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a b s t r a c t 

The increasing availability of data, due to the adoption of low-cost industrial internet of things tech- 

nologies, coupled with increasing processing power from cloud computing, is fuelling increase use of 

data-driven models in manufacturing. Utilising case studies from the food and drink industry and waste 

management industry, the considerations and challenges faced when developing data-driven models for 

manufacturing systems are explored. Ensuring a high-quality set of model development data that accu- 

rately represents the manufacturing system is key to the successful development of a data-driven model. 

The cross-industry standard process for data mining (CRISP-DM) framework is used to provide a reference 

at to what stage process manufacturers will face unique considerations and challenges when developing 

a data-driven model. This paper then explores how data-driven models can be utilised to characterise 

process streams and support the implementation of the circular economy principals, process resilience 

and waste valorisation. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Fundamental to manufacturing is mathematical modelling

 Hangos and Cameron, 2001 ), which utilises analogies to help un-

erstand the behaviour of a complex system ( Cross and Moscar-

ini, 1985 ). Models translate theories of how the world functions

nto the language of mathematics. Once built, a model can be

sed to aid in decision-making, develop scientific understanding,

ommunicate knowledge and/or make predictions ( Schichl, 2004 ).

anufacturers have utilised mathematical modelling for four pri-

ary applications: (1) planning and design; (2) monitoring and

ontrol; (3) process optimisation and (4) risk mitigation ( Perry and

reen, 2008 ). There are two branches of manufacturing, dis-

rete manufacturing and process manufacturing. Discrete man-

facturing consists of a bill-of-materials that moves between a

et of manufacturing equipment, as it is cut and assembled to-
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ether ( Brandl, 2007 ). Whereas in process manufacturing, raw or

aste materials flow through the manufacturing plant undergo-

ng thermal, chemical and/or biochemical conversion ( Fisher et al.,

018 ). This fundamental difference between the two causes nu-

erous disparities between the manufacturing practices/processes

 Brandl, 2007 ). Therefore, when constructing a model of a system,

oth discrete and process manufacturing have a unique set of con-

iderations, challenges and opportunities. This paper shall focus on

hose faced in process manufacturing environments. 

Within the field of mathematical modelling, there are two

istinct branches: first principles modelling (often referred to as

echanistic models) and empirical modelling. First principle mod-

ls build a series of equations by examining the workings of the

ystem’s individual parts ( Schichl, 2004 ). First principle models

ely on system understanding to compensate for lack of data. Be-

ause of this, they have a greater potential for extrapolation com-

ared to empirical models ( Mathews, 2004 ). Empirical models are

athematical equations derived from the analysis of data; there-

ore, requiring less knowledge of the system ( Solomatine et al.,

008 ). Empirical models rely on the assumption that the data is of
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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sufficient granularity and/or quantity to define the system. How-

ever, if the system is defined within the data, empirical models

are valuable tools for characterising the system input-output re-

lationships, especially when there is limited engineering-domain

knowledge to characterise complex systems ( Luo et al., 2016 ).

For example, empirical models have proven efficiency at mod-

elling novel configuration bioelectrochemical systems (BES), which

otherwise would require detailed knowledge of complex interac-

tions between physical, chemical and electrochemistry principles

( Luo et al., 2016 ). 

Empirical models are already well utilised in process manu-

facturing because of the volume of data manufacturers produce

( Rasmuson et al., 2014 ). Recently the capabilities of empirical

models have greatly expanded due to advances in the fields of

computational intelligence and machine learning, these new ap-

proaches are encompassed into the field of data-driven modelling

( Solomatine et al., 2008 ). Computational intelligence are nature-

inspired computational approaches to problem-solving; for exam-

ple, algorithms that mimic the behaviour of animals (e.g. swarm

intelligence) ( Saka et al., 2013 ) or algorithms that replicate the be-

haviour of how humans solve problems (e.g. artificial neural net-

work, ANN) ( Kim, 2017 ). Machine learning focuses on the develop-

ment of algorithms that can access data and use it to learn for

themselves (e.g. support vector machines or random forest) and

algorithms can belong within each fields (e.g. ANN) ( Coley et al.,

2018 ). Data-driven models (DDMs) are able to find relationships

between the system state variables (input and output) without

prior knowledge of the system ( Angria et al., 2018 ); although, the

incorporation of prior may enhance DDM predictive capabilities

( Lauer and Bloch, 2008 ). Data-driven models derive the system’s

relationships by training an algorithm (e.g. linear regression, ANN,

Gaussian process) on manufacturing data ( Kim, 2017 ). Although

data-driven algorithms have long existed ( Ojha et al., 2017 ), their

use in industry has been limited because of data constraints (e.g.

lack of data, data not stored in useable format) and lack of com-

putational processing power ( Ge, 2017 ). There is an unprecedented

rise in the volume of manufacturing data being generated due to

the adoption of cyber-physical systems, smart factories and the in-

dustrial internet of things (IIoT) ( Sadati et al., 2018 ). In 2015, it was

reported that manufacturers globally generated more than 10 0 0

Exabyte of data and by 2025 data generation in manufacturing will

increase 20-fold ( Yin and Kaynak, 2015 ). This means that the vol-

ume of data available to build DDMs has never been greater. Data-

driven models were not always considered suitable for enterprise-

wide modelling due to the computational cost in modelling vast

volumes of data ( Boukouvala et al., 2016 ). However, with the in-

troduction of cloud computing, manufacturers now have affordable

access to the processing power required to model large data sets

( Ge, 2017 ). Subsequently, DDMs are becoming prevalent across in-

dustry for modelling and monitoring of plant-wide industrial pro-

cesses ( Ge, 2017 ). 

There are well-known methodologies that provide a struc-

tured approach to developing a DDM. These include data min-

ing and knowledge discovery in databases (KDD) ( Fayyad and

Stolorz, 1997 ), the cross-industry standard process for data mining

(CRISP-DM) ( Shearer, 20 0 0 ), and sample, explore, modify, model

and assess (SEMMA) ( Shafique and Qaiser, 2014 ). Out of these

the CRISP-DM is the most widely used methodology for devel-

oping DDMs and considered the de facto standard by indus-

try ( Mariscal et al., 2010 ). The CRISP-DM is composed of six

phases: business understanding, data understanding, data prepara-

tion, modelling, evaluation and deployment. Business understand-

ing focuses on defining DDM objectives and requirements from a

business objective. Data understanding is the collection and explo-

ration of the data. Data preparation is the selection, cleaning and

transformation of the data, in order to format the data from the
ext phase modelling. Modelling concerns the selection and appli-

ation of various modelling techniques. Evaluation is the evaluation

f obtained models and how to use their results. Finally, deploy-

ent focuses on utilising of the obtained results, knowledge and/or

odels to benefit the business. Developing a DDM is iterative as

nowledge gained during the process may redefine the objectives

nd modelling approach, as shown in Fig. 1 . 

Utilising a structured methodology to develop a DDM helps the

eveloper avoid common data modelling mistakes that may re-

ult in models built that exhibit poor generalisation and overfit-

ing problems. Unless properly addressed these are the two main

ources of error in DDMs ( Kim, 2017 ) and defined as: 

• Generalisation : is the capability of a DDM to fit and make pre-

dictions of data that was not used during the development of

the model ( Kim, 2017 ). The challenge of making the model per-

formance consistently between data used to develop the model

and new input data is known as generalisation. 
• Overfitting : is the generation of a model that corresponds too

closely or exactly to the noise (error) within the dataset, which

negatively impacts future predictions ( Srivastava et al., 2014 ). 

Process manufacturers can face some unique challenges when

acing generalisation and overfitting problems, due to the diffi-

ulty in defining the process manufacturing system. A manufactur-

ng system is defined as an input stream(s) which passes through

 process changing their physical and/or chemical nature into an

utput stream(s), which may consist of multiple products, by-

roducts and/or waste material. Because of characteristics specific

o process manufacturing systems (e.g. feedstock and waste vari-

bility, non-linearity of processes, product specification) deciding

n what data is required and knowing whether the system is ac-

urately represented in the model’s development data is a chal-

enge. This problem is further compounded by a system where

ata availability is limited (e.g. batch production of multiple prod-

cts, frequent changes to manufacturing practise, implementation

f new technologies). This is because the system is likely to con-

ain regions underrepresented by the data, which possibly restricts

he model’s capability to make predictions in that region. Mod-

ls of said systems will have to undergo frequent retraining as

ore data becomes available. These considerations and challenges

ave often been neglected in previous process manufacturing DDM

 Charte et al., 2017 ; Ning and You, 2018 ; Sadati et al., 2018 ). 

The CRISP-DM approach has been successfully applied to pro-

ess manufacturing scenarios where data is abundant and the

hallenge has been extracting useful information from the data

 Arce et al., 2018 ; Atzmueller et al., 2017 ). There have been sev-

ral attempts to update the CRISP-DM approach from a manufac-

urer perspective ( Harding et al., 2006 ; Soroush Rohanizadeh and

oghadam, 2009 ), but these approaches have taken a general view

f manufacturing as a whole. Process manufacturers whose sys-

ems are poorly defined will face challenges specific to process

anufacturers from data availability and variability. Therefore, the

im of this paper is to present the considerations and challenges

nique to process manufacturers. This knowledge may benefit fu-

ure manufacturers who wish to develop models of their systems

nd avoid overfitting and generalisation problems. These points are

resented in the context of the CRISP-DM framework to provide a

tructure to the modelling task, as shown in Fig. 1 . This may be

sed as a guide by process manufacturers and modellers to facili-

ate the development of DDMs for their particular application. 

Through two case studies, the considerations and challenges

aced when modelling process manufacturing systems will be pre-

ented, before discussing what new opportunities arise from data-

riven modelling. Each case study project was performed with a

mall and medium enterprise (SME). The aim of these projects

as to increase the economic and environmental sustainability of
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Fig. 1. Phrases of the CRISP-DM detailing updated to show the unique considerations and challenges faced when developing a data-driven model describing a process 

manufacturing system. Adapted from ( Shearer, 20 0 0 ). 

Table 1 

Summary of case studies (CSs). 

Waste/water management CS1 Brewery CS2 

Manufacturing system The H 

2 AD bioprocess is a circular economy technology, 

which treats wastewater to reduce the pollutant load and 

improve the water quality for reuse, whilst 

simultaneously generating bioenergy. 

Fermentation is a critical process in beer production 

where the sugar in the wort is converted to alcohol. 

Project’s aim To develop a model to analyse and predict the effect of 

wastewater variability (e.g. suspended solid content) has 

on the bioprocess performance. Utilise model to make 

predictions on bioprocess’s ability to treat new 

feedstocks. 

To develop a model to predict alcohol concentration from 

temperature and ultrasonic measurements during a 

fermentation process. 

Feedstock characteristics Farm waste which has variability due to changes in farm 

practices, the welfare of cattle, rainfall, seasons and more. 

Raw ingredients are cereal grain, hops, water and 

brewer’s yeast. Each ingredient contains inherent 

variation which can affect flavour, colour, carbonation, 

alcohol content and other subtle changes in the beer. 

Product specification Wastewater pollutants are reduced so water is fit for 

reuse. And biogas generated contains a minimum of 70% 

by volume of methane. 

Slap in the Face beer containing 4% alcohol concentration. 

Process description The H 

2 AD is a semi-batch bioprocess, meaning that X 

volume of liquid enters and leaves the system at 

predefined time intervals. When entering the system the 

feedstock is heated to 30 °C. The process stream is 

recirculated through the system. 

The main stages in the brewing process are: wort 

production, alcoholic fermentation and maturation. It is a 

batch process with the fermentation lasting between 3–6 

days. 

Model inputs Water quality analysis parameters of feedstock (e.g. pH, 

dissolved oxygen, chemical oxygen demand, total 

suspended solids). 

H 

2 AD process conditions (e.g. temperature, system 

pressure). 

Temperature, ultrasonic velocity and received ultrasonic 

signal amplitude, during fermentation. 

Model outputs Chemical oxygen demand (mg/L) and total suspended 

solids (mg/L) of the output stream. 

Daily biogas production (L) and methane concentration of 

biogas (% vol). 

Alcohol concentration during fermentation. 

Volume of data Samples were collected once a week for a 1 year period, 

resulting in 52 data points. 

Four datasets were collected from four batches of the 

Slap in the Face beer. Each data date set was made up of 

between 830–835 data points. 

t  

d  

s  

a

1

 

e  
hese companies through the development of DDMs which utilised

ata collected from each manufacturing process. Both projects pre-

ented a variety of considerations and challenges that the authors

nd SMEs had to overcome ( Table 1 ). 
t  
.1. Case study 1: waste/water management 

SMEs are under pressure to reduce manufacturing costs and an

ffective waste/water management strategy is paramount. By 2050

here will be a 400% increase in demand for water by the manufac-
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turing sector ( OECD, 2012 ). Larger manufacturers have been utilis-

ing processes, like anaerobic digestion (AD), to valorise their waste

to produce bioenergy and consider the resulting solid waste as fer-

tiliser ( Lin et al., 2013 ). The upfront capital costs of anaerobic di-

gestion are a significant barrier for SMEs, which are generally more

sensitive to additional financial costs ( Rizos et al., 2015 ). 

In the UK, Lindhurst Engineering Ltd. in partnership with the

University of Nottingham has developed a technology called H 

2 AD

Micro AD. The H 

2 AD bioprocess is capable of treating a variety

of wastewaters, from sources including agriculture, brewing, soft

drinks, foods, bio-manufacture residues, to reduce the pollutant

load and improve the water quality for reuse, whilst simultane-

ously generating bioenergy. The H 

2 AD is a hybrid of anaerobic di-

gestion and a microbial fuel cell, targeted at treating SME process

manufacturer’s wastewaters due to its modular, low-cost design. 

Variations in the composition and characteristics of wastewa-

ter require management practices that can accommodate fluctua-

tions in feedstock properties and process conditions, yet still de-

liver appropriate outputs without compensation in capital or op-

erating costs. These wastewater variations, as well as potential en-

vironmental factors (e.g. seasonal), can decrease the efficiency of

the bacteria to reduce pollutant load and generate biogas, which

are the heart of the H 

2 AD bioprocess. This case study aims to de-

velop a DDM aimed at understanding how variations in the in-

put wastewater stream and H 

2 AD process conditions inform on

the process performance. The performance is defined as the per-

centage removal of wastewater pollutants and volume of biogas

generated. The model is trained on data collected from an operat-

ing H 

2 AD plant currently treating wastes produced by a 300 cattle

dairy farm. The farm waste contains cattle slurry, bedding waste,

waste milk, footbath, parlour washing and rainfall. The model will

then be used to: 

(1) Analyse and predict wastewater variations effect on the bio-

process performance and respond to energy challenges. 

(2) Predict the bioprocess’s ability to handle new feedstocks. 

1.2. Case study 2: craft breweries 

There are over 20 0 0 craft breweries within the UK, most utilis-

ing equipment and processing techniques that have not changed

for + 30 years ( Simmonds, 2017 ). This makes it an often unpre-

dictable and inefficient process, especially regarding water over-

consumption ( Edmonds, 2016 ). A critical stage of the brewing pro-

cess is fermentation, where yeast is added to the wort (the liquid

extracted from the mashing process downstream) to convert sugar

to alcohol (ethanol). The fermentation process is complete once the

beer has reached the desired alcohol content and flavour profile.

For SME breweries, this is currently determined by removing sam-

ples from the vessel and manually measuring the specific gravity

with a hydrometer. Although the fermentation duration should be

identical for each batch of a particular beer, this is rarely the case

due to seasonal variability in ingredient (malts, hops, water) prop-

erties and natural fluctuations in process temperature. As specific

gravity measurements are only taken every 4–10 h (or longer if no

one is working overnight) this often leads to overfermentation, af-

fecting product quality and resource utilisation. 

Ultrasonic sensors can be used to monitor industrial pro-

cesses such as equipment cleaning ( Escrig et al., 2019 ) and mul-

tiphase flow ( Al-Aufi et al., 2019 ). Previous research has shown

that ultrasonic measurements can be used to monitor changes in

ethanol volume concentration during beer fermentation processes

( Krause et al., 2011 ; Resa et al., 2004 ). The authors of this pa-

per are currently working on a project to develop a low-cost ul-

trasonic sensor designed for craft brewers. They are collaborat-

ing with an SME craft brewery in Nottingham, UK called Totally
rewed. This project records ultrasonic and temperature measure-

ents during fermentation and uses supervised machine learning

lgorithms, such as artificial neural networks (ANNs), to predict the

lcohol concentration from these measurements. 

These case studies were chosen because they contain character-

stics unique to process manufacturing systems ( Table 1 ). Examples

f the considerations and challenges resulting from these charac-

eristics are referred to throughout this paper to support the topics

iscussed in each section. 

. Considerations for data-driven process manufacturing 

odels 

When developing a model, there are considerations, which

ust be made before the data collection and model building

tages. Primarily, these considerations are 

(1) Defining the model’s goal; 

(2) Understanding what is required from the model and, 

(3) Data considerations (what data is already collected, what ad-

ditional data points are required, how much data is needed,

how the data is to be collected and how often). 

Detailed discussions between the manufacturer and modeller

ust take place to address these considerations. The modeller

or team of modellers) may be an internal employee(s) or man-

facturers may sub-contract data analysists and software special-

sts to model their processes. Digital companies, like Microsoft’s

zure software, are now offering these services through the cloud

 Microsoft, 2018 ). This service-orientated approach is often more

ffordable as they operate on a pay-as-you-go business model

 Fisher et al., 2018 ). This means they are more readily available,

specially for SMEs, who are understandably unlikely to have the

equired expertise within their current workforce or be able to af-

ord the cost of developing, running and maintaining the models

hemselves. 

.1. Defining the model’s goal 

When constructing a mathematical model, the first stage is to

dentify and define the model’s goal, as this will define the model’s

utputs ( Cross and Moscardini, 1985 ). A model may have multi-

le goals; these may change over time and may come into con-

ict with each other. For example, in the waste/water management

ase study (CS1), the model’s aim is to understand and predict how

he system’ variability affects the H 

2 AD bioprocess performance

nd make predictions how the H 

2 AD bioprocess will perform on

ew feedstocks. The performance of the process is defined as the

ercentage removal of wastewater pollutants and volume of bio-

as generated. The model’s goal is to make predictions using the

eedstock and H 

2 AD process data to determine the H 

2 AD process

onditions that maximise the removal of key pollutants and vol-

me of biogas generated. These two goals may come into conflict

ith one another; for example, maximising pollutant removal may

dversely affect the rate of biogas production. Determining which

oal to favour will be driven by current economic and environmen-

al factors, customer demands and regulations. In the brewery case

tudy (CS2), the model’s aim is to predict when fermentation is

omplete and the beer has reached desired alcohol concentration

nd flavour profile. By doing so it will minimise over-fermentation,

hich wastes resources and results in an inferior product. This de-

ned the model’s goal of developing a model that could predict

he alcohol concentration in real-time from affordable ultrasonic

nd temperature measurements. 
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Table 2 

Examples of data-driven models requirements for the 2 case studies, waste/water management and brewery. 

Identify relationships Make predictions 

Waste/water management CS1 To understand how variations in both the feedstock’s 

characteristics and process conditions affect the H 

2 AD 

bioprocess. In addition, identify which key variables in 

both strongly affect performance. 

(1) To predict how variations in feedstock will affect the 

bioprocess performance and optimise the process 

conditions to maximise performance. 

(2) To predict the H 

2 AD’s performance when treating 

new feedstocks to determine if they are financially viable 

Brewery CS2 Models data to identify the relationship between 

temperature and ultrasonic measurements during 

fermentation to alcohol. Furthermore, to understand how 

variations in these measurements affect alcohol 

generation. 

(1) Utilises the model to make a prediction of 

fermentation endpoint for the current batch. 

(2) To evaluate feedstocks (hops, malt, water, yeast) 

influence the fermentation time and adjust process 

conditions to accommodate. 
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.2. Understanding the requirements from the model 

A model’s goal will inform on what function the model is to

erform and what degree of accuracy is required in the model out-

uts. A DDM may perform two functions: 

(1) Fit data (by regression, classification and/or clustering) to

identify relationships between input, output, process and

material properties. 

(2) Predict process performance and resource use. 

Dependant on the goal, a DDM may only be required to per-

orm function (1) or it may perform both functions (1) and (2).

ata-driven models are able to model highly complex, nonlinear

ystems to identify these relationships ( Pasini, 2015 ). Dependant

n the manufacturer’s requirement, DDMs can also be utilised for

redictions ( Almeida, 2002 ). However, the complexity of the model

ay increase, which will be dependant on the required accuracy of

he model’s predictions ( Almeida, 2002 ). Table 2 gives examples of

oth functions (1) and (2). 

An important consideration for the manufacturer is assessing

he required accuracy between the model’s output and the true

alue. Is it important to the manufacturer whether the model is

ble to make predictions to 99.9% accuracy or is a model with re-

uced accuracy sufficient to complete the task? According to Dean

bbott, president of Abbott Analytics, it is more desirable to a

anufacturer to build a model that meets the requirements for

he task at a cheaper cost than to invest more money in unneces-

ary accuracy ( Garment, 2014 ). The accuracy of a DDMs is widely

efined by the norm of the differences (“residuals”) between esti-

ates and observations ( Duarte et al., 2004 ). The required accuracy

ill be determined by any one or a combination of the following

actors: 

(1) Product specification: when DDMs are utilised to predict

a product’s specification, the model’s accuracy is influenced

by the acceptable tolerance around the product specification.

The tolerance may be determined by regulations, customer

demands and/or economic feasibility. 

(2) Regulation(s): manufacturers are subject to regulations re-

garding the accuracy to which they state the composition

of their product, co-product and waste streams. For exam-

ple, beers of an alcoholic strength not exceeding 5.5% vol-

ume that are sold within the European Union are subject to

a 0.5% tolerance ( European Union, 2011 ). 

(3) Economic: when predicting an output that has a strong cor-

relation to the economic feasibility of the process. Depen-

dant on how precarious the process is between profit or

loss making will influence how accurate the DDM is re-

quired to be. For example, when predicting the product yield

of yield-driven processes. Yield-driven processes are produc-

tions processes whose economic feasibility are substantially

influence by-product yield. 
(4) Safety: when making predictions that influence the safety of

the manufacturing system the DDM’s accuracy is influenced

by the severity and likelihood of the hazard. For example,

when predicting hazardous gas dispersion under complex

terrain conditions a high level prediction accuracy is re-

quired ( Wang et al., 2018 ). 

.3. Process manufacturing data considerations 

Data-driven models can be harnessed to support the devel-

pment and implementation of new technologies and processes

 Qiao et al., 2003 ). However, this requires the generation of a set of

ata, which can be costly and time-consuming ( Sadati et al., 2018 ).

nsuring the data collected is representative of manufacturing the

ystem is paramount to the performance of DDMs ( Batista et al.,

004 ). To achieve this there are four questions to consider when

enerating a set of data: 

(1) What data already exists, to what granularity (the scale and

level of detail in the data) and how representative of the sys-

tem is the data? 

(2) What volume of data is required for model development? 

(3) How was the data collected? 

(4) What, if any, additional data will the model require and how

will it be collected? 

Manufacturing companies today are collecting vast troves of

rocess data but typically use them only for monitoring purposes

nd after the event analysis, and not as a basis for improving pro-

ess resilience ( Sadati et al., 2018 ). As part of the data considera-

ion stage, the modeller will need to decide on the optimal num-

er of input and output variables the model will require. This is

chieved through feature selection and dimensionality reduction

echniques, which improve the model’s performance by identify-

ng and removing noisy and/or irrelevant variables from the data

 Sadati et al., 2018 ). Irrelevant variables are variables that have

ittle to no impact on the model’s output. Conversely, there ex-

st process manufacturing systems that are not currently measur-

ng/storing data to the required granularity to capture the system

eing modelled within the data. Therefore, a plan needs to be de-

eloped to decide which additional measurements and what vol-

me of additional data is required, as well as how this data will

e collected. For example, in CS1 the H 

2 AD bioprocess was already

ollecting 7 process performance variables but no data on the char-

cteristics of the incoming or outgoing wastewater streams. Nine-

een water quality variables were identified for initial collection,

hough with appreciation that not all of these would be truly rel-

vant to modelling the output data. This made for a total of 26

nput variables that was reduced to 9 by feature selection followed

y principal component analysis. The volume of data is determined

y three factors. 

(1) The data needs to extend to, and preferably beyond, the sys-

tem boundaries. Testing the model’s capability to fit and pre-
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dict beyond the system’s boundaries is important to estab-

lish the confidence boundaries of the model. 

(2) The duration period of data collection must be sufficient to

capture any temporal variations observed in the system. 

(3) There must be an equal distribution of the data within the

system boundaries, to ensure the model is capable of fitting

data and making predictions throughout the system. 

If it is possible to collect data that achieves these three fac-

tors efficiently, then the volume of data required will be less. This

can be done using Design of Experiments (DoE) techniques, such

as central composite design and Box-Behnken design, to system-

atically collect data from across the system ( Hamid et al., 2016 ).

However, collecting data in industrial environments has numerous

challenges (see Section 3 ) and a less intrusive method may be re-

quired, see ( Section 3.3 ). 

Data is collected either manually or automatically. Data col-

lected manually is time-consuming and introduces the possibility

of human error ( Skoogh et al., 2012 ). Whereas, data collected au-

tomatically generally increases the volume of data recorded and

removes human error ( Skoogh et al., 2012 ) However there is a cap-

ital cost in purchasing and installing the required systems to col-

lect the data automatically. Data-driven models often benefit from

the automatic collection of data, as they can react in real-time to

changes in the input variables. The DDM’s response can feed into

a larger online system creating a feedback loop. However, auto-

matic data collection comes with challenges associated with han-

dling large datasets. When handling a large dataset, the five V’s

are often employed to characterise the data ( Addo-Tenkorang and

Helo, 2016 ): 

• Volume: refers to the size of the datasets. 
• Velocity: is the speed to which data is generated, collected and

analysed. 
• Variety: is defined as the different types of data (e.g. time se-

ries data, image, audio, log files) incorporated into the datasets.
• Value: refers to the value extracted from the data. 
• Veracity: the trustworthiness and quality of the data. 

3. Challenges for data-driven process manufacturing models 

Process manufacturers face unique challenges when collecting a

set of data that is representative of the manufacturing system. The

machine learning techniques utilised by DDMs have increased ca-

pabilities to fit data and make predictions when more data is pro-

vided ( Kim, 2017 ). However, when ensuring there is sufficient data,

and that it is representative of the system, there are a number of

challenges in: 

(1) The availability of process manufacturing data; 

(2) The variability of process manufacturing systems; 

(3) Establishing the system boundaries; 

(4) Evaluating the model’s output on unseen data. 

3.1. Availability of manufacturing data 

Data collection from real industrial processes faces a plethora of

well-known challenges: sampling frequency, spatial representation

of process environments, incomplete data, working conditions, sen-

sor malfunction, communication exception or database shutdown,

accuracy, etc. ( Shang et al., 2014 ; Souza et al., 2016 ). This can re-

sult in poor quality data for model development that may require

cleaning. Cleaning may be necessary to remove outliers within the

data that are not representative of the system; however, the chal-

lenge is in knowing what data is and isn’t representative of the

system. Although DDMs developed from machine learning algo-

rithms can overcome these challenges, large volumes of data are
equired ( Qin, 2014 ). This is not always possible from process man-

facturing systems, as they may be subject to additional challenges

oncerning the availability and variability of data. An established

rocess manufacturing system may already have a wealth of histor-

cal data available for the initial training stage. However, this may

ot always be the case and the reasons for this may include: 

(1) Modelling a new or adapted process, meaning no historical

data representative of the current process exists; 

(2) Variables (e.g. process conditions, external influences, new

or changing feedstock) required for the model were not pre-

viously measured; 

(3) Manufacturers may not have stored their data or not stored

their data in a useable format; 

(4) Manufacturers may produce a variety of products, meaning

data on any one product is limited; 

(5) Manufacturers may not keep potentially damaging data to

the business if not required to. 

Furthermore, industries that produce a variety of products from

he same set of processing equipment (common in the pharma-

eutical and food and drinks industries) will require the creation

f a dataset for each of their products; as the process conditions,

eedstocks and resources will be specific to that product. This data

ay not be immediately available, as these industries tend to pro-

uce a batch of one product then switch to another. This means

he time between batches of the same product can be extensive

elaying the development of the model. The CS2 faced these chal-

enges, where craft breweries tend to ferment a range of different

eers and a model would need to be developed/adapted for each

eer. The beer in question for this study is currently only brewed

nce a month so this means only 12 data sets could be recorded

ach year, which may not be sufficient for the machine learning

odels. Equally, for CS1 a new dataset will be required for opti-

ising the H 

2 AD bioprocess’s performance on new feedstocks (e.g.

 different farm’s waste, food waste). 

The challenge of process manufacturing data availability will be

ess to manufacturers that utilise industrial control systems as part

f their manufacturing systems. Systems like SCADA (supervisory

ontrol and data acquisition) have existed since the 1970 ′ s and are

sed to monitor and control a plant in industries such as wastew-

ter treatment, waste management, energy, oil and gas refining

nd food production ( Qin, 2014 ). Industries that make a consis-

ent product and have extensively utilised industrial control sys-

ems (e.g. wastewater treatment or oil and gas refining) are well

laced to recover value by developing a DDM to discovery knowl-

dge within their historic data ( Qin, 2014 ). 

.2. Variability in manufacturing systems 

All manufacturing systems contain inherent variation (e.g. fluc-

uations in process temperatures, pressure, and flowrates, human

perators, leakages) which can affect the performance of a DDM.

his variability may be overcome by collecting sufficient quan-

ity of relevant data as the variability will be captured within

he model ( Kay et al., 1999 ). However, this is not always possible

or process manufacturers (see Section 3.1 ). Process manufacturers

ace the further challenge from the variations present in the re-

ource flow, particularly when the resource flow is a waste stream.

he feedstock physical and compositional variability can have a

ignificant impact on the biochemical and thermochemical conver-

ion to the final product ( Williams et al., 2016 ). This variation can

ccur for a number of reasons, as summarised in Table 3 . 

During CS1, the H 

2 AD bioprocess was affected from variations

n the feedstock supply, caused by changes to farm practice. There

s an inherent variation present in the feedstock, as shown by the

uctuations in concentrations of four key water quality parameters
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Table 3 

Causes of variation in process manufacturers’ feedstock and some industry examples. 

Cause of variation Industry example 

1. Processes upstream Water is an essential brewing ingredient. Inherent variability in the water treatment methods employed upstream 

has a direct impact on the water’s characterises, and thus the final beer’s characteristics ( Simate, 2015 ). 

2. Changes in operating 

practices upstream 

Farming practices vary throughout the year. For example, the practices of spreading the farm waste stored in a 

slurry tank increases between the months of April and September, as per the EU waste framework Directive 

91/676/EEC ( European Union, 1991 ). This affects the slurry’s characteristics (including total suspended solids, metal 

content and nutrient and organic load) and impacts processes utilising it as a feedstock, e.g. the H 

2 AD bioprocess. 

3. Changes in supplier Anaerobic digestion is an attractive option for the valorisation of food waste and other wastes with high organic 

load and calorific value. However, instability of anaerobic digesters is a common problem that can be exasperated 

by changes to the feedstock ( Fisgativa et al., 2016 ). Food waste characteristics vary hugely dependant on its source, 

as well as being inherently variable ( Fisgativa et al., 2016 ). Introducing a new feedstock to a digester can reduce 

biogas generation as the system takes time to adapt ( Zhang et al., 2014 ). 

4. Local agronomic conditions Geographic location affects feedstock characteristics through variations in local agronomic conditions 

( Williams et al., 2016 ). The structure of corn harvested in the US has been shown to have a stronger correlation to 

geographic location than genetic variety ( Templeton et al., 2009 ). 

5. Cultivation and harvesting 

practises 

There is extensive exploitation of plants for active ingredients for drug development ( Ncube et al., 2012 ). The active 

ingredient derives their therapeutic effects from secondary metabolites, which is influenced by numerous natural 

factors ( Ncube et al., 2012 ). The timing of harvesting and/or handling of the plant material also has an impact on 

plant quality ( Ncube et al., 2012 ). 

6. Seasonal Sewage sludge generated by wastewater treatment plants is often used for agriculture as it recycles nutrients and 

organic matter to land. However, there is an environmental threat from the heavy metal content in the sludge 

( García-Delgado et al., 2007 ). The heavy metal content has been shown to vary by seasons and understanding this 

variability is important to minimise any negative environmental impact from using the sludge as a fertiliser 

( García-Delgado et al., 2007 ). 

7. Storage and transportation Potatoes degrade after they are harvested, at a rate determined by the storage: temperature, relative humidity, air 

circulation and gas composition ( Eltawil et al., 2006 ). During transportation, the potatoes’ quality is further reduced 

by bruising ( Eltawil et al., 2006 ). Food manufacturers receive potatoes from multiple suppliers. Therefore, 

classification is required to determine if a potato quality is sufficient for further food processing 

( Lopez-Juarez et al., 2018 ). 

Fig. 2. Concentration of four water quality parameters of H 

2 AD feedstock during 2018: (A) dissolved oxygen (DO), (B) pH, (C) total suspended solids (TSS) and (D) chemical 

oxygen demand (COD). 
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n Fig. 2 . The feedstock is stored in a slurry tank open to the envi-

onment, meaning during the winter months the total suspended

olids (TSS) would decrease as the feedstock became diluted by in-

reased rainfall. 

There are further problems that arise from unexpected variabil-

ty between batches of the same product. The brewery CS2 helps

o illustrate the variability within supposedly identical processes.

ig. 3 shows the ultrasonic velocity, received ultrasonic signal am-

litude and temperature as a function of fermentation time for

our batches of a particular beer. Each of these measurements was

ecorded during different months in 2018, and are the input vari-
bles for a DDM predicting alcohol concentration during fermenta-

ion. The results indicate that the majority of variation within the

ignal is caused by temperature variations, which is typical of ul-

rasonic measurements. However, although the ultrasonic results

how the same overall trends there are other variations caused

y feedstock variability and marginally different brewing condi-

ions (e.g. volume in the fermenter). These will affect the perfor-

ance of the machine learning models and affect their accuracy. In

ig. 3 , batch 4 shows a totally different tem perature and speed of

ound profile to the other batches. This was the result of a failure

f the temperature control system during fermentation. Therefore,
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Fig. 3. Amplitude, temperature and speed of sound data during fermentation of four batches of Slap in the Face beer, collected from Totally Brewed in 2018. 

Fig. 4. Figure showing model development data that is only representative of one 

part of the whole manufacturing system. Where blue dots are model development 

data, the blue solid box represents model boundaries and the red dashed box rep- 

resents system boundaries. 
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this batch was not representative of the system and is not suitable

for training the model, further limiting the data available for model

development. 

3.3. Recognising the manufacturing system’s boundaries 

Predictions are a key feature of DDMs for process optimisation

and intelligent decision-making. Data-driven models’ predictive ca-

pabilities are generally strongest within the boundaries of the data

used to develop them ( Kim, 2017 ). If the data is only representative

of a subsection of the manufacturing system, the model will fail

at making accurate predictions of the entire system. Fig. 4 helps

to visualise this problem. The model will be able to make accu-

rate predictions for data inputted that is within the blue box but

its prediction capability will likely decrease in accuracy the further

away from the model boundaries. There are two methods to ensure

the manufacturer can be confident the in model’s results: 

1. knowing the system boundaries and ensuring the model devel-

opment data extends to these boundaries; 
2. knowing the model boundaries and ensuring that only predic-

tions made from this within the model development data range

are acted upon. 

Knowing the system boundaries of a process usually re-

uires prior knowledge elicited from process industry practitioners

 Shang et al., 2014 ). However, when modelling a new or changed

ystem this knowledge may need reinforcement from trends iden-

ified within the model development data. Data visualisation plays

n important role when understanding the space the system op-

rates within ( Lee and Ong, 1996 ). It is simple to visualise the

oundaries’ of a system of two or three dimensions, as demon-

trated in Fig. 4 . However, process manufacturing models typi-

ally contain data of higher dimensionality that will be impossible

o visualise using conventional two-dimensional Euclidean space

 Wang et al., 2004 ). There exist a number of approaches to plotting

igh dimensional data ( Carr et al., 1987 ). Approaches like the scat-

er plot matrix can be utilised to plot the individual relationships

etween the variables alongside one another ( Carr et al., 1987 ). The

arallel coordinates system representation is particularly useful in

isualising process manufacturing data in one plot ( Wang et al.,

004 ). Wang et al. developed the Scan Circle algorithm that is able

o identify regions of interest within the data that can be used to

elp describe the feasible region a DDM may operate successfully

 Wang et al., 2002 ). Once the modeller is confident in the bound-

ry conditions the model development data is selected from the

istorical data, ensuring that the model development data extends

o these boundaries. A scatter plot matrix was used to understand

he model boundaries for the feedstock characteristics in CS1, a

ection is shown in Fig. 5 . The diagram clearly shows that TSS is

etween 10,0 0 0 and 20,0 0 0 mg/L for the majority of the train-

ng data, implying that predictions for when TSS is greater than

0,0 0 0 are likely to be less accurate. It also indicates that there

s a strong positive correlation between TSS and chemical oxygen

emand (COD). 

If no historical data exists, then data needs to be collected

nd it is likely that the system boundaries are yet to be defined.

his can be overcome by collecting data over a suitable number

f batches and/or timeframe of a continuous process, to be con-

dent that the system is modelled within this data. This may be

 time-intensive approach, as data may need to be collected for

p to or beyond a year. For example, the process may be influ-

nced by seasonal variations. An alternative method is to conduct

 DoE, to determine a robust set of experiments that will define

he system limits and generate data to extend to these boundaries

 Hamid et al., 2016 ). By using DoE the data collection time and

olume of data may be greatly reduced; however, the manufac-

urer may face additional costs from process disruptions necessary

or experiment execution to achieve a robust dataset ( Sadati et al.,
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Fig. 5. Scatter plot matrix for four of case study 1 ′ s feedstock’s characteristics [Temp.: temperature; DO: dissolve oxygen; TSS: total suspended solids; COD: chemical oxygen 

demand]. 
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018 ). Dependant on the potential economic benefit of the model,

t may be worth the additional cost or it may prove more feasible

o conduct pilot-scale work to generate the data. 

Prediction made by DDMs will always contain a degree of un-

ertainty. Uncertainty quantification is concerned with understand-

ng the impact from the uncertainties inherent within the in-

ut data on the model’s outputs ( Iskandarani et al., 2016 ). There

re a wide spectrum of techniques to consider when undertaking

ncertainty quantification including: Bayesian methods, Latin hy-

ercube sampling, polynomial chaos expansions, stochastic finite-

lement methods, Monte Carlo ( Owhadi et al., 2013 ). Owhadi et al.

roposed an optimal uncertainty quantification framework, which

ay be used as a guide for process manufacturers when accessing

 DDM’s predictive performance across the manufacturing system

oundaries. 

When implementing a new model into a system, careful mon-

toring is initially required to ensure the model is reflective of the

ystem. Particularly if there is variability in the feedstock and other

xternal factors. Once successfully installed, the model requires

onitoring to prevent a gradual degradation in performance. The

ecrease of the prediction quality is caused by the gradual and

brupt changes in the process ( Kadlec and Gabrys, 2009 ). This can

e avoided by retraining the model periodically as the availability

nd collection of data increases. Regular retraining often proves ex-

ensive and “online-learning” is an alternative approach to devel-

ping a DDM. Online learning is a different approach to machine

earning where models continuously evolve as data becomes avail-

ble sequentially in time ( Chandrasekaran et al., 2012 ). This will

e particularly effective for process manufacturers modelling data

ollected in real-time from control systems or IIoT. 

.4. Evaluating the model’s output on unseen data 

Model evaluation is necessary to determine how accurately the

odel reflects the system ( Kim, 2017 ). Data is partitioned from the

odel development data to evaluate the model at different stages

uring its development. The model development data is parti-

ioned into training, validation and testing datasets ( Bishop, 2006 ).

raining data is the data fitted to the model’s algorithm, whilst

alidation data provides an evaluation of the model’s fit to the

raining data and is used for tuning the algorithm’s hyperparam-

ters. A hyperparameter is an adjustable parameter that must be
ither manually or automatically tuned in order to obtain a model

ith optimal performance ( Zeng and Luo, 2017 ). The testing data

s used to evaluate of the model’s fit on the model development

ata. While this may be sufficient when modelling systems whose

oundaries are strongly defined, an additional evaluation will be

equired for systems whose boundaries are loosely defined. This

ill be likely for process manufacturers whose system may have

hallenges from data availability ( Section 3.1 ) or from high lev-

ls of variability ( Section 3.2 ). These systems will require addi-

ional evaluation using “unseen data”, which is additional data not

sed during the development of a DDM. Unseen data is able to

etter evaluate the model’s extrapolation capabilities beyond the

odel development data ( Panerati et al., 2019 ). If the accuracy of

he model does not meet the requirements defined by the manu-

acturer (see Section 2.2 ) the model must undergo redevelopment

ither through optimisation of the algorithm’s architecture or the

ollection of additional data ( Keviczky and Banyasz, 2015 ). 

Process manufacturers that face data availability and variability

hallenges are more susceptible to overfitting and poor generalisa-

ion, as capturing these challenges increases the likelihood of that

he model will exploit relationships within the data that do not de-

cribe the manufacturing system. Evaluating the model on unseen

ata is essential to avoid overfitting and ensure good generalisa-

ion, yet this stage has often been overlooked ( Hamid et al., 2016 ).

nseen data has two sources: 

1. Partitioning model development data: split data into model

development data (training, validation and testing data) and

unseen data. 

2. Experimental data: an experiment is performed to generate

unseen data that covers the range of the model boundaries. De-

sign of experiments can be used to ensure the parameter range

for the experiment is comprehensive. 

Partitioning data is the most common approach ( Liu and Co-

ea, 2017 ). The data partitioning can be performed randomly or by

sing a fixed method. However the data is partitioned, the unseen

alidation data must extend evenly to cover the boundaries of the

odel. This is to ensure the model is able to both fit and predict

ata through the manufacturing system. The unseen data should

lso aim to go beyond the limits of the model. By using data be-

ond the model boundaries the modeller gains knowledge of the

odel’s capability to fit and predict outside of the training data.
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Fig. 6. (A) Example of unseen data only evaluating one region of the model, (B) example of unseen data evaluating the whole of the model, and (C) evaluating the whole of 

the model and the extrapolating capabilities of the model. Where blue dots are training data, red crosses are unseen data and blue box is the model boundaries. 
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An example of good and poor selection of unseen data is shown in

Fig. 6 . 

4. Opportunities arising from data-driven modelling of process 

manufacturing environments 

In an age where manufacturing is under pressure to reduce cost

and environmental impact, while maintaining product quality, the

utilisation of data-driven modelling is a promising tool for process

manufacturers. When the Aberdeen Group surveyed 223 global

manufacturing organisations, 47% believed they needed to become

more data-driven to remain competitive ( Geiger, 2017 ). Four areas

have been identified as an opportunity for process manufacturers

to strengthen their manufacturing systems through the utilisation

of DDMs: 

(1) Utilising data-driven models to improve process manufactur-

ing models; 

(2) Enabling affordable characterisation of process streams; 

(3) Ensuring greater process resilience; 

(4) Evaluating waste valorisation potential. 

4.1. Utilising data-driven models to improve process manufacturing 

models 

The application of DDMs to support and improve traditional

modelling tasks has been well established. Examples exist of their

use for design and planning, control and monitoring, optimisa-

tion and safety ( Boukouvala et al., 2016 ; Krenczyk, 2012 ; Pan and

Hu, 2016 ; Wang et al., 2011 ). Furthermore, techniques are being

designed to integrate data-driven and first principal models into

a hybrid model structure ( von Stosch et al., 2014 ). Within pro-

cess manufacturing hybrid models have been developed for vari-

ous application including chemical reactors ( Azarpour et al., 2017 ),

polymerization processes ( Fiedler and Schuppert, 2008 ), crystalli-

sation ( Nicoletti et al., 2009 ), metallurgic processes ( Hu et al.,

2011 ) and distillation columns ( Caballero, 2015 ). Hybrid models are

built by combining the predictions of a first principle model and a

DDM into a single model. Hybrid models embrace the benefits of

both techniques and overcome the disadvantages of both models

( Azarpour et al., 2017 ). There are multiple methods by which the

models may cooperate ( von Stosch et al., 2014 ): 

• Proxy: one model acts as a surrogate for the other; 
• Complement: the solution is a combination of the two models;
• Supplement: one model provides a correction for the other

model; 
• Embedment: one model is embedded within the other model; 
• Integrate: the output of one model serves as an input for the

other model; 
• Inspiration: the structure of one model is developed from

knowledge provided by the other model. 

Hybrid modelling is considered the state-of-the-art modelling

echniques to model complex manufacturing systems ( Barbosa and

zevedo, 2017 ). When compared to individual models, hybrid mod-

ls tend to have a higher prediction accuracy, better calibration

roperties, enhanced extrapolation capabilities and better inter-

retability than DDMs ( von Stosch et al., 2014 ). Process manufac-

urers that rely on existing first-principle models have an opportu-

ity to improve the models results and prediction accuracy by de-

eloping and integrating a DDM into the existing model. However,

anufacturers will face additional challenges in developing hybrid

odels. Developing hybrid models requires knowledge about dif-

erent modelling techniques and flexibility from modellers to find

 good fit between models ( Barbosa and Azevedo, 2017 ). When de-

iding whether the development of a hybrid model is justified over

 single model the manufacturer should considered if the model

oal and requirements demands a hybrid modelling approach. If

he model accuracy can be achieved through conventional single

odelling techniques then the additional time and expertise de-

anded by a hybrid model is unjustified. 

.2. Enabling affordable characterisation of process streams 

One of the main benefits of DDMs is their ability to enable real-

ime decisions by the collection of real-time manufacturing data

 Chaturvedi et al., 1993 ). However, process manufacturing’s feed-

tock, product and waste streams are not a set of specific discrete

omponents. Instead, they are a multi-component and/or multi-

hase matrix subject to inherent variation. Therefore, real-time on-

ine characterisation is expensive and sometimes unfeasible. This

esults in important process variables, like product quality, being

easured infrequently offline ( Yan et al., 2017 ). Because of the in-

requency in which these measurements are performed, continu-

us direct monitoring of process streams’ composition is not pos-

ible ( Sliškovi ́c et al., 2011 ). 
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Industrial processes are often described as data rich but in-

ormation poor. There is often a large quantity of process data

rom conventional measurements (pressure, temperature, flow rate,

tc.) but a lack of data on stream compositions. This is due to a

ack of suitable and affordable technologies capable of perform-

ng these measurements non-invasively, online and in real-time.

 Dong and Mcavoy, 1996 ). To overcome this, process manufactur-

rs rely on soft sensors, which are able to model data collected

rom conventional measurements and used to predict key variables

 Kleinert et al., 2011 ). As more novel IIoT technologies are intro-

uced, the variety of data available to train soft sensors shall ex-

and. One such example is a multi-sensor system designed to op-

imise the Clean-In-Place (CIP) process, which utilises both visual

nd ultrasonic data ( Simeone et al., 2018 , 2016 ). By utilising DDMs,

oft sensors are able to compute not only a wider range of data but

lso unclean data ( Qin, 2014 ). This will allow for the development

f cheaper sensors, as the requirement for high-quality data shall

ecrease, instead being replaced by volume of data ( Qin, 2014 ).

owever, the data must always be representative of the system. 

Being able to track the relevant composition and physical char-

cteristics of a process stream in real-time, will become even more

mportant to process manufacturers as regulations may change so

hat manufacturers have more responsibility to record and share

ata for compliance. Combating fraud in certain process manufac-

uring industries is an ongoing issue, with a particular focus on

he food and drinks sector ( Manning and Soon, 2016 ). The intro-

uction of a greater number of affordable soft sensors would help

uild trust across the supply chain and with consumers. If this is

o be successful, ensuring that these sensors are not susceptible to

alicious interference or corrupted with false data is paramount. 

.3. Ensuring greater process resilience 

As with all suppliers, process manufacturers are required to

eet certain targets to be commercially successful and adhere to

egulations. Paramount amongst these, from a manufacturing pro-

ess viewpoint, is meeting minimum product specification (e.g.

ield and quality) ( Gani, 2004 ). Ensuring consistency for these tar-

ets is challenging as process manufacturers are subjected to a

igher level of variability than other industries ( Gani, 2004 ). For

xample, in the biopharmaceutical industry yields can vary from

0% to 100% for no immediately discernible reason ( Sadati et al.,

018 ). In case study 2, the unexplained variation between batches,

hown in Fig. 3 ( Section 3.2 ), results in disparities in the final al-

ohol concentration in the product. By taking observational data

meaning data routinely collected by a manufacturing process)

nd developing a DDM, the variables that are having a signifi-

ant effect on the industry yields can be identified and optimised

 Sadati et al., 2018 ). The advantage of using data-driven techniques

his way is that the DDM can intelligently identify significant vari-

bles responsible for the variability. This is achieved by using unsu-

ervised machine learning techniques for exploratory data analysis

o find hidden patterns or grouping in data ( Bishop, 2006 ). 

Although it is possible to model and limit the impact of some

ariability within a processing plant ( Sadati et al., 2018 ), a sub-

tantial challenge for process manufacturers is limiting the im-

act of variables outside of an engineer’s control. Paramount of

hese variables is the variability in the process’s feedstock (see

ection 3.2 ). This variability can have a significant impact on prod-

ct quality and yield. For example, the production of anti-malarial

rugs which is reliant on the active component artemisinin har-

ested from a plant called Artemisia annua ( Pilkington et al., 2014 ).

he plant’s artemisinin concentration varies dependant on when

t is harvested during its lifecycle and the storage conditions

 Pilkington et al., 2014 ). By fitting historical harvesting, transporta-

ion and process data, a DDM would determine the optimal har-
esting and storage point to maximise artemisinin recovery. The

odel could also be used to predict the feedstock‘s potential to

roduce artemisinin and whether to adjust the price for the sup-

lier as not all feedstock is created equally. 

Variation in the feedstock is not the only concern for a pro-

ess manufacturer. The waste produced by process manufacturing

s equally variable, in regards to the volume produced, the con-

entration of valuable components and pollutants ( Parlikar et al.,

016 ). Governments and regulatory bodies around the world set

aximum limits on what manufacturers may emit to the environ-

ent ( European Union, 2010 ). Manufacturers may choose to treat

heir waste onsite, so it is within these limits, pay a third party

o handle their waste or partially treat their waste to reduce cost.

here is a cost involved with all options and this cost may fluc-

uate with waste characteristics. Being able to predict and accom-

odate these variations ahead of time may mean measures can be

aken to reduce this cost. Process manufacturing waste is unique

rom discrete manufacturing in that there exists the potential for

aste valorisation ( Arancon et al., 2013 ). However, one of the bar-

iers to waste valorisation is the detrimental effect variation in the

aste has on the technologies in terms of performance. Case study

 is an example of a waste valorisation technology that utilises a

DM to increase the resilience of the bioprocess. By collecting a

et of training data over a 1-year period and fitting it to a model, it

as possible to capture the variability of the feedstock due to sea-

ons, changes in farm practices and inherent variation. The model

s able to identify which key feedstock characteristics variations

ere detrimental to the bioprocess’s performance. The bioprocess’s

rocess conditions were also varied throughout the year, in order

o investigate their effect on performance. By combining and fitting

his data to a model, it was possible to predict how to optimise the

ioprocess conditions dependant on the incoming feedstock char-

cteristics. 

.4. Evaluating waste valorisation potential 

Increased competition for access to critical resources is a ma-

or concern for the manufacturing industry. In 2017, the EU ex-

anded its list of critical raw materials (CRM) to 27, defined as

aterials considered to be of high importance to the EU econ-

my and of high risk to their supply ( European Commission, 2017 ).

reater focus has been placed on developing solutions towards im-

lementing the circular economy into manufacturing ( Lieder and

ashid, 2016 ). The Waste and Resources Action Program charity of-

ers a clear definition of the circular model: “A circular economy is

n alternative to a traditional linear economy (make, use, dispose) in

hich we keep resources in use for as long as possible, extract the

aximum value from them whilst in use, then recover and regenerate

roducts and materials at the end of each service life. ” ( Waste and

esources Action Program, 2018 ). The circular economy is being

ursued by Governments, with Europe leading the way by imple-

enting the 2018 Circular Economy Action Plan to create a set of

easures to help manufacturers to adopt circular economy systems

 Springer and Schmitt, 2018 ). Encouraging manufacturers to stop

iewing waste as a waste but instead as co-product is an important

tep towards this goal. 

Process manufacturing generates a wide range of solid, liq-

id and gas waste streams that have excellent potential for

aste valorisation within a circular economy. Waste valorisation

efers to industrial processing activities aimed at reusing, recy-

ling, or recovering useful products or sources of energy from

aste ( Kabongo, 2013 ). There are currently three waste valorisation

trategies, geared towards (1) production of fuel and/or energy to

eplace fossil fuels; (2) production and/or extraction of high-value

hemicals from residues; and (3) production of other useful mate-

ial(s) ( Arancon et al., 2013 ). 
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Process manufacturers have a variety of options when evaluat-

ing which waste valorisation route to take. Choosing which route

to take depends on a number of factors: composition, volume and

variability of the waste stream, capital and operational costs of

onsite treatment versus valorisation by third party, pre-treatment

costs, other waste being produced by nearby manufacturers, han-

dling and transportation costs. Due to the large number of fac-

tors involved, it can be time and cost-intensive for a manufac-

turer to employ someone to evaluate the most sustainable route.

There exists a number of Enterprise Resource Planning (ERP) pro-

grams, that use DDMs, capable of simulating the manufacturing

process to intelligently determine the most sustainable waste val-

orisation route ( The Access Group, 2018 ). These platforms are avail-

able via the cloud and systems like IBM Watson IoT are capable

of integrating the manufacturer’s existing ERP programs into their

software ( International Business Machines, 2016 ). However, while

these platforms are capable of planning the logistics and costs, it

has not been the focus to predict the performance of these dif-

ferent waste valorisation technologies at treating a waste stream.

There is a great opportunity to have models incorporated into the

process to take a holistic view, considering waste minimisation

and/or valorisation alongside the key product objectives. 

5. Conclusion and further work 

The use of DDMs is on the rise across manufacturing primarily

due to the following three points: 

(1) There is an increasing amount of data generated in manu-

facturing as IIoT technologies become more widespread. 

(2) Manufacturers have easier access to the computational

power required to harness this data due to cloud comput-

ing enabling parallel processing. 

(3) New machine learning techniques are enabling the utilisa-

tion of new sources of data, such as texts, image, audio,

video, log files. 

Before attempting to develop a DDM there are certain points

the manufacturer must consider. The model’s goal must be clearly

defined and should aim to solve the manufacturing problem that

has been identified. The manufacturer should also consider what

is required from the model. Is it enough simply to fit the data,

or will the model be required to make predictions? Being able to

make predictions increases the model’s value but also its complex-

ity. The accuracy in which the model is required to perform these

functions should be defined by the product specification, regula-

tions, economic value and safety requirements. 

Paramount to the success of DDMs is the generation/collection

of a representative set of data used to develop the model. This

data is split into model development data, used to train the model,

and unseen validation data to evaluate the prediction capability of

the model. Before generating/collecting this data the manufacturer

should consider what data is already available and if it is represen-

tative of the system. Challenges arise when ensuring a representa-

tive data set is used for model development. Process manufactur-

ers face unique challenges regarding this point because of the lim-

ited availability and variability of industrial data. Even when data

is available, knowing if it representative of the system and rele-

vant to the model can be challenging. Furthermore, the boundaries

of a process manufacturing system are hard to classify. The dif-

ficulty occurs in knowing when enough data has been collected

to be representative of the whole system. Once a manufacturer is

able to overcome the considerations and challenges involved when

modelling a process manufacturing system, DDMs will allow the

process manufacturers to: 

(1) Improve process manufacturing models: By integrating

DDMs with existing first-principle process manufacturing
models into a hybrid model, which have been demonstrated

to have greater prediction accuracy and extrapolation capa-

bilities. 

(2) Characterise process streams: Through the development of

soft sensors that utilise recent advances in machine learning

able to utilise cheaper, unclean data. This will allow process

manufacturers to develop a deeper understanding of their

processes, providing optimisation opportunities in a cost-

effective manner. 

(3) Enhance process resilience: By fitting data to the DDM,

manufacturers are able to make accurate predictions on the

effect, variability across the system, has on their process and

take measures to optimise them. 

(4) Evaluate waste valorisation routes: Existing DDMs may be

used as a tool to evaluate new waste streams compatibility

with an existing waste valorisation technology. Alternatively,

use DDMs as a tool for manufacturers to see which technol-

ogy is the most sustainable option for their waste. 

unding 

This work was supported by the Engineering and Physical Sci-

nces Research Council (EPSRC) [grant number EP/K014161], Cloud

anufacturing – Towards Resilient and Scalable High Value Manu-

acturing and [grant number EP/P001246/1], Network Plus: Indus-

rial Systems in a Digital Age. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Oliver J Fisher: Conceptualization, Methodology, Software, Data

uration, Writing - original draft, Writing - review & editing, Vi-

ualization. Nicholas J Watson: Conceptualization, Methodology,

riting - original draft, Writing - review & editing, Supervi-

ion, Funding acquisition. Josep E Escrig: Methodology, Software,

ata curation, Visualization. Rob Witt: Validation, Resources. Laura

orcu: Validation, Resources. Darren Bacon: Validation, Resources.

artin Rigley: Validation, Resources. Rachel L Gomes: Conceptu-

lization, Methodology, Writing - original draft, Writing - review &

diting, Supervision, Project administration, Funding acquisition. 

cknowledgements 

The author (RLG) would like to acknowledge the support of En-

ineering and Physical Sciences Research Council (EPSRC) [grant

umber EP/K014161], Cloud Manufacturing – Towards Resilient and

calable High Value Manufacturing. The author (NJW) would like

o acknowledge the support of Engineering and Physical Sciences

esearch Council (EPSRC) Network Plus: Industrial Systems in a

igital Age [grant number EP/P001246/1], BREWNET: Intelligent

loud Connected Sensors for Economic Small Scale Process Optimi-

ation. The author (OJF) would also like to acknowledge the Univer-

ity of Nottingham Faculty of Engineering for his PhD scholarship. 

eferences 

ddo-Tenkorang, R., Helo, P.T., 2016. Big data applications in operations/supply-chain

management: a literature review. Comput. Ind. Eng. 101, 528–543. https://doi.

org/10.1016/J.CIE.2016.09.023 . 
l-Aufi, Y.A., Hewakandamby, B.N., Dimitrakis, G., Holmes, M., Hasan, A., Wat-

son, N.J., 2019. Thin film thickness measurements in two phase annular flows
using ultrasonic pulse echo techniques. Flow Meas. Instrum. 66, 67–78. https:

//doi.org/10.1016/J.FLOWMEASINST.2019.02.008 . 

https://doi.org/10.1016/J.CIE.2016.09.023
https://doi.org/10.1016/J.FLOWMEASINST.2019.02.008


O.J. Fisher, N.J. Watson and J.E. Escrig et al. / Computers and Chemical Engineering 140 (2020) 106881 13 

A  

 

A  

 

A  

 

A  

 

A  

 

 

 

A  

 

 

B  

 

B  

 

B  

B  

 

B
C  

 

C  

 

C  

 

C  

 

 

C  

C  

 

C  

 

 

D  

 

D  

E  

E  

 

E  

 

 

E

E  

 

E  

 

E  

 

F  

 

F  

 

F  

 

F  

 

G  

G  

 

 

G  

G  

 

G  

H  

 

 

H  

 

H  

H  

 

 

I  

I  

 

 

K  

 

K  

 

K  

 

K  

K  

 

K  

 

 

K  

 

K  

L  

 

L  

L  

 

L  

 

 

 

 

L  

 

L  

 

lmeida, J.S., 2002. Predictive non-linear modeling of complex data by artifi-
cial neural networks. Curr. Opin. Biotechnol. 13, 72–76. https://doi.org/10.1016/

S0958- 1669(02)00288- 4 . 
ngria, S. , L., Sari , Y.D., Zarlis , M., Tulus , 2018. Data-driven modelling for decision

making under uncertainty. In: IOP Conference Series: Materials Science and En-
gineering, p. 12013 . 

rancon, R.A.D., Lin, C.S.K., Chan, K.M., Kwan, T.H., Luque, R., 2013. Advances on
waste valorization: new horizons for a more sustainable society. Energy Sci. Eng.

1, 53–71. https://doi.org/10.1002/ese3.9 . 

rce, D., Lima, F., Orellana Cordero, M.P., Ortega, J., Sellers, C., Ortega, P., 2018. Dis-
covering behavioral patterns among air pollutants: a data mining approach. En-

foque UTE 9, 168–179. https://doi.org/10.29019/enfoqueute.v9n4.411 . 
tzmueller, M. , Hayat, N. , Schmidt, A. , Kloepper, B. , 2017. Explanation-aware feature

selection using symbolic time series abstraction: approaches and experiences in
a petro-chemical production context. In: Proceedings - 2017 IEEE 15th Interna-

tional Conference on Industrial Informatics, INDIN 2017. Institute of Electrical

and Electronics Engineers Inc., pp. 799–804 . 
zarpour, A., N.G. Borhani, T., R. Wan Alwi, S., A. Manan, Z., I. Abdul Mutalib, M.,

2017. A generic hybrid model development for process analysis of industrial
fixed-bed catalytic reactors. Chem. Eng. Res. Des. 117, 149–167. https://doi.org/

10.1016/j.cherd.2016.10.024 . 
arbosa, C., Azevedo, A., 2017. Hybrid simulation for complex manufacturing value-

chain environments. Procedia Manuf. 11, 1404–1412. https://doi.org/10.1016/j.

promfg.2017.07.270 . 
atista, G.E.A .P.A ., Prati, R.C., Monard, M.C., 2004. A study of the behavior of several

methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6,
20–29. https://doi.org/10.1145/1007730.1007735 . 

ishop, C.M. , 2006. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg . 

oukouvala, F. , Li, J. , Xiao, X. , Floudas, C.A. , 2016. Data-driven modeling and global

optimization of industrial-scale petrochemical planning operations. In: 2016
American Control Conference (ACC), pp. 3340–3345 . 

randl, D. , 2007. 1. Manufacturing control. Des. Patterns Flex. Manuf. . 
aballero, J.A., 2015. Logic hybrid simulation-optimization algorithm for dis-

tillation design. Comput. Chem. Eng. 72, 284–299. https://doi.org/10.1016/j.
compchemeng.2014.03.016 . 

arr, D.B., Littlefield, R.J., Nicholson, W.L., Littlefield, J.S., 1987. Scatterplot matrix

techniques for large N. J. Am. Stat. Assoc. 82, 424–436. https://doi.org/10.1080/
01621459.1987.10478445 . 

handrasekaran, M., Muralidhar, M., Krishna, C.M., Dixit, U.S., 2012. Online machin-
ing optimization with continuous learning, in: computational methods for opti-

mizing manufacturing technology: models and techniques. pp. 85–110. 
harte, F., Romero, I., Pï¿½rez-Godoy, M.D., Rivera, A.J., Castro, E., 2017. Comparative

analysis of data mining and response surface methodology predictive models

for enzymatic hydrolysis of pretreated olive tree biomass. Comput. Chem. Eng..
https://doi.org/10.1016/j.compchemeng.2017.02.008 . 

haturvedi, A.R., Hutchinson, G.K., Nazareth, D.L., 1993. Supporting complex real-
time decision making through machine learning. Decis. Support Syst. 10, 213–

233. https://doi.org/10.1016/0167- 9236(93)90039- 6 . 
oley, C.W., Green, W.H., Jensen, K.F., 2018. Machine learning in computer-aided

synthesis planning. Acc. Chem. Res. 51, 1281–1289. https://doi.org/10.1021/acs.
accounts.8b0 0 087 . 

ross, M. , Moscardini, A.O. , 1985. Learning the Art of Mathematical Modelling, Ellis

Horwood Series in Mathematics and Its applications. Statistics and Operational
Research. John Wiley & Sons, Inc., Chichester [Chichestershire] : New York, NY,

USA . 
ong, D., Mcavoy, T.J., 1996. Nonlinear principal component analysis - based on

principal curves and neural networks. Comput. Chem. Eng. 20, 65–78. https:
//doi.org/10.1016/0 098-1354(95)0 0 0 03-K . 

uarte, B., Saraiva, P.M., C., P.C., 2004. Combined mechanistic and empirical mod-

elling. Int. J. Chem. React. Eng.. https://doi.org/10.2202/1542-6580.1128 . 
dmonds, D. , 2016. Before the taps run dry: incentivizing water sustainability in

America’s craft breweries. Georg. Washingt. J. Energy Environ. Law 7, 164–176 . 
ltawil, M.A., Samuel, D.V.K., Singhal, O.P., 2006. Potato storage technology and store

design aspects. Agric. Eng. Int. CIGR J. 8, 1–18. https://doi.org/10.1093/hmg/
ddw317 . 

scrig, J., Woolley, E., Rangappa, S., Simeone, A., Watson, N.J., Escrig, Escrig, J., Wool-

ley, E., Rangappa, S., Simeone, A., Watson, N.J., 2019. Clean-in-place monitoring
of different food fouling materials using ultrasonic measurements. Food Control

104, 358–366. https://doi.org/10.1016/J.FOODCONT.2019.05.013 . 
uropean Commission, 2017. 2017 List of critical raw materials for the EU. 

uropean Union, 2011. Regulation (EU) No 1169/2011 on the provision of food infor-
mation to consumers. Off. J. Eur. Union 18–63. https://doi.org/10.1109/60.911397 .

uropean Union, 2010. Directive 2010/75/EU of the european parliament and of the

council of 24 November 2010 on industrial emissions (integrated pollution pre-
vention and control), OJ L 334. 

uropean Union, 1991. Directive 91/676/CEE concerning the protection of waters
against pollution caused by nitrates from agricultural sources. Off. J. Eur. Com-

mun. 1–8. https://doi.org/10.1017/CBO9781107415324.004 . 
ayyad, U., Stolorz, P., 1997. Data mining and KDD: promise and challenges. Fu-

tur. Gener. Comput. Syst. 13, 99–115. https://doi.org/10.1016/s0167-739x(97)

0 0 015-0 . 
iedler, B., Schuppert, A., 2008. Local identification of scalar hybrid models with

tree structure. IMA J. Appl. Math. (Institute Math. Its Appl. 73, 449–476. https:
//doi.org/10.1093/imamat/hxn011 . 

isgativa, H., Tremier, A., Dabert, P., 2016. Characterizing the variability of food
waste quality: a need for efficient valorisation through anaerobic digestion.
Waste Manag. 50, 264–274. https://doi.org/10.1016/J.WASMAN.2016.01.041 . 

isher, O., Watson, N., Porcu, L., Bacon, D., Rigley, M., Gomes, R.L.R.L., 2018. Cloud
manufacturing as a sustainable process manufacturing route. J. Manuf. Syst. 47.

https://doi.org/10.1016/j.jmsy.2018.03.005 . 
ani, R., 2004. Chemical product design: challenges and opportunities. Comput.

Chem. Eng. 28, 2441–2457. https://doi.org/10.1016/J.COMPCHEMENG.2004.08. 
010 . 

arcía-Delgado, M., Rodríguez-Cruz, M.S., Lorenzo, L.F., Arienzo, M., Sánchez-

Martín, M.J., 2007. Seasonal and time variability of heavy metal content and
of its chemical forms in sewage sludges from different wastewater treatment

plants. Sci. Total Environ. 382, 82–92. https://doi.org/10.1016/J.SCITOTENV.2007. 
04.009 . 

arment, V., 2014. 3 Ways to test the accuracy of your predictive mod-
els [WWW Document]. URL https://www.kdnuggets.com/2014/02/ 

3- ways- to- test- accuracy- your- predictive- models.html (accessed 11.15.18). 

e, Z., 2017. Review on data-driven modeling and monitoring for plant-wide indus-
trial processes. Chemom. Intell. Lab. Syst. 171, 16–25. https://doi.org/10.1016/J.

CHEMOLAB.2017.09.021 . 
eiger, D., 2017. Data-driven manufacturing – monetizing the analytical edge

[WWW Document]. URL https://www.aberdeen.com/opspro-essentials/ 
data- driven- manufacturing- monetizing- analytical- edge/ (accessed 11.7.18). 

amid, H.A., Jenidi, Y., Somerfield, C., Gomes, R.L., 2016. Predicting the capability of

carboxylated cellulose nanowhiskers for the remediation of copper from water
using response surface methodology (RSM) and artificial neural network (ANN)

models. Ind. Crops Prod. 93, 108–120. https://doi.org/10.1016/J.INDCROP.2016.05. 
035 . 

angos, K.M. , Cameron, I.T.(Eds.) , 2001. 1 - The role of models in process systems
engineering. In: Process Modelling and Model Analysis, Process Systems Engi-

neering. Academic Press, pp. 3–18 . 

arding, J.A., Shahbaz, M., Srinivas, Kusiak, A., 2006. Data mining in manufacturing:
a review. J. Manuf. Sci. Eng. Trans. ASME. https://doi.org/10.1115/1.2194554 . 

u, G., Mao, Z., He, D., Yang, F., 2011. Hybrid modeling for the prediction of leach-
ing rate in leaching process based on negative correlation learning bagging en-

semble algorithm. Comput. Chem. Eng. 35, 2611–2617. https://doi.org/10.1016/j.
compchemeng.2011.02.012 . 

nternational Business Machines, 2016. IBM Watson internet of things (IoT) [WWW

Document]. URL https://www.ibm.com/internet- of- things (accessed 1.10.19). 
skandarani, M., Wang, S., Srinivasan, A., Carlisle Thacker, W., Winokur, J., Knio, O.M.,

2016. An overview of uncertainty quantification techniques with application to
oceanic and oil-spill simulations. J. Geophys. Res. Ocean. 121, 2789–2808. https:

//doi.org/10.1002/2015JC011366 . 
abongo, J.D. , 2013. Waste Valorization. In: Idowu, S.O., Capaldi, N., Zu, L.,

Gupta, A.Das (Eds.), Encyclopedia of Corporate Social Responsibility. Springer,

Berlin Heidelberg, Berlin, Heidelberg, pp. 2701–2706 . 
adlec, P., Gabrys, B., 2009. Soft sensors: where are we and what are the current

and future challenges?, IFAC Proceedings Volumes (IFAC-PapersOnline). IFAC.
https://doi.org/10.3182/20090921- 3- TR- 3005.00098 . 

ay, J.W. , Titterington, D.M. , Kay, S.L.S.J.W. , 1999. Statistics and Neural Networks:
Advances at the Interface, Royal Statistical Society Lecture Notes Series, 5. Ox-

ford University Press . 
eviczky, L. , Banyasz, C. , 2015. 10. Process Identification, in: Two-Degree-of-Freedom

Control Systems - The Youla Parameterization Approach. Elsevier, pp. 309–315 . 

im, S., 2017. MATLAB Deep Learning With Machine Learning, Neural Net-
works and Artificial Intelligence, 1st ed. Apress https://doi.org/10.1007/

978- 1- 4842- 2845- 6 . 
leinert, T., Schladt, M., Muehlbeyer, S., Schocker, A., 2011. Combination of pro-

cess analytical technology with soft sensors for online process data and ad-
vanced process information. TM-TECHNISCHES Mess 78, 589–602. https://doi.

org/10.1524/teme.2011.0165 . 

rause, D., Schöck, T., Hussein, M.A., Becker, T., 2011. Ultrasonic characterization of
aqueous solutions with varying sugar and ethanol content using multivariate

regression methods. J. Chemom. 25, 216–223. https://doi.org/10.1002/cem.1384 . 
renczyk, D. , 2012. Data-driven modelling and simulation for integration of produc-

tion planning and simulation systems. Sel. Eng. Probl. 119–122 . 
auer, F., Bloch, G., 2008. Incorporating prior knowledge in support vector machines

for classification: a review. Neurocomputing 71, 1578–1594. https://doi.org/10.

1016/j.neucom.2007.04.010 . 
ee, H.-.Y., Ong, H.-.L., 1996. Visualization support for data mining. IEEE Expert. Syst.

their Appl. 11, 69–75. https://doi.org/10.1109/64.539019 . 
ieder, M., Rashid, A., 2016. Towards circular economy implementation: a compre-

hensive review in context of manufacturing industry. J. Clean. Prod. 115, 36–51.
https://doi.org/10.1016/J.JCLEPRO.2015.12.042 . 

in, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S.,

Clark, J.H., Koutinas, A .A ., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankap-
pan, S., Mohamed, Z., Brocklesby, R., Luque, R., 2013. Food waste as a valuable

resource for the production of chemicals, materials and fuels. Current situation
and global perspective. Energy Environ. Sci. 6, 426–464. https://doi.org/10.1039/

c2ee23440h . 
iu, H., Cocea, M., 2017. Semi-random partitioning of data into training and test sets

in granular computing context. Granul. Comput. 2, 357–386. https://doi.org/10.

1007/s41066- 017- 0049- 2 . 
opez-Juarez, I., Rios-Cabrera, R., Hsieh, S.J., Howarth, M., 2018. A hybrid non-

invasive method for internal/external quality assessment of potatoes. Eur. Food
Res. Technol. 244, 161–174. https://doi.org/10.10 07/s0 0217- 017- 2936- 9 . 

https://doi.org/10.1016/S0958-1669(02)00288-4
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0004
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0004
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0004
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0004
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0004
https://doi.org/10.1002/ese3.9
https://doi.org/10.29019/enfoqueute.v9n4.411
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0007
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0007
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0007
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0007
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0007
https://doi.org/10.1016/j.cherd.2016.10.024
https://doi.org/10.1016/j.promfg.2017.07.270
https://doi.org/10.1145/1007730.1007735
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0011
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0011
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0012
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0012
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0012
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0012
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0012
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0013
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0013
https://doi.org/10.1016/j.compchemeng.2014.03.016
https://doi.org/10.1080/01621459.1987.10478445
https://doi.org/10.1016/j.compchemeng.2017.02.008
https://doi.org/10.1016/0167-9236(93)90039-6
https://doi.org/10.1021/acs.accounts.8b00087
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0019
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0019
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0019
https://doi.org/10.1016/0098-1354(95)00003-K
https://doi.org/10.2202/1542-6580.1128
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0022
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0022
https://doi.org/10.1093/hmg/ddw317
https://doi.org/10.1016/J.FOODCONT.2019.05.013
https://doi.org/10.1109/60.911397
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1016/s0167-739x(97)00015-0
https://doi.org/10.1093/imamat/hxn011
https://doi.org/10.1016/J.WASMAN.2016.01.041
https://doi.org/10.1016/j.jmsy.2018.03.005
https://doi.org/10.1016/J.COMPCHEMENG.2004.08.010
https://doi.org/10.1016/J.SCITOTENV.2007.04.009
https://www.kdnuggets.com/2014/02/3-ways-to-test-accuracy-your-predictive-models.html
https://doi.org/10.1016/J.CHEMOLAB.2017.09.021
https://www.aberdeen.com/opspro-essentials/data-driven-manufacturing-monetizing-analytical-edge/
https://doi.org/10.1016/J.INDCROP.2016.05.035
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0035
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0035
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0035
https://doi.org/10.1115/1.2194554
https://doi.org/10.1016/j.compchemeng.2011.02.012
https://www.ibm.com/internet-of-things
https://doi.org/10.1002/2015JC011366
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0039
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0039
https://doi.org/10.3182/20090921-3-TR-3005.00098
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0041
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0041
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0041
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0041
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0042
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0042
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0042
https://doi.org/10.1007/978-1-4842-2845-6
https://doi.org/10.1524/teme.2011.0165
https://doi.org/10.1002/cem.1384
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0046
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0046
https://doi.org/10.1016/j.neucom.2007.04.010
https://doi.org/10.1109/64.539019
https://doi.org/10.1016/J.JCLEPRO.2015.12.042
https://doi.org/10.1039/c2ee23440h
https://doi.org/10.1007/s41066-017-0049-2
https://doi.org/10.1007/s00217-017-2936-9


14 O.J. Fisher, N.J. Watson and J.E. Escrig et al. / Computers and Chemical Engineering 140 (2020) 106881 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

S

S  

 

S  

 

S  

 

S

 

S  

 

S  

 

 

S  

S  

 

S  

 

S  

 

T  

 

T  

 

v  

 

W  

 

W  

 

 

 

W  

 

 

W  

 

W  

 

Y  

 

Y  

Z  

 

Z  

 

Luo, S., Sun, H., Ping, Q., Jin, R., He, Z., 2016. A review of modeling bioelectro-
chemical systems: engineering and statistical aspects. Energies 9, 111. https:

//doi.org/10.3390/en9020111 . 
Manning, L., Soon, J.M., 2016. Food safety, food fraud, and food defense: a fast evolv-

ing literature. J. Food Sci. 81, R823–R834. https://doi.org/10.1111/1750-3841.
13256 . 

Mariscal, G., Marban, O., Fernandez, C., 2010. A survey of data mining and knowl-
edge discovery process models and methodologies. Knowl. Eng. Rev. 25, 137–

166. https://doi.org/10.1017/S0269888910 0 0 0 032 . 

Mathews, P. , 2004. DOE language and concepts. In: Design of Experiments With
MINITAB. ASQ Quality Press, Milwaukee, pp. 93–142 . 

Microsoft, 2018. Azure machine learning studio [WWW Document]. URL
https://azure.microsoft.com/en- gb/services/machine- learning- studio/ (accessed

10.24.18). 
Ncube, B., Finnie, J.F., Van Staden, J., 2012. Quality from the field: the impact of

environmental factors as quality determinants in medicinal plants. S. Afr. J. Bot.

82, 11–20. https://doi.org/10.1016/J.SAJB.2012.05.009 . 
Nicoletti, M.C., Jain, L.C., Giordano, R.C., 2009. Computational intelligence techniques

as tools for bioprocess modelling, optimization, supervision and control. Stud.
Comput. Intell.. https://doi.org/10.1007/978- 3- 642- 01888- 6 _ 1 . 

Ning, C., You, F., 2018. Data-driven stochastic robust optimization: general compu-
tational framework and algorithm leveraging machine learning for optimization

under uncertainty in the big data era. Comput. Chem. Eng.. https://doi.org/10.

1016/j.compchemeng.2017.12.015 . 
OECD, 2012. OECD environmental outlook to 2050, OECD environmental outlook.

OECD Publishing. https://doi.org/10.1787/9789264122246-en 
Ojha, V.K., Abraham, A., Snášel, V., 2017. Metaheuristic design of feedforward neural

networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–
116. https://doi.org/10.1016/j.engappai.2017.01.013 . 

Owhadi, H., Scovel, C., Sullivant, T.J., McKerns, M., Ortiz, M., 2013. Optimal uncer-

tainty quantification. SIAM Rev 55, 271–345. https://doi.org/10.1137/10080782X .
Pan, Y. , Hu, M. , 2016. A data-driven modeling approach for digital material additive

manufacturing process planning. In: 2016 International Symposium on Flexible
Automation (ISFA), pp. 223–228 . 

Panerati, J., Schnellmann, M.A., Patience, C., Beltrame, G., Patience, G.S., 2019. Ex-
perimental methods in chemical engineering: artificial neural networks–ANNs.

Can. J. Chem. Eng. 97, 2372–2382. https://doi.org/10.1002/cjce.23507 . 

Parlikar, U., Bundela, P.S., Baidya, R., Ghosh, S.K., 2016. Effect of variation in the
chemical constituents of wastes on the co-processing performance of the ce-

ment kilns. Procedia Environ. Sci. 35, 506–512. https://doi.org/10.1016/J.PROENV.
2016.07.035 . 

Pasini, A., 2015. Artificial neural networks for small dataset analysis. J. Thorac. Dis.
7, 953–960. https://doi.org/10.3978/j.issn.2072-1439.2015.04.61 . 

Perry, R.H. , Green, D.W. , 2008. Perry’s Chemical engineers’ Handbook. McGraw-Hill,

New York . 
Pilkington, J.L., Preston, C., Gomes, R.L., 2014. Comparison of response surface

methodology (RSM) and artificial neural networks (ANN) towards efficient ex-
traction of artemisinin from Artemisia annua. Ind. Crops Prod. 58, 15–24. https:

//doi.org/10.1016/J.INDCROP.2014.03.016 . 
Qiao, G. , Riddick, F. , McLean, C. , 2003. New manufacturing modeling methodology:

data driven design and simulation system based on XML. In: Proceedings of
the 35th Conference on Winter Simulation: Driving Innovation, WSC ’03. Winter

Simulation Conference, pp. 1143–1148 . 

Qin, S.J., 2014. Process data analytics in the era of big data. AIChE J 60, 3092–3100.
https://doi.org/10.1002/aic.14523 . 

Rasmuson, A. , Andersson, B. , Olsson, L. , Andersson, R. , Olisson, L. , Andersson, R. ,
2014. Empirical Model building, in: Mathematical Modeling in Chemical Engi-

neering. Cambridge Univerisity Press, Cambridge, pp. 40–52 . 
Resa, P., Elvira, L., de Espinosa, F., 2004. Concentration control in alcoholic fermen-

tation processes from ultrasonic velocity measurements. Food Res. Int. 37, 587–

594. https://doi.org/10.1016/j.foodres.2003.12.012 . 
Rizos, V. , Behrens, A. , Kafyeke, T. , Hirschnitz-Garbers, M. , Ioannou, A. , 2015. The

circular economy: barriers and opportunities for SMEs. CEPS Work. Doc. 1–25
https://doi.org/0 0 06-8993(94)90176-7 [pii] ET - 1994/02/04 . 

Sadati, N., Chinnam, R.B., Nezhad, M.Z., 2018. Observational data-driven modeling
and optimization of manufacturing processes. Expert Syst. Appl. 93, 456–464.

https://doi.org/10.1016/j.eswa.2017.10.028 . 

Saka, M.P., Do ̆gan, E., Aydogdu, I., 2013. Analysis of swarm intelligence–based algo-
rithms for constrained optimization. Swarm Intell. Bio-Inspired Comput. 25–48.

https://doi.org/10.1016/B978- 0- 12- 405163- 8.0 0 0 02-8 . 
Schichl, H. , 2004. Models and the history of modeling. In: Josef, K. (Ed.), Modeling

Languages in Mathematical Optimization. Springer US, Boston, pp. 25–36 . 
Shafique, U. , Qaiser, H. , 2014. A comparative study of data mining process models

(KDD, CRISP-DM and SEMMA). Int. J. Innov. Sci. Res. 12, 217–222 . 

Shang, C., Yang, F., Huang, D., Lyu, W., 2014. Data-driven soft sensor development
based on deep learning technique. J. Process Control 24, 223–233. https://doi.

org/10.1016/j.jprocont.2014.01.012 . 
hearer, C. , 20 0 0. The CRISP-DM model: the new blueprint for data mining. J. Data
Warehous. 5, 13–22 . 

imate, G.S., 2015. Water treatment and reuse in breweries. Brew. Microbiol. 425–
456. https://doi.org/10.1016/B978- 1- 78242- 331- 7.0 0 020-4 . 

imeone, A., Deng, B., Watson, N., Woolley, E., 2018. Enhanced clean-in-place mon-
itoring using ultraviolet induced fluorescence and neural networks. Sensors 18.

https://doi.org/10.3390/s18113742 . 
imeone, A., Watson, N., Sterritt, I., Woolley, E., 2016. A multi-sensor approach for

fouling level assessment in clean-in-place processes. Procedia CIRP 55, 134–139.

https://doi.org/10.1016/J.PROCIR.2016.07.023 . 
immonds, J., 2017. Number of breweries in the UK breaks through the

2,0 0 0 barrier for the first time since the 1930s [WWW Document].
URL https://www.uhy-uk.com/news-events/news/number-of-breweries-in- 

the- uk- breaks- through- the- 20 0 0- barrier- for- the- first- time- since- the- 1930s/ 
(accessed 12.19.18). 

koogh, A., Perera, T., Johansson, B., 2012. Input data management in simulation –

Industrial practices and future trends. Simul. Model. Pract. Theory 29, 181–192.
https://doi.org/10.1016/J.SIMPAT.2012.07.009 . 

liškovi ́c, D., Grbi ́c, R., Hocenski, Ž, 2011. Methods for plant data-based process mod-
eling in soft-sensor development. Automatika 52, 306–318. https://doi.org/10.

1080/0 0 051144.2011.11828430 . 
olomatine, D. , See, L.M. , Abrahart, R.J. , 2008. Data-driven modelling : concepts,

approaches and experiences. In: Abrahart, Robert J., See, Linda M., Soloma-

tine, D.P. (Eds.), Practical Hydroinformatics. Water Science and Technology Li-
brary. Springer, Berlin, pp. 17–31 . 

oroush Rohanizadeh, S. , Moghadam, M.B. , 2009. A proposed data mining method-
ology and its application to industrial procedures. J. Ind. Eng. . 

ouza, F.A .A ., Araújo, R., Mendes, J., 2016. Review of soft sensor methods for regres-
sion applications. Chemom. Intell. Lab. Syst. 152, 69–79. https://doi.org/10.1016/

j.chemolab.2015.12.011 . 

pringer, N.P., Schmitt, J., 2018. The price of byproducts: distinguishing co-products
from waste using the rectangular choice-of-technologies model. Resour. Con-

serv. Recycl. 138, 231–237. https://doi.org/10.1016/J.RESCONREC.2018.07.034 . 
rivastava, N. , Hinton, G. , Krizhevsky, A. , Sutskever, I. , Salakhutdinov, R. , 2014.

Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958 . 

empleton, D.W., Sluiter, A.D., Hayward, T.K., Hames, B.R., Thomas, S.R., 2009. As-

sessing corn stover composition and sources of variability via NIRS. Cellulose
16, 621–639. https://doi.org/10.1007/s10570- 009- 9325- x . 

he Access Group, 2018. Access ERP systems for all industries [WWW Docu-
ment]. URL https://www.theaccessgroup.com/supply-chain/industries/ (accessed

1.11.19). 
on Stosch, M., Oliveira, R., Peres, J., Feyo de Azevedo, S., 2014. Hybrid semi-

parametric modeling in process systems engineering: past, present and future.

Comput. Chem. Eng.. https://doi.org/10.1016/j.compchemeng.2013.08.008 . 
ang, J., Chang, Q., Xiao, G., Wang, N., Li, S., 2011. Data driven production modeling

and simulation of complex automobile general assembly plant. Comput. Ind. 62,
765–775. https://doi.org/10.1016/J.COMPIND.2011.05.004 . 

ang, K. , Salhi, A. , Fraga, E. , 2002. Cluster identification using a parallel coordi-
nate system for knowledge discovery and nonlinear optimization. 12th Euro-

pean Symposium on Computer Aided Process Engineering (ESCAPE-12) . 
Wang, K., Salhi, A., Fraga, E.S., 2004. Process design optimisation using embed-

ded hybrid visualisation and data analysis techniques within a genetic algo-

rithm optimisation framework. Chem. Eng. Process. Process Intensif. 43, 657–
669. https://doi.org/10.1016/J.CEP.2003.01.001 . 

ang, R., Chen, B., Qiu, S., Zhu, Z., Wang, Yiduo, Wang, Yiping, Qiu, X., 2018.
Comparison of machine learning models for hazardous gas dispersion predic-

tion in field cases. Int. J. Environ. Res. Public Health 15. https://doi.org/10.3390/
ijerph15071450 . 

aste and Resources Action Program, 2018. WRAP and the circular economy

WRAP UK [WWW Document]. URL http://www.wrap.org.uk/about-us/about/
wrap- and- circular- economy ; (accessed 11.15.18). 

illiams, C.L., Westover, T.L., Emerson, R.M., Tumuluru, J.S., Li, C., 2016. Sources of
biomass feedstock variability and the potential impact on biofuels production.

BioEnergy Res. 9, 1–14. https://doi.org/10.1007/s12155-015-9694-y . 
an, W., Tang, D., Lin, Y., 2017. A data-driven soft sensor modeling method based

on deep learning and its application. IEEE Trans. Ind. Electron. 64, 4237–4245.

https://doi.org/10.1109/TIE.2016.2622668 . 
in, S., Kaynak, O., 2015. Big data for modern industry: challenges and trends [Point

of View]. Proc. IEEE 103, 143–146. https://doi.org/10.1109/JPROC.2015.2388958 . 
eng, X., Luo, G., 2017. Progressive sampling-based Bayesian optimization for effi-

cient and automatic machine learning model selection. Heal. Inf. Sci. Syst. 5.
https://doi.org/10.1007/s13755- 017- 0023- z . 

hang, C., Su, H., Baeyens, J., Tan, T., 2014. Reviewing the anaerobic digestion of food

waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392. https:
//doi.org/10.1016/J.RSER.2014.05.038 . 

https://doi.org/10.3390/en9020111
https://doi.org/10.1111/1750-3841.13256
https://doi.org/10.1017/S0269888910000032
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0056
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0056
https://azure.microsoft.com/en-gb/services/machine-learning-studio/
https://doi.org/10.1016/J.SAJB.2012.05.009
https://doi.org/10.1007/978-3-642-01888-6_1
https://doi.org/10.1016/j.compchemeng.2017.12.015
https://doi.org/10.1787/9789264122246-en
https://doi.org/10.1016/j.engappai.2017.01.013
https://doi.org/10.1137/10080782X
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0062
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0062
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0062
https://doi.org/10.1002/cjce.23507
https://doi.org/10.1016/J.PROENV.2016.07.035
https://doi.org/10.3978/j.issn.2072-1439.2015.04.61
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0066
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0066
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0066
https://doi.org/10.1016/J.INDCROP.2014.03.016
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0068
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0068
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0068
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0068
https://doi.org/10.1002/aic.14523
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0070
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0070
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0070
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0070
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0070
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0070
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0070
https://doi.org/10.1016/j.foodres.2003.12.012
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0072
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0072
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0072
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0072
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0072
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0072
https://doi.org/10.1016/j.eswa.2017.10.028
https://doi.org/10.1016/B978-0-12-405163-8.00002-8
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0075
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0075
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0076
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0076
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0076
https://doi.org/10.1016/j.jprocont.2014.01.012
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0078
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0078
https://doi.org/10.1016/B978-1-78242-331-7.00020-4
https://doi.org/10.3390/s18113742
https://doi.org/10.1016/J.PROCIR.2016.07.023
https://www.uhy-uk.com/news-events/news/number-of-breweries-in-the-uk-breaks-through-the-2000-barrier-for-the-first-time-since-the-
https://doi.org/10.1016/J.SIMPAT.2012.07.009
https://doi.org/10.1080/00051144.2011.11828430
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0084
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0084
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0084
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0084
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0085
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0085
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0085
https://doi.org/10.1016/j.chemolab.2015.12.011
https://doi.org/10.1016/J.RESCONREC.2018.07.034
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0088
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0088
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0088
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0088
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0088
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0088
https://doi.org/10.1007/s10570-009-9325-x
https://www.theaccessgroup.com/supply-chain/industries/
https://doi.org/10.1016/j.compchemeng.2013.08.008
https://doi.org/10.1016/J.COMPIND.2011.05.004
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0092
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0092
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0092
http://refhub.elsevier.com/S0098-1354(19)30837-3/sbref0092
https://doi.org/10.1016/J.CEP.2003.01.001
https://doi.org/10.3390/ijerph15071450
http://www.wrap.org.uk/about-us/about/wrap-and-circular-economy
https://doi.org/10.1007/s12155-015-9694-y
https://doi.org/10.1109/TIE.2016.2622668
https://doi.org/10.1109/JPROC.2015.2388958
https://doi.org/10.1007/s13755-017-0023-z
https://doi.org/10.1016/J.RSER.2014.05.038

	Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems
	1 Introduction
	1.1 Case study 1: waste/water management
	1.2 Case study 2: craft breweries

	2 Considerations for data-driven process manufacturing models
	2.1 Defining the model’s goal
	2.2 Understanding the requirements from the model
	2.3 Process manufacturing data considerations

	3 Challenges for data-driven process manufacturing models
	3.1 Availability of manufacturing data
	3.2 Variability in manufacturing systems
	3.3 Recognising the manufacturing system’s boundaries
	3.4 Evaluating the model’s output on unseen data

	4 Opportunities arising from data-driven modelling of process manufacturing environments
	4.1 Utilising data-driven models to improve process manufacturing models
	4.2 Enabling affordable characterisation of process streams
	4.3 Ensuring greater process resilience
	4.4 Evaluating waste valorisation potential

	5 Conclusion and further work
	Funding
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References


