers F and G), higher probability of

returning real classes, but longer execution time (classifier D),

and also importantly choosing to run classifiers that are not in

each other’s exclusivity sets, e.g., focusing on pairs such as

(G,F ), (F,D), and (D,C). Thus many of the IDK cascades

in Table VI begin with ⟨G,F,D,C⟩. For longer durations

of the deterministic classifier, it becomes more important to

reduce the probability that it will run, and so the expensive

and less effective video based classifier I is selected, followed

by a series of classifiers, E, B, and A that have exclusivity

sets that do not include I . Comparing Table VI with Table II

for the small case study, it is evident that having additional

classifiers to choose from, and the potential for longer IDK

cascades, leads to improved solutions, in terms of a reduction

in the expected execution duration.

The selection of classifiers available in the large case study

is effective in tolerating F = 1 faults. Considering F = 2
faults, then classifiers A, B, and E are effectively rendered

useless by the fact that their outputs can only be verified by

classifiers H and I , which are also in each other’s exclusivity

sets. For F = 2 faults, and an execution time of CX =
10000ms for the deterministic classifier, the optimal IDK

cascade is simply to run the deterministic classifier. However,

with CX = 40000ms, the optimal IDK cascade becomes

⟨G,F, I,D,C,X⟩ with an expected execution duration of

39426.4ms, compared to ⟨G,F,D,C, I, E,A,B,X⟩ with an

expected execution duration of 23883.5 ms for F = 1 fault,

and ⟨E,D,B,A,G, F,C, I,X⟩ with an expected execution

duration of 478.8ms for no fault tolerance.

Finally, we note that the pre-processing needed to obtain

the Prob-E values and the execution of the DAG algorithm for

the large case study takes less than 4 milliseconds on a basic

laptop PC (C++ implementation, debug version), illustrating

the efficiency of the method for a practical problem of typical

size.

VIII. CONCLUSIONS

Future Cyber-Physical Systems seem destined to incorporate

a wide range of learning enabled components. Many of these

components will involve various forms of classification. IDK

classifiers are an effective way of addressing the real-time

requirements of such systems. A cascade of IDK classifiers

can be tailored to meet timing constraints, safety constraints

and performance targets. In this paper we have shown how

to construct IDK cascades that are tolerant of failures, such

failures resulting from random faults (such as sensor errors)

and systematic faults (such as those that can occur when

training data does not match the operational environment).

The approach developed in this paper enables the expected

execution time duration of the IDK cascade to be minimized in

the non-fault case, which is important for meeting deadlines,

minimizing system workload, and reducing energy consump-

tion, while also ensuring that faults can be tolerated. The

approach has been designed so that it can be generalized

in a number of ways: (i) the fault model can involve fail-

operational as well as fail-safe behavior; (ii) the criteria to

minimize can involve more than just fault-free behavior, for

example, a cascade could be designed to deliver fail-safe

behavior if there are three concurrent faults, fail-operational

behavior if there are one or two faults, and to minimize

expected execution duration for fault-free or single-fault be-

havior; and (iii) the run-time IDK cascade can become more

adaptive, for example, represented by a DAG rather than

a sequence, this would allow different choices to be made

depending on the actual run-time behavior of each individual

classifier.
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