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Abstract: Auxetics are materials displaying a negative Poisson’s ratio, i.e., getting thicker in one or
both transverse axes when subject to strain. In 2018, liquid crystal elastomers (LCEs) displaying
auxetic behaviour, achieved via a biaxial reorientation, were first reported. Studies have since
focused on determining the physics underpinning the auxetic response, with investigations into
structure–property relationships within these systems so far overlooked. Herein, we report the first
structure–property relationships in auxetic LCEs, examining the effect of changes to the length of
the spacer chain. We demonstrate that for LCEs with between six and four carbons in the spacer,
an auxetic response is observed, with the threshold strain required to achieve this response varying
from 56% (six carbon spacers) to 81% (four carbon spacers). We also demonstrate that Poisson’s ratios
as low as −1.3 can be achieved. Further, we report that the LCEs display smectic phases with spacers
of seven or more carbons; the resulting internal constraints cause low strains at failure, preventing an
auxetic response. We also investigate the dependence of the auxetic threshold on the dynamics of the
samples, finding that when accounting for the glass transition temperature of the LCEs, the auxetic
thresholds converge around 56%, regardless of spacer length.

Keywords: liquid crystal elastomer; auxetic; spacer; structure-property relationships; mechanical
metamaterials

1. Introduction

Liquid crystal elastomers (LCEs) are lightly cross-linked polymers, which combine the
properties of elastomers (i.e., elasticity) with those of liquid crystals (i.e., self-organisation
and anisotropy) [1,2]. This combination of properties is achieved by incorporating anisotropic
units, known as mesogens, into the polymer structure. The integration of mesogens into the
LCE can be achieved either by incorporation directly into the polymer backbone to yield
main chain LCEs (MCLCEs) or by attaching the mesogens to the backbone via a flexible
group (known as a spacer) to yield side chain LCEs (SCLCEs) (Figure 1) [1].

The mesogens in the polymer structure have an affinity to self-organise, leading to the
LCEs exhibiting long-range order [2]. This, in turn, is coupled to the macroscopic shape of
the LCE [2]. This coupling of liquid crystalline order and macroscopic polymer properties
gives rise to some well-known interesting behaviours, including stimuli-responsiveness,
stress-optical coupling and enhanced damping [3–7]. Much of the literature focuses on
investigations into MCLCEs, as the interesting actuating behaviours they exhibit are gener-
ally more pronounced than for SCLCEs. In 2018, Mistry et al. reported the observation of
a novel behaviour for LCEs, the ability for an LCE to display an auxetic response (i.e., a
negative Poisson’s ratio) when subject to strain perpendicular to the nematic director [8]. It
is proposed that the auxetic response in LCEs could be useful for application in biomedical
devices, impact resistance or delamination resistance [8–10]. The LCE in question has
an acrylate backbone and can be described as a predominantly SCLCE, showing a small
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quantity of MCLCE characteristics due to the use of the mesogenic cross-linker (Figure 2).
All of the auxetic LCEs reported to date display this predominantly SCLCE nature.
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The LCE reported by Mistry et al. is auxetic along an axis perpendicular to both
the liquid crystal director and the strain direction, beyond a threshold strain value [8].
The response is facilitated by the anisotropic nature of LCEs, which allows for a negative
Poisson’s ratio in one transverse axis, provided the other transverse axis has a positive
Poisson’s ratio, thereby conserving volume [8,11]. Whilst the notion that liquid crystal
polymers could display auxetic behaviour had been suggested many years earlier, this was
the first example of an LCE in which an auxetic response had been directly observed [12,13].
Significantly, the LCE was proven to be non-porous, unlike all other synthetic auxetics
previously reported, marking the first example of a synthetic, non-porous, molecular
auxetic material [8].

The physical phenomena underpinning the auxetic response in the auxetic LCEs re-
ported by Mistry et al. have been deduced from studies within our research
group [8,11,14]. The auxetic LCEs were seen to deform via the so-called ‘mechanical
Fréedericksz transition’ (MFT), as opposed to the more commonly observed semi-soft
elastic (SSE) response [8]. LCEs deforming by an SSE mechanism experience a continuous,
in-plane rotation of the director to align with the applied strain [11,15–17]. On the other
hand, the MFT mechanism has recently been shown to be a continuous biaxial reorientation
of the director with a growing proportion of mesogens orientated along both the strain axis
and the transverse axis perpendicular to the director [11].

In addition to the observation of an MFT deformation, a significant change in the
liquid crystal order is observed in the auxetic LCEs. Raistrick et al. proposed that the
auxetic response was connected to an out-of-plane rotation of the director, resulting in the
emergence of biaxial order in the sample [11]. The strain-induced biaxiality was confirmed
by Wang et al., who used conoscopy on homeotropically aligned LCEs to conclusively show
the emergence of biaxial order in the LCE upon the application of strain perpendicular to
the nematic director, underpinning the auxetic response [14].

Perhaps one of the most exciting aspects of an LCE that has an auxetic response is
the potential for tuning the mechanical behaviour through chemical modifications. So far,
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this opportunity has been largely neglected, with the focus instead on understanding the
physical basis of the auxetic response, thereby allowing the deduction of some theory-based
design rules. Those studies concentrated on understanding how out-of-plane deformation
could occur and therefore only considered two very closely related materials [8,11,14]. In
this paper, we report the first steps in exploring both the robustness of the auxetic response
to changes in the LCE design and structure–property correlations of the auxetic behaviour
by changing the spacer length of the monofunctional sidechain unit.

2. Materials and Methods
2.1. Monomer Synthesis

The series of monomers used in this work will be henceforth referred to as the AnOCB
series, where the n in the monomer abbreviation denotes the number of methylene units
in the spacer chain. For example, A3OCB is the monomer with 3 methylene units in the
spacer (3-(4-Cyano-biphenyl-4′-yloxy)propyl acrylate). Generalized synthetic procedures
and experimental data for these syntheses are detailed in the Supplementary Information.

2.2. Elastomer Mould Fabrication

The LCEs were synthesized in bespoke alignment moulds, which were made in accordance
with the previous literature [8,11,14]. A glass microscope slide (7.5 cm × 2.5 cm × 1 mm) and
a Melinex® ST725 substrate (7 cm × 2.5 cm × 250 µm) (DuPont Teijin Films, Redcar, UK)
were spin-coated on one surface with an aqueous 0.5 wt% polyvinyl alcohol (PVA) solution,
which was uniaxially rubbed with a bespoke rubbing machine after drying the substrates
at 50 ◦C for 15 min. These two substrates were then adhered, via Melinex® 401 spacers
(7.5 cm × 0.2 cm × 100 µm) (DuPont Teijin Films, Redcar, UK) and UVS-91 adhesive
(Edmund Optics, York, UK), so that the PVA-rubbed surfaces were the inner surfaces of the
constructed cell, and the rubbing directions yielded antiparallel planar alignment along the
width of the mould. The adhesive was then cured by irradiation under 350 nm (2.5 Wcm−2)
at 50 ◦C for 10 min, to yield the constructed LCE mould with a gap thickness of ~100 µm.
The moulds produced are highly uniform, consistently yielding samples with the desired
alignment and thickness variations in the region of 5%, as reported in previous work [18].

2.3. Liquid Crystal Elastomer Synthesis (Planar Alignment)

The LCEs synthesized in this work were made via a method adapted from previous
work within the group [8,14,19]. A generalised procedure is given below, and the gener-
alised monomer mixture is displayed in Figure 3. Table 1 details the nomenclature used
for the LCEs fabricated in this way. LCE systems are named AN0n, where n refers to the
number of methylene units in the acrylate-terminated alkoxycyanobiphenyl, i.e., AN03
uses the acrylate monomer A3OCB, which has three methylene units.

Table 1. The names assigned to the LCEs, based on the cyanobiphenyl monomer used in their synthesis.

LCE Name Cyanobiphenyl Monomer Spacer Length
(Methylene Units)

AN03 A3OCB 3
AN04 A4OCB 4
AN05 A5OCB 5
AN06 A6OCB 6
AN07 A7OCB 7
AN08 A8OCB 8
AN09 A9OCB 9
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In a typical procedure, RM82 (3.5 mol%), the cyanobiphenyl monomer AnOCB
(24.4 mol%), and 6OCB (54.6 mol%) were heated to 120 ◦C with stirring until a homo-
geneous isotropic phase was obtained. The mixture was cooled to 50 ◦C, followed by the
addition of EHA (16 mol%) and MBF (1.5 mol%), and stirred for 5 min, again ensuring a
homogeneous, completely isotropic material was obtained. The mixture was then filled
into a mould at 50 ◦C via pipette, before being cooled to room temperature and allowed
to stand for 20 min. The samples were then cured under 350 nm (2.5 Wcm−2) irradiation
for 2 h, to yield a fully cured sample as evidenced in previous work [18]. After curing, the
samples were removed from the moulds (using a small amount of isopropanol if necessary
to aid delamination from the substrates), and left to stand in a solution of dichloromethane
(DCM)–isopropanol (30:70) overnight to remove the non-reactive 6OCB. The samples were
then allowed to dry under ambient conditions for 5 h, to yield the final LCE films.

2.4. Material Characterisation

Full experimental information for the characterization carried out in this work can be
found in the Supplementary Information. This includes structural analysis of synthesized
compounds, thermal analysis of LCE precursors and final LCEs via differential scanning
calorimetry, optical microscopy of the precursors and LCEs, phase determination for
the LCEs by X-ray scattering, order parameter measurements for the LCEs via Raman
spectroscopy and mechanical analysis to determine the auxetic threshold of the LCEs.

3. Results

The LCEs were characterized extensively, and significant results are summarized in
Table 2. These results will be discussed in detail throughout this work.
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Table 2. The effect of spacer length on the auxetic threshold of the LCEs at 22 ◦C; the glass transition
temperatures (Tg) of the LCEs; the temperatures at which mechanical measurements should be
conducted to achieve the same reduced temperature relative to Tg as for AN06 (Texperiment) and the
auxetic thresholds observed for each LCE at the appropriate reduced temperature †.

LCE Spacer Length
(Methylene Units)

Auxetic Threshold Strain
(@ 22 ◦C)

Tg
(◦C)

Texperiment
(◦C)

Auxetic Threshold Strain
(@ Reduced Temperature)

AN03 3 - 21 38 0.60 (±0.05)
AN04 4 0.81 (±0.05) 12 28 0.52 (±0.05)
AN05 5 0.65 (±0.05) 9 25 0.59 (±0.05)
AN06 6 0.56 (±0.05) 6 22 0.56 (±0.05)
AN07 7 - 2 18 -
AN08 8 - −1 15 -
AN09 9 - −2 14 -

† ‘-’ indicates no auxetic response was observed prior to elastic failure.

3.1. Liquid Crystal Elastomer Production

To examine the effect of spacer length on LCE properties, care was taken to ensure
that the molar ratio of the monomers in the LCE mixture was consistent throughout, with
the LCEs having the composition depicted in Figure 3. This composition is based on the
composition of the auxetic LCE reported by Wang et al., which, in this work, is known as
AN06 and differs from the Mistry et al. LCE slightly in terms of cross-link density; AN06
has 7.7 mol% of crosslinker (RM82) compared to ~17 mol% in Mistry et al. [8,14], and its
auxetic threshold is at lower strains and further away from the point of sample failure than
for the Mistry et al. LCE [8,14]. It is of note that 6OCB is used to template the nematic phase
in the unpolymerized mixtures for all systems. It is an unreactive component, included to
ensure that the precursor mixture is in a nematic phase, allowing high-quality monodomain
alignment of the final LCE. The 6OCB is removed from the final LCE resulting in a different
composition from the unpolymerized mixture (Figure 3).

In this work, macroscopic, high-quality LCEs, usually with planar alignment, were
targeted, as well-defined liquid crystal alignment is imperative for the auxetic response
to be observed [7,8]. To achieve this, polymerisation of the mixture whilst in the nematic
phase is crucial. When examined by differential scanning calorimetry (DSC), the LCE
precursor mixtures all display enantiotropic nematic phases, with clearing temperatures
varying from 34–45 ◦C (Figures S1 and S2). All the precursor mixtures can therefore be
polymerized at room temperature in the nematic phase in a mould with the desired surface
alignment conditions, as is the case with the previously reported auxetic LCEs [8,14]. In all
cases, LCEs exhibiting excellent planar alignment are routinely achieved, as confirmed by
colour inversion of planar samples when the LCE films are rotated by 45 ◦C under crossed
polarisers (Figure 4).

Having successfully fabricated LCEs with planar alignment, confirmation of the liquid
crystal phase exhibited by the LCEs was sought [8,14]. Small-angle X-ray scattering (SAXS)
and wide-angle X-ray scattering (WAXS) experiments were conducted on samples of
each elastomer to investigate this. The one-dimensional (Figure S3) and two-dimensional
(Figures S4 and S5) SAXS and WAXS data confirm that for spacer lengths of fewer than seven
methylene units, the LCEs display a nematic phase. This is evidenced by the diffuse peaks
in both SAXS and WAXS data and the lack of any pronounced reflections at small angles.

Conversely, for the LCEs fabricated with monomers containing spacers of seven or
more methylene units, the presence of a relatively sharp (001) Bragg peak observed in
the SAXS data at around q = 1.5 nm−1 suggests a smectic phase. In the 2D WAXS data
(Figure S5), the sharp small-angle peaks are orthogonal to the diffuse scattering resulting
from side-to-side intermolecular spacings. We therefore attribute the phase to be smectic
A. These sharp reflections correspond to layer spacings of 38.5 Å, 40.5 Å and 40.5 Å for
the AN07, AN08 and AN09 LCEs, respectively. These layer spacings are comparable to
the average end-to-end length of RM82 (38.4 Å, calculated as detailed in Supplementary
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Information), rather than the monofunctional monomer lengths (23.2 Å, 29.1 Å and 23.8
Å for A7OCB, A8OCB and A9OCB, respectively), which suggests that the layer spacings
are dictated by RM82, which adopts a slightly strained conformation and not significantly
influenced by the choice of AnOCB monomer. All AnOCB monomers have average end-
to-end lengths of 21.2–29.1 Å, which suggests the AnOCB side groups adopt a partially
interdigitated structure within the smectic layers.
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These observations agree with the literature, which shows that for end-on-side chain
liquid crystal polymers and elastomers, increased spacer lengths commonly yield smectic
phases [20–25]. However, given the nematic templating employed in the LCE mixture,
we find the formation of smectic phases to be interesting, as the curing of the precursor
mixture in the nematic phase might be expected to yield an LCE with a defined nematic
order. A detailed exploration of phase templating is beyond the scope of this article and
will be reported at a later date.

3.2. Thermal Analysis of LCEs

The presence of any thermally induced phase transitions within the LCEs was ex-
amined by DSC. Key results are displayed in Table 2, and an example thermogram is
given for each LCE in the Supplementary Information (Figures S6–S12). All LCEs display
a glass transition temperature (Tg), indicated by the step change observed in the DSC
thermograms, below or approaching room temperature. The results indicate that as the
number of methylene units in the spacer chain increases, the Tg of the material decreases, a
consequence of the increased flexibility of the spacers as more carbon atoms are added, con-
sistent with the literature for side-chain liquid crystal polymers and elastomers [21,26–30].
When examined as a function of spacer length (Figure S13), there is no apparent presence
of odd–even effects in Tg, which is, again, consistent with the literature in which, at most,
only weak odd–even effects are observed in Tg [21,26–30].

In all cases, the DSC analysis of the LCEs shows no evidence of any further phase
transitions prior to thermal degradation, consistent with the behaviour of the previously
reported auxetic LCEs [8,11,14]. This behaviour is consistent with that of more highly
cross-linked liquid crystal networks (LCNs) as opposed to LCEs, an interesting observation
given the relatively low cross-link density of the LCEs (7.7 mol%) [1]. However, SAXS
analysis of the smectic A LCEs (AN07, AN08 and AN09) as a function of temperature
showed some evidence of a decrease in smectic order as temperature increases, though the
layer spacing appears to change little as a function of temperature (Figures S16–S21). The
reduction in smectic order is most notable at 110 ◦C, which suggests the possible presence
of a transition from the smectic A phase in these LCEs. The lack of any evidence of this
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transition in DSC and the observations made by SAXS suggest that if this is indeed a phase
transition, it is weak first-order or second-order in nature.

In addition to the lack of an apparent Tc in DSC data, the thermally induced shape
changes seen in both the nematic and smectic-A LCEs (Figure S14) show no evidence of the
significant actuation expected at or near a phase change such as Tc. This is further evidence
of thermal behaviour more typical of LCNs. Furthermore, there is no significant difference
in thermal shape change between the LCEs showing a nematic character and a smectic
character. This is unexpected based on previous literature findings, in which smectic
LCEs show an increase in length with increased temperature, before a sharp reduction in
length upon transition to the isotropic phase; this is the opposite of the steady decrease in
elongation with increasing temperature observed for nematic LCEs, with, again, a sharp
reduction in length upon transition into the isotropic phase [31].

The work from Raistrick et al. suggests that a high clearing temperature (Tc) is an
important factor for LCE being able to display an auxetic response [11]. They suggest that
when strained at temperatures far below Tc, as is the case in the auxetic LCEs previously
reported, the biaxial stiffness of the material is expected to be significantly lower than
the uniaxial stiffness [11]. This allows biaxiality to dominate, which in turn leads to the
out-of-plane mesogen reorientation to yield the auxetic response. The lack of any apparent
Tc in these LCEs suggests that if strained at room temperature, they will satisfy this criterion
and hence display an auxetic response.

3.3. Mechanical Analysis

A key motivation of this work was to determine the dependence of an auxetic response
(negative Poisson’s ratio) in the LCE films on the spacer length of the mesogen, so the
mechanical analysis of the materials focuses on this feature. The presence of an auxetic
response in the LCEs was examined with a bespoke experimental setup, the full specifica-
tions of which have been described previously [8]. In brief, the sample (of approximate
dimensions of 20 mm × 2 mm × 100 µm) is loaded between two actuators, and the initial
actuator separation is set to a distance that is sufficient to remove any slack in the sample.
The samples were then subject to strain steps of 0.5 mm (the smallest possible step on the
bespoke apparatus, allowing the highest-resolution data) at 10 min intervals until sample
failure. During this process, images of the sample both through optical microscopy and
polarized optical microscopy were taken at each strain step.

A schematic representation of the mechanical analysis employed in this work is given
in Figure 5. The images taken during this work examine the x-y plane of the sample,
whereas the auxetic response is observed along the z-axis. Particle tracking is used to
calculate the strain in both the x- and y-axes from the recorded images, and the z strain
is then inferred based on the conservation of volume. The conservation of volume has
been proven for auxetic LCEs in previous work, with this methodology providing results
indistinguishable from those seen via direct observation of the auxetic plane [8,11,14]. The
auxetic response can be visualized in the x-y plane as a significant decrease in the width of
the sample, as depicted by the example images in Figure 6.
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Figure 5. A schematic representation of the initial nematic director orientation (n) relative to the
strain axis (ε) of the auxetic LCEs for the mechanical analyses conducted in this work. The mesogenic
units (both side-chain and cross-linker) are shown schematically as blue cylinders with their average
direction (the director) indicated.
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Figure 6. Example optical microscopy images obtained for the mechanical experiments undertaken
in this work, showing the observation of the x-y plane as a function of applied strain. In this case, the
images show an AN05 sample, being examined at room temperature (22 ◦C). The auxetic threshold is
determined from analysis of the full set of images, but a significant reduction in width can be seen at
strains above 0.54, indicative of thickening of the sample in the z-direction.

To determine the auxetic threshold for each LCE, Poisson’s ratio of the sample in the
z-axis is calculated, using a method applied previously [14]. In brief, the strains obtained
from the experimental images (such as those in Figure 6) are engineering strains, which
are converted into true strains using εtrue = ln

(
εengineering + 1

)
. A polynomial is then fit to

these data, and Poisson’s ratio (ν) is calculated from ν = −
(
dεtrans/dεexpan

)
, i.e., the ratio of

the relative deformation in the transverse direction of expansion to the relative expansion.
In this work, the deformation in the z-axis is the transverse deformation (dεtrans), and
the strain applied in the x-axis is the relative expansion (dεexpan). The point at which the
Poisson’s ratio in the z-axis becomes negative is the auxetic threshold. It is noteworthy that
the average Poisson’s ratio of the materials in both transverse dimensions is observed to be
0.5 throughout the experiment, consistent with that of many elastomeric materials [32].

In the first instance, the presence of an auxetic response in all LCEs was explored
at room temperature (22 ◦C). Figure 7a,c show the result of an applied strain in the x-
dimension on the strain observed in the z- and y-dimensions, respectively. Figure 7d
displays the instantaneous Poisson’s ratio in the z-dimension for the LCEs, calculated
as described, and as a function of the applied x-strain. For all LCEs, the samples are
observed to undergo a thinning in the y-dimension throughout the whole experiment,
upon the application of a strain in the x-dimension, as displayed in Figure 6. Upon the
initial application of a strain in the x-dimension, all LCEs are also seen to undergo thinning
in the z-dimension up to the point of the auxetic threshold, where one exists. Beyond
this threshold, for AN04, AN05 and AN06, the LCEs are observed to become thicker in
the z-dimension; Poisson’s ratio in the z-dimension becomes negative. This behaviour is
analogous to that of the original auxetic LCE from Mistry et al. and confirms that these
three LCEs have an auxetic response at 22 ◦C.

The strains required to reach the auxetic threshold for the AN04, AN05 and AN06
LCEs at room temperature are displayed in Table 2. The auxetic threshold of AN06 is in
agreement with that previously reported for the same material [14]. The results suggest
that as the number of methylene units in the spacer is decreased, the auxetic threshold
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strain increases. This increase is such that the AN03 elastomer does not display an auxetic
response at room temperature prior to failure (at ~120% strain). These results confirm that
the auxetic response of the LCEs at room temperature can be tailored by modifications in
the chemical structure.
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We now consider AN07, AN08 and AN09, which are found to not exhibit an auxetic
response at room temperature; indeed, these LCEs fail at relatively low strains (<0.40 in all
cases). This low strain at failure is attributed to strong internal constraints resulting from
the smectic layers of these LCEs, which can result from crosslinks within the layers and/or
the very high elastic and compression moduli seen in smectic LCEs [33–35]. In our case, the
relatively low strains at failure result in samples being unable to reach an auxetic threshold,
if one occurs, in the smectic-A LCEs.

The behaviour of smectic A LCEs when subject to the application of strain has drawn
interest in the literature, but no consensus has been reached. Most commonly, a signifi-
cant anisotropy is observed depending on the direction of applied strain relative to the
director/smectic layer normal [36–44]. Upon strain parallel to the layer normal, after a
threshold strain of around 5% is reached, the samples mechanically behave as an isotropic
network with a Poisson’s ratio of 0.5 in both transverse axes [36–44]. In some cases, this
coincides with the samples developing a cloudy texture [36,40], attributed to a reorientation
of smectic layers consistent with a Helfrich–Hunault type transition, whereas in other cases,
no such opaqueness is observed [42]. Conversely, when strained perpendicular to the
layer normal (as is the case in our work), the width of the sample (i.e., parallel to the layer
normal) remains unchanged, and in order to conserve volume, the sample thickness is
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significantly reduced, following a Poisson’s ratio of 1.0 [36–44]. This is commonly attributed
to an absence of any reorientation event under strain. It is of note, however, that all of the
examples in which this behaviour is observed are siloxane-based SCLCEs, as opposed to
the acrylate-based networks studied in this work.

Other works have suggested different behaviours for smectic A LCEs when subject to
strain. Beyer et al. reported that for smectic A MCLCEs, a significantly lower anisotropy
in the mechanical behaviour is observed [45]. This difference is attributed to the main
chain systems having a tendency to form folded chain structures, which in turn results in
short-range correlations for the smectic layers compared to those of SCLCEs [45]. Thus, the
MCLCEs behave more similarly to nematic LCEs. Stannarius et al. reported a smectic-A
SCLCE in which they observed a significant change in smectic layer spacing under strain,
attributed to low smectic layer compressibility, but also discussed the possibility of strain-
induced tilt [34]. A similar strain-induced tilt was proposed by Stenull and Lubensky in
2005 [46], indicative of a transition from uniaxial smectic A structure to a biaxial smectic
C. It is noteworthy that the system in which this behaviour is observed by Stannarius
et al. is a siloxane terpolymer, in which there are 2.7 times more non-mesogenic dimethyl
siloxane repeat units than there are mesogenic repeat units [34]. It could be argued that
as the materials studied in this work contain 35.2 mol% of the non-mesogenic monomer
(EHA), the ‘diluted systems’ studied by Stannarius are perhaps a more appropriate means
of comparison to the systems detailed here than a ‘fully substituted’ LCE.

From the literature findings discussed, it is unclear as to whether one may expect the
smectic A LCEs in this work to be capable of undergoing the reorientation required to
create the biaxiality needed to see an auxetic response. To investigate the emergence of
biaxiality within the smectic A LCEs upon the application of strain, conoscopy experiments
were undertaken on homeotropic samples of the smectic LCEs. In the unstrained state,
the conoscopic figure for the smectic LCEs shows a ‘Maltese cross’ texture, characteristic
of a uniaxially aligned material (Figure 8). Upon the application of uniaxial strain in the
x-direction, the conoscopic figure shows two melatopes, indicative of the emergence of
multiple optical axes, and thus characteristic of a biaxial system (illustrated in Figure 8 at a
strain of 0.27 where the melatopes are clearly observable). These observations agree with
those for the nematic LCE AN06 reported by Wang et al. [14] and confirm the emergence of
biaxiality with the smectic LCEs. Qualitative analysis of the conoscopic figures suggests a
similar degree of biaxiality for AN07 and the AN06 LCEs reported by Wang et al. [14] (sim-
ilar separation of the melatopes occurs at similar strains). However, the conoscopy figures
could yield comparable results for the strain-induced smectic-A-to-smectic-C transition
suggested by Stenull and Lubensky [46]. We believe this raises an interesting question. Is
the emergence of biaxiality reported here due to a reorientation effect analogous to that
seen in the nematic LCEs, or is this evidence of a strain-induced smectic-A-to-smectic-C
transition? This will be the subject of future work.

The thermal analysis discussed earlier detailed a lack of any liquid crystal phase
transitions in the nematic LCEs prior to thermal degradation. An interesting area of
investigation for the smectic LCEs AN07, AN08 and AN09 would be the potential for a
material in which the auxetic response could be turned ‘on or off’, by inducing a transition
into the nematic phase in the LCE. Whilst this is not a possibility with the LCEs detailed in
this work, this is an area of investigation we will pursue further in future work.

Whilst the impact of liquid crystal phase transitions on the LCEs cannot be investigated,
the effect of proximity to the Tg of the LCEs has been examined. The observation that
increasing the spacer length in the LCEs leads to a reduction in Tg suggests that, when
examined at the same temperature (22 ◦C in this case), different polymer dynamics are
likely being probed. We were therefore interested to understand if the change in auxetic
threshold observed as spacer length is varied is dominated by the change in chemical
structure or by a change in dynamics resulting from the change in Tg.
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strain (εx) of 0.27, indicative of biaxiality.

To assess this hypothesis, we took the room temperature behaviour of the original
auxetic LCE, in this case, AN06, to be the marker against which the samples were measured.
With this in mind, a ‘reduced temperature’ was calculated, at which to conduct experiments
where the differences in glass transition had been accounted for, as shown in Equation (1).
This was calculated as the fraction above Tg at which the AN06 samples were analysed. We
then used this reduced temperature to calculate the temperature at which the other LCE
sample experiments should be conducted to mimic the dynamics of the AN06 experiments.
These temperatures are recorded in Table 2.

Reduced temperature =
Texperiment

Tg
=

295.15 K
279.15 K

(1)

When the samples are examined at the appropriate experimental temperatures detailed
in Table 2, the results (Figure 9) show some notable differences compared to the results
obtained at room temperature (Figure 7). The nematic LCEs AN03, AN04, AN05 and AN06
exhibit auxetic responses with comparable auxetic thresholds (0.52–0.60) (Table 2). This
convergence of auxetic thresholds suggests that the auxetic threshold of the nematic LCEs,
and indeed therefore the presence of an auxetic response, is governed by proximity to
Tg, and thus the polymer dynamics being probed. It is, however, of note that the AN03
LCE shows a less negative Poisson’s ratio (−0.48) (and thus a less pronounced auxetic
response) than the other LCEs (−0.95 to −1.20), suggesting that changes in the chemical
structure may impact the magnitude of auxetic behaviour. In this case, we attribute this
reduced auxetic response to a significant reduction in the flexibility of the spacer chain for
the AN03 LCE. We suggest this has a two-fold effect. Firstly, the side chain itself is shorter,
and thereby less likely to cause significant out-of-plane deformation as required for the
auxetic response. Secondly, the AN03 spacer is significantly less flexible than that of the
other LCEs, leading to more impedance to the out-of-plane mesogen reorientation, and
thus a less pronounced response. When examined at the same reduced temperature as for
the nematic LCEs, the AN07, AN08 and AN09 LCEs, which exhibit smectic ordering, still
do not present an auxetic response, which is, again, attributed to the low strain at failure.
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Figure 9. The effect of an applied X strain on (a) the observed Y strain for the LCE samples,
(b) the observed Z strain in the LCE samples and (c) Poisson’s ratio in the Z dimension, at equivalent
reduced temperatures (Table 2).

4. Discussion

When considered as a whole, these results present compelling information to further
our understanding of the auxetic response in LCEs. We have demonstrated that the auxetic
threshold of the LCE at room temperature can be tailored by changes in the length of the
spacer in the major component of the LCE, with threshold strain values ranging from 0.56
to 0.81 observed. The observation that a relatively simple change in chemical structure
can have such an impact on the auxetic response firstly shows that the auxetic behaviour
observed within our previous work is not unique to the material previously reported (AN06
in this work), and perhaps is a more general phenomenon for LCEs.

In addition to the observed change in the auxetic threshold, the obtained evidence
also suggests that the magnitude of the auxetic response can be tailored to some extent
by changing the spacer length, with the minimum Poisson’s ratios observed ranging from
−0.84 (AN04) to −1.23 (AN05). These results lead us to believe that the range of auxetic
thresholds and Poisson’s ratios that can be achieved from LCEs could be vast, and we
intend to explore the capabilities of LCEs with further chemical modifications, for example,
variations in the mesogenic unit, in future work.

An important finding in this work is that the change in the auxetic threshold is revealed
to be dominated by the change in the Tg, as shown by the convergence of the auxetic
threshold (in the region of 0.52 to 0.60) when all LCEs are analysed at the same reduced
temperature (1.06 × Tg (K)). This suggests that proximity to Tg is an important factor in
the observation of an auxetic response and may go some way to explain why, thus far,
auxetic behaviour has only been observed in LCEs with acrylate backbones. The majority
of the LCE literature focuses on either MCLCEs, synthesised through click chemistry, or
SCLCEs with siloxane backbones, both of which lead to samples with far lower Tg than
those typically observed for acrylate-based polymers. We hypothesise, therefore, that
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backbone chemistries that inherently have higher Tg (such as acrylates and methacrylates)
are more conducive to facilitating an auxetic response. We therefore also intend to examine
the scope for different backbone chemistries to yield an auxetic response in future work.

In addition to the impacts on the auxetic response previously detailed, this work
also showed the synthesis of smectic A LCEs, despite polymerisation being conducted
in a nematic phase. The formation of smectic phases in polymers from non-smectogenic
monomers is known and results from an increase in order within the system as polymeri-
sation constrains the mesogens, reducing their opportunity to flow or reorientate. This is
particularly true in side-chain systems containing longer spacers, as the increasing spacer
promotes microphase separation of aliphatic tails (the spacer) and aromatic cores [23]. It is
therefore not unrealistic to suggest that this increased ordering is the cause of the smectic
phase formation in the AN07, AN08 and AN09 LCEs. However, one could argue that the
nematic order of the precursor mixture would be expected to be retained after curing, as
is commonly the case in the synthesis of LCEs/LCNs. We therefore intend to probe the
formation of the smectic phase further in future work. Additionally, we believe that the
mechanical behaviour of the smectic A samples detailed in this work warrants further
investigation, which would be beyond the scope of this article.

5. Conclusions

In this work, we have incorporated a series of cyanobiphenyl acrylate monomers
of varying spacer lengths into novel liquid crystal elastomers (LCEs) with formulations
consistent with the auxetic LCE reported in the previous literature. When cured, all
elastomers exhibit excellent planar alignment as confirmed by polarised optical microscopy.
For spacer lengths of ≤6 methylene units, the LCEs exhibit a nematic phase. However, for
spacers containing seven or more methylene units, a smectic A phase is instead observed,
even though polymerisation was conducted in a templated nematic phase. Thermal analysis
of the LCEs shows that the glass transition temperature is reduced with increasing spacer
length, consistent with increased flexibility in the repeat units. There are, however, no
further phase transitions prior to thermal degradation of the LCEs, a behaviour typically
observed in more highly cross-linked liquid crystal networks.

Analysis of the auxetic response of the LCEs at room temperature indicates that three
of the LCEs exhibit an auxetic response. The LCEs exhibiting smectic A characteristics
(AN07, AN08 and AN09) do not show an auxetic response due to low strains at failure
resulting from constraints imparted by the layered structure. However, conoscopic analysis
of the smectic A LCEs shows a transition from a uniaxial arrangement in the unstrained
state to a biaxial arrangement upon the application of low strains. This is consistent with
the molecular deformations previously observed to underpin the auxetic response in the
existing auxetic LCEs. These results therefore suggest that the smectic A LCEs may be
capable of auxetic behaviour, though constraints imposed by the layered structure lead to
low strain at failure, and hence, no observed auxetic response.

For the nematic LCEs, reducing the spacer length of the cyanobiphenyl monomer leads
to an increase in the auxetic threshold strain, at room temperature, with spacer lengths
of four, five and six methylene units leading to auxetic thresholds of 0.57, 0.65 and 0.81,
respectively. This dependence of the auxetic threshold on spacer length is attributed to the
change in glass transition temperatures observed as the spacer length changes; specifically,
the higher the Tg, the higher the auxetic threshold. Evidence to support the dependence of
the auxetic threshold on Tg comes from the convergence of auxetic thresholds (at strains
around 0.56) upon analysis of the samples at the same reduced temperature relative to Tg
(1.06 × Tg(K)). However, the magnitude of the auxetic response, as measured by the lowest
value of Poisson’s ratio observed during mechanical analysis, appears to be significantly
smaller for the spacer containing three methylene units (Poisson’s ratio of −0.47) than it
does for four, five and six methylene units (−0.95 to −1.20). This difference is attributed
to a significant reduction in the length and flexibility of the side group with the spacer
containing three methylene units, hindering the out-of-plane rotation of mesogens required
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for auxeticity. This suggests the magnitude of the response may also be tailored by changes
in the chemical structure.

The results presented in this work are the first systematic attempts to determine
structure–property relationships within auxetic LCEs. The information gleaned has given
further understanding as to what aspects of the LCEs play a part in determining the
magnitude of the auxetic response, as well as how the auxetic threshold may be adjusted.
Such information will likely prove invaluable in facilitating the design of future generations
of auxetic LCEs. However, there is still much further work to be undertaken to determine
the effect of other changes in the molecular structure on auxetic LCEs, for example, the
effect of changes to the mesogen structure or backbone chemistry.
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