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An image processing and machine
learning solution to automate
Egyptian cotton lint grading
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Abstract

Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its

quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including signif-

icant labor requirements, low inspection efficiency, and influence from inspection conditions such as light and human

subjectivity. This work proposes a low-cost solution to replace manual inspection with classification models to grade

Egyptian cotton lint using images captured by a charge-coupled device camera. While this method has been evaluated for

classifying US and Chinese upland cotton staples, it has not been tested on Egyptian cotton, which has unique character-

istics and grading requirements. Furthermore, the methodology to develop these classification models has been expand-

ed to include image processing techniques that remove the influence of trash on color measurements and extract

features that capture the intra-sample variance of the cotton samples. Three different supervised machine learning

algorithms were evaluated: artificial neural networks; random forest; and support vector machines. The highest accuracy

models (82.13–90.21%) used a random forest algorithm. The models’ accuracy was limited by the human error asso-

ciated with labeling the cotton samples used to develop the classification models. Unsupervised machine learning

methods, including k-means clustering, hierarchical clustering, and Gaussian mixture models, were used to indicate

where labeling errors occurred.
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Cotton is an internationally important textile crop,
accounting for 90% of all-natural fibers used in the
textile industry.1 The textile industry plays a significant
role in the Egyptian economy and wider society, con-
tributing around 14% of gross domestic product
(GDP)2 and employing 25.8% of the industrial work-
force.3 However, since the mid-1980s, the production
of Egyptian cotton has been declining,3 and between
1980 and 2019 exports have decreased from 164,000 to
71,000 tonnes.4 The industry is subject to various chal-
lenges (e.g., fraud and low productivity3), causing
domestic5 and international6 strategies to be intro-
duced to strengthen and modernize the Egyptian
cotton industry.

An important stage during the cotton production
process is the grading of harvested cotton lint to eval-
uate its economic value, which is determined by its
processability (e.g., cleaning requirements) and

quality.7 Incorrectly grading the cotton lint results in
over-processing, which can lead to cotton fiber break-
age, reducing the value of the cotton.8 The most recog-
nized and widely used grade standards are the
Universal Upland Grade Standards, which have 25
grades determined by cotton lint color and leaf
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grade.9 These standards are used to grade upland
cotton staples that account for 90% of global cotton
production10; however, they are not suitable for long
and extra-long cotton staples like Egyptian cotton,
Gossypium Barba-dense L., as they do not consider
fiber length in the system of classification or the variety
of color present in Egyptian cotton lint.11 The Cotton
Arbitration and Testing General Organization
(CATGO) in Egypt identifies 10 different cultivars of
cotton that come under two categories: extra-long
staple cotton and long staple cotton. Long staple
cotton is divided into the lower-long staple varieties
that grow in the Nile Delta region and the upper-long
staple varieties that grow in Upper Egypt. Within
Egypt, CATGO is responsible for maintaining
Egyptian cotton quality using the local grading
system consisting of nine cotton quality grades, out-
lined in Table 1. Egyptian cotton grades are still
mainly determined by manual inspection performed
by human expert classifiers. Samples are extracted
from cotton lint bales and inspected for fiber color
and length, the presence of “trash” (e.g., dried cotton
leaves, seed coats, barks, grass, and dust), and maturity
(i.e., age of the plant harvested from).12 In addition,
grading is also undertaken on a smaller selection of
samples via a High Volume Instrument (HVI).
Manual inspection has several drawbacks, including
the following: significant labor requirements; low
inspection efficiency; eye fatigue; and influence from
inspection conditions, such as light.13,14 While the
HVI overcomes the manual inspection drawbacks, it
is a destructive sampling method, occupies a large
floor area, is prone to temporal and spatial variations,
and has a poor agreement between human classifiers
and HVI grading for cotton lint not originated in the
USA.15,16 Furthermore, the high cost of HVI equip-
ment has limited its use within the Egyptian cotton
industry, which is beset by high production costs and
decreasing export value.3 Instead, a low-cost and
simple-to-use solution is required to address the current
disadvantages of manual inspection and HVI grading.
A low-cost solution that is accessible to both cotton lint

farmers and processors will also help address the fraud
problem within the Egyptian cotton industry (i.e.,
deliberating incorrectly labeling the cotton lint
grade)17 and help to drive value back toward the farm-
ers suffering from reducing export value3 by enabling
them to demand an honest price for their cotton lint.

Previous studies have evaluated alternative cotton
lint measuring systems to replace or supplement
manual inspection and HVI measurement systems,
which include the following: the colorimeter;18,19 com-
puter scanner;20,21 charge-coupled device (CCD)
camera;12–14,22–26 single-lens reflex camera;27 thermal
camera;28 infrared spectrometry;29,30 microscope;31

X-ray scanner;32 and optical spectrometry.16,20

A CCD is a digital camera widely used in digital pho-
tography and astronomy.33 To date, the CCD has
received a large amount of attention as a cotton lint
image acquisition technique due to its low-cost and
precise color measurement.23 Image processing can
extract characteristics from CCD images that describe
the cotton lint color23 and detect and characterize the
trash present within cotton lint samples. As well as
costing less than other measuring systems, the CCD
captures color information of each pixel meaning
color variation and distribution can be easily
obtained,33 a feature that current HVI systems are
unable to measure.23 An earlier analysis of US
upland cotton samples evidenced the occurrence of
intra-sample color variation, which impacted color
grade assessment.21 Yet to be explored is the extent
of intra-sample color variation within Egyptian
cotton lint samples and how intra-sample variation
correlates to Egyptian cotton grades. When measuring
the cotton lint color from CCD images, the majority of
previous work has failed to account for the influence
that trash has on the measurement of color values.23

Recent work has proposed a two-step trash detection
algorithm to improve the cotton lint color assessment
accuracy by removing the influence of trash on the
cotton lint color measurements.23 To what extent the
more accurate color values improve the accuracy of
models classifying cotton grades is yet to be
determined.

Cotton color and trash characteristics have been
used as model inputs, referred to as “features,” for
supervised machine learning models to successfully
classify US upland cotton18,26 and Chinese upland
cotton13 grades, using the Universal Upland Grade
Standards grading system. There is no evidence of sim-
ilar work using Egyptian cotton samples and the
Egyptian cotton grading system. Supervised machine
learning models are built from self-learning algorithms
that learn from labeled training data and are capable of
fitting complex functions between input and output
data.34 Artificial neural networks (ANNs)18 and

Table 1. Egyptian cotton grades

Grade Grade name

I Fully good

II Good to fully good

III Good

IV Fully good fair to good

V Fully good fair

VI Good fair to fully good fair

VII Good fair

VIII Fully fair to good fair

IX Fully fair
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support vector machines (SVMs)13,26 are two machine
learning algorithms that have proven successful at clas-
sifying cotton sample grades using CCD images. The
structure of an ANN algorithm represents the connec-
tions of biological neurons.18 An ANN is comprised of
multiple node (neurons) layers, containing an input
layer, one or more hidden layers, and an output
layer.18 Each node connects to another and has an
associated weight and bias, which stores the learning
from the training data. More recently deep learning,
which is an ANN with multiple hidden layers that
automate feature extraction, has been used to measure
cotton maturity,31 extract Chinese cotton characteris-
tics,13 and identify foreign fibers in cotton lint.14 While
deep learning can produce highly accurate models, they
require a larger volume of training data than tradition-
al ANN models to learn from, which can limit deep
learning use.35 SVMs construct a hyperplane, or set
of hyperplanes, in a high- or infinite-dimensional
space, which can be used for classification. They are
highly effective machine learning algorithms, even
when presented with small quantities of data.35 Both
the ANN and SVM have proved successful in grading
upland cotton samples as they are capable of fitting a
non-linear barrier between the cotton grades.18 The
random forest (RF) is another non-linear machine
learning algorithm that uses multiple decision trees
and a statistical technique called “bagging.”36 Rather
than just averaging predictions from multiple trees, a
RF instead randomly samples from the training data
for each tree and randomly subsets the input variables
at splitting nodes until the minimum node size is
reached.36 RF algorithms are simpler to train than
ANNs or SVMs, as they are less complex and less
prone to overfitting (i.e., matching too closely to
noise in the training data, reducing the model’s ability
to accurately predict new data).37 RFs also excel at
multi-class classification problems,37 making them
ideal candidates for classifying cotton grades. Despite
this, a comparison between the RF, ANN, and SVM to
predict cotton lint grade is missing in the literature.

A supervised machine learning model requires data
with labeled outputs (e.g., cotton grade). The grading
of Egyptian cotton is a very intricate and complex sub-
ject, as it depends upon human perceptions of sight and
touch and requires a high degree of critical judgment
on the part of the officials responsible.11 The complex-
ity of this task leads to inevitable human error in the
labeling of cotton lint grades. Unsupervised learning
can be used when there are concerns regarding the
labeling of the data by clustering.34 Previous use of
unsupervised learning within cotton evaluation
includes reducing dimensions and separating spectral
data into cotton lint grades29 and evaluating the simi-
larity or dissimilarity of different parts of cotton

plants.30 When the number of classes within the data
is known, k-means clustering, hierarchical clustering,
and the Gaussian mixture model are three popular
unsupervised learning algorithms to cluster the data
into a predefined number of clusters.38 k-means clus-
tering is a method that aims to partition observations
into k clusters, in which each observation belongs to
the cluster with the nearest mean (cluster centroid).38

Linkage clustering is one of several methods of hierar-
chical clustering and is based on grouping clusters in
agglomerative clustering, at each step combining two
clusters that contain the closest pair of elements not yet
belonging to the same cluster as each other.38 A
Gaussian mixture model is a probabilistic model that
assumes all the data points are generated from a mix-
ture of a finite number of Gaussian distributions with
unknown parameters.38 The trained Gaussian mixture
model then assigns query data to the cluster yielding
the highest posterior probability.38

This study aims to develop classification models to
grade Egyptian cotton lint using images acquired by a
low-cost CCD camera. While this method has proved
successful in classifying US and Chinese Upland
cotton,13,18,26 it has not been evaluated for Egyptian
cotton, which has unique characteristics (e.g., fiber
length and color) and uses a different grading system.
Furthermore, this method has been expanded to
include two new image processing techniques that
remove the influence of trash on color measurements
and extract features that capture the intra-sample var-
iance of the cotton samples. If successful, this solution
would directly benefit the local Egyptian cotton indus-
try, which still largely uses manual inspection due to
the high cost of other measuring equipment. In addi-
tion, because of known errors associated with the
manual classification of Egyptian cotton,11 the use of
unsupervised learning to identify likely sources of
errors is explored.

The paper is structured as follows. Following the
introduction, the second section presents the study
methodology, explaining the color vision system uti-
lized as well as the image processing and modeling
techniques used. In the Analysis of cotton lint image
processing results section, the results of the image proc-
essing methods are analyzed to identify trends within
the image data and correlations between the features
and cotton grade. Then the Classification model results
section presents the supervised machine learning
models results, which are evaluated in terms of accura-
cy, recall, and precision to determine which machine
learning algorithm is best suited to grade Egyptian
cotton lint. In the Evaluation of human error via unsu-
pervised learning section, the result of the unsupervised
machine learning technique applied to determine likely
sources of human error in labeling the cotton lint

2560 Textile Research Journal 93(11–12)



samples is presented. Finally, this work concludes in
the Future work section by outlining the future work
required to progress this method up to technology
readiness levels and into a commercial solution for
grading Egyptian cotton lint.

Materials and methods

Cotton lint samples

To develop the machine learning models, a dataset of
Egyptian cotton lint sample images was collected.
Samples from five cultivars, Giza 86, 87, 90, 94, and
96, were collected, which includes cultivars from both
long and extra-long Egyptian cotton staple categories.
The number refers to the year the cotton strains were
artificially hybridized to produce new cotton varieties.
Giza 86, 90, and 94 are long stable cultivars and Giza
87 and 96 are extra-long staple cotton cultivars. Giza
86 and 94 are grown in the Nile Delta region and Giza
90 is grown in the Upper Egypt region. The samples
were provided by CATGO, Alexandria, Egypt.
CATGO is responsible for providing the official certif-
icates for authenticating cotton lint in terms of deter-
mining the quality attributes and grade for Egyptian
cotton cultivars for cotton ginning companies. Human
experts from CATGO labeled the samples used in this
study, using the Egyptian cotton grading system out-
lined in Table 1. To aid communication, the grades
have been assigned a value from I for the highest qual-
ity grade to IX for the lowest quality grade. Images of
all the samples were captured using the color vision
system described in the Color vision system section.
Example images of the grades for cultivar Giza 86 are
presented in Figure 1 and example images from the
other cultivars are presented in the Supplementary
Information (Figures S1–4).

A total of 3447 samples were provided, but unfor-
tunately not all grades were represented in the samples
provided. The breakdown of the number of samples of
each grade for each cultivar is reported in Table 2.

Color vision system

The schematic configuration of the color vision system
used to acquire cotton lint images in this study is shown
in Figure 2. The design is based on existing cotton color
vision systems.12–14,22–26 Images were captured using
a CCD sensor 8.1 MP Fuji A850 digital camera
(FUJIFILM Corporation, Minato-ku, Tokyo, Japan),
which stored the images in JPEG format with dimen-
sions of 2248 pixel� 3264 pixel. The CCD sensor was
mounted 11 cm vertically above the surface of the sam-
ples and the inbuilt autofocus capability of the CCD
sensor ensured all images were in focus. A square

25.0mm� 25.0mm� 3.85mm 10 W light-emitting

diode (LED) light source (Intelligent Group Solutions

Ltd, Thatcham, UK) was mounted 11 cm vertically

above the surface of the samples and used to ensure

consistent illumination. The average light intensity on

the sample surface was 4879 lux, calibrated by a

Samsung Galaxy M31 (Samsung Group, Suwon-si,

South Korea) 10 times, with the average value

reported. To ensure a consistent illumination condi-

tion, the camera along with the light source was

enclosed in an aluminum box whose dimensions were

54 cm� 40 cm� 40 cm. The inside of the box was col-

ored black to minimize the surface reflection from the

sides. Samples of 4 cm thickness were placed directly

below the camera on the black surface. Each image

was captured with no flash, and the output images

were transferred to a PC for analysis using Windows

10 operating software (21H2 10.0.19044.1645,

Windows 10, Microsoft Corporation, Redmond,

Washington, USA).

Image processing methods

Methods outlined in previous image processing of

cotton lint21,23 were followed to extract features

describing the color of the cotton lint and the percent-

age of trash present within the samples. Firstly, all the

images were cropped from 2448 pixel� 3264 pixel to

2448 pixel� 2965 pixel to eliminate the areas of the

sample without uniform light. The percentage of

trash detected in the image was then determined fol-

lowing the method outlined by Heng et al.23 The

cropped images were then converted to a grayscale

image and then to a binary image using the balanced

histogram thresholding method in order to provide a

better condition for trash detection.23 The percentage

of trash detected in the image was then calculated using

Equation (1)

Trash detected %ð Þ ¼ number of trash pixels

total number of image pixels
� 100

(1)

The color of the cotton was determined following

the method outlined by Heng et al.23 Since the 1940s,

the three-dimensional (3D) Hunter color space param-

eters lightness (L*) and relative to the blue–yellow (b*)

have been used to grade cotton color.23 The third

parameter, relative to the green–red (a*), is not used

because it is a constant for the US upland cotton.

However, previous studies have failed to consider the

color difference between US and Egyptian cotton.

Therefore, it is reasonable to investigate the potential
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of using the additional a* parameter to grade Egyptian
cotton. The image color space was converted from the
original red, green, blue (RGB) color space to
International Commission on Illumination (CIE)
XYZ color space and then 3D Hunter color space
using the equations outlined by Heng et al.23

Heng et al.23 found that measuring the color of the
whole cotton lint image produces an inaccurate color
measurement of the cotton lint due to trash present

within the cotton lint image influencing the color mea-
surement. To evaluate whether this holds true for mea-
suring Egyptian cotton lint color, the two-step method
of Heng et al.23 was applied to measure the color values
of the “clean” Egyptian cotton lint image. The first step
is to identify the pixels in the image that contain trash,
using the grayscale and binary method outlined at the
start of the Image processing methods section. The
cropped image is then masked with the binary image

Figure 1. Sample images of each Giza 86 cultivar grade: (a) I; (b) II; (c) III; (d) IV; (e) V; (f) VI and (g) VII. Grades VIII and IX were not
present in the data so no images were available.
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to remove the pixels containing trash particles to create

a “clean” cotton lint image. The 3D Hunter color space

values may then be extracted from the clean image fol-

lowing the steps outlined in the above paragraph. Cui

et al.21 found that the intra-sample variation of the

cotton lint provided valuable information when

characterizing cotton samples and impacted the final

cotton grade. To evaluate whether the intra-sample

variation influences Egyptian cotton lint grading, the

method of Cui et al.21 was followed. This segmented

the cotton lint images and extracted the color and trash

detected values of each segmented image. The mean

and standard deviation of these values were then

calculated.

In this work, we evaluated both Heng et al.23 and
Cui et al.21 cotton lint image processing methods for
classifying Egyptian cotton lint grade from the CCD
images. A total of four image processing methods were
evaluated, outlined in Figure 3. Image processing
method one extracts features from “unclean” cotton
lint images and image processing method two extracts
features from the “clean” cotton lint images following
the Heng et al.23 method. Image processing methods
three and four follow the Cui et al.21 method to extract
intra-sample variation features of the “unclean” and
“clean” images, respectively. All the image processing
methods were conducted using the software
MATLAB (R2021a version, Mathworks, Natick,
Massachusetts, USA).

Supervised machine learning methods

The supervised machine learning models aim to use
cotton lint image data (model input) to predict the
Egyptian cotton grade (model output). A flow chart
of the process for developing the supervised machine
learning models for Egyptian cotton grade classifica-
tion is presented in Figure 4. The first step was to par-
tition the data into 70% training data and 30% testing
data. Stratified random sampling was used to ensure
that the training and testing data sets were balanced
across the Egyptian cotton grades.39 The testing data
was withheld until the end to evaluate the final models.
The training data was normalized to ensure all varia-
bles were given equal weight by the classification

Figure 2. The color vision system used to acquire color images of the cotton lint samples (reflections in the picture are from the
high-intensity flash of the camera used to take an image of the system). CCD: charge-coupled device; LED: light-emitting diode.

Table 2. Breakdown of the number of samples of each grade for
each cultivar

Egyptian

cotton

grade Giza 86 Giza 87 Giza 90 Giza 94 Giza 96

I 115 0 0 102 103

II 118 116 100 115 0

III 113 108 131 100 109

IV 119 110 116 108 118

V 150 115 124 109 97

VI 115 0 131 99 102

VII 115 0 101 0 120

VIII 0 0 0 0 0

IX 0 0 0 104 64

Fisher et al. 2563



algorithms. To normalize without any loss of informa-
tion, the minimax function was applied.40 The normal-
ization parameters were saved (the minimum and
maximum values of each feature) and then used to nor-
malize the testing data. Next, 10-fold stratified
cross-validation was used to find the optimal hyper-
parameters of each machine learning algorithm.
A hyperparameter is an adjustable algorithm parame-
ter that must be either manually or automatically tuned
in order to obtain a model with optimal performance.41

Three machine learning algorithms were evaluated,
ANNs, SVMs, and RFs. The ANN hyperparameters
include the learning rates, number of nodes, number of
hidden layers, batch size, and activation function. The
SVM hyperparameters include the box constraint, epsi-
lon, kernel function, and polynomial order. The RF
hyperparameters include the number of trees, depth
of trees, and minimum node size. A random search
technique was used to optimize each algorithms’ hyper-
parameters, where random combinations of the hyper-
parameters were used to find the best solution for the
final model. A random search was used as it has a
higher chance of finding the optimal hyperparameters
than other methods (e.g., grid search) and uses less
computational processing power.41 Tenfold stratified
cross-validation was used to evaluate each combination
of hyperparameters to find the optimal set. The model
was then retrained using the best hyperparameters and
evaluated using the test data. The predictive power of
the model was evaluated according to the classification
accuracy rate determined using Equation (2).

To understand the strengths and weaknesses of the

models, the recall and precision values were calculated

for each grade using Equations (3) and (4). All the

models were developed using the software MATLAB

(R2021a version, Mathworks, Natick, Massachusetts,

USA)

Accucary ¼ Number of correct predictions

Total number of predictions
� 100 (2)

Precision ¼ Number of true positive predictions

Number of true positive predictions

þnumber of false positive predictions

�100 (3)

Recall ¼ Number of true positive predictions

Number of true positive predictions

þnumber of false negative predictions
� 100 (4)

Unsupervised machine learning methods

The unsupervised machine learning models aim to

determine how many classes the data would fit into if

labels/grades did not exist. The first step to develop the

unsupervised learning models was to normalize the

data to ensure all variables were given equal weight

by the classification algorithms using the minimax

Figure 3. Flow chart of the four cotton lint image processing methods.
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function.40 The normalized data were then used to train

the unsupervised learning algorithms k-means cluster-

ing, hierarchical clustering, and Gaussian mixture

model. To determine the number of clusters present in

the data, each clustering model was repeatedly trained

with between one and nine specified clusters. The per-

formance of three clustering algorithms were evaluated

by calculating three cluster validity indices, the Calinski–

Harabasz index, the Davies–Bouldin index, and the sil-

houette index, and equations for each are given by Liu

et al.42 The optimal number of clusters maximizes the

Calinski–Harabasz and silhouette indices and minimizes

the Davies–Bouldin index.42 All the models were devel-

oped using the software MATLAB (R2021a version,

Mathworks, Natick, Massachusetts, USA).

Results and discussion

Analysis of cotton lint image processing results

The results of the four image processing methods
applied to the Giza 86 cotton lint image data are
shown in Figure 5 as boxplots. The boxplots of the
image processing methods applied to cultivars Giza
87, 90, 94, and 96 are reported in the Supplementary
Information (Figures S5–8). Figures 5(a)–(d) display
the boxplots of the color and trash detected features
extracted by image processing methods one, “unclean,”
and two, “clean,” and Figures 5(e)–(h) display the box-
plots of the additional color and trash detected intra-
sample variance features extracted by image processing
methods three “uncleanþ intra-sample variance” and

Figure 4. Flow chart of the process to develop the supervised machine learning models.
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four “cleanþ intra-sample variance.” Regarding the

percentage of trash detected feature, Figure 5(d)

shows that the percentage of trash detected increases

with the cotton grade. This is to be expected, as the

presence of trash decreases the cotton lint value

because it has a detrimental effect on cotton quality12

and requires extra processing to remove the trash from

the harvested cotton lint.8 Similarly, Figure 5(b) shows

there is a gradual increase of b* as the cotton grade

increases. The parameter b* describes the relative

degree of blue to yellow within an image, so as the

degree of yellow detected in the image increases so

does b*. Figure 1 shows that the best quality grades

(i.e., I and II) have little to no staining, while the

worse grades (i.e., VIII and IX) have patches that are

stained a yellow and brown color. Therefore, we would

expect the value of b* to increase with the cotton grade,

which concurs with previous Egyptian cotton color

analysis.11 Figure 5(a) displays a decrease of L* with

the cotton grade, meaning as less light was detected in

the image the cotton grade increased. Again, Figure 1

shows that the best quality cotton lint samples have a

pure white/creamy color and, as white reflects light, it

can be expected that these cotton lint images will con-

tain a higher L*.43 In Figure 5(b) there appears to be a

gradual decrease of a* as the cotton grade increases,

but also a large number of outliers clustered below the

lower interquartile range for grades I, II, and III. The

parameter a* describes the relative degree of green to

red within an image. Visual inspection of the images in

Figure 1 reveals that neither green nor red colors are

obviously present in the cotton lint images, which may

explain the ambiguous relationship between a* and the

cotton grade and why a* is not normally used to eval-

uate cotton color.15 Concerning the intra-sample vari-

ation features a*, b*, and percentage of trash detected,

Figures 5(f)–(h) show a clear increase in intra-sample

variation as the cotton grade increases. The reason for

this is that cotton lint uniformity (e.g., consistent

cotton color) increases the value of cotton lint21; there-

fore, as intra-sample variation increases, the value of

cotton lint decreases. The exception to this appears to

be the intra-sample variation of L*, which does not

display a clear relationship with the cotton grade in

Figure 5(e). At this stage, it is unclear why this uniform

L* is not important for cotton quality; therefore, the

Pearson correlation coefficients have been calculated to

quantify the relationship between cotton grade and the

image processing features to understand their relation-

ship in more detail.
The Pearson correlation coefficient (r) between the

unclean and clean features and Egyptian cotton grade

are reported in Tables 3(a) and (b), respectively. These

results indicate that the Egyptian cotton grade has

Figure 5. Boxplots showing the three-dimensional Hunter color values (a) lightness, L*, (b) relative to the blue–yellow, b*,
(c) relative to the green–red, a*, and (d) the percentage of trash detected data extracted from the Giza 86 cotton lint images between
grades I and VII, as well as the intra-sample variance values (e)–(h) for each, respectively. The unclean values (image processing
methods one and three) are shown as blue and the clean features (image processing methods one and three) are shown as red.
(Color online only.)
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a very strong positive correlation (0.8< r< 1.0) with
the percentage of trash detected. This confirms the
observation from Figure 5(d) that the presence of
trash deteriorates the cotton quality and the very
strong positive correlation agrees with previous corre-
lation analyses of HVI color measurements and
Egyptian cotton grades.11 A strong positive correlation
(0.6< r< 0.79) was also observed between b* and the
cotton grade, validating the conclusion from Figure 5
(c) that the presence of yellow staining decreases cotton
quality. Again, the correlations present within this
study’s data agrees with previous studies that have cal-
culated the correlation between b* and the Egyptian
cotton grade.11 Tables 3(a) and (b) show a strong neg-
ative correlation (–0.79< r< –0.6) between L* and the
cotton grade, meaning as less light was detected in the
image the cotton grade increased. Likewise, Hussein
et al.43 stated that a strong correlation between the
lightness and cotton grade meant it is an important
color parameter for measuring Egyptian cotton lint
quality.Finally, a weak negative correlation
(–0.4< r< 0.1) between a* and the cotton grade was
observed. As previously mentioned, the lack of obvious
green or red colors present in the Figure 1 cotton lint
images may explain the weak correlation observed and
be the reason why a* is not conventionally utilized to
grade cotton.11,43 Overall, these observed correlations
and their associated strengths concur with previous
correlation analyses of HVI color measurements and
Egyptian cotton grades,11,43 which indicates that

CCD image processing analyses can be effectively
used to measure Egyptian cotton color.

Unlike previous studies, additional features that
describe the degree of intra-sample variation were
also used in this study to measure Egyptian cotton,
as outlined in image processing methods three and
four. The intra-sample variance of L* had a very
weak (0< r< 0.19) positive correlation with the
Egyptian cotton grade for Giza cultivars 94 and 96
and a greater than 0.05 probability of no relationship
with the Egyptian cotton grade for Giza cultivars 86,
87, and 90. This result suggests that intra-sample var-
iance of L* had little to no effect on cotton quality,
which challenges previous findings that state the degree
of intra-sample variance of L* is needed for character-
izing US Upland cotton.21 The reason for the disagree-
ment may either be due to the difference between
Egyptian and US Upland cotton characteristics11 or
because the previous study did not explore the correla-
tion between the intra-sample variance and cotton
grade. A strong positive correlation was observed
between the cotton grade and the degree of intra-
sample variance of a* and b*, meaning as the intra-
sample variance of the cotton color increases, the
cotton quality decreases. Figure 1 shows that the stain-
ing of cotton lint is not uniform and as the cotton
quality decreases, the number of stained patches
increases. This may explain the strong positive correla-
tion observed and supports the statement that uniform
cotton lint properties are desirable for consistent

Table 3. (a) Pearson correlation coefficient between unclean features (image processing methods one and three) and Egyptian cotton
grade for cultivars Giza 86, 87, 90, 94, and 96. When there is a small probability (p-value <0.05) that there is no relationship between
the feature and the Egyptian cotton grade, NA result is reported. (b) Pearson correlation coefficient between clean features (image
processing methods two and four) and Egyptian cotton grade for cultivars Giza 86, 87, 90, 94, and 96. When there is a small
probability (p-value <0.05) that there is no relationship between the feature and Egyptian cotton grade, NA result is reported

Feature Giza 86 Giza 87 Giza 90 Giza 94 Giza 96 Average

(a)

L* –0.68 –0.37 –0.56 –0.69 –0.72 –0.60

L* std NA NA NA 0.14 0.24 0.19

a* –0.39 0.12 –0.42 –0.73 –0.48 –0.38

a* std 0.66 0.40 0.68 0.73 0.75 0.64

b* 0.70 0.32 0.65 0.79 0.70 0.63

b* std 0.88 0.67 0.82 0.90 0.86 0.83

Trash detected 0.84 0.86 0.76 0.84 0.77 0.81

Trash detected std 0.68 0.59 0.49 0.64 0.49 0.58

(b)

L* –0.65 –0.33 –0.49 –0.65 –0.69 –0.56

L* std NA NA NA 0.09 0.21 0.15

a* –0.41 0.10 –0.44 –0.74 –0.50 –0.40

a* std 0.65 0.37 0.66 0.71 0.73 0.62

b* 0.69 0.28 0.64 0.78 0.70 0.62

b* std 0.88 0.67 0.82 0.90 0.86 0.83

Trash detected 0.84 0.86 0.76 0.84 0.77 0.81

Trash detected std 0.68 0.59 0.49 0.64 0.49 0.58
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processing and product quality.21 In addition, this
result validates the inclusion of the measurement of
a* within this study’s proposed methodology, as the
strong positive correlation between the Egyptian
cotton grade with the degree of intra-sample variance
of a* implies the need to include a* measurements
going forward when characterizing Egyptian cotton.

Next, the effect of removing the influence of trash
on the cotton color measurements is explored. There is
a small absolute change in the medians (<0.06) and
interquartile ranges (<0.005) between the unclean and
clean boxplots in Figure 5, which indicates that the
presence of trash had a negligible difference when mea-
suring the Giza 86 cultivar’s color parameters and
degree of intra-sample variance of the color parame-
ters. This result was repeated in the other cultivars
studied, as shown in the Supplementary Information.
Furthermore, the r values reported in Tables 3(a) and
(b) for the Egyptian cotton grades and both the
unclean and clean features values were very similar
(i.e., absolute change r< 0.04). The reason for the neg-
ligible difference between unclean and clean color
measurements may be attributed to a very low percent-
age of trash detected within the Egyptian cotton sam-
ples; for example, the mean percentage of trash in Giza
86 samples is 0.51%. Therefore, only a very small
number of pixels are being removed when cleaning
the cotton images before measuring the cotton color.
This result disagrees with Heng et al.’s23 previous con-
clusion that the presence of trash did significantly influ-
ence the L* and a* cotton color measurements. The
reason for this may be that the trash detection algo-
rithm was more successful at detecting the trash and
removing the trash within the Heng et al.23 study.
Therefore, further work may explore if the use of
other trash detection algorithms (e.g., Kang and
Kim24) would result in a greater difference

between the unclean and clean cotton lint color
measurements.

Finally, the interquartile ranges visualized by the
boxplots in Figure 5 show an overlap between the
Egyptian cotton grades for all color features. This is
emphasized for grades I–VI for the color features a*
and b* and the intra-sample variance of a*. The over-
lap between grades indicates that the cotton grade
boundaries are not well defined, as reported by a pre-
vious study measuring the color of US upland cotton
samples from a CCD.24 The unclear Egyptian cotton
grade boundaries justify previous statements that the
manual labeling of cotton is a very intricate and com-
plex subject.11 This highlights the need for a machine
learning approach to classify Egyptian cotton lint sam-
ples, as machine learning models are able to detect
hidden patterns within the data that are not obvious
to human classifiers.34

Classification model results

The testing data accuracy results for the 12 classifica-
tion models built using permutations of the image
processing methods and supervised machine learning
algorithms are presented in Table 4. The maximum
observed model accuracy for the cultivars Giza 86,
87, 90, 94, and 96 are 82.13%, 90.21%, 83.75%,
89.27%, and 84.87%, respectively. The cultivar fiber
length, long or extra-long, appears not to have affected
model accuracy, as both Giza 87 (extra-long staple)
and Giza 94 (long staple) had similar accuracies,
90.21% and 89.27%, as did Giza 90 (long staple) and
Giza 96 (extra-long staple), 83.78% and 84.87%. This
is likely due to the color vision system and image proc-
essing methods not capturing the fiber lengths within
the images. Therefore, the classification models used
only the cotton lint color and percentage of trash fea-
tures as input data, which have a similar relation with

Table 4. Supervised machine learning model accuracies (%) performance when evaluated using testing data across 12 models; the
best result for each Giza cultivar is highlighted in bold

Image processing method ML algorithm Giza 86 Giza 87 Giza 90 Giza 94 Giza 96 Average

IP 1 – Unclean ANN 65.93 81.30 59.91 69.61 51.00 65.6

IP 1 – Unclean RF 68.94 85.30 66.86 77.47 70.04 73.7

IP 1 – Unclean SVM 51.08 76.40 52.52 53.79 45.23 55.8

IP 2 – Clean ANN 65.21 81.73 59.45 68.39 53.18 65.6

IP 2 – Clean RF 69.91 85.95 66.86 77.34 70.89 74.2

IP 2 – Clean SVM 48.60 72.61 53.65 62.98 41.63 55.9

IP 3 – Uncleanþ intra-sample variance ANN 75.17 83.74 72.40 75.46 62.96 73.9

IP 3 – Uncleanþ intra-sample variance RF 82.13 90.21 83.78 89.26 84.15 85.9

IP 3 – Uncleanþ intra-sample variance SVM 70.25 83.97 65.28 75.73 61.42 71.3

IP 4 – Cleanþ intra-sample variance ANN 74.82 81.96 71.54 75.32 61.79 73.1

IP 4 – Cleanþ intra-sample variance RF 81.89 89.31 82.07 89.27 84.87 85.5

IP 4 – Cleanþ intra-sample variance SVM 73.36 85.52 63.03 65.24 62.58 69.9

ANN: artificial neural network; IP: image processing route; ML: machine learning; RF: random forest; SVM: support vector machine.
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cotton quality across cultivars.11 The range of model
accuracies achieved (82.13–90.21%) is comparable to
other previously reported accuracy results (88.0–
94.0%) that have used image processing and machine
learning to classify US upland cotton lint.18,26 Recent
work using deep learning to automate image processing
achieved an accuracy of 98.9% when classifying the
Chinese upland cotton grade.13 Directly comparing
model accuracy results is constrained due to the differ-
ence between Egyptian cotton varieties and upland
varieties of cotton and the different grading systems
used. In addition, 3024 images were used to develop
the deep learning model, while on average 690 images
were used to develop the classification models within
this study.

The RF algorithm consistently reported the highest
accuracy, irrespective of the image processing method
or the Egyptian cotton cultivar. On average, the models
built using a RF algorithm achieved the highest aver-
age accuracy (79.83%), followed by the ANN (69.54%)
and the SVM (63.24%). The majority of previous work
used either ANN models18 or SVM models13,26 when
predicting the cotton grade, due to their ability to fit
non-linear data. However, the results in Table 4 indi-
cate that RF algorithms are better suited to modeling
cotton lint image data. The large number of outliers
observed in the cotton lint image data (Figure 5) may
be the reason for the RF models’ higher accuracy when
compared to the ANN and SVM models. RFs are
adept at handling outliers, as the tree nodes are deter-
mined based on the sample proportions in each split
region and not on their absolute values,37 whereas
algorithms like the ANN and SVM need a low
number of outliers within the dataset in order to
achieve better generalization of the network, as outliers
in the dataset hinder the modeling process and produce
misleading results.44

The addition of the intra-sample variance features
(image processing methods three and four) resulted in
an average increase of 11.5% in the model accuracies,
for the first time proving the advantage of including
intra-sample variance features when predicting cotton
grades. This is because the intra-sample variance fea-
tures describe how uniform a cotton lint sample is, a
desirable cotton characteristic that enables consistent
textile processing and product quality.21 The benefit
of cleaning the cotton lint images to remove the influ-
ence of trash on the color measurements was not cer-
tain. The models developed using unclean features
achieved an average accuracy of 71.03%, while the
models developed using clean features achieved an
average accuracy of 70.70%. In addition, on average
there was an additional 0.42 seconds of image process-
ing time associated with cleaning the cotton lint fea-
tures. The negligible difference in model accuracy

between the unclean and clean features is likely due
to the small absolute change in color measurements
between the two methods, as previously discussed in
the Analysis of cotton lint image processing results sec-
tion. This meant the models were learning from very
similar training data, so any difference in model accura-
cy is primarily from variation in the final model hyper-
parameters set during the cross-validation tuning.
Therefore, because there were no accuracy gains and
an increased image processing time associated with
cleaning the images, this study concludes that cleaning
trash from cotton lint images is not recommended when
using machine learning models to classify the Egyptian
cotton grade.

To quantify the capability of the classification
models to distinguish between the Giza 86 Egyptian
cotton grades, the metrics precision and recall were cal-
culated using the test data and are reported in Table 5.
The recall and precision metrics for cultivars Giza 87,
90, 94, and 96 are available in the Supplementary
Information. Precision is the fraction of relevant
instances among the retrieved instances (i.e., the ability
to classify instances correctly), whereas recall is
the fraction of relevant instances that were retrieved
(i.e., the ability to classify as many instances as possi-
ble). Table 5 clearly shows that the precision and
recall of each classifier yielded large deviations
in results (precision¼ 26.01–96.02%, recall¼ 26.44–
96.52%). Nevertheless, the results in Table 5, and the
Supplementary Information, show that the RF
machine learning algorithm obtained the best perfor-
mance across all grades for each cultivar, with a small
number of exceptions (e.g., for the Giza 86 grade VII
the model developed using the SVM had the highest
precision score, 96.02%). Furthermore, the best results
were obtained by models developed using the additional
intra-sample variance features, as evidenced by the
increase in minimum values of the precision and recall
metrics from 28.01% to 54.43% and 26.44% to 46.74%,
respectively. In addition, the difference between average
precision and recall scores for the models developed
using unclean cotton images and clean images was
again shown to be minimal, 2.00% and 1.84%,
respectively.

The main source of error for the Giza 86 classifica-
tion models occurred with the misclassification of
cotton samples belonging to grade VI. The best preci-
sion value achieved was 71.91%, meaning almost 30%
of data predicted as grade VI was incorrect, and the
best recall value was 66.89%, meaning the model failed
to identify 33.11% of the data belonging to this class.
The high precision and recall values of grade VII,
92.72% and 95.45%, respectively, suggest that the
errors occurred by misclassifying samples belonging
to grade V as grade VI and vice versa. The recall and
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precision metrics indicate that the models built to pre-
dict the Giza 87 grade performed worst when predicting
grades IV and V (maximum precision¼ 84.23–89.03%,
maximum recall¼ 86.36–85.23%) compared to predict-
ing grades II and III (maximum precision¼ 93.37–
99.23%, maximum recall¼ 96.27–96.67%). The Giza
90 models’ recall and precision metrics revealed that
the main source of errors occurred when classifying
between grades IV, V, and VI (maximum precision¼
75.12–76.03%, maximum recall¼ 69.36–76.32%). The
main source of errors for the Giza 94 models arose with
the misclassification of the data belonging to grades I
and II (maximum precision¼ 80.11–83.12%, maximum
recall¼ 76.36–85.91%). Finally, recall and precision
metrics indicate that the main source of error within
the Giza 96 models occurred when misclassifying data
belonging to grade IV (maximum precision¼ 79.47%,
maximum recall¼ 80.68%). Identifying a classification
model’s main sources of error has been overlooked in
previous models built to classify cotton grades,13,18,26

yet is important to understand a model’s true
performance.

Evaluation of human error via unsupervised learning

Manual labeling of cotton is a very intricate and com-
plex subject, as it depends upon human perceptions of
sight and touch and requires a high degree of precision
and power of critical judgment on the part of the
grades of a set of samples belonging to a cultivar.11

Furthermore, manual labeling is subject to human
error due to the significant influence of inspection

conditions, such as light and human fatigue from

long inspection times.13 The results in the Analysis of
cotton lint image processing results section show a sig-

nificant overlap between the cotton grades and a high

number of outliers, which suggests that human error

has occurred when labeling the samples in this study.
Therefore, unsupervised learning was used to further

understand the similarity between cotton grades to

detect where human error from manual labeling of

cotton samples may have occurred. Three unsupervised
machine learning algorithms were evaluated, these were

k-mean clustering, hierarchical clustering, and the

Gaussian mixture model. The number of clusters pro-
vided by the three clustering algorithms in conjunction

with the three validity metrics for the different cultivar

data sets is provided in Table 6. As can be seen from

the table, none of the validity metrics was able to indi-
cate that the number of clusters was equal to the

number of Egyptian cotton grades, irrespective of the

underlying clustering technique used. This result indi-

cates that some of the grades are indiscernible from one
another and are sorted into the same cluster. This con-

curs with previous research that outlines the challenges

when defining Egyptian cotton grades due to overlap-
ping boundaries.11 Furthermore, it highlights the

potential for human error when the boundaries are

not well defined between grades. The exception is the

Gaussian mixture model when clustering the Giza 87
data, as it identified four clusters within the data that

correspond to the actual number of grades represented

within the data. This may explain why the Giza 87

Table 5. Classification performance in terms of the precision and recall metrics for the 12 Giza 86 models on the testing data set; the
best result for each Giza cultivar is highlighted in bold

Image processing method and ML algorithm

IP 1 – Unclean IP 2 – Clean

IP 3 – Uncleanþ intra-sample

variance

IP 4 – Cleanþ intra-sample

variance

Grade Metrics ANN RF SVM ANN RF SVM ANN RF SVM ANN RF SVM

I Precision (%) 65.31 68.23 65.11 58.41 68.55 63.64 78.13 83.36 80.67 79.45 82.68 76.90

Recall (%) 70.98 58.03 66.59 59.62 64.39 41.36 73.79 76.14 72.65 78.18 78.26 71.89

II Precision (%) 66.90 66.45 68.61 61.65 69.40 59.03 72.82 81.03 79.72 73.30 80.73 72.01

Recall (%) 63.56 69.55 63.56 63.71 66.21 51.14 77.65 80.53 68.64 76.36 79.39 71.14

III Precision (%) 81.64 82.83 47.29 77.80 86.99 51.67 77.35 92.51 86.52 77.43 91.03 82.77

Recall (%) 77.88 90.53 44.55 73.11 92.80 60.30 75.15 96.44 81.21 73.11 95.45 91.06

IV Precision (%) 66.98 72.02 44.55 68.29 73.06 45.66 81.74 87.63 71.38 82.78 87.83 79.06

Recall (%) 67.20 73.33 43.86 68.94 75.83 48.03 80.53 87.42 74.77 80.61 88.26 75.83

V Precision (%) 51.11 58.54 42.47 56.47 60.36 36.35 66.15 74.01 54.43 63.63 74.94 57.77

Recall (%) 60.62 63.48 33.86 66.95 63.48 43.48 66.71 74.33 59.62 68.76 75.00 64.24

VI Precision (%) 55.46 49.63 28.01 52.50 51.31 41.20 66.12 71.91 66.63 64.88 69.45 61.18

Recall (%) 40.08 44.02 26.44 41.29 44.02 37.65 60.30 66.89 46.74 54.17 63.18 49.77

VII Precision (%) 91.04 91.30 78.83 92.71 89.60 84.89 94.89 92.72 96.02 93.57 92.28 92.39

Recall (%) 82.95 86.52 85.00 83.03 85.68 58.94 94.62 95.45 91.82 93.64 96.52 93.71

ANN: artificial neural network; IP: image processing method; ML: machine learning; RF: random forest; SVM: support vector machine.
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supervised machine learning models had the highest
accuracy (90.21%).

To determine which grades were similar, the cluster

analysis was performed for each unsupervised learning
algorithm using the mean number of clusters recom-

mended by the validity indices (Table 6). The heat
maps in Figure 6 visualize how Egyptian cotton data

has been split between the clusters defined by the clus-
tering algorithms (1) k-mean clustering, (2) hierarchical

clustering, and (3) the Gaussian mixture model. The
results of this cluster analysis can be used in two

ways to support future labeling of data. Firstly, it can
be used to identify data points that are not sorted into

the cluster predominantly associated with that grade as
likely being mislabeled. Secondly, it can indicate the

Egyptian cotton grade boundaries that are difficult to
define. For example, the clustering algorithms divided

the Giza 86 data into two clusters. Grades I–III were
assigned to cluster one and grade VII was assigned to

cluster two. This means that there was a similarity
between grades I, II, and III that the clustering algo-

rithms could not distinguish between. This may be
explained by the low percentage of trash detected

within these grades (<0.37%) and similar average b*
measurements across these grades (–0.37, –0.33, –0.21,

respectively). The Pearson correlation analysis revealed
there to be a strong correlation between these features

and the cotton grade; therefore, the similarity of trash
detected and degree of b* within higher grades can

make it harder to measure their quality.45

Furthermore, disagreement emerged between the dif-
ferent clustering methods as to which clusters the
grades IV–VI belonged in. For example, the k-means
clustering and Gaussian mixture model identified grade
VI as being sorted into cluster one, whereas the hierar-
chical clustering sorted grade VI into cluster two. The
lack of agreement as to which clusters grades IV–VI
belong to suggests the boundaries of these grades are
hard to define and, therefore, may be prone to a higher
degree of human error when labeling.

Future work

This work has demonstrated that image processing
combined with machine learning has the potential to
improve and address the current inefficiencies when
grading Egyptian cotton. These could have a particular
impact on small and medium enterprise (SME) cotton
processers that cannot afford HVI instrumentation to
grade their cotton lint. However, for the method to be
commercially viable, future research is required in the
following five areas.

• Collect additional data to describe undefined grades:
the data used to develop the model contained miss-
ing data on certain grades of each cultivar (Table 2).
This was due to an insufficient number of samples
being provided for certain grades. Therefore, the
model is not currently able to classify future samples
that belong to these grades and requires retraining
using additional data to define these missing grades.

• Improve the classification accuracy: future research
should look into (a) either improving the feature
extraction methods to increase the distinction
between grades within the feature data or automat-
ing the feature extraction method via techniques
such as deep learning and (b) additional unsuper-
vised learning to investigate and identify human
labeling errors contained within the data.

• Reduce the volume of labeled data: the largest barrier
to deploying the solution presented in this work is
the requirement to obtain and label cotton lint sam-
ples to be used for training the classification models.
This is because the labeling must be performed by
Egyptian officials from CATGO in order for the
training data, and therefore models, to be trusted
by the Egyptian cotton industry. Future research
should explore techniques, such as semi-supervised
learning and active learning, which can reduce the
volume of labeled data required. Semi-supervised
learning performs this by combing a small amount
of labeled data with learning from unlabeled data to
train a model.46 Multiple semi-supervised frame-
works may apply to this work but are currently
untested, including combining unsupervised with

Table 6. Number of clusters provided by the three clustering
algorithms using the four validity indices for the different cultivar
data sets

Cultivar

(no. of

grades) Clustering algorithm

Number of clusters

CH DB S Mean

Giza 86

(7)

k-means clustering 1 3 2 2

Hierarchical clustering 3 2 2 2

Gaussian mixture model 2 2 2 2

Giza 87

(4)

k-means clustering 1 2 2 2

Hierarchical clustering 2 2 2 2

Gaussian mixture model 4 4 4 4

Giza 90

(6)

k-means clustering 1 2 2 2

Hierarchical clustering 2 2 2 2

Gaussian mixture model 2 3 2 2

Giza 94

(7)

k-means clustering 1 2 2 2

Hierarchical clustering 2 2 2 2

Gaussian mixture model 2 2 2 2

Giza 96

(7)

k-means clustering 1 4 2 2

Hierarchical clustering 3 4 2 3

Gaussian mixture model 2 3 3 3

CH: Calinski–Harabasz index; DB: Davies–Bouldin index; S: silhouette

index.
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Figure 6. The heat maps showing how the Egyptian cotton lint grade data have been split between the clustering methods (1)
k-means clustering, (2) hierarchical clustering, and (3) the Gaussian mixture model for the cultivars (a) Giza 86, (b) Giza 87, (c) Giza
90, (d) Giza 94, and (e) Giza 90.
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supervised learning,47 self-training,48 and co-train-
ing.48 Alternatively, active learning methods request
the user to label a data point if the model’s confi-
dence in its prediction is below a specified confi-
dence score.48 Thus, the overall volume of data
requiring labeling is reduced, as only the data that
will be most useful to the model is labeled.

• Transfer learning between cultivars: another option
that may lead to both an increase in classification
accuracy and a reduction in the overall volume of
data required is to incorporate knowledge from each
of the cultivars into one model, via transfer learning.
Transfer learning is when the learning gained from
one task is applied to a different but related problem.49

Furthermore, a transfer learning model may reduce
the volume of data required to expand the models’
capability to classify Giza cultivars not represented
in this work. Currently, the model is only able to clas-
sify the cultivars Giza 86, 87, 90, 94, and 96.

• Framework to share data between cotton lint process-

ers: generally, the accuracy of a classification model
increases as more data is made available to learn
from. Consequently, if data from multiple
Egyptian cotton lint processers were to be shared
among them, the overall accuracy of the system
could be improved to the benefit of all users.
However, cotton processers are unlikely to be willing
to share information about their products or pro-
cesses with their competitors. Future research
should explore the possibility of using frameworks,
such as federated learning, that are capable of shar-
ing learning from multiple users without ever expos-
ing the raw data belonging to each user to other
users.50

Conclusion

The growing, harvesting, and processing of Egyptian
cotton is an industry that still uses traditional manual
processes; image classification models have the poten-
tial to provide increased efficiency, sustainability, and
productivity. Currently, cotton lint samples are graded
by manual inspection, which has several drawbacks
including significant labor requirements, low inspection
efficiency, and influence from inspection conditions,
such as light. This work showed that classification
models, using features extracted from a CCD image,
are able to accurately grade the Egyptian cotton lint
samples. Three supervised machine learning algorithms
were compared and the RF machine learning consis-
tently achieved the highest accuracies when evaluated
using testing data (82.13–90.21%). Furthermore, while
the addition of features that characterized the intra-
sample variance improved the performance of all the
models, the removal of trash from the influence of the

color measures made a negligible difference. Three
unsupervised machine learning algorithms were used
to (a) identify data points that have likely been misla-
beled and (b) which Egyptian cotton grade boundaries
are challenging to define. Finally, five areas of future
research are identified to progress the development of
the system so that it is fit for commercial use:

• collect additional data to describe undefined grades;
• improve the classification accuracy;
• reduce the volume of labeled data;
• transfer learning between cultivars;
• a framework to share data between cotton

processers.
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