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Abstract: Apricot stones have high commercial value and can be used for manufacturing functional
foods, cosmetic products, active carbon, and biodiesel. The optimal processing of the stones is
dependent on the cultivar and there is a need for methods to sort among different cultivars (which are
often mixed in processing facilities). This study investigates the effectiveness of two low-cost colour
imaging systems coupled with supervised learning to develop classification models to determine
the cultivar of different stones. Apricot stones of the cultivars ‘Bella’, ‘Early Orange’, ‘Harcot’,
‘Skierniewicka Słodka’, and ‘Taja’ were used. The RGB images were acquired using a flatbed scanner
or a digital camera; and 2172 image texture features were extracted within the R, G, B; L, a, b; X,
Y, Z; U, and V colour coordinates. The most influential features were determined and resulted in
103 and 89 selected features for the digital camera and the flatbed scanner, respectively. Linear and
nonlinear classifiers were applied including Linear Discriminant Analysis (LDA), Decision Trees (DT),
k-Nearest Neighbour (kNN), Support Vector Machines (SVM), and Naive Bayes (NB). The models
resulting from the flatbed scanner and using selected features achieved an accuracy of 100% via either
quadratic diagonal LDA or kNN classifiers. The models developed using images from the digital
camera and all or selected features had an accuracy of up to 96.77% using the SVM classifier. This
study presents novel and simple-to-implement at-line (flatbed scanner) and online (digital camera)
methodologies for apricot stone sorting. The developed procedure combining colour imaging and
machine learning may be used for the authentication of apricot stone cultivars and quality evaluation
of apricot from sustainable production.

Keywords: apricot stone sorting; flatbed scanner; digital camera; classification models; machine learning

1. Introduction

Apricot (Prunus armeniaca L.) is a stone fruit that is produced widely around the
world. The world production of apricot in 2019 was 3,719,974 tonnes [1]. In 2020, the
majority of apricot was produced in Asia (65.22%), Europe (20.59%), and Africa (12.16%)
with approximately 55.31% produced in Turkey, Uzbekistan, Iran, Algeria, and Italy [1].
Apricots can be consumed fresh or can be processed into dried fruits, jam, marmalades,
or fruit bars [2,3]. During fruit processing, apricot stones (i.e., kernels) are removed and
utilised in the food, cosmetic, and biodiesel industries for a range of applications including
active carbon, traditional medicine, and antimicrobial film fabrication [4,5].

While apricot fruits are characterised by their nutritional value in fresh or processed
forms [3], apricot stones are also sources of diverse and beneficial compounds [6]. Apricot
stones contain phytonutrients such as unsaturated fatty acids [7]. There are ten fatty acids
found in apricot stones, comprising oleic acid, linoleic acid, palmitic acid, and stearic
acid [7]. Apricot stones contain compounds that have pharmaceutical usage, such as
anti-parasitic, anti-cancer, anti-aging, anti-atherosclerosis, anti-anginal, cardioprotective,
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hepatoprotective, and renoprotective compounds [8]. The kernels of some apricot cultivars
are relatively bitter due to the presence of amygdalin [9]. While amygdalin can develop
toxic effects in human bodies after hydrolysis [9], it can be processed to extract pharma-
ceutical compounds that have anti-inflammatory, anti-fibrotic, immunomodulatory, and
anti-atherosclerosis effects [6]. Kernels of sweet apricot can be consumed either raw or
used in food products [10]. The derivation of antioxidant dietary supplements was pos-
sible due to the protein hydrolysates characteristic present in sweet apricot kernels helps
reduce the risk of cardiovascular diseases, cancer, and Alzheimer’s [11,12]. Flavonoids are
valuable compounds extracted from apricot stones and can be utilised in the development
of various pharmaceutical formulae against cardiovascular disease, colorectal cancer, aging,
and diabetes [6].

The composition of apricots and consequently their stones can vary with climate,
which can lead to difficulties in differentiating among different cultivars. Apricot cultivars
can be classified, based on their geographical region, into four main groups: Central Asian,
Irano-Caucasian, European, and Dzhungar-Zailij [3]. There are large weather variations
among these regions, including low temperatures (−35 ◦C) in India to warm temperatures
in Southern European countries, which inevitably affect the yield and quality of the apricot
fruit and the properties of the stones [3,13]. Therefore, cultivars grown in each region are
distinguishable because of their adaptability to the environmental condition of each region.
In Poland, the apricot breeding program started in 1952 to obtain cultivars that can grow
in low temperatures [14]. Additionally, some foreign apricot cultivars are produced in
Poland as they sustain relatively cold weather during winter. These cultivars include ‘Early
Orange’, ‘Harcot’, ‘Bella’, ‘Goldrich’, and ‘Hargrand’ [15]. In a study conducted by Farag
et al. [16], it was shown that the content of sugars, fatty acids, and organic acids in apricot
stones varied among cultivars. Consequently, the classification of the stones of different
cultivars is necessary to identify the most appropriate use.

RGB colour sensors have shown effective performance as rapid, cost-effective, and
easy-to-operate non-invasive devices for quality evaluation in the agricultural and food
domains in the last four decades [17,18]. Among such sensors, Charge-Coupled Device
(CCD) cameras and flatbed scanners are cost-effective technologies capable of detecting
morphological features of materials with the former being more common for in-line appli-
cations [19]. CCD cameras provide a high number of frames per second (fps), which is ideal
for monitoring various external attributes in industrial environments. Flatbed scanners
generate still images that are suitable for developing models for off-line quality evaluation
of food products [19]. Numerous studies have investigated the possibility of identifying
plants’ cultivars or species based on morphological characteristics using colour-based
imaging. Visible colours are absorbed based on the electromagnetic spectrum ranging from
400 nm (blue) to 700 nm (red) [19]. Colour imaging is suitable for detecting morphological
or external features of an object [20] with high accuracy, especially with modern colour
sensors, and image processing algorithms. Colour vision sensors have been used for food
quality evaluation including fresh produce, and processed foods [18,21]. Jayas, Paliwal [22]
utilised RGB imaging, hyperspectral imaging, X-ray, and thermal imaging for wheat grain
quality evaluation. Colour sensors were successfully implemented to extract morphological,
colour, and texture features to classify barley, oats, rye, red spring wheat, and amber durum
wheat and the classification accuracies using neural networks were 66.8–98.2% [23]. Sabanci
et al. [24] used colour imaging to differentiate between bread and durum wheat kernels
using Artificial Neural Network (ANN) and morphological and texture features yielding
a mean absolute error as low as 9.8 × 10−6 for the test set. Detecting mould in unhulled
paddy rice was performed by developing classifiers based on Support Vector Machines
(SVM), ANN, Convolutional Neural Network (CNN), and Deep Belief Network (DBN)
methods from grey and RGB images [25]. The highest classification accuracy was achieved
using SVM (88.3–92.4%) and CNN (88.0–92.6%). Further examples of other applications of
colour sensors in the food domain include recognizing canola cultivars based on histogram
and texture features coupled with ANN [26], assessing olive lot ripeness degree using
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k-Nearest Neighbour (kNN) unsupervised learning, and more generally the evaluation
of the quality of rice grains [27], and maize [28]. To the best of the authors’ knowledge,
there are no previous studies investigating the classification of apricot stones using RGB
colour sensors.

This study aimed to investigate the use of two low-cost colour imaging systems (RGB
digital camera and a flatbed scanner) and machine learning to differentiate among apricot
stones of different cultivars. The images were used to train a range of different supervised
classification machine learning models and the most influential image features for the
classification were identified.

2. Materials and Methods
2.1. Materials

The stones of apricot cultivars ‘Bella’, ‘Early Orange’, ‘Harcot’, ‘Skierniewicka Słodka’,
and ‘Taja’ were used in the experiments. In the case of each cultivar, apricots were collected
from the Experimental Orchard of the National Institute of Horticultural Research in
Dąbrowice near Skierniewice (Poland). Each fruit was cut in half and the stone was
extracted manually. Then, the stones were washed to remove all flesh. For each cultivar,
twenty-five stones were scanned. Figure 1 shows examples of the apricot stones’ images
used in the study.
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Figure 1. Images of apricot stones belonging to different cultivars.

2.2. Imaging Systems

Two different low-cost imaging systems were used in this study. The first system
consisted of a digital camera (Canon Inc., Tokyo, Japan), a computer (HP Inc., Palo Alto,
CA, USA) with Microsoft’s Windows operating system, USB cables for uploading the images
to the computer, and LED (Light Emitting Diodes) illumination. The digital camera included
Optical Image Stabilization, Auto White Balance, and F 2.4, 8× digital zoom. The LED
illumination was characterised as follows: light source—24 LED; related input voltage—
AC110-240, V/50–60 Hz; related input current—0.07 A; and related output power—2.2 W. The
second imaging system was an Epson Perfection flatbed scanner (Epson, Suwa, Nagano, Japan)
with the following parameters: light source—white LED; scanning resolution—4800 dpi (main
scan) and 4800 dpi (sub-scan); effective pixels—40,800 × 56,160 pixels at 4800 dpi; photoelectric
device—CIS (Contact Image Sensors), 24 bits per pixel per colour external, 48 per pixel per
colour internal; maximum scan size—216 × 297 mm [29]. The axis of the camera lens was
perpendicularly directed onto the surface the samples were placed on. Figure 2a,b show
schematic diagrams of the two imaging systems comprising the digital camera, Figure 2a, and
the flatbed scanner, Figure 2b. It is important to state that while both systems provide a fairly
cost-effective method for image acquisition, the digital camera can be used either in-line or
off-line. Whereas the flatbed scanner can only be used off-line or at-line.
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2.3. Image Processing

Both imaging devices were used to acquire images of the same stones for each apricot
cultivar. For the flatbed scanner, the images were acquired at a resolution of 800 dpi in
TIFF file format. In the case of the digital camera, the apricot stones were imaged against a
black background. All colour images were converted to BMP format before performing the
image processing. Following this, the images were converted to colour channels R, G, B, L,
a, b, X, Y, Z, U, and V and were processed using the MaZda application (Łódź University of
Technology, Institute of Electronics, Łódź, Poland) [30]. Image segmentation was performed
based on brightness regions, whereby the lighter stones (relative to the background) were
each considered as an individual region of interest (ROI). For each stone, approximately
2172 textures from the groups of gradient-map-based features, histogram-based textural
features, co-occurrence matrix-based features, textures based on Haar wavelet transform
and autoregressive model, and run-length matrix-based features were computed using the
MaZda software [30]. Figure 3 shows an example of the steps followed for processing the
image acquired using either the digital camera or the flatbed scanner.
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2.4. Statistical Analysis
2.4.1. Classification of Apricot Stones Based on Cultivar

In this study, five machine learning algorithms were used to develop classification
models for apricot stone cultivar prediction. These algorithms were Linear Discriminant
Analysis (LDA), Decision Trees (DT), k-Nearest Neighbour (kNN), Support Vector Machines
(SVM), and Naive Bayes (NB). For the LDA classifier with more than 2 classes, a linear
function was calculated for each sample and class, then different binary comparisons are
performed to assign the sample to the class with the higher discriminant function value [31].
The LDA classifier hyperparameters (i.e., regularization, and threshold) were optimised
using Bayesian optimization. The DT classifier mainly depends on dividing the features
into different subsets and then classifying the samples using each subset (node) sequentially.
The splitting level depends on the data complexity, the number of classes, and the size of
features [32]. kNN is a non-parametric classifier (i.e., no prior information is needed about
data distribution) and the training data along with their labels are used to assign the labels
for the unknown samples by calculating the distance between each data point (sample)
and the points in the training data. The samples are then assigned to the class with the
shortest distance based on a majority voting base [33]. The Euclidean distance was used
along with several neighbours equal to 1. SVM is another non-parametric, kernel-based
classification technique, where decision functions are calculated using the training data
before the new sample is assigned a class [34]. In this study, one vs. one or pairwise SVM
classification was used, where at each training session, only the data belonging to two
classes are used for comparison [32]. The sample is assigned to the class that has the highest
posterior probability. The data set was assumed to have a multinomial distribution, and the
classifier kernel was chosen as Gaussian. For model development, the data were divided
into training (66.7%) and testing (33.3%), and 10-fold cross-validation was applied to the
training data to obtain the optimal model. The classification models were built based on
a whole set of data, and feature selection was implemented using the Best First with the
CFS (Correlation-based Feature Selection) subset evaluator. Best First allowed searching
the space of attribute subsets using greedy hill climbing and backtracking facility. The CFS
algorithm assessed the predictive value of the attribute and the redundancy degree among
the attributes. The sets of features with the highest correlation were preferred [35].

2.4.2. Evaluation of Classification Models

The obtained classification models were evaluated based on accuracy, precision, recall,
F1-score, Mathew’s Correlation Coefficient (MCC), Cohen’s Kappa coefficient, and the Area
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Under the Receiver Operating Characteristic curve (AUROC) (Equations (1)–(6)) [36–38].
TP, TN, FP, and FN denote the true positive, true negative, false positive, and false negative
values, respectively, resulting from the classifier. To make the statistical analysis more
realistic, all previous metrics, except accuracy and Kappa, were calculated for each cultivar
against each of the others, i.e., TP and TN were for the target cultivar, while FP and FN
were for the remaining cultivars. Therefore, these predictions can be considered to be binary
classifications. However, the accuracy and Kappa values were calculated for all cultivars at once.

Accuracy =
(TP + TN)

TP + TN + FN + FP
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 − score =
2 ∗ Precsion ∗ Recall
(Precision + Recall)

(4)

MCC =
(TP ∗ TN − FP ∗ FN)√

((TP + FP)(TP + FN)(TN + FP)(TN + FN))
(5)

Kappa =

(TP + FP)(TP + FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
+

(TN + FP)(TN + FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

where TP: true positive; TN: true negative; FP: false positive; FN: false negative.

3. Results

Apricot stones belonging to ‘Bella’, ‘Early Orange’, ‘Harcot’, ‘Skierniewicka Słodka’,
and ‘Taja’ cultivars were classified based on cultivar using all or selected features from the
images converted to colour channels R, G, B, L, a, b, X, Y, Z, U, and V.

3.1. Classification Results Based on Features from All Colour Channels

The classification was performed for all 2172 image textures computed from colour
channels R, G, B, L, a, b, X, Y, Z, U, and V, and 52 selected textures for images acquired
using the digital camera, and 50 texture parameters for images acquired from the flatbed
scanner. For the images acquired using the digital camera, the highest accuracy for the test
set was 96.77% using the SVM classifier for either the models built based on all features
or the selected features (Table 1). For training sets, the accuracy of classification reached
97.85% (LDA-Linear, kNN, SVM) when considering all features and 98.92% (LDA-Diagonal,
Decision Trees, kNN) for models developed based on selected features.

Table 1. Classification accuracies for models based on features extracted from the images acquired
using the RGB camera.

Algorithm All Features Selected Features
Training (%) Testing (%) Training (%) Testing (%)

LDA-Linear 97.85 87.10 97.85 77.42
LDA-Diagonal 87.10 83.87 98.92 90.30
Quadratic Diagonal 90.32 80.65 97.85 93.55
Decision Trees 96.77 90.32 98.92 90.32
kNN 97.85 77.42 98.92 87.10
SVM 97.85 96.77 97.85 96.77
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For models built based on images obtained using the flatbed scanner, the highest
classification accuracy for the test set was 93.55%, obtained using SVM and all features,
whereas the accuracy increased to 100% for selected features and kNN and quadratic LDA
(Table 2). Additionally, the complete correct classifications (100% accuracy) were found for
training sets for SVM models developed based on all features as well as selected features
(kNN, SVM). In the case of classification performed for all features, the accuracy for the
test set reached 93.55% for the SVM algorithm.

Table 2. Classification accuracies for models based on features extracted from the images acquired
using the flatbed scanner.

Algorithm All Features Selected Features
Training (%) Testing (%) Training (%) Testing (%)

LDA-Linear 97.85 87.10 95.70 93.55
LDA-Diagonal 81.72 67.74 96.77 96.77
Quadratic Diagonal 69.89 64.52 98.92 100
Decision Trees 95.70 90.32 97.85 87.10
kNN 94.62 87.10 100 100
SVM 100 93.55 100 96.77

3.2. Classification Results Based on Features from Individual Colour Channels

In the next step of the analysis, the ‘Bella’, ‘Early Orange’, ‘Harcot’, ‘Skierniewicka
Słodka’, and ‘Taja’ apricot stones were discriminated using models built based on textures
selected separately for each colour channel. It was found that the textures from colour
channels L, a, and b provided the most satisfactory results. The selected texture parameters
for images acquired using the digital camera are shown in Table 3. In the case of colour
channels L, a, and b, 13, 23, and 15 textures were selected, respectively.

Table 3. The selected textures of apricot stone images obtained using the RGB camera.

Colour Channel L Colour Channel a Colour Channel b

LHMean
LHPerc50
LHPerc90
LHPerc99

LHDomn01
LHDomn10

LS5SV3SumEntrp
LS5SV5SumOfSqs
LS5SZ5InvDfMom

LS5SZ5Entropy
LS5SN5AngScMom
LS5SN5InvDfMom
LS4RHRLNonUni

aHMean
aHSkewness
aHKurtosis
aHPerc01
aHPerc10
aHPerc90

aHDomn01
aHDomn10
aSGMean

aSGSkewness
aSGNonZeros

aS5SZ1SumOfSqs
aS5SV3SumEntrp
aS5SH5Contrast

aS5SH5InvDfMom
aS5SH5DifEntrp

aS5SZ5InvDfMom
aS5SN5AngScMom
aS5SN5InvDfMom
aS4RVGLevNonU
aS4RZGLevNonU

aATeta2
aASigma

bHMean
bHSkewness

bHPerc01
bHPerc10
bHPerc50
bHPerc90

bHDomn01
bHDomn10

bSGNonZeros
bSGPerc01

bS5SV1DifVarnc
bS5SZ3Entropy

bS5SH5InvDfMom
bS5SZ5Contrast

bS5SN5InvDfMom
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The textures selected from apricot stone images obtained from the flatbed scanner
are presented in Table 4. Performing texture selection allowed choosing 10 parameters for
images converted to colour channel L, 18 for colour channel a, and 11 for colour channel b
for building the cultivar classification models.

Table 4. The selected texture parameters of apricot stone images acquired using the flatbed scanner.

Colour Channel L Colour Channel a Colour Channel b

LHMean
LHPerc10
LHPerc90
LHPerc99
LSGArea

LSGNonZeros
LS4RHShrtREmp

LATeta1
LATeta2
LATeta4

aHMean
aHSkewness
aHKurtosis
aHPerc01
aHPerc10
aHPerc50

aHDomn01
aHMaxm10
aHDomn10

aSGSkewness
aSGKurtosis

aS5SZ1Correlat
aS5SZ3DifEntrp

aS4RHGLevNonU
aS4RHLngREmph
aS4RVRLNonUni

aATeta2
aATeta4

bHMean
bHSkewness

bHPerc01
bHPerc10
bHPerc90
bHPerc99
bSGArea

bSGSkewness
bSGKurtosis

bATeta2
bATeta4

The results for channels L, a, and b yielded the most satisfactory accuracies and
are presented in Table 5 for the digital camera and Table 6 for the flatbed scanner. For
images acquired using the RGB camera (Table 5), the highest accuracies for the test sets
were 87.10% for features selected from colour channel b using DT and SVM, 83.87%
for features selected from colour channel a and the LDA linear, diagonal and quadratic
diagonal algorithms, and 80.65% for features selected from colour channel L and the
SVM classifier. In the case of the training sets, the highest accuracies observed were
96.77% for channel a and SVM, 93.55% for channel b and kNN and SVM, and 92.47% for
channel L and kNN.

Table 5. Classification accuracies for models based on features extracted from L, a, and b colour
channels for images acquired using the RGB camera.

Algorithm

Selected Features
(L*)

Selected Features
(a*)

Selected Features
(b*)

Training
(%)

Testing
(%)

Training
(%)

Testing
(%)

Training
(%)

Testing
(%)

LDA-Linear 86.02 80.06 93.55 83.87 90.32 80.65
LDA-Diagonal 72.04 67.74 81.72 83.87 82.8 83.87
Quadratic diagonal 74.19 67.74 84.95 83.87 83.97 83.87
Decision Trees 79.57 64.52 89.25 67.74 90.32 87.10
kNN 92.47 67.74 94.62 71.97 93.55 83.87
SVM 86.02 80.65 96.77 80.65 93.55 87.10
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Models built based on selected texture parameters from the flatbed scanner from
colour channels L, a, and b (Table 6) provided an accuracy of 90.32% for testing (channel
a, quadratic diagonal) and 100% for training (channel a, kNN). For features from colour
channel L, accuracies of up to 87.10% for the test set (LDA diagonal, quadratic diagonal)
and 97.85% for a training set (kNN) were obtained. Meanwhile, the apricot stone
cultivars were correctly distinguished in 80.65% (LDA diagonal, quadratic diagonal)
and 95.70% (kNN) in the case of models including selected image textures from colour
channel b.

Table 6. Classification accuracies for models based on features extracted from L, a, and b colour
channels for images acquired using the flatbed scanner.

Algorithm

Selected Features
(L*)

Selected Features
(a*)

Selected Features
(b*)

Training
(%)

Testing
(%)

Training
(%)

Testing
(%)

Training
(%)

Testing
(%)

LDA-Linear 92.47 83.87 96.77 80.65 89.25 77.42
LDA-Diagonal 86.02 87.10 86.02 80.65 82.80 80.65
Quadratic diagonal 88.17 87.10 91.40 90.32 84.95 80.65
Decision Trees 90.32 74.19 95.70 74.19 88.17 67.74
kNN 97.85 83.87 100 83.87 95.70 70.97
SVM 94.62 83.87 95.70 83.87 93.55 67.74

The results shown in Figures 4–7 depict the Recall, Precision, F-measure, Kappa, MCC,
and ROC Area computed for all or selected features extracted from images for either the
digital camera or the flatbed scanner. It was clear that these metrics followed the same
trend as the accuracy values shown previously in Tables 1, 2, 5 and 6. Considering the
results in Figures 4–7, it was observed that values depended on the cultivar, imaging device,
algorithm, and set of textures. The most satisfactory results were obtained for models
built based on selected features extracted from the apricot stone images acquired using the
flatbed scanner (Figure 7). For the LDA and kNN machine learning algorithms, the values of
Recall, Precision, F-measure, and MCC reached 100% for each of the apricot stone cultivars
‘Bella’, ‘Early Orange’, ‘Harcot’, ‘Skierniewicka Słodka’, and ‘Taja’. ROC Area was equal to
100% for each cultivar in the case of kNN. Additionally, the Kappa of 100% was determined
for the LDA and kNN algorithms. In the case of other sets of textures (Figures 4–6), the
most satisfactory results were found for models developed using the SVM algorithm. For
classification based on all features from the images obtained using the digital camera, Kappa
reached 95.97%. Values equal to 100% for ROC Area were obtained for all cultivars, Recall
for ‘Bella’, ‘Early Orange’, ‘Skierniewicka Słodka’, and ‘Taja’, Precision for ‘Bella’, ‘Harcot’,
‘Skierniewicka Słodka’, and ‘Taja’, and F-measure and MCC for ‘Bella’, ‘Skierniewicka
Słodka’, and ‘Taja’ (Figure 4). The classification results based on models including selected
features extracted from the images acquired using the digital camera and built using SVM
provided the highest results, with Recall (100%) for ‘Bella’, ‘Harcot’, ‘Skierniewicka Słodka’,
and ‘Taja’, Precision (100%) for ‘Bella’, ‘Early Orange’, ‘Skierniewicka Słodka’, and ‘Taja’,
F-measure (100%) and MCC (100%) for ‘Bella’, ‘Skierniewicka Słodka’, and ‘Taja’, ROC Area
(100%) for ‘Bella’, and Kappa of 95.96% (Figure 5). Models developed using SVM based on
all features extracted for apricot stone images acquired using the flatbed scanner reached
100% for Recall for ‘Bella’, ‘Early Orange’, and ‘Harcot’, Precision for ‘Bella’, ‘Harcot’,
and ‘Taja’, F-measure and MCC for ‘Bella’ and ‘Harcot’, and ROC Area for ‘Bella’, ‘Early
Orange’, ‘Harcot’, ‘Skierniewicka Słodka’, and ‘Taja’. Additionally, Kappa reaching 91.93%
was obtained (Figure 6).
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4. Discussion

The high classification results obtained in this study demonstrate the effectiveness of
the models built based on image features using machine learning algorithms to distinguish
cultivars of apricot stones. The possibility of assessing the cultivar diversity of fruit
endocarp (stones and pits) and stones (kernels) using image analysis and machine learning
has been confirmed in previous studies with similar results to the current work. The
geometric and texture features of the images allowed models to be built that provided
high discrimination accuracies. In the case of plum stones, models built based on selected
image textures distinguished the ‘Emper’, ‘Kalipso’, and ‘Polinka’ cultivars with an average
accuracy reaching 96.67% for the model including combined textures selected from images
converted to colour channels R, G, B, L, a, b, X, Y, Z built using the kNN, i.e., IBK in Weka
Software [39]. Besides plum stones, plum kernels of the ‘Emper’, ‘Kalipso’, and ‘Polinka’
cultivars were correctly distinguished using an approach combining image analysis and
machine learning. Models built using the KStar algorithm (group of Lazy) ensured the
highest average discrimination accuracies, reaching 98% for a set of textures selected from
the Lab colour space and 95% for the combined textures selected from images from all
analysed channels L, a, b, R, G, B, U, V, S, X, Y, Z, or the channel b [40]. The relatively
high classification of cultivars and species of plum endocarp was determined by Sarigu
et al. [41] with an accuracy of 99.3% for distinguishing P. domestica and P. spinosa and
86.1% in the case of different cultivars of P. domestica based on models including the
image features selected from sets of morpho-colorimetric characteristics (size, shape, and
surface colour) and textures of endocarp developed using the stepwise LDA algorithm.
The size and shape features were used by Depypere et al. [42], for taxonomic analysis
of Prunus endocarps (P. insititia, P. domestica, P. x fruticans, P. cerasifera, P. spinosa). The
texture, size, and shape parameters extracted from the images were applied by Frigau
et al. [43] for the distinguishing of stones belonging to different species of the genus Prunus,
namely P. salicina, P. domestica, P. cerasifera with an accuracy of 90.7% using Random Forest
(RF) classifier for a set combining textures, size and shape features. For the models built
based only on textures, size, or shape, the accuracies reached 77.3% using SVM, 57.3%
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using SVM, and 43.9% using RF, respectively [43]. Models based on textures extracted
from images have been developed to distinguish cultivars of apricot stones (‘Taja’, ‘Early
Orange’, ‘Harcot’, and ‘Bella’) [44]. The most useful machine learning algorithms were
found to be IBk from Lazy, Multilayer Perceptron from Functions, and Random Forest
from Trees. The average accuracy of discrimination reached 99% for the model built
using the Multilayer Perceptron algorithm based on image textures from the Lab colour
space [44]. In the case of stones and stones classification, the ‘Royal Glory’ and ‘Redhaven’
peach cultivars were discriminated with an accuracy of up to 100% with models including
a set of selected textures of images from the following channel R, G, B, L, a, b, X, Y,
Z built for stones using the Bayes Net algorithm, and for stones, Bayes Net, Logistic,
Sequential Minimal Optimization (SMO), and multi-class classifier. In the case of seed
images, peach cultivars were correctly distinguished, yielding 100% classification for
models built separately for textures selected from RGB using Bayes Net, Lab using logistic
regression, and XYZ using logistic regression [45]. The results illustrated that the flatbed
scanner outperformed the RGB camera. While the flatbed scanner is not a valid option for
in-line application, the former system provides better image resolution, more controlled
and uniform lightening with no effect resulting from the ambient light, and wider dynamic
range than digital cameras [46]. However, the utilization of the digital camera is more
versatile than the scanner, and it can operate in-line as a process analytical technology
tool [47]. The approach combining colour imaging and machine learning may be used for
the authentication of apricot stone cultivars from sustainable production. This could help
with the quality assessment of apricot in a non-destructive manner. Sustainable agriculture
produces abundant food and does not pollute the environment or deplete the earth’s
resources. Sustainable agriculture integrates environmental health, social and economic
equity, and economic profitability. The sustainability in the apricot farms involved some
sustainability indicators, such as socio-economic and environmental [48]. Apricot samples
from sustainable production may be very important. The enhancement of the productivity
and efficiency of agricultural commodities can enable increased competitiveness in the
global markets. Growers rely on input dealers for seed [49]. The selection of the desired
apricot genotypes, due to their different properties, can be crucial in breeding programs and
sustainable food industries. Furthermore, some genotypes can be free of disease and pest
traits, which is important for sustainable apricot production [50]. Additionally, chemical
compounds contained in apricot kernels can be a sustainable source of nutrition. The
emphasis on sustainability of the production of apricot stones with kernels as nutritional
resources is important [51]. Therefore, distinguishing sustainably produced apricot stone
cultivars with different characteristics can be of practical use.

5. Conclusions

The effectiveness of the approach involving colour imaging systems (digital camera
and a flatbed scanner), image processing to extract texture parameters, and the devel-
opment of classification models using machine learning algorithms for distinguishing
different cultivars of apricot stones was demonstrated. The accuracy of discrimination
of apricot stones belonging to cultivars ‘Bella’, ‘Early Orange’, ‘Harcot’, ‘Skierniewicka
Słodka’, and ‘Taja’ for test sets reached 100% for models including textures from images
obtained using a flatbed scanner, built using the quadratic diagonal and kNN (k-Nearest
Neighbour) algorithms and 96.77% for the models built based on textures from images
acquired using a digital camera in the case of the SVM (Support Vector Machine) algorithm.
The results indicated the possibility of distinguishing apricot stone cultivars with high
accuracy. Further research should consider larger data sets, as well as a greater diversity of
cultivars, which would increase the feasibility of applying advanced machine learning tech-
niques, especially deep learning, and improve the likelihood of transfer learning between
different cultivars.
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