
Near-infrared Spectroscopy and Hyperspectral Imaging for Sugar
Content Evaluation in Potatoes over Multiple Growing Seasons

Ahmed M Rady1,2 & Daniel E Guyer3 & Nicholas J Watson1

Received: 14 May 2020 /Accepted: 12 October 2020
# The Author(s) 2020

Abstract
Sugar content is one of the most important properties of potato tubers as it directly affects their processing and the final product
quality, especially for fried products. In this study, data obtained from spectroscopic (interactance and reflectance) and
hyperspectral imaging systems were used individually or fused to develop non-cultivar nor growing season-specific regression
and classification models for potato tubers based on glucose and sucrose concentration. Data was acquired over three growing
seasons for two potato cultivars. The most influential wavelengths were selected from the imaging systems using interval partial
least squares for regression and sequential forward selection for classification. Hyperspectral imaging showed the highest
regression performance for glucose with a correlation coefficient (ratio of performance to deviation) or r(RPD) of 91.8(2.41)
which increased to 94%(2.91) when the data was fused with the interactance data. The sucrose regression results had the highest
accuracy using data obtained from the interactance system with r(RPD) values of 74.5%(1.40) that increased to 84.4%(1.82)
when the data was fused with the reflectance data. Classification was performed to identify tubers with either high or low sugar
content. Classification performance showed accuracy values as high as 95% for glucose and 80.1% for sucrose using
hyperspectral imaging, with no noticeable improvement when data was fused from the other spectroscopic systems. When
testing the robustness of the developed models over different seasons, it was found that the regression models had r(RPD) values
of 55(1.19)–90.3%(2.34) for glucose and 35.8(1.07)–82.2%(1.29) for sucrose. Results obtained in this study demonstrate the
feasibility of developing a rapid monitoring system using multispectral imaging and data fusion methods for online evaluation of
potato sugar content.
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Introduction

Potato is a major root vegetable for human consumption and a
known source of micronutrients including vitamins (C, niacin,
B6, and thiamine) and minerals (potassium, phosphorus, mag-
nesium, and iron) (Rama and Narasimham 2003). Among
several processed potato products, chips (sometimes called
crisps) and French fries are the most common in both

developed and developing countries. The US per capita fresh
tuber consumption decreased from 28.03 to 14.20 kg from
1970 to 2018. However, frozen potato and chip consumptions
together increased from 20.82 to 31.53 kg per capita during
the same period (NPC 2019). Moreover, the value of US ex-
ports of chips and frozen French fries increased from $610
million in 2006 to more than $1083 million in 2018 (Bohl
and Johnson 2010; NPC 2019).

The quality and consistency of food products are important
factors that often affect consumer purchasing decisions.
Higher levels of sugars in potato tubers and consequently fried
potato products can lead to the formation of harmful com-
pounds and/or unfavorable color or taste (Stark and Love
2003). Among several quality attributes that attract consumers
to fried potato products, color is the most important. During
the frying process, a reaction takes place between the reducing
sugars, mainly glucose and fructose in potatoes, and the amino
acid, asparagine, at relatively high temperatures (around
180 °C). This phenomenon is known as the Maillard reaction
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and results in a non-enzymatic browning color on the fried
potato products (Stadler et al. 2002; Storey and Davies 1992).
During frying, acrylamide is also formed which has toxic con-
sequences for the nervous system and is a possible carcinogen
factor in laboratory animals (Mottram et al. 2002; Stadler et al.
2002). Additionally, sweetening is not a desirable characteris-
tic of fried potatoes and can result from high levels of sugars
during storage (Stark and Love 2003). Therefore, monitoring
sugar levels in potatoes used for frying is crucial for producing
and preserving high-quality products that benefit growers,
processors, and consumers. It is recommended that the opti-
mal glucose level at harvest or during storage is 0.035% fresh
weight (FW) for producing chips and 0.12% FW for French
fries, whereas the desired sucrose levels for tubers dedicated
for chips is 0.15% FW at harvest and 0.10% FW during stor-
age. For tubers destined for French fries, the sucrose content
should not exceed 0.15% FW during harvest or storage (Stark
and Love 2003).

Measuring sugar levels in potatoes is usually conducted
using laboratory-based methods including enzymatic hydro-
lysis, high-performance liquid chromatography (HPLC),
high-performance anion-exchange chromatography
(HPAEC), gas-liquid chromatography, and the YSI analyzer
that was invented by Yellow Springs Instruments (Yellow
Springs Instrument, Yellow Springs, OH, USA) (Rady and
Guyer 2015c). Such techniques are usually destructive to sam-
ples, are laborious, and require skilled workers. Therefore,
they are not suitable for real-time online inspection.

Near-infrared spectroscopy (NIR) is a rapid, relatively low-
cost technique that has been used for quantitative and qualita-
tive quality evaluation of agricultural products (Lohumi et al.
2015; Qu et al. 2015; Rady et al. 2020; Sahni et al. 2004). NIR
diffuse reflectance spectroscopy can be used for detecting var-
ious chemical compounds depending on different light ab-
sorption mechanisms inside a material (Griffiths and Dahm
2007). Commercial NIR systems, especially those based on
diffuse reflectance, have been successful in assessing the qual-
ity of fresh fruits and vegetables (Giovenzana et al. 2016) meat
(Dixit et al. 2017), and grains (Singh et al. 2006), whereas
hyperspectral imaging (HSI) is a method that combines spatial
and spectral information about samples under inspection (Wu
and Sun 2013). HSI systems have been used for monitoring
the quality attributes of numerous agricultural products, in-
cluding fruits (Ekramirad et al. 2017; Li et al. 2011; Li et al.
2018; Peng and Lu 2008), vegetables (Diezma et al. 2013;
Huang et al. 2013), grains (Arngren et al. 2011; Serranti
et al. 2013), and meats (Huang et al. 2013; Rady and
Adedeji 2018).

Any sensor method requires the development of suitable
models to relate recorded measurements to the sample prop-
erties of interest. Machine learning methods are one of the
most popular modeling techniques as they are capable of pro-
cessing large volumes of data and do not require the

development of complex physical models, which are difficult
to develop using data from industrial environments. Machine
learning methods can use supervised or unsupervised learning
methods and can be used to develop regression and classifi-
cationmodels. The combination of sensors andmachine learn-
ing is ideally suited for the quality monitoring of food prod-
ucts as they can provide real-time information on the products
once the models have been trained and can be applied in a
variety of industrial environments (e.g., field and factory).

Several studies have been implemented for measuring
quality attributes of potatoes using NIR techniques such as
dry matter and specific gravity (Chen et al. 2005; Hartmann
and Büning-Pfaue 1998; Helgerud et al. 2012; Subedi and
Walsh 2009). The results of such studies showed correlation
coefficient (r) values of 90–97% between predicted dry matter
values using NIR and actual values determined using standard
laboratory techniques. Measurement of sugar content in pota-
toes has also been studied using spectroscopic systems and
hyperspectral imaging systems (Rady et al. 2015). The opti-
mal r values of such studies were 14–98% whereas the value
of the root mean square error of prediction (RMSEP) was as
high as 0.89% FW. However, the previous studies developed
models for individual cultivars and did not study sensor
fusion.

According to Hall and Llinas (1997), sensor fusion “com-
bines data frommultiple sensors, and related information from
associated databases, to achieve improved accuracies and
more specific interferences than could be achieved by the
use of a single sensor alone.” The data combined from each
sensor should, however, provide distinguishing and non-
redundant information about the measured property for a ben-
efit to be observed in the regression and/or classification
models used to analyze the sensor data. Data fusion is con-
ducted by either concatenating the features from various sen-
sors, then processing them, or performing feature selection
before combining and processing (Manso 2008). Fusing data
that were acquired from different electronic sensors has been
studied for improving the regression and/or classification
models of quality attributes of fruits, vegetables, and other
food products (Manso 2008). The fusion of data obtained by
stationary and online prototype hyperspectral imaging sys-
tems was conducted to improve the regression capability of
firmness and soluble solid content (SSC) for three apple cul-
tivars and the standard error of prediction (SEP) values de-
creased by 16.1% for firmness, and 11.2% for SSC (Mendoza
et al. 2011). Another study was conducted on the same apple
cultivars to examine the fusion of data obtained from spectro-
scopic, hyperspectral imaging, acoustic firmness, and bioyield
firmness to assess apple firmness and the SSC and SEP values
decreased by 20% for firmness and 6% for SSC when using
sensor fusion (Mendoza et al. 2012). Additional examples
include combining data from an electronic tongue (e-tongue)
and a spectroscopic system for determining the botanical
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origin of honey (Ulloa et al. 2013), and fusing ultraviolet
(UV)/Vis, Vis/NIR, capacitance and conductance, ultrasonic,
and color sensors (Ignat et al. 2014) for predicting several
maturity indices for bell peppers.

This study aims to investigate the use of optical systems,
data fusion at the feature level, and machine learning algo-
rithms to evaluate the quality of potato tubers based on their
glucose and sucrose content. Quality assessment models were
developed that do not depend on the tuber variety or growing
season. A range of different regression and classification ma-
chine learning models were developed utilizing data from in-
dividual spectroscopic systems in addition to data fused from
a combination of systems. Two different potato cultivars were
studied to ensure models were developed that were not culti-
var-specific. Measurements were performed over three grow-
ing seasons to assess the performance of models developed
from one season on unseen data on another season.

The combination of optical measurements and machine
learning models will enable rapid and nondestructive determi-
nation of sugar content within stored potatoes enabling appro-
priate storage strategies and ultimately improve the quality of
potato products. Testing the models with data from different
seasons will significantly increase the potential of the tech-
niques as they will not require new models to be developed
each year. While regression models provide quantitative esti-
mates of the sugar levels in potatoes, classification models
also benefit storage technicians by quickly indicating if the
sugar level is within an acceptable range. This information
can be used to determine if the potatoes are suitable for pro-
cessing or storage conditions (e.g., temperature) require
modification.

Materials and Methods

Raw Materials and Sampling

In this study, the cultivars of Frito Lay 1879 (FL, commonly
used for frying) and Russet Norkotah (RN, commonly used

for baking) were utilized. These potatoes were grown, stored,
and measured over the 2008, 2009, and 2011 growing sea-
sons. Table 1 summarizes the different sources, storage con-
ditions, experiment periods, number of tested tubers, and the
electronic sensor systems used in the studied seasons. In each
season, tubers were first cleaned, and any bruised or externally
damaged tubers were discarded before storage and sampling.
In the 2008 season, tubers were collected from a commercial
farm in Southwest Michigan, USA, and stored at either 7, 10,
or 15 °C. During this season, a total of 200 samples (i.e.,
tubers) of each cultivar were tested over 130 days at 4 sam-
pling times. In the 2009 season, samples were collected from
two different locations: a research farm at Montcalm County,
MI, USA, and the Michigan State University Muck experi-
mental farm, Bath, MI, USA. Tubers were then stored at 4, 7,
and 10 °C and were sampledmonthly fromNovember 2009 to
April 2010. The total number of tubers measured was 540 for
FL and 180 for RN. In the 2011 season, samples were brought
from a commercial farm in Southwest Michigan, USA, and
stored at 1, 4, 7, 10, and 13 °C. Sampling took place monthly
starting November 2011 until May 2012 and included 195 and
75 tubers for FL and RN, respectively. The variation of sam-
ples’ sources and storage temperatures were implemented to
create a broad range of sugar concentrations in the tubers. This
was required to ensure the developed machine learning
models were robust and could be used on different cultivars
from different seasons, where large variations in sugar content
may exist. Three optical systems were utilized to acquire spec-
tral information from the whole tubers. These systems were as
follows: (1) Vis/NIR interactance, (2) Vis/NIR hyperspectral
imaging, and (3) NIR reflectance. During the 2008 season,
Vis/NIR interactance in addition to Vis/NIR hyperspectral
imaging systems were used, whereas, in the 2009 and 2011
seasons, Vis/NIR interactance and NIR reflectance systems
were utilized. It was not possible to use all three spectroscopic
systems every year due to equipment availability. More details
for the studies conducted on the various seasons can be ob-
tained from previous studies (Rady and Guyer 2015b; Rady
et al. 2014). It should be stated that all previous studies were

Table 1 Various configurations of the experiments of testing Frito Lay 1879 and Russet Norkotah potato cultivars using spectroscopic and
hyperspectral imaging systems

2008 season 2009 season 2011 season

Raw material source A commercial farm in Southwest
Michigan, USA

Two research farms in Montcalm and
Bath, MI, USA

A commercial farm in Southwest
Michigan, USA

Storage conditions 7, 10, and 15 °C, RH= 90–95% 4, 7, and 10 °C, RH = 90–95% 1,4,7, 10, and 13 °C, RH = 90–95%

Experiments time span September, 2008–February, 2009 November, 2009–April, 2010 November, 2011–May, 2012

Number of tested tubers 200 for FL, 200 for RN 540 for FL, 180 for RN 195 for FL, 75 for RN

Electronic systems used for
scanning

VIS/NIR interactance, VIS/NIR
hyperspectral imaging

VIS/NIR interactance, NIR reflectance VIS/NIR interactance, NIR
reflectance
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based on producing models for each cultivar and/or using
optical systems individually without investigating data fusion.
Figure 1a–c show a schematic diagram of the different elec-
tronic systems used in this study, whereas Fig. 1d–f shows
examples of the output signals obtained from these systems.

Vis/NIR Interactance System

The Vis/NIR interactance system records measurements on a
tuber which is placed directly on the integrated fiber optic
probe as shown in Fig. 1a. Both incident and reflected light
are vertical to the sample under inspection (Rady and Guyer
2015a). The system included a spectrometer (model no. USB
4000, Ocean Optics, Inc., Dunedin, FL, USA), fiber optic
(200-μm diameter), and a light source with a maximum power
of 250 W (model no. 66881, Oriel Inst., Irvine, CA, USA).
The system captures the reflected light in the range of 446 to
1125 nm with a Full-Width Half Maximum (FWHM) of
0.3 nm and an integration time of 10 ms. Each acquired spec-
trum such as the one in Fig. 1d was normalized using the
signal acquired from a Teflon® disc and the relative
interactance was then calculated (Rady and Guyer 2015a).

Vis/NIR Hyperspectral Imaging System

The hyperspectral imaging (HSI) system produced back-
scattered images (256 × 256 pixels) in the wavelength range
of 400–1000 nm with spatial and spectral resolutions of
0.2 mm/pixel and 2.35 nm, respectively. The system as shown
in Fig. 1b contained a CCD camera (model no. C4880,
Hamamatsu Photonics, Hamamatsu, Japan), spectrograph
(ImSpector V10, Spectral Imaging Ltd., Oulu, Finland), pow-
er supply (model no. 69931, Oriel Inst., Irvine, CA, USA),
exposure controller (model no. 68945, Oriel Inst., Irvine, CA,
USA), DC power supply (model no. 65423A, Agilent Tech.,
Santa Clara, CA, USA). Each image, as shown in Fig. 1e, was
then normalized using a Teflon® reference cube, and the
Mean Reflectance Spectra (MRS) was extracted (Rady et al.
2015).

NIR Reflectance System

The NIR reflectance system utilized in this study (Fig. 1c) had
an InGaAs spectrometer (model no. NIR512L-1.7T1, Control
Development, Inc., South Bend, In, USA), power supply

Fig. 1 Different optical systems along with typical recorded spectra/image. a, d Interactance spectroscopy. b, e Hyperspectral imaging. c, f Reflectance
spectroscopy
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(model no. 68931, Oriel Inst., Irvine, CA, USA) with a max-
imum power of 300 W, light source (model no. 66881, Oriel
Inst., Irvine, CA, USA). The system operates in the diffuse
reflectance mode in the NIR range (900–1685 nm). The sys-
tem has an FWHM value of 3.25 nm and the integration time
was 8ms. The obtained spectrum for each sample, as shown in
Fig. 1f, was normalized relative to measurements from a
Teflon® disc, and then the relative reflectance was calculated
(Rady and Guyer 2015b).

Wet Chemistry Determination of Sugar Content

To determine the glucose and sucrose concentrations for each
sample, an enzymatic technique was performed using the
Megazyme sucrose/D-glucose assay procedure (Megazyme
International Ireland Ltd., Wicklow, Ireland) (Rady et al.
2014). After performing the electronic measurements, sam-
ples were stored in labeled plastic bags and placed in an ice-
containing foam box until the juice was then extracted from
each tuber. A Juicerator (ACME Supreme, New Hartford,
CT., USA) was used to extract the juice from tubers, and the
extracted juice for each sample was transferred into a polysty-
rene tube and stored at − 20 °C for later analysis. The proce-
dure presented in Rady et al. (2014) was followed to obtain the
glucose and sucrose concentrations (gram per 100-g fresh tu-
ber weight glucose % and sucrose %).

Machine Learning Models for Classification and
Prediction of Sugar Content in Potato Tubers

Wavelength Selection for Regression, Classification, and Data
Fusion

The main objectives of wavelength selection are to overcome
the overfitting problem associated with high dimensional data,
reduce computational time, and consequently improve regres-
sion and/or classification performance (Heise and Winzenm
2001; Mark 2001; Varmuza and Filzmoser 2016). Data di-
mensional reduction is particularly important for the HSI
due to large volumes of data these systems produce. This is
especially the case if they are to be used to develop multispec-
tral imaging systems for online inspection systems where the
time available to measure each sample is limited. In this study,
the interval partial least squares (IPLS) method was applied
for wavelength selection for the regression tasks. The IPLS
configuration used in this study included the forward mode, a
window width (i.e., the number of variables selected at each
run of the partial least squares) of 1, 2, or 3 variables, and 20
latent variables. For the classification models, the sequential
forward selection (SFS) technique was used for wavelength
selection. The SFS method depends on starting with an empty
model (i.e., no selected variables or features) and adding a
new feature each time before evaluating the model with the

appropriate classification technique (partial least squares dis-
criminant analysis (PLS-DA) in this work). Based on the per-
formance of the resulting model, the feature will be kept if the
performance of the current model is higher than that of the
previous model or, otherwise discarded (Mao 2004).

After obtaining the selected wavelengths, regression (using
calibration then validation), or classification (using training
then testing) models were built for the individual spectroscop-
ic systems. Following this, the data from the different systems
were fused such that in the 2008 season, the data obtained
from hyperspectral and interactance systems were concatenat-
ed, whereas, in the 2009 and 2011 seasons, the data obtained
from Vis/NIR interactance and NIR reflectance systems were
concatenated. To develop regression and classificationmodels
that included data over multiple seasons, interactance data
from 2008, 2009, and 2011 were combined, and the latter
two season’s reflectance data were also combined.
Additionally, to test the robustness of the data over different
seasons models developed in one season were tested with
unseen data from the other seasons. For example, interactance
data obtained from the 2008 season was used as calibration or
training whereas the 2009 or 2011 data were used for regres-
sion or testing. It should be noted that the data was normalized
before building regression or classification models. A visual
representation of the sensor fusion process is shown in Fig. 2.

Data Preprocessing

Several preprocessing methods were applied to the data to
minimize spectral noise, baseline shifts, and to overcome var-
iation of sample condition due to temperature and natural var-
iability (Christy and Kvalheim 2007). The preprocessing
methods included, mean centering, first derivative smoothing,
second derivative smoothing, standard normal variate (SNV)
correction, and multiplicative signal correction (MSC).
Besides, a logarithmic transformation was applied to the raw
sugar content data to reduce any skewness in the original
distribution which may affect the performance of the regres-
sion and classification models (Varmuza and Filzmoser
2016).

Partial Least Squares Regression for Sugar Prediction

To build the regression models for sucrose and glucose con-
tent in the tubers, partial least squares regression (PLSR) was
utilized. This was selected as it is an effective linear regression
technique capable of processing collinear high dimensional
data (Varmuza and Filzmoser 2016). The number of latent
variables was chosen as 20 based on preliminary work and
previous studies (Rady andGuyer 2015b). For each regression
model, the data was divided into calibration (80%) and vali-
dation (20%). Cross-validation (4-fold) was applied to the
data to obtain the best calibration model based on the
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minimum root mean square error of calibration using cross-
validation (RMSEC), correlation coefficient (r), and the ratio
between the standard deviation of the reference data (i.e., glu-
cose or sucrose), and the RMSEC (RPD). PLSR algorithm
was implemented in this study using the MATLAB® statisti-
cal toolbox.

Classification of Potato Tubers Based on Sugar Levels

In this study, several classification techniques were studied for
the individual spectroscopic sensors and fused sensor data. The
methods included linear discriminant analysis (LDA), K-
nearest neighbor (Knn), PLS-DA, and artificial neural networks
(ANN). In the case of LDA, the Euclidean distance was used to
assign each sample to a certain class, and principle component
analysis (PCA) was conducted on the fused spectral data to
avoid the colinearity problem (Rady et al. 2020). The compo-
nents responsible for > 99% of the total variation between tu-
bers were considered in the subsequent classification tasks
(Duda et al. 2012). In the case of Knn, the Euclidean distance
with k values of 4 was selected (Rady et al. 2020). For the PLS-
DA, 20 latent variables were used to build classificationmodels
(Rady and Guyer 2015b). Finally, the ANNwas a feed-forward
neural network that contained an input layer of the pretreated
data, a hidden layer of 50 neurons, and an output layer with the
assigned classes (high/low sucrose/glucose content). Log-
sigmoid was chosen as the transfer function, and the scaled
conjugate gradient backpropagation method for hidden and
output layers, respectively (Rady et al. 2020). All specific
values for parameters for different classifiers are based on pre-
liminary try and error analysis or previous studies.

Data dedicated for classification were preprocessed as stat-
ed before in the case of regression. To build classification
models, the data was divided into a training set (80%) and a
testing set (20%). Training data was then used to build classi-
fication models using 4-fold cross-validation to enhance mod-
el robustness. Spectral and sugar data in each season were
divided into two classes based on sugar concentrations, using
cut-off values that were adopted from the literature (Stark and
Love 2003). The cut-off values for glucose or sucrose were
chosen as the median for each season’s data. Table 2 shows
the cut-off as well as the minimum and maximum values for
glucose and sucrose for each season. It is worth stating that
cut-off values are within the values recommended by previous
work (Stark and Love 2003). The classification models devel-
oped using LDA and ANN were conducted using the
MATLAB® statistical toolbox, whereas the models devel-
oped using PLS-DA and Knn used the MATLAB toolbox
by Davide Ballabio (Milano Chemometrics and QSAR
Research Group, University of Milano-Bicocca, Milan,
Italy) (Ballabio and Consonni 2013).

Results and Discussion

Wavelengths Selected for Regression and
Classification Models

The selected wavelengths for glucose or sucrose in potato
tubers obtained for all sensors are shown in Fig. 3 for regres-
sion using IPLS and Fig. 4 for classification using SFS.
Regression is based on studying the correlation or closeness

Fig. 2 Workflow for processing the data obtained from different seasons for evaluation of glucose and sucrose in potato tubers
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between the predicted vs the measured values of a certain
constituent, then the efficacy will be estimated based on a
value to value basis, whereas in the case of classification, the
objects might be clustered to the same class even if they have
different values. Therefore, there is a significant increase in
the number of selected wavelengths selected from all sensors
for the regression models (Figs. 3 and 4). This highlights one
of the benefits of classification models when compared to
regression. Although they do not provide quantitative infor-
mation on a sample (e.g., sugar content), they require less data
to create models and can, therefore, be developed using
cheaper hardware, making them more suitable for industrial
applications.

In the case of regression, more wavelengths were selected
for glucose prediction models than those for sucrose.
Hyperspectral imaging showed 70 selected wavelengths in
2008 whereas interactance data showed 77, 61, and 98 in
2008, 2009, and 2011, respectively. While the hyperspectral
imaging resulted in selected wavelengths for glucose located
in both the visible (400–780 nm) and NIR (780–2500 nm)

wavelength ranges, the interactance data showed all selected
wavelengths only in the visible range for the three seasons.
For the NIR reflectance data, a considerable increase of se-
lected wavelengths was observed in the 2009 (84) and 2011
(106) seasons compared with the interactance data. In the case
of sucrose, the selected wavelength from the hyperspectral
imaging was 19 with the majority (17) selected in the visible
range, whereas those from the interactance were 61, 8, and 34
in the 2008, 2009, and 2011 seasons, respectively, and all
located in the visible range. Reflectance data, however, result-
ed in a lower number of selected wavelengths in the 2009 (35)
and 2011 seasons (13) than the other spectroscopic systems.

For the classification models, the number of selected wave-
lengths for glucose from hyperspectral imaging was 9 with 3
in the NIR region, whereas 11, 4, and 8 wavelengths were
selected for the interactance data in the 2008, 2009, and
2011 seasons, respectively, with all being located in the visi-
ble range. For the NIR reflectance data, only 8 in 2009 and 3
in 2011 were selected. For sucrose, the hyperspectral system
resulted in 11 selected wavelengths in 2008 compared with 3,

Fig. 3 Selected wavelengths for predicting glucose or sucrose levels in potato tubers on obtained from the 2008, 2009, and/or 2011 seasons for a glucose,
hyperspectral imaging, and interactance; b sucrose, hyperspectral imaging, and interactance; c glucose and reflectance; and d sucrose and reflectance

Table 2 Cut-off value (minimum-maximum, standard error values) for glucose and sucrose for the 2008, 2009, and 2011 seasons

Season

Constituent 2008 2009 2011

Glucose 0.0557 (0.00–4-2.1458, 0.4513) 0.0366 (0.0028–0.3574, 0.0545) 0.0847 (0.0224–1.1355, 0.2231)

Sucrose 0.0839 (0.00–4-2.5439, 0.2836) 0.0393 (0.00–5-0.4205, 0.0750) 0.0788 (0.00–2.1842, 0.2166)
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4, and 8 for the interactance system in the 2008, 2009, and
2011 seasons, respectively. The selected wavelengths for su-
crose prediction from both sensors contained NIR information
in contrast to the glucose case stated earlier where only the
hyperspectral imaging system contained NIR region selected
wavelengths. Only 7 and 3 wavelengths were selected for the
2009 and 2011 seasons, respectively. Considering the differ-
ent storage temperatures and different growing conditions
(i.e., soil and weather) and having two different cultivars, it
is expected that the selected wavelengths in one season might
not match those in other seasons. However, the selected wave-
lengths in this study contain those identified by other re-
searchers studying food materials. A wavelength of approxi-
mately 913 nm was associated with sugar absorption in pota-
toes by previous researchers (Yaptenco et al. 2000).
Moreover, the wavelengths of 1190 and 1400 nm were iden-
tified as key variables in assessing quality parameters during
the ripening of four grape cultivars (Kemps et al. 2010). These
wavelengths were associated with the presence of the O-H
group linked to sugar absorption in grapes. Soluble solids
which are an indication of sugar content were stated to be
related to the C-H band at 910 nm and the O-H band at
950 nm in grape, lime, and star fruit (Fairuz Omar 2013),
and 960 nm for the O-H group in navel orange (Liu et al.
2010). In addition to 960, 1180 and 1450 nm have also been
associated to the O-H group in jujube fruit (Zhang et al. 2012),
and 975 due to the O-H group in blueberry (Shao et al. 2006).
Generally, the wavelengths of 972 and 1009 nm are related to
the second overtone of the O-H group which is related to the

presence of saccharides (Workman and Weyer 2012). In this
current work, most of the aforementioned values were present
in the selected wavelengths used to develop the regression and
classification models (Figs. 3 and 4). However, there is no
exact match of the selected wavelengths between different
fruits and vegetables which is mostly a result of the various
concentration of sugars and the different compositions among
different fresh products.

Partial Least Squares Regression for Sugar Content
Prediction

The cross-validation results for the regression of glucose and
sucrose content obtained from individual sensors (IS) as well
as fused data (FD) are shown in Table 3. The best models for
each highlighted in Tables 3, 4, 5, and 6. The highest
performing glucose content prediction models were obtained
from the hyperspectral imaging system in 2008 with an
r(RPD) value of 91.8%(2.41), whereas in 2009 and 2011,
either the interactance or reflectance models showed similar
regression performance with slightly better performance for
the reflectance system with r(RPD) values of 60%(1.04). In
the case of the fused data, the performance of the PLSR
models significantly improved, especially for the 2009 and
2011 seasons. Combined hyperspectral and interactance data
for the 2008 season resulted in r(RPD) values of 94%(2.91).
In the case of interactance and reflectance fused data, r(RPD)
values increased to 68.2%(1.37) and 83.6%(1.86) for the 2009
and 2011 seasons, respectively. Models obtained from

Fig. 4 Selected wavelengths for classifying potato tubers based on glucose or sucrose levels obtained from the 2008, 2009, and/or 2011 seasons for a
glucose, hyperspectral imaging, and interactance; b sucrose, hyperspectral imaging, and interactance; c glucose and reflectance; d sucrose and reflectance
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individual systems for sucrose content prediction resulted in
the highest r(RPD) value of 61.2%(1.26) in the 2008 season
using hyperspectral imaging, 74.5%(1.40) in the 2009 season
using the interactance system, and 60.7%(1.21) in the 2011
season using the reflectance system. Sucrose prediction
models also showed considerable improvement after using
data fusion. Fused data in the 2008 season resulted in
r(RPD) values of 84.2%(1.37) and 84.4%(1.82) in the 2011
season, whereas in 2009, the r(RPD) values were slightly
lower than those deduced from the individual systems.
Regression models of glucose content showed that the
hyperspectral imaging system produced the best performance.
However, no improvement was achieved using fused data for
the regression of sucrose content. Regression model results
using all seasons’ data for the interactance system showed
r(RPD) values of 65.4%(1.32) for glucose and 62.8%(1.28)
for sucrose, whereas the values obtained from reflectance data
were 62.6%(1.27) for glucose and 58%(1.09) for sucrose. The

regression results can be attributed to the data variation among
different seasons highlighting the challenge of developing
multi-season models.

The results obtained from the models developed in this
current study had lower r(RPD) values compared with
those from previous research, based on single cultivars
(FL or RN) and individuals sensors (IS) (Rady and
Guyer 2015a; Rady et al. 2015; Rady and Guyer 2015b;
Rady et al. 2014) The r(RPD) values determined from the
earlier studies for the optimal glucose concentration eval-
uation models were 88%(1.78) and 97%(4.16) for FL and
RN, respectively. Similarly, the optimal IS-sucrose
models in earlier studies resulted in r(RPD) values of
88%(1.64) and 94%(2.82) for FL and RN. Other studies
that tested whole tubers with optical systems and machine
learning had r(RMSEP) values of 83%(0.087) for glucose
and 95%(0.341) for sucrose (Yaptenco et al. 2000), and
65%(0.046) for glucose (Chen et al. 2010). In another

Table 3 Best PLSR predictionmodels for glucose and sucrose of potato
tubers using: Vis/NIR interactance, Vis/NIR hyperspectral imaging, and
NIR reflectance systems obtained from selected wavelengths for data

combined from Frito Lay 1879 and Russet Norkotah cultivars in the
2008, 2009, and 2011 seasons. Rows with values in boldface represent
the best models for each season

Constituent Season Sensor Preprocessing method (spectra, constituent)* Cross-validation performance*

rcv (%) RMSEcv(%) RPDcv

Glucose 2008 VIS/NIR hyperspectral imaging MC, Non 91.8 0.0204 2.41

VIS/NIR interactance MSC, Non 69.7 0.0335 1.38

2009 VIS/NIR interactance MC, Non 47.7 0.0186 1.14

NIR reflectance MC, Non 43.4 0.0199 1.10

2011 VIS/NIR Interactance MC, Non 54.1 0.0389 1.20

NIR reflectance MS, Non 60 0.0332 1.04

2008 VIS/NIR hyperspectral imaging +
VIS/NIR interactance

MC, Non 94 0.0182 2.91

2009 VIS/NIR interactance + NIR reflectance MSC, Non 68.2 0.0164 1.37

2011 VIS/NIR interactance + NIR reflectance 2nd Derv, Non 83.6 0.0222 1.86

2008–2011 VIS/NIR interactance MSC, Power 65.4 0.0555 1.32

2008–2011 NIR reflectance SNV, Non 62.6 0.0219 1.27

Sucrose 2008 VIS/NIR hyperspectral imaging MC, Non 61.2 0.0243 1.26

VIS/NIR interactance MC, Non 50.7 0.0314 1.15

2009 VIS/NIR interactance MC, Non, 74.5 0.0187 1.40

NIR reflectance MC, Non 65.6 0.0186 1.32

2011 VIS/NIR interactance 2nd Derv, Non 56.1 0.0362 1.22

NIR reflectance MC, Power 60.7 0.0634 1.21

2008 VIS/NIR hyperspectral imaging +
VIS/NIR interactance

MSC, Non 84.2 0.0239 1.37

2009 VIS/NIR interactance + NIR reflectance MSC, Non 71.4 0.0180 1.40

2011 VIS/NIR interactance + NIR reflectance MC, Non 84.4 0.0354 1.82

2008–2011 VIS/NIR interactance SNV, Power 62.8 0.0608 1.28

2008–2011 NIR reflectance 2nd Derv, Non 58.0 0.0276 1.09

* rcv, coefficient of correlation using cross-validation; RMSEcv, root meat square error of calibration using cross-validation; RPDcv, ratio of performance
to deviation using cross validation
**MC, mean centering; Non, no preprocessing; MSC, multiplicative signal correction; 2nd Derv, smoothing using the second derivative
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study, reducing sugars were assessed using Fourier trans-
form near-infrared (FT-NIR) (800–2500 nm) on three po-
tato cultivars and PLSR models yielded determination co-
efficient, R2 values of 63–84% for glucose concentration
(Camps and Camps 2019). The regression results yielded
in this study by fusing data from different sensors are
comparable to the listed results with the advantage that
the models developed in this current work are not cultivar
specific.

Classification of Potato Tubers Based on Sugar
Content

The highest performing classification models of the studied
tubers based on glucose and sucrose content and using data

acquired from the individual as well as fused sensors are
shown in Table 4. In general, the Knn and PLS-DAmethods
resu l ted in the bes t c lass i f i ca t ion per fo rmance .
Classification models developed using data from the
hyperspectral imaging or interactance systems showed sim-
ilar performance in the 2008 season. In the 2009 and 2011
seasons, models developed from interactance or reflectance
sensors also showed similar performance. The highest clas-
sification accuracy values for the testing set for the 2008,
2009, and 2011 seasons were 91.3, 62.6, and 76.9%, respec-
tively, for the glucose and 78.8, 70.7, and 69.2% for sucrose.
In the case of fused data, classification was generally en-
hanced for all seasons. The values of classification accuracy
for fused data models were 92.5, 65.7, and 78.8% for the
2008, 2009, and 2011 seasons, respectively, in the case of

Table 4 Best classification models for potato tubers based on glucose
and sucrose of potato tubers using individual and fused data from: Vis/
NIR interactance, Vis/NIR hyperspectral imaging, and NIR reflectance

systems obtained from selected wavelengths for data combined from
Frito Lay 1879 and Russet Norkotah cultivars in the different seasons.
Rows with values in boldface represent the best models for each season

Constituent Season Sensor Preprocessing method (spectra,
constituent)*

Classification
technique

Classification
accuracy (%)

Training
set

Testing
set

Glucose 2008 VIS/NIR hyperspectral imaging SNV, Log Knn 95.0 91.3

VIS/NIR interactance SNV, Log Knn 91.4 87.5

2009 VIS/NIR interactance Non, Log Knn 66.1 62.6

NIR reflectance MSC, Log Knn 64.6 60.6

2011 VIS/NIR interactance MC, Log PLS-DA 90.9 76.9

NIR reflectance SNV, Log Knn 75.0 75.0

2008 VIS/NIR hyperspectral imaging +
VIS/NIR interactance

SNV, Non Knn 93.8 92.5

2009 VIS/NIR interactance + NIR
reflectance

Non, Log, PLS-DA 69.6 65.7

2011 VIS/NIR interactance + NIR
reflectance

Non, Log, PLS-DA 81.8 78.8

2008–2011 VIS/NIR interactance MSC, Log Knn 75.3 74.7

2008–2011 NIR reflectance SNV, Log Knn 75.4 72.7

Sucrose 2008 VIS/NIR hyperspectral imaging SNV, Log Knn 80.1 78.8

VIS/NIR interactance SNV, Log PLS-DA 75.5 65.0

2009 VIS/NIR interactance 1st Derv, Log Knn 71.4 70.7

NIR reflectance SNV, Log Knn 71.6 67.1

2011 VIS/NIR interactance MC, Log Knn 73.8 69.2

NIR reflectance MSC, Log PLS-DA 66.9 61.5

2008 VIS/NIR hyperspectral imaging +
VIS/NIR interactance

SNV, Non Knn 80.5 77.5

2009 VIS/NIR interactance + NIR
reflectance

MSC, Log PLS-DA 73.9 73.6

2011 VIS/NIR interactance + NIR
reflectance

Non, Log PLS-DA 76.8 75.0

2008–2011 VIS/NIR interactance SNV, Log Knn 68.9 66.7

2008–2011 NIR reflectance MSC, Log Knn 75.5 71.9

* SNV, standard normal variate; Log, logarithmic; MSC, multiplicative signal correction; MC, mean centering; 1st Derv, smoothing using the first
derivative; Non, no preprocessing
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glucose. In the case of sucrose, classification accuracy did
not improve with data fusion for the 2008 seasons (77.5%),
whereas an improvement was achieved for the 2009 (73.6%)
and 2011 (75%) seasons. Results of classification based on
glucose for season-combined data represented accuracy
values of 74.7% for interactance, and 72.7% for reflectance.
While those based on sucrose models were 66.7 for
interactance and 71.9% for reflectance. Such results are
comparable to the performance obtained from a single sea-
son for interactance or reflectance sensors which shows that
data variation between seasons did not lead to lower perfor-
mance models as indicated in the regression task. It was
obvious that the models developed from the hyperspectral
data resulted in much better classification for the 2008 sea-
son compared with the interactance data, which was similar
to the regression results. Interactance and reflectance sen-
sors showed similar performance, especially for the 2011
season. The Knn and PLS-DA along with SNV and non-
preprocessed spectral data showed the optimal classification
performance among the applied classifiers. In the case of
glucose, fused data were found to slightly improve the clas-
sification results by 1.2%, 3.1%, and 1.9% in 2008, 2009,
and 2011 seasons, respectively. While there was no en-
hancement for classification models based on sucrose for

the 2008 season when fusing sensor data, increase of 2.9%
and 5.8%were found for the 2009 and 2011 seasons, respec-
tively. It is worth comparing the classification results in this
study to those obtained for whole potato tubers based on
individual cultivars (Frito Lay 1879 or FL and Russet
Norkotah or RN). In the earlier work, using an interactance
system (446 to 1125 nm) and by applying the IPLS for wave-
length selection, the classification accuracy values were as
high as 100% and 86% for glucose and sucrose, respectively
(Rady and Guyer 2015a). In another study, NIR reflectance
was applied (900–1700 nm) on both cultivars and the opti-
mal classification accuracy values were 100% for glucose
and 79% for sucrose (Rady and Guyer 2015b). The earlier
work had higher model classification accuracy, primarily as
the models were developed on a single cultivar with less
inherent variability in the tubers. The current study, howev-
er, illustrates an advantage over previous work as it has de-
veloped models that are not cultivar-specific. It is important
to understandwhy the hyperspectral imaging performed bet-
ter in general than spectroscopic systems in this study in both
regression and classification tasks. Sugar distribution inside
the potato tuber is generally not uniform and is a function of
the cultivar, growing, and storage conditions (Pritchard and
Scanlon 1997; Stark and Love 2003). Sucrose concentration

Table 5 Best PLSR predictionmodels for glucose and sucrose of potato
tubers using: Vis/NIR interactance, Vis/NIR hyperspectral imaging, and
NIR reflectance systems obtained from selected wavelengths for data

combined from Frito Lay 1879 and Russet Norkotah cultivars based on
testing the data over different seasons. Rows with values in boldface
represent the best models for each season

Constituent Season
(calibration)

Season
(validation)

Sensor Preprocessing method
(spectra, constituent)*

Calibration** Prediction using cross-
validation

rc
(%)

RMSEc

(%)
RPDc rcv

(%)
RMSEcv
(%)

RPDcv

Glucose 2008 2009 VIS/NIR interactance SNV, Non 96.5 0.0157 2.89 90.3 0.0227 2.34

2008 2011 VIS/NIR interactance MC, Non 94.3 0.0159 3.12 92.1 0.0205 2.59

2009 2011 NIR reflectance MC, Non 75.6 0.0247 2.15 68.6 0.0356 1.38

2011 2009 NIR reflectance MC, Non 64.1 0.0197 1.89 55.0 0.0202 1.19

2009 2011 VIS/NIR interactance +
NIR reflectance

2nd Derv, Non 89.4 0.0208 1.97 83.6 0.0222 1.86

2011 2009 VIS/NIR interactance +
NIR reflectance

MSC, Non 76.4 0.0136 1.75 68.2 0.0164 1.37

Sucrose 2008 2009 VIS/NIR interactance MSC, Non 87.4 0.0178 1.65 82.2 0.0255 1.29

2008 2011 VIS/NIR interactance MC, Non 83.7 0.0198 1.56 77.7 0.0222 1.47

2009 2011 NIR reflectance MC, Non 60.1 0.0425 1.45 42.4 0.0512 1.07

2011 2009 NIR reflectance MSC, Non 44.8 0.0176 1.57 35.8 0.0231 1.07

2009 2011 VIS/NIR interactance +
NIR reflectance

MSC, Non 89.4 0.0289 1.86 80.8 0.0396 1.66

2011 2009 VIS/NIR interactance +
NIR reflectance

MSC, Non 78.4 0.064 1.57 71.4 0.0180 1.40

* SNV, standard normal variate; Non, no preprocessing; MC, mean centering; 2nd Derv, smoothing using the second derivative; MSC, multiplicative
signal correction
** rc, coefficient of correlation for calibration; RMSEc, root mean square error for calibration; RPDc, ratio between the standard deviation of the
constituent to the RMSEc; rcv, coefficient of correlation for prediction using cross-validation; RMSEcv, root mean square error for prediction using
cross-validation; RPDcv, ratio between the standard deviation of the constituent to the RMSEcv
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for two potato cultivars (Russet Burbank and Shepody) was
higher towards the tuber center, whereas the glucose concen-
tration was cultivar-dependent (Pritchard and Scanlon
1997). Thus, sampling techniques for assessing sugar con-
tent in the tubers as well as juicing for subsequent wet chem-
istry experiments play an important role in obtaining consis-
tent results for regression or classification. Sampling was
conducted in this study in a consistent way to eliminate any
source of variation due to such factors. The HSI system pro-
vides greater spatial information o of the chemical composi-
tion in the samplewhich yields amore accurate estimation of
the desired constituent (Wu and Sun 2013), whereas spec-
troscopic systems are still based on a point measurement
which does not cover a large sample area and cannot account
for spatial variations in measured properties (Nicolai et al.
2007). Therefore, HSI systems can provide more robust and
consistent information about the sugar concentration in the
tubers and be used to develop better regression or classifica-
tion results. It is also noted that interactance mode generally
produced a better performance for regression and classifica-
tion than reflectance mode. The possible reason is that the
interactance mode is suitable for thin skin intact fruits as it
eliminates the specular (i.e., surface) reflectance associated
with the reflectance mode and it also provides more penetra-
tion to the sample tissue comparedwith the reflectancemode
(Saranwong and Kawano 2007).

Regression and Classification Model Performance
over Different Growing Seasons

The machine learning models developed in each growing sea-
son were tested with unseen data from the other seasons to
determine their performance. The results from the regression
models are in Table 5 and for the classification models in
Table 6. It was observed that the 2008 interactance model
when applied on the 2009 and 2011 data yielded r values of
90.3% and 92.1%, for glucose and 82.2% and 77.7% for su-
crose, respectively, whereas applying the 2009 reflectance
model on the 2011 season yielded an r value of 68.6% and
the opposite case yielded 55%. The r values for sucrose were
even lower (42.4 and 35.8% for 2009 and 2011, respectively).
Fusing the interactance and reflectance data did not produce
an improvement in the regressionmodels. The possible reason
for such a result was the relatively low performance obtained
from the reflectance sensor.

In the case of classification, generally, the 2008
interactance system data as the training set had improved per-
formance over the reflectance system data as shown in
Table 6. Accuracy values for glucose models were 50.6%
for 2009 and 60.6% for 2011, whereas the values were
68.4% and 56.9% in the case of sucrose. The reflectance data
resulted in accuracy values of as high as 54.3% for glucose
and 67.3% for sucrose. Data fused from the interactance and

Table 6 Best classification models for glucose and sucrose of potato
tubers using individual and fused data from, Vis/NIR interactance, Vis/
NIR hyperspectral imaging, and NIR reflectance systems obtained from

selected wavelengths for data combined from Frito Lay 1879 and Russet
Norkotah cultivars based on testing the data over different seasons. Rows
with values in boldface represent the best models for each season

Constituent Season
(training)

Season
(testing)

Sensor Preprocessing method (spectra,
constituent)*

Classification
technique

Classification
accuracy (%)

Training
set

Testing
set

Glucose 2008 2009 VIS/NIR interactance Non, Log Knn 90.1 50.6

2008 2011 VIS/NIR interactance SNV, Log Knn 92.6 60.6

2009 2011 NIR reflectance MSC, Log Knn 78.2 54.3

2011 2009 NIR reflectance MC, Log Knn 63.7 50.4

2009 2011 VIS/NIR interactance + NIR
reflectance

SNV, Log Knn 62.5 60.6

2011 2009 VIS/NIR interactance + NIR
reflectance

1st Derv, Log LDA 62.1 59.8

Sucrose 2008 2009 VIS/NIR interactance SNV, Log Knn 74.8 68.4

2008 2011 VIS/NIR interactance SNV, Log Knn 75.0 56.9

2009 2011 NIR reflectance MC, Log Knn 70.3 67.3

2011 2009 NIR reflectance MC, Log Knn 68.3 62.8

2009 2011 VIS/NIR interactance + NIR
reflectance

MC, Log Knn 76.4 64.0

2011 2009 VIS/NIR interactance + NIR
reflectance

1ST Derv, Log Knn 71.3 65.4

*Non, no preprocessing; Log, logarithmic; SNV, standard normal variate; MSC, multiplicative signal correction; MC, mean centering; 1st Derv,
smoothing using the first derivative
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reflectance did not increase the classification accuracy and the
highest accuracy was 62.5% for glucose and 76.4% for su-
crose. Variability of the performance in regression or classifi-
cation is mainly due to the different sugar ranges that were
obtained in the three seasons as shown in Table 1. This was
expected due to natural variation between the batches of tu-
bers and different storage conditions utilized in the three sea-
sons. The results of models over the three seasons can be
improved by either including more samples, data from more
seasons, or testing the models in work implemented in other
cultivars. A score plot of the PCA obtained from the
interactance data for the three seasons’ data (i.e., 2008,
2009, 2011) is shown in Fig. 5a for glucose and Fig. 5b for
sucrose. The data from the 2009 or 2011 seasons were less
scattered than those for the 2008 season especially for glucose
which shows the effect of various storage temperature or sam-
ples’ sources.

Based on the results of the regression and classification
operations performed in this study, the application of combin-
ing the data of multiple spectroscopic and hyperspectral im-
aging sensors to enhance the prediction of glucose and sucrose
of whole potatoes is possible and beneficial for tracking qual-
ity parameters of tubers dedicated for frying, especially during
cold storage.

Conclusions

This study has attempted to use data acquired from three spec-
troscopic systems, processed either individually or fused for
building generic regression and classification models for glu-
cose and sucrose content evaluation in potato tubers. These
technologies could be used to monitor sugar content during
storage and result in higher quality processed potato products.
Data was collected over the three seasons, 2008, 2009, and

2011, and different machine learning algorithms were imple-
mented for wavelength selection and model development.
Classification models developed from the different sensors
required fewer wavelengths than the regression models. In
general, hyperspectral imaging presented superior classifica-
tion and regression efficacy over interactance or reflectance
systems due to the spatial data it records. Sensor fusion gen-
erally showed improved model accuracy performance over
individual sensors for both regression and classification al-
though the improvement was greater for the regression
models. Considering the accuracy, it is advised to develop a
device based on the hyperspectral sensor obtained in this
study. However, the cost and time to acquire and process data
from an HSI system are high and a limitation for industrial
adoption. In this study, classification models were found to
perform better than regression models except when using one
season’s model on data acquired from another season. It is
worth stating that while regression models produce quantita-
tive values of quality parameters, classification models are
easier to develop (as they require less data) and could be more
suitable for generating a rapid indication of potato condition.

The results obtained in this study have demonstrated
how sensor measurements and machine learning can be
used to evaluate the sugar content in potatoes and studied
the effects of utilizing different data sets collected over
different seasons. Although the model prediction results
using data across different growing seasons were not as
good as those developed for a single season, they could
be improved by including data from more seasons and
different cultivars. For industrial adoption of these tech-
niques, it is important to develop models that can be ap-
plied across multiple seasons as it eliminates the cost of
developing models every season and enables the models
to be used immediately in a specific season and not until
enough data is collected to develop a robust model.

Fig. 5 PCA score plot for the interactance data obtained for potato tubers over the 2008, 2009, and/or 2011 seasons for a glucose and b sucrose
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