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a b s t r a c t

In food and drink manufacturing, clean-in-place procedures are essential for hygienic and 

efficient operations but often over-clean process equipment leading to unnecessary use of 

energy, water, and chemicals. Previous attempts in the literature to optimise clean-in- 

place processes have focused on trialling cleaning over a range of parameter (e.g. tem

perature and chemical concentration) combinations or modelling the process using 

equations. However, these methods do not aim to minimise the number of experimental 

trials that a manufacturer must conduct and only determine the optimal cleaning para

meters for the average fouling condition. In this work, Bayesian optimisation is used to 

minimise the number of cleaning parameter combinations that require trialling thereby 

reducing the disruption to a manufacturing process during the optimisation procedure. 

Secondly, ultrasonic sensors are used to monitor the cleaning process and enable real- 

time optimisation of the parameters to adapt to variations in the fouling condition. Multi- 

objective optimisation was used in both tasks to simultaneously minimise the economic 

cost, carbon footprint, and water usage of a clean-in-place process. Bayesian optimisation 

was able to optimise the process after trialling only nine cleaning parameter combinations 

(achieving between 98.7% and 100% optimisation of the objective function compared with 

the global optimum). Bayesian optimisation displayed a small advantage (0.0–4.7% de

crease in the objective function) compared with methods used in previous literature. Real- 

time optimisation of the cleaning parameters using ultrasonic sensor data improved the 

optimisation objective function by 0.0 – 4.8% for all fouling instances tested when utilising 

results from ten trials conducted during the Bayesian optimisation procedure along with 

five additional cleaning processes under normal operation.
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1. Introduction 

In food and drink manufacturing, Clean-In-Place (CIP) pro
cesses are conducted to maintain hygienic production, pre
vent contamination, and ensure equipment is operating 
under optimal conditions. CIP systems consist of tanks, 
pumps, and spraying mechanisms that automatically clean 
the internal surfaces of process equipment without requiring 
them to be dismantled. Cleaning is completed via a combi
nation of mechanical force, chemical concentration, tem
perature, and time (Fryer et al., 2006). Therefore, a significant 
environmental burden is imposed by cleaning owing to the 
water, energy, and chemicals used. CIP processes are often 
conducted for a pre-defined duration that has been chosen 
and validated to eliminate cleaning failure and thereby leads 
to substantial over-cleaning for most fouling instances. It is 
thought that cleaning is responsible for between 9 (Jude and 
Lemaire, 2014) and 30 (Eide et al., 2003) % of energy use in the 
dairy sector and in brewing approximately 70% of incoming 
water is discharged to drain most of which has been used for 
cleaning purposes (Brewery Vivant, 2013; Braeken et al., 
2004). Furthermore, cleaning processes account for around 
20% of time use across food and drink manufacturing and 
thereby represent significant lost production time for fac
tories (Jude and Lemaire, 2014). Despite this, the results from 
an informal poll suggest that only 12% of food and drink 
manufacturers think that their cleaning processes are effi
cient and only 18% have investigated cleaning process opti
misation (Jude and Lemaire, 2014). For example, it has been 
estimated that the UK brewing sector could save 1% of its 
total carbon emissions by implementing real-time cleaning 
verification (Carbon Trust, 2011). 

Several works have investigated the optimisation of 
cleaning processes by trialling a range of cleaning parameter 
combinations or by using equations to model the cleaning 
process. Palabiyika et al. (2015) developed a two-step CIP 
protocol by investigating the cleaning of adhesive material at 
varying temperature and velocity of cleaning fluid. This re
duced the overall energy consumption and volume of was
tewater. Piepiórka-Stepuk et al. (2016) optimised the flow 
velocity, pressure, temperature of water, and cleaning time 
of a CIP process for a plate heat exchanger contaminated 
with hot milk. The cleaning efficacy was maximised whilst 
minimising the energy usage. A 5-level experimental design 
of the cleaning parameters was used to find the optimal 
combinations. Piepiórka-Stepuk et al. (2021) optimised the 
parameters during the pre-rinsing stage of a CIP process to 
remove milk impurities from a plate heat exchanger. A 5- 
level experimental design was used to vary the water tem
perature, flow rate, and cleaning process time. Cleanliness 
was used as the objective function. Brooks and Roy (2022) 
optimised cleaning effectiveness for a heat exchanger by 
trialling over a range of cleaning fluid flowrates and me
chanisms. Pettigrew et al. (2015) modelled cleaning transport 
phenomena to simulate a water reuse system and Deponte 
et al. (2020) used parameters such as the Reynolds number 
and density of the fouling material to predict the 
cleaning time. 

However, there are two limitations to these approaches. 
Firstly, the optimised cleaning parameters are only devised 
for a single instance of fouling and are not adaptable if the 
quantity or difficulty of fouling were to vary. Therefore, in
dustrial implementation of these approaches necessitates 
the optimised cleaning parameters to be selected to clean the 

most difficult fouling encountered. This would result in over- 
cleaning for most fouling instances, offering limited im
provements to current approaches. Secondly, the collection 
of cleaning results over many cleaning parameter combina
tions or the development of simulations would require sig
nificant time investment and may cause unacceptable 
disruption to a manufacturing process. The process may be 
disrupted during the trials of parameter combinations that 
fail to clean or when collecting the data via sampling to de
velop and validate the simulations. Whilst Design of 
Experiment (DoE) methods were used in Palabiyika et al. 
(2015), Piepiórka-Stepuk et al. (2016), Piepiórka-Stepuk et al. 
(2021), Brooks and Roy (2022), and Deponte et al. (2020) to 
reduce the number of experiments conducted, these 
methods are not designed to minimise the number of trials 
by selecting those that are the most informative to the op
timisation procedure. Therefore, a method is required that 
optimises cleaning parameters for varying fouling instances 
whilst minimising the time investment required during its 
deployment by selecting parameter combinations to trial 
that are most advantageous. 

Bayesian optimisation is a common optimisation method 
for functions that are expensive to evaluate (e.g. time, com
putational, or economic resources). In this work, Bayesian 
optimisation is used to minimise the number of cleaning 
parameter combinations to trial and thereby minimise dis
ruption to a manufacturing process. The Expected 
Improvement acquisition function is used to determine the 
next set of cleaning parameters to trial by balancing ex
ploration of low confidence regions and exploitation of high 
value parameter combinations (Frazier, 2018). Secondly, Ul
trasonic (US) sensor measurements are used to monitor 
fouling in real-time and enable adaptive cleaning parameter 
optimisation to variations in fouling instances. US sensors 
monitor the interaction of materials with mechanical sound 
waves and have previously been used to monitor cleaning in 
heat exchangers (Wallhäußer et al., 2011), pipes (Escrig et al., 
2019), and duct sections (Chen et al., 2019). US sensors can be 
applied non-invasively allowing them to be externally ret
rofitted to existing process equipment. A neural network 
surrogate model was trained using experimental data from a 
CIP process to conduct both optimisation tasks. Surrogate 
models map input-output relationships of more complex 
systems that are demanding to evaluate in terms of time or 
computational resources (McBride and Sundmacher, 2019). 
In this work, the surrogate model mapped the inputs 
(cleaning parameters and US sensor measurements) to the 
outputs (whether cleaning was successful) of the experi
mental CIP process. The surrogate model enabled different 
combinations of process parameters to be trialled during the 
optimisation tasks in place of an experimental set-up and 
simulate the trajectory of the US features during the cleaning 
process. The surrogate model provided labelled data for the 
Bayesian optimisation procedure by indicating whether the 
plate would be cleaned based on the inputted cleaning 
parameter combinations. Three objective functions were 
minimised for both tasks: the economic cost, the carbon 
footprint, and the water use of the CIP process whilst en
suring cleanliness of the equipment. The novelty of this work 
is: 1) The optimisation of a CIP process for three objective 
functions (economic cost, carbon footprint, and water use). 2) 
The use of Bayesian optimisation to minimise the number of 
parameter combinations to trial during cleaning optimisa
tion thereby reducing disruption to a manufacturing process 
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during method deployment. 3) The use of in-line US sensors 
to perform real-time optimisation of cleaning processes to 
adapt to variations in fouling instances. 

2. Materials and methods 

2.1. Cleaning experiments 

Experimental work was conducted to obtain the data to train 
the surrogate model for the optimisation tasks. In the ex
perimental work, malt extract (Coopers, Irish Stout) was used 
as the fouling material and was cleaned from a 304 stainless 
steel sheet (Fig. 1). This represents cleaning of fouling ma
terial from the internal walls of processing equipment. The 
ingredients of the malt extract included malted barley, hops, 
yeast and water. The CIP process was repeated 30 times 
whilst being monitored using a US sensor positioned on the 
opposite side of the plate to the fouling. Each CIP process 
consisted of three stages: a preliminary water rinse (Rinse 1), 
cleaning with sodium hydroxide solution (Chemical 
Cleaning), and a final water rinse (Rinse 2). The combination 
of process parameters used for each repeat were randomly 
selected within the ranges provided in Table 1. The para
meter ranges were selected to produce a combination of 
successful and failed cleaning repeats. In total, this led to 13 
repeats that produced a fully clean plate and 17 repeats 
where the plate was not fully cleaned. Visual examination 
was used to determine whether the plate was fully cleaned. 
The metal sheet was positioned at an angle to allow the 
cleaning fluid to be directed towards a drain. Approximately 
15 g of the malt extract was placed onto the metal sheet at 
the location of the US sensor prior to cleaning commencing. 
The fluid for each cleaning stage was prepared in a container 
and poured at a consistent flowrate at a marked location at 
the top of the metal sheet above the location of the fouling. 
The chemical solution was prepared by dissolving sodium 
hydroxide pellets into a volume of water. The temperature 
was increased using a hot plate and monitored using a 
thermometer. 

A magnetic US sensor (5 MHz central resonance, M1057, 
Olympus) was attached to the underside of the metal sheet. 
The sensor was attached to an adhesive magnetic strip and 
coupling gel (Dow Corning High Vacuum Grease) was applied 
between the sensor and strip. A non-invasive, reflection- 
mode, pulse-echo sensing technique was used to monitor the 

sound wave reflected from the interface between the plate 
surface and the process material as used in Bowler et al. 
(2020) and Escrig et al. (2019). Therefore, it can be externally 
attached to process equipment to monitor cleaning. The 
process material at the plate surface is either the fouling or 
the cleaning fluid depending on the process stage. An US box 
(Lecoeur Electronique) was used to excite the transducers 
and digitise the received sound waves. The US box was 
connected to a laptop and a bespoke MATLAB software 
controlled the hardware components and acquired the data. 

2.2. Machine learning 

2.2.1. US feature extraction 
Each US waveform consisted of 2000 sample point ampli
tudes collected at a sampling rate of 160 MHz. During the 
cleaning process, the waveform is affected by two phe
nomena: changes in temperature to the system (the metal 
plate and fouling material) and the removal of the fouling 
material from the plate surface. Variations in temperature 
affect the speed of sound through the metal plate and 
therefore the arrival time of the waveform oscillations in 
returning to the transducer. Furthermore, changes in tem
perature affect the acoustic impedance, the product of the 
sound velocity and material density, of the metal plate and 
fouling material and thereby alter the magnitude of the 
sound wave reflected at this interface (Awad et al., 2012). The 
removal of fouling changes the material located at the 
measurement interface and therefore alters the acoustic 
impedance and magnitude of the sound wave reflected. As 
the phenomena of interest in this study was the removal of 
fouling, a moving average was applied to the absolute am
plitudes of the US waveforms to overcome the effect of the 
waveform shifting in the time domain due to the changing 
temperature of the metal plate. A window size of 30 sample 
points was chosen for the moving average by inspecting the 
change in the waveforms during the cleaning process (Fig. 2). 
Principal Component Analysis (PCA), in scikit-learn, was 
utilised to extract two Principal Components (PCs) from the 
2000 input variables (the waveform sample points following 

Fig. 1 – A diagram of the experimental set-up. 
Approximately 15 g of malt extract was used as the fouling 
material and was cleaned from a 304 stainless steel sheet. 
An US sensor was positioned on the opposite side of the 
plate to monitor the cleaning processes. The metal sheet 
was positioned at an angle to allow the cleaning fluid to be 
directed towards a drain. 

Table 1 – The ranges of the cleaning parameters used for 
the three cleaning stages: a preliminary water rinse 
(Rinse 1), cleaning with sodium hydroxide solution 
(Chemical Cleaning), and a final water rinse (Rinse 2). 
The CIP process was repeated 30 times with the 
parameters randomly varied between the ranges 
presented. In total, this led to 13 repeats that produced a 
fully clean plate and 17 repeats where the plate was not 
fully cleaned. The grid search granularity represents the 
fineness of the cleaning parameter search used to 
determine optimal combinations from the machine 
learning models.      

Stage Parameters Range Grid search 
granularity  

Rinse 1 Water volume (L) 1–3  0.25 
Temperature (°C) 25–45  2.5 

Chemical 
Cleaning 

Sodium hydroxide 
concentration 
(% wt) 

0–2  0.25 

Water volume (L) 1–3  0.25 
Temperature (°C) 25–45  2.5 

Rinse 2 Water volume (L) 1–3  0.25 
Temperature (°C) 25–45  2.5   
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application of the moving average). PCA linearly transforms 
input variables into new, uncorrelated features called PCs 
(Khalid et al., 2014). Each input variable was scaled to have a 
minimum of zero and a maximum of one to ensure all vari
ables contributed equally to the PCA results. Two PCs were 
extracted to identify the two phenomena affecting the 
magnitude of the reflected waveform: temperature varia
tions and the removal of the fouling material from the plate 
surface. The first and second PCs explained 39.0% and 25.9% 
of the variance. Despite the low total contribution of these 
two extracted PCs, additional PCs did not follow consistent 
trends across all cleaning repeats and were therefore not 
used. Furthermore, during the real-time optimisation pro
cedure using US sensor measurements, only a small dataset 
size is available due to the requirement to minimise dis
ruption to a manufacturing process. Therefore, the selection 
of two PCs also minimised the complexity of the models. 

2.2.2. Surrogate model 
The surrogate model was trained using experimental data to 
represent the CIP system. The surrogate model mapped the 
input- (cleaning parameters and US sensor measurements) 
output (whether cleaning was successful) relationship of the 
CIP process. The surrogate model was used in both optimi
sation tasks: Bayesian optimisation and real-time optimiza
tion using US sensors. In the Bayesian optimisation 
procedure, the surrogate model helps to trial different 

combinations of process parameters in place of an experi
mental set-up and simulate the trajectory of the US features 
during the cleaning process. This enables the evaluation of 
the selected parameter combinations without requiring real 
experimental runs. The surrogate model provided labelled 
data for the Bayesian optimisation procedure by indicating 
whether the plate would be cleaned based on the inputted 
cleaning parameter combinations. When applying Bayesian 
optimisation within a manufacturing environment, an 
iterative approach would be taken between trialling para
meter combinations and conducting the optimisation pro
cedure which would select the next set of parameters to trial. 
Similarly, the data used to train the real-time optimisation 
models would be collected from experimental runs. The 
surrogate model also enabled the cleaning parameters that 
produced the global minima to be determined and therefore 
evaluate the optimisation procedures. The granularity of the 
grid search procedure to determine the global optima from 
the surrogate model is included in Table 1. While a finer grid 
search may identify further reductions in the objective 
function, the granularity used in this work is sufficient for 
industrial processes. 

A neural network, in Keras, was used as the algorithm for 
the surrogate model due to the ability to create new features 
in the hidden layers from combinations of the input features 
(Rodriguez-Galiano et al., 2015). Seventeen inputs (Table 2) 
were fed into the multi-task surrogate model. The outputs 
consisted of a classification branch to predict whether the 
plate would be cleaned at the end of the process, and two 
regression branches to predict the value of US features at the 
next time step. In this way, the trajectory of the US features 
could be simulated when trialling cleaning process para
meter combinations. The predictions from the classification 
branch were used by both the Bayesian and real-time opti
misation, whereas the regression branches were only used 
by the real-time optimisation. The 30 CIP process repeats 
(consisting of 3749 US measurements in total) were used to 
train and evaluate the surrogate model. Single fold validation 
using a training set consisting of 24 cleaning process repeats 
and a validation set consisting of six repeats was used to 
select the following optimal hyperparameters: A single 
hidden layer containing 128 neurons with ReLu activation; a 
learning rate of 0.01, a batch size of 64, and the Adam opti
misation algorithm used for 2000 epochs of training; an L2 
regularisation value of 0.0001; and a dropout layer with a 
probability of 0.1 after the hidden layer. A final model was 
retrained using all of the data and the optimised hy
perparameters. 

Fig. 2 – A comparison between the US waveforms at the 
beginning and end of the first repeat of the cleaning 
process. The maximum shift in the US waveform peaks in 
the time domain is approximately 30 sample points in the 
region between 12 and 12.5 µs. Therefore, this was the 
value used to perform a moving average of the absolute 
amplitudes of the US waveforms. 

Table 2 – A description of the seventeen features input into the surrogate Model.     

Features Number of 
features 

Description  

Cleaning process parameters  7 The process parameters used during the three stages of cleaning (Table 1) 
Cleaning stage  1 The stage of cleaning. Input as either 1, 2, or 3 representing Rinse 1, Chemical 

Cleaning, or Rinse 2, respectively. 
Cleaning stage time step  1 The time step since the start of the cleaning stage. Input as sequential 

integers. 
US features  2 The two PCs extracted from the US waveforms 
Average since cleaning stage start 

of US features  
2 The moving average of the US features since the start of the cleaning stage. This 

provides the model with information from previous time steps 
Time lagged US features  4 Two sets (0.5 and 1 litre in the past) of time lagged US features. This provides the 

model with information from previous time steps   
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2.2.3. Multi-objective optimisation 
Multi-objective optimisation aims to optimise more than one 
objective function simultaneously (Gunantara, 2018). 
Usually, these objective functions conflict and a series of best 
points can be identified where improving one objective 
function degrades the others, often called Pareto optimal 
solutions. A common method to choose amongst the gen
erated Pareto optimal solutions is to combine the separate 
objective functions into a single objective optimisation pro
blem through scaling of each value, named the scalarisation 
method (Gunantara, 2018). In this work, three objective 
functions are minimised: the economic cost, the carbon 
footprint, and the water use of the CIP procedure. Four sce
narios are investigated: heating the cleaning fluids with 
electricity or natural gas, and using both a low or high price 
for these energy sources. The scalarisation method is used to 
obtain a single objective function by assigning equal 
weighting for the three objective functions at the median 
cleaning parameter values listed in Table 1 for each scenario. 
The quantity of sodium hydroxide, energy required to heat 
the cleaning fluids, water volume, and wastewater volume 
were assigned costs and greenhouse gas emissions to 

quantify their economic cost and carbon footprint for the 
optimisation. The data and assumptions used to quantify the 
economic cost and carbon footprint are included in Tables 3 
and 4, respectively. The water quantity was the total volume 
of water used during the three cleaning stages. The volume 
of water used is also representative of the lost production 
time for the factory during cleaning, however, this is not 
quantified within the economic evaluation. 

2.2.3.1. Bayesian optimisation. Bayesian optimisation is a 
common method used for expensive-to-evaluate functions as 
it can minimise the number of trials required to find near- 
optimal solutions (Frazier, 2018). In this work, Bayesian 
optimisation is used to minimise the number of cleaning 
parameter combinations to trial and thereby reduce 
disruption to a manufacturing process during cleaning 
optimisation. Bayesian optimisation uses acquisition 
functions to balance exploration and exploitation in 
determining the next set of parameters to test. In this work, 
the Expected Improvement, the most common acquisition 
function, is used which calculates the probable improvement 
in objective function value for a given combination of cleaning 

Table 3 – The data and assumptions used to quantify the economic cost of the cleaning parameter combinations.     

Description Value and units Assumptions and sources  

Sodium hydroxide 0.0535 p per g Calculated using the mean European price for 2022 (ChemAnalyst, 2022) 
and the mean US Dollar to British Pound exchange rate for 2022 (Exchange 
Rates UK, 2022). 

Electricity (low price) 15.5 p/kWh Taken as the annual electricity price in the UK for 2021 for medium-sized 
non-domestic consumers, excluding the climate change levy (BEIS, 2022a) 

Heating cleaning fluid using 
electricity (low price) 

0.0181 p per litre per °C 
above 14 °C 

Using a specific heat capacity of water as 4.2 kJ per kg per K and an average 
ambient temperature of 14 °C. 

Electricity (high price) 24.6 p/kWh Taken as the electricity price in the UK for the third quarter of 2022 for 
medium-sized non-domestic consumers, excluding the climate change 
levy (BEIS, 2022a) 

Heating cleaning fluid using 
electricity (high price) 

0.0287 p per litre per °C 
above 14 °C 

Using a specific heat capacity of water as 4.2 kJ per kg per K and an average 
ambient temperature of 14 °C. 

Natural gas (low price) 2.81 p/kWh Taken as the annual natural gas price in the UK for 2021 for medium-sized 
non-domestic consumers, excluding the climate change levy (BEIS, 2022a) 

Heating cleaning fluid using 
natural gas (low price) 

0.00410 p per litre per 
°C above 14 °C 

Using a specific heat capacity of water as 4.2 kJ per kg per K, an average 
ambient temperature of 14 °C, and the efficiency to raise steam from 
natural gas as 80%. 

Natural gas (high price) 5.45 
p/kWh 

Taken as the natural gas price in the UK for the third quarter of 2022 for 
medium-sized non-domestic consumers, excluding the climate change 
levy (BEIS, 2022a) 

Heating cleaning fluid using 
natural gas (high price) 

0.00795 p per litre per 
°C above 14 °C 

Using a specific heat capacity of water as 4.2 kJ per kg per K, an average 
ambient temperature of 14 °C, and the efficiency to raise steam from 
natural gas as 80%. 

Water use 0.163 p/litre Median English business water rate 2022/23 (AquaSwitch, 2023) 
Wastewater 0.172 p/litre Median English business water rate 2022/23 (AquaSwitch, 2023)   

Table 4 – The data and assumptions used to quantify the carbon footprint of the cleaning parameter combinations.     

Description Value and units Assumptions and sources  

Sodium hydroxide 1.41 g CO2 e per g The average between 2.18 (Randall et al., 2016) and 0.633 (Thannimalay et al., 
2013) g CO2 per g. 

Electricity 0.193 kg CO2 e per kWh BEIS (2022b) 
Heating cleaning fluid using 

electricity 
0.226 g CO2 e per litre per 
°C above 14 °C 

Using a specific heat capacity of water as 4.2 kJ per kg per K and an average 
ambient temperature of 14 °C. 

Natural gas 0.234 kg CO2 e per kWh BEIS (2022b) 
Heating cleaning fluid using 

natural gas 
0.342 g CO2 e per litre per 
°C above 14 °C 

Using a specific heat capacity of water as 4.2 kJ per kg per K, an average 
ambient temperature of 14 °C, and the efficiency to raise steam from natural 
gas as 80%. 

Water use 0.149 g CO2 e per litre BEIS (2022b) 
Wastewater 0.272 g CO2 e per litre BEIS (2022b)   
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parameters (Frazier, 2018). To achieve this, an ensemble of 
neural networks was used to produce a probability distribution 
of the objective function value for different parameter 
combinations. This allows the feature extraction capability of 
the neural network to be retained while the ensemble 
produces a probability distribution (White et al., 2021). 

An ensemble of ten neural networks were trained, in 
Keras, using the results from the trialled parameter combi
nations to classify whether the plate was cleaned by the 
cleaning parameters. The surrogate model was used to trial 
the parameters combinations and determine whether the 
plate would be cleaned at the end of the cleaning process. 
These results (cleaned or not cleaned) provided the labelled 
data to train the neural network ensemble. From this, the 
neural network ensembles could be trained using the results 
from the trialled parameters to predict whether the plate 
would be cleaned using new parameter combinations. The 
ensembles of neural networks were trained to achieve 100% 
accuracy on the validation set (the most recent parameter 
combination trialled) and 100% accuracy on the training set 
(the remaining parameter combinations previously trialled). 
This training approach aimed to ensure the neural network 
ensemble could accurately classify the cleaning results from 
previously trialled parameter combinations for both the 
training and validation sets, enabling generalisation to new 
parameter combinations. The networks consisted of three 
fully-connected layers containing four neurons each with 
ReLu activation functions. A learning rate of 0.001, a batch 
size of 2, and the Adam optimisation algorithm were used for 
2000 epochs of training. Two dropout layers with a prob
ability of 0.1 were used, each located between the hidden 
fully-connected layers. 

A grid search of cleaning parameter combinations was 
inputted into the train neural network ensembles. This pro
duced a probability distribution of how likely the plate was to 
be cleaned by the cleaning parameter combination. The ob
jective function value for each parameter combination was 
calculated by combining the economic cost, carbon footprint, 
and water use of the CIP procedure using the methodology 
detailed in Section 2.2.3 Multi-objective optimisation (Eq. 1). 
For exploitation, the average value of the objective function 
was calculated across the 10 models for each parameter 
combination. However, if a cleaning parameter combination 
was predicted to fail to clean the plate by a model, then it 
was assigned the maximum objective function value for that 
model. This discouraged the selection of cleaning parameter 
combinations that were predicted to fail to clean the plate. 
To encourage exploration, the standard deviation of the 
sigmoidal outputs in the neural network ensemble predic
tions was also calculated. The rationale being that higher 
standard deviation implies more disagreement among the 
neural networks in the ensemble, indicating increased un
certainty in this region of parameter combinations. The dis
crepancy between the objective function value range and 
standard deviation range were scaled to be equal before the 
components were combined. The combination of cleaning 
parameters which minimised the objective function whilst 
maximising the standard deviation were selected as the next 
parameters to be trialled. 

+ + =s E s C s W OFE C W (1) 

Where E, C, and W are the economic cost, carbon footprint, 
and water use totals for the cleaning parameters combina
tion, respectively; sE, sC, and sW are the scalarisation factors 

for the economic cost, carbon footprint, and water use, re
spectively; and OF is the objective function value. 

As this work uses a surrogate model in place of experi
mental runs, the cleaning parameter combinations to trial 
were input into the surrogate model to determine whether the 
plate would be cleaned (Fig. 3). In a manufacturing setting the 
combination of cleaning parameters would be trialled ex
perimentally. To account for the variability in the fouling in
stances that would be observed experimentally, the starting 
US feature values input into the surrogate model were ran
domised between the ranges encountered during the experi
mental data collection. This alters the trajectory of the US 
features simulated by the surrogate model owing to natural 
variation of the fouling condition, adhesion, and volume en
countered within the experimental data used to train the 
surrogate model. During data collection, the starting value for 
the first PC varied between 20 and 48 (no units) compared with 
7 and 33 (no units) for the second PC. This is in comparison to 
the variation across all of the cleaning processes where the 
first PC varied between − 53 and 48 (no units), and the second 
PC between − 50 and 41 (no units). 

2.2.3.2. Real-time optimisation using US sensors. The 
application of US sensors to enable real-time optimisation 
of the cleaning process was also investigated (Fig. 4). In this 
way, the cleaning parameters can be changed during the CIP 
process to adapt to variations in the fouling. Using the results 
from the cleaning parameter combinations trialled during 
the Bayesian optimisation procedure, two additional neural 
networks were trained in Keras: the first to predict whether 
cleaning would be completed based on the cleaning 
parameters and US features at the end of the Rinse 1 stage, 
and the second to predict whether the plate would be 
cleaned based on the cleaning parameters and the US 
features after the Chemical Cleaning stage. The first model 
could then be used to optimise the cleaning parameters for 
the Chemical Cleaning stage and the second for the Rinse 2 
stage. The US features were the final eight features listed in  
Table 2 (US features, average since cleaning stage start of US 

Fig. 3 – A flow diagram of the Bayesian optimisation 
procedure. The initial cleaning parameter used at the start 
of the optimisation procedure is the maximum of the 
ranges provided in Table 1. The surrogate model is used to 
obtain labelled data as to whether the plate would be 
cleaned by the inputted cleaning parameter combinations. 
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features, and time-lagged US features). The networks were 
composed of the same architecture as those used during the 
optimisation: three fully-connected layers containing four 
neurons each with ReLu activation functions. A learning rate 
of 0.001, a batch size of 2, and the Adam optimisation 
algorithm were used for 2000 epochs of training. Two 
dropout layers with a probability of 0.1 were used, each 
located between the hidden fully-connected layers. To trial 
the real-time optimisation method, ten new CIP processes 
were simulated using the surrogate model. To simulate 
variability in the fouling instances, the starting US feature 
values input into the surrogate model were randomised 
between the ranges encountered during the experimental 
data collection. After both the Rinse 1 and Chemical Cleaning 
stages, the US features simulated by the surrogate model 
were inputted into the real-time optimisation models and a 
grid search selected the optimal parameters for the next 
cleaning stage. 

3. Results 

3.1. Ultrasonic sensor measurements 

The US waveform consists of multiple overlapping sound 
waves reflected from the interface between the plate surface 
and the process material (either the foulant or cleaning fluid). 
During the cleaning process, the US waveform is affected by 
two phenomena: changes in temperature to the system (the 
metal plate and fouling material) and the removal of the 
fouling material from the plate surface. Two PCs were ex
tracted from the 2000 input variables (the US waveform 
sample points following application of the moving average) 
to identify these two phenomena affecting the magnitude of 
the reflected waveform: temperature variations and the re
moval of the fouling material from the plate surface. As such, 
each of the extracted PCs is affected by a combination of 
these phenomena. 

Fig. 5 depicts the two PCs extracted from the US sensor 
measurements. Whilst both temperature and fouling re
moval contribute to the extracted PCs, it was deduced that 
the first PC is affected mostly by the temperature change of 
the plate surface, whilst the second is mostly impacted by 
the removal of fouling. This is determined as in both Repeat 5 

(Fig. 5a) and 6 (Fig. 5b) the plate was observed to be almost 
fully clean following the Chemical Cleaning stage. In con
trast, Repeat 7 (Fig. 5c) experienced the most cleaning during 
the Rinse 2 stage. The first PC is shown to decrease in mag
nitude with increasing gradient during the cleaning stages 
for Repeats 5 and 6 showing that the temperature change of 
the metal plate becomes more rapid as fouling is removed 
from the surface. Between each cleaning stage, the plate 
begins to return to the environmental temperature as no 
fluid flows across its surface. The first PC remains unchanged 
during the Rinse 1 and Chemical Cleaning stages of Repeat 7 
as no fouling has yet been removed from the surface and 
therefore prevents the plate from increasing in temperature. 
The second PC decreases as fouling is removed from the 
plate surface after which it begins to increase in magnitude. 
This can be observed in Repeat 5 and 6 where the second PC 
undergoes no further decrease during the Rinse 2 stage and 
undergoes the largest decrease during the Rinse 2 stage of 
Repeat 7. As the PCs have been extracted from US waveforms 

Fig. 4 – A flow diagram of the method to obtain the models 
for real-time optimisation of the cleaning parameters. The 
surrogate model is used to obtain labelled data as to 
whether the plate would be cleaned by the inputted 
cleaning parameter combinations and to simulate the 
trajectory of the US features during cleaning. 

Fig. 5 – The trajectories of the PCs extracted from the US 
sensor measurements for Repeat 5 (Fig. 5a), 6 (Fig. 5b), and 7 
(Fig. 5c) of the experimental data. The first PC follows the 
trend of the temperature change of the plate, while the 
second PC monitors the removal of fouling. 
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consisting of multiple overlapping sound waves, the reason 
for the second PC increasing following removal of the fouling 
may be due to increased effects of temperature on the clean 
plate. For example, changes in temperature causes time- 
shifted of the peaks in the US waveform leading to altering 
magnitudes in the waveform sample points monitored by the 
second PC. 

Fig. 6 compares the PC trajectories measured during ex
perimental data collection and those simulated by the sur
rogate model. Fig. 6a displays PC results and simulations for 
Repeat 1 which was included in the training set for the sur
rogate model and Fig. 6b displays those for Repeat 4 which 
was included in the surrogate model’s validation set. Single 
fold validation using a training set consisting of 24 cleaning 
process repeats and a validation set consisting of six repeats 
was used to select the following optimal hyperparameters: A 
single hidden layer containing 128 neurons with ReLu acti
vation; a learning rate of 0.01, a batch size of 64, and the 
Adam optimisation algorithm used for 2000 epochs of 
training; an L2 regularisation value of 0.0001; and a dropout 
layer with a probability of 0.1 after the hidden layer. A final 
model was retrained using all of the data and the optimised 
hyperparameters. 

3.2. Cleaning parameter importance 

Fig. 7 displays the importance of each parameter in cleaning 
the malt extract from the metal plate during the cleaning 
process. These scores are determined by evaluating the 

impact of the cleaning parameters on the prediction ob
tained from the surrogate model. The scores have been 
normalised against the most important parameter. A per
mutation-based feature importance method was used which 
randomly shuffled the cleaning parameter values of the ex
perimental data the surrogate model was trained on. The 
values of each cleaning parameter were shuffled in
dependently and the variation in classification score was 
assessed (Molnar, 2022). The most important feature there
fore causes the largest change to the classification predic
tions when shuffled. The three most important parameters 
were the fluid temperatures of each cleaning stage. This is 
due to the malt extract being a cohesive foulant which is 
cleaned through dissolution, as found previously in Escrig 
et al. (2020). Cohesive fouling is removed through breaking 
the forces that bind the material together and is limited by 
mass transfer, solubility, or by heat transfer (Fryer and 
Asteriadou, 2009). Higher temperatures increase the solubi
lity of the fouling, promote phase change, and increase the 
kinetic energy of the molecules to increase mass transfer, 
thereby increasing the rate of cleaning (Fryer and Asteriadou, 
2009). Furthermore, the fourth most important parameter 
was the concentration of sodium hydroxide during the 
Chemical Cleaning stage which also increases the solubility 
of organic foulants (Fryer and Asteriadou, 2009). The final, 
Rinse 2, cleaning stage fluid temperature was the most im
portant parameter. This is mostly likely due to an artefact of 
the Rinse 1 and Chemical Cleaning stages having increased 
the solubility and promoted phase change of the fouling. This 
therefore facilitates the cleaning during Rinse 2, enabling the 
temperature to have a greater impact. 

3.3. Optimisation 

Fig. 8 displays the results of the Bayesian optimisation pro
cedure. The results from the first parameter combination 
trials are omitted as these represent the unoptimised 
system, located at 0% optimised. The fully optimised system 
(100% optimised) refers to the global optima determined 
using the surrogate model through a grid search procedure. 
Overall, the four cleaning fluid heating scenarios evaluated 
(electricity low price, electricity high price, natural gas low 
price, natural gas high price) all approached the optimal so
lution after nine parameter combination trials, with the 
natural gas low price scenario achieving the globally optimal 
solution. The optimisation procedure achieved 98.9 (elec
tricity low), 98.7 (electricity high), 100 (natural gas low), and 

Fig. 6 – A comparison between the PC trajectories during 
the experimental runs and those simulated by the 
surrogate model. PC1 represents the first PC and PC2 
represents the second PC. (a) Repeat 1 which was included 
in the training set of the surrogate model. (b) Repeat 4 
which was included in the validation set of the surrogate 
model. 

Fig. 7 – The impact of each parameter on the cleanliness of 
the metal plate during the CIP process. The importance of 
each feature has been scaled to that of the most important 
parameter. 
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99.2 (natural gas high) % compared with the global optima 
after nine trials. In a manufacturing environment, using ex
perimental trials in place of the surrogate model, the global 
optima would be unknown. Therefore, the stopping criteria 
where no further trials were required would be determined 
by observing a plateau in the reduction of the objective 
function or when a pre-determined reduction target had 
been achieved. 

Interestingly, the global optima for all scenarios were 
identical (Table 5) and consisted of a Rinse 1 stage with a 
water volume of 1 litre and temperature of 27.5 °C; a Che
mical Cleaning stage with a sodium hydroxide solution 
concentration of 0%, water volume of 1 litre, and tempera
ture of 25 °C; and a Rinse 2 stage with a water volume of 1 
litre and temperature of 45 °C. This suggests that the lower 
cost of natural gas counteracted the lower carbon footprint of 
electricity (Tables 3 and 4). However, with increasing dec
arbonisation of the electricity grid, heating of the cleaning 
fluids with electricity may be more greatly favoured. Despite 
increases in costs of 58% and 63% for electricity and natural 
gas, respectively, between the low and high prices, the same 
global optima were predicted. This suggests, that for the 
process investigated, the optimisation procedure would not 
need to be repeated at times of high energy costs. 

The globally optimal cleaning parameters determined 
using the surrogate model are similar to those identified in 

the feature importance results displayed in Fig. 7 where the 
temperature of the Rinse 2 stage was the most significant 
cleaning parameter. Contrastingly, the optima determined 
through the Bayesian optimisation procedure selected the 
highest fluid temperature for the Rinse 1 stage and the 
second highest temperature for the Rinse 2 stage (Table 5). 
This indicates that larger weighting could have been as
signed to the exploration component of the acquisition 
function, facilitating the trialling of parameter combinations 
further away from previous trials. Notably, all optima de
termined that fluid volumes of 1 litre in all cleaning stages 
and no sodium hydroxide were required to minimise the 
scalarised multi-objective function for the fouling in
vestigated. The contribution of each cleaning parameter to 
the three scalarised objective functions (economic cost, 
carbon footprint, and water use) is presented in Fig. 9 for the 
low electricity price scenario. Notably, sodium hydroxide was 
eliminated from the optimal cleaning parameters after four 
parameter combination trials, most likely due to its large 
carbon footprint. Water use was the largest contributor to the 
scalarised multi-objective function for trials 7–10 con
tributing to its limitation to 1 litre for each cleaning stage. 
Moreover, the volume of the cleaning fluid was determined 
to be the least important parameters to conduct cleaning 
(Fig. 7). Despite the differences in the selected cleaning fluid 
temperatures between the globally determined optima and 
the Bayesian optimisation identified cleaning parameters, 

Fig. 8 – The results from the Bayesian optimisation 
procedure for the four scenarios of energy source and cost. 
The values represent the percentage optimised compared 
with the global optimum (100% optimised). The results from 
the first parameter combination trials are omitted as these 
represent the unoptimised system and therefore are located 
at 0% optimised. 

Table 5 – The global and local optima determined for the four energy source and cost scenarios. The global optimum was 
the same for all scenarios. The results displayed for the Bayesian optimisation procedure are following ten parameter 
trials. For comparison to the Bayesian optimisation procedure, the Design of Experiments (DoE) method used a 27–4 

fractional factorial design in addition to the centre point (Table 6). This is a total of nine parameter combinations.          

Stage Parameters Global optimum 
(for all scenarios) 

Bayesian optimisation DoE method (for all 
scenarios) 

Electricity Natural gas  

Low High Low High   

Rinse 1 Water volume (L)  1  1  1  1  1  1  
Temperature (°C)  27.5  42.5  45  40  42.5  35 

Chemical Cleaning Sodium hydroxide 
concentration (% wt)  

0  0  0  0  0  0  

Water volume (L)  1  1  1  1  1  1 
Rinse 2 Temperature (°C)  25  25  25  25  25  35  

Water volume (L)  1  1  1  1  1  1  
Temperature (°C)  45  32.5  35  32.5  32.5  35   

Fig. 9 – The contribution of each cleaning parameter to the 
scalarised economic, carbon footprint, and water use 
objective functions during the 10 trials of the Bayesian 
optimisation procedure for the low electricity price 
scenario. 
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the Bayesian optimisation procedure achieved the same ob
jective function value as the global minimum for the low 
price natural gas scenario. This is because both methods 
selected that 1 litre of cleaning fluid and no sodium hydro
xide be used whilst using the same amount of energy to heat 
the cleaning fluid, only that different cleaning stages should 
have higher temperatures. This difference likely due to the 
different datasets used to train the surrogate and Bayesian 
optimisation models leading to each favouring higher tem
peratures for different cleaning stages. 

The results from the Bayesian optimisation procedure 
were compared with a DoE method (Table 5) similar to those 
used in Palabiyika et al. (2015), Piepiórka-Stepuk et al. (2016),  
Piepiórka-Stepuk et al. (2021), Brooks and Roy (2022), and  
Deponte et al. (2020). DoE methods are used to efficiently 
explore the effects of multiple factors and their interactions 
on a response variable. However, DoE methods are not de
signed to minimise the number of trials by selecting those 
that are the most informative to the optimisation procedure 
unlike Bayesian optimisation. To compare with Bayesian 
optimisation, the DoE method used a 27–4 fractional factorial 
design in addition to the centre point to produce nine para
meter combinations owing to Bayesian optimisation finding 
optimal solutions after trialling nine parameter combina
tions (Gunst and Mason, 2009). The parameter combinations 
used for the DoE method are provided in Table 6. The sur
rogate model was used to determine whether these nine 
parameter combinations would clean the metal plate. These 
results were used to train ten neural networks that were 
used to determine the optimal solution identified by the DoE 
method. The same methodology as used for the Bayesian 
optimisation procedure (Section 2.2.3.1 Bayesian optimisa
tion) was used for training and evaluating the models. 

For all energy source and price scenarios, the DoE method 
selected a Rinse 1 stage with a water volume of 1 litre and 
temperature of 35 °C; a Chemical Cleaning stage with a so
dium hydroxide solution concentration of 0%, water volume 
of 1 litre, and temperature of 35 °C; and a Rinse 2 stage with a 
water volume of 1 litre and temperature of 35 °C. In com
parison, the Bayesian optimisation displayed a small im
provement (0–4.7% improvement in the objective function 
depending on the energy source and cost evaluated) com
pared with the DoE method. The reason that this improve
ment is only small is likely due to the parameter values for 
the global optima being located at the extremes of the ranges 
examined, enabling the DoE method to identify that the 
minimum volume of cleaning fluid and sodium hydroxide 
content were required. However, the DoE had diminished 
resolution closer to the centre of the parameter ranges evi
denced by the selection of 35 °C for all cleaning fluid tem
peratures. The advantage of using the Bayesian optimisation 

procedure compared with the DoE method may be more 
prominent in other cleaning instances where the optimal 
solution is not close to the parameter extremes explored. 
These results display the benefit of the Bayesian optimisa
tion approach that is able to select the most valuable para
meter combinations to trial. 

3.4. Real-time optimisation using US sensors 

Ten variations of fouling conditions were used to evaluate 
the real-time optimisation using US sensor data. To simulate 
this variability, the starting US feature values input into the 
surrogate model were randomised between the ranges en
countered during the experimental data collection. This al
ters the trajectory of the US features simulated by the 
surrogate model owing to natural variation of the fouling 
condition, adhesion, and volume encountered within the 
experimental data used to train the surrogate model. Only 
the low electricity price scenario was used for this procedure 
as similar global and local optima were determined for all 
scenarios. Table 7 displays results from using real-time op
timisation models trained using data from the ten parameter 
combinations from the Bayesian optimisation procedure. It is 
shown that the selection of the cleaning fluid temperature 
for the Rinse 2 stage displays the greatest variability, ranging 
between 25 and 35 °C. This is because it is the most im
portant cleaning parameter for the cleanliness of the equip
ment (Fig. 7), it is at end of the CIP process and therefore 
responsible for completing the cleaning, and its selection 
being decided during both real-time optimisation procedures 
(optimisation of the Chemical Cleaning stage and subse
quently optimisation of the Rinse 2 stage). The real-time 
optimisation results presented in Table 7 improved the CIP 
process for three out of ten of the fouling variations tested, 
were equal for five out of ten variations, and performed 
worse for two out of ten variations. Furthermore, the real- 
time optimisation selected to increase the Chemical Cleaning 
fluid volume to 1.25 litres for two fouling variations and the 
temperature to 30 °C for a single variation. This indicates that 
further data is required to develop real-time optimisation 
models representative of the cleaning process given the local 
and global minima determined during the Bayesian optimi
sation procedure selected the cleaning fluid volume of the 
Chemical Cleaning stage to be 1 litre and the temperature as 
25 °C for all scenarios investigated (Table 5). This is most 
likely due to the greater number of inputs to the real-time 
optimisation models (15) compared with the Bayesian opti
misation models (7) producing a more complex network for 
the same number of datapoints and therefore diminished 
accuracy in regions of the cleaning parameter space. 

Table 6 – The nine parameter combinations used for the Design of Experiments (DoE) method. The DoE method used a 
27–4 fractional factorial design in addition to the centre point of the parameter ranges.             

Stage Parameters 1 2 3 4 5 6 7 8 9  

Rinse 1 Water volume (L)  1  3  1  3  1  3  1  3  2  
Temperature (°C)  25  25  45  45  25  25  45  45  35 

Chemical Cleaning Sodium hydroxide concentration (% wt)  0  0  0  0  2  2  2  2  1  
Water volume (L)  3  1  1  3  3  1  1  3  2 

Rinse 2 Temperature (°C)  45  25  45  25  25  45  25  45  35  
Water volume (L)  3  3  1  1  1  1  3  3  2  
Temperature (°C)  25  45  45  25  45  25  25  45  35   
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To investigate this further, Table 8 displays results using 
models trained using the Bayesian optimisation trials plus 
five additional cleaning trials conducted under normal op
eration using the local optimum obtained from the Bayesian 
optimisation process. As these five additional trials represent 
normal operation, inclusion of this data represents no fur
ther disruption to a manufacturing process beyond the trials 
conducted during the Bayesian optimisation procedure. 
Using this additional data, the real-time optimisation pro
cedure produced improvements for eight out of ten fouling 
variations investigated, producing a decrease in the objective 
function value by up to 4.8%. This shows that the collection 
of additional data under normal cleaning operation provides 
improvements to the optimisation models with no further 
disruption to the manufacturing process. During deployment 
of these optimisation procedures to a manufacturing site, 
minimal process disruption would be required for the initial 
Bayesian optimisation, with further accuracy available for 
the real-time optimisation using US sensors through the 
collection of data during normal operation. 

4. Discussion 

Industry is often risk averse and may be reluctant to alter 
parameter combinations that could result in cleaning fail
ures. Consequently, the Bayesian optimisation methodology 

presented in this work could utilise existing cleaning para
meters as initial reference points. For instance, the acquisi
tion function could incorporate a distance metric to favour 
cleaning parameter combinations closer to the company’s 
current ones. Alternatively, a confidence threshold could be 
applied to select parameter combinations with a high prob
ability of effectively cleaning the equipment for testing. 
These methods could facilitate the identification of the most 
important cleaning parameters while minimising the occur
rence of cleaning failures. Furthermore, in the multi-objec
tive optimisation, greater priority can be given to objectives 
that align with the company’s preferences. For instance, 
greater weighting can be applied to reduce economic costs 
that may be achieved by minimising energy consumption or 
the use of sodium hydroxide. 

Since this work uses a laboratory-based methodology and 
was not based on an industrial application, economic con
siderations beyond the cleaning process, such as the loss of 
production time during cleaning, were not factored into the 
multi-objective optimisation. However, in practical settings, 
the cost of time to the manufacturer should be taken into 
account to select parameters that also minimise cleaning 
time. Moreover, this information may be used to quantify the 
costs associated with implementing the proposed optimisa
tion approaches. For instance, failed trials result in wasted 
time and additional expenses incurred through re-cleaning 

Table 7 – The cleaning parameters selected during real-time optimisation. The real-time optimisation models were 
trained using data from the ten parameter combinations trialled during the Bayesian optimisation procedure. Ten 
variations in fouling conditions were evaluated.         

Fouling 
variation 

Chemical Cleaning Rinse 2 Comparison to Bayesian 
optimisation local minima 

Sodium hydroxide 
(% wt) 

Water 
volume (L) 

Temperature (°C) Water 
volume (L) 

Temperature (°C) Change in objective 
function (%)  

1  0  1  25  1  35 + 0.0 
2  0  1  25  1  35 + 0.0 
3  0  1.25  25  1  25 + 0.6 
4  0  1  25  1  35 + 0.0 
5  0  1  30  1  27.5 - 1.6 
6  0  1.25  25  1  25 + 0.6 
7  0  1  25  1  32.5 - 1.6 
8  0  1  25  1  35 + 0.0 
9  0  1  25  1  30 - 3.3 
10  0  1  25  1  35 + 0.0   

Table 8 – The cleaning parameters selected during real-time optimisation. The real-time optimisation models were 
trained using data from the ten parameter combinations trialled during the Bayesian optimisation procedure and five 
additional cleaning processes conducted under normal operation using the local minimum obtained from the Bayesian 
optimisation process. Ten variations in fouling conditions were evaluated.         

Fouling 
variation 

Chemical Cleaning Rinse 2 Comparison to Bayesian 
optimisation local minima 

Sodium hydroxide 
(% wt) 

Water 
volume (L) 

Temperature (°C) Water 
volume (L) 

Temperature (°C) Change in objective 
function (%)  

1  0  1  25  1  35 + 0.0 
2  0  1  25  1  35 + 0.0 
3  0  1  25  1  32.5 - 1.6 
4  0  1  25  1  30 - 3.3 
5  0  1  30  1  27.5 - 1.6 
6  0  1  25  1  30 - 3.3 
7  0  1  25  1  30 - 3.3 
8  0  1  25  1  27.5 - 4.8 
9  0  1  25  1  30 - 3.3 
10  0  1  25  1  27.5 - 4.8   
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the equipment. Additionally, the optimisation methods ne
cessitate testing the cleanliness of the equipment after each 
trial to determine whether the parameters have successfully 
completed the cleaning process, which may be unnecessary 
during regular production. Furthermore, the development 
and application of these methods consume engineering time, 
further contributing to the overall cost. By quantifying these 
cost factors, it becomes possible to calculate the payback 
time of the implemented optimisation method, which de
termines when the benefits derived from the optimised 
cleaning parameters outweigh the costs incurred during de
velopment and implementation. 

While the current research concentrates on optimising 
cleaning parameters for simple soiling, the same methodol
ogies can be extended to optimise cleaning process for 
fouling that has been subjected to heating or scenarios in
volving microbial growth. 

5. Conclusions 

CIP procedures often over-clean process equipment leading to 
unnecessary use of energy, water, and chemicals. This work 
optimised a CIP process using Bayesian optimisation followed 
by real-time optimisation using US sensor data. Bayesian op
timisation was used to determine optimal cleaning para
meters for the average fouling instance whilst minimising the 
number of parameter combinations that were required to be 
trialled and thereby reduce disruption to a manufacturing 
process. US sensors were used to monitor the cleaning pro
cess and enable real-time optimisation of the cleaning para
meters to adapt to variations in the condition of fouling. A 
surrogate model was produced from experimental data to 
conduct both optimisation tasks. Multi-objective optimisation 
was used to simultaneously minimise the economic cost, 
carbon emissions, and water usage of the CIP process. 
Bayesian optimisation was able to optimise the process after 
trialling only nine cleaning parameter combinations 
(achieving between 98.7% and 100% optimisation of the ob
jective function compared with the global optimum). Bayesian 
optimisation displayed a small advantage (0.0–4.7% decrease 
in the objective function) compared with a DoE method. Real- 
time optimisation of the cleaning parameters using ultrasonic 
sensor measurements improved the optimisation objective 
function by 0.0 – 4.8% for all fouling instances tested when 
utilising results from ten trials conducted during the Bayesian 
optimisation procedure along with five additional cleaning 
repeats under normal operation. 
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