
This is a repository copy of A Novel Flow Control Mechanism to Avoid Multi-Point
Progressive Blocking in Hard Real-Time Priority-Preemptive NoCs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214576/

Version: Accepted Version

Proceedings Paper:
Burns, A., Indrusiak, L.S., Smirnov, N. et al. (1 more author) (2020) A Novel Flow Control
Mechanism to Avoid Multi-Point Progressive Blocking in Hard Real-Time Priority-
Preemptive NoCs. In: 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 21-24 Apr 2020, Sydney, NSW, Australia. Institute of Electrical and
Electronics Engineers (IEEE) , pp. 137-147. ISBN 978-1-7281-5499-2

https://doi.org/10.1109/rtas48715.2020.00-11

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Novel Flow Control Mechanism to Avoid

Multi-Point Progressive Blocking in Hard

Real-Time Priority-Preemptive NoCs

A. Burns, L. S. Indrusiak, N. Smirnov, J. Harrison

Department of Computer Science,

University of York, United Kingdom

Abstract—The recently uncovered problem of multi-point pro-
gressive blocking (MPB) has significantly increased the complex-
ity of schedulability analysis of priority-preemptive wormhole
networks-on-chip. While state-of-the-art analysis is currently
deemed safe, there is still significant inherent pessimism when it
comes to considering backpressure issues caused by downstream
indirect interference. In this paper, we attempt to simplify the
problem by considering a novel flow control protocol that can
avoid backpressure issues, enabling simpler schedulability anal-
ysis approaches to be used. Rather than construct the analysis to
fit the protocol, we modify the protocol so that effective analysis
applies. We describe the changes to a baseline wormhole router in
order to implement the proposed protocol, and comment on the
impact on hardware overheads. We also examine the number of
routers that actually require these changes. Comparative analysis
of FPGA implementations show that the hardware overheads of
the proposed NoC router are comparable or lower than those of
the baseline, while analytical comparison shows that the proposed
approach can guarantee schedulability in up to 77% more cases.

I. INTRODUCTION

Whenever any general resource control protocol is con-

sidered for use in the real-time domain it is necessary to

develop analysis that provides safe upper bounds for worst-

case behaviour. Unfortunately for many protocols that were

not originally designed for real-time behaviour the necessary

analysis can be both complex and inherently pessimistic; this

is the case with the wormhole NoC protocol. Xiong et al. [33]

have shown that wormhole NoCs with priority-preemptive

arbitration can suffer from multi-point progressive blocking

(MPB), which makes the calculation of packet latency upper

bounds much harder than previously expected. Well cited

works on this problem such as those by Shi and Burns [29]

and by Kashif and Patel [16] did not consider MPB and were

shown to be optimistic [34]. Subsequent works [34][13][24]

were able to formulate latency upper bounds that are safe even

under MPB scenarios, but those bounds are significantly higher

than the ones obtained with previous (and now known to be

unsafe) analyses. Such inflation of the upper bounds is not only

caused by the MPB effect itself, but also by some pessimism

that had to be introduced in order to formulate the problem in

a way that it can be understood and solved.

Recent works have tried to address MPB, proposing novel

concepts for link arbitration and flow control to avoid [22] or

control backpressure [31]. While both concepts could be useful

for avoiding MPB in general off-chip wormhole networks, the

papers do not address implementation issues that can prevent

their application to NoCs (for instance, the need for global

wires).

In this paper, we propose a novel flow control protocol that

completely prevents MPB effects, aiming to avoid inflated

latency upper-bounds. In essence, we start with an effective

and intuitive form of analysis [29] and derive a protocol

that conforms to that analysis with minimum pessimism. To

that end, we propose a new router architecture that uses

the memory available in its local tile as temporary storage

for incoming packets that cannot be immediately forwarded

to their destinations (i.e. because their desired output port

is used by another packet flow). We discuss in detail the

proposed router design implementing the new flow control

protocol, and evaluate its impact on real-time schedulability

as well as its hardware overheads. Unavoidably, our solution

poses challenges to the local tile memory management, which

we discuss in this paper but leave a complete solution and

respective implementation as future work.

The paper is organised as follows: we provide background

to justify our approach (Section II), describe our contribution,

argue that the proposed changes to the wormhole protocol are

sufficient to eliminate MPB effects (Section III) and quantify

the improvements on schedulability of real-time applications

by comparing the proposed approach against the state-of-the-

art baseline (Section IV). In Section V we then show that

not all routers require to be modified in order to eliminate

MPB. Unlike other approaches aiming to avoid MPB, ours

is implementable using standard NoC signalling protocols

between neighbouring routers and requires no global wires.

We show implementation results in Section VI, including

a comparison with a priority-preemptive wormhole NoC.

Limitations, outstanding issues and future work required to

address them are discussed in Section VII, and conclusions

are provided in Section VIII.

II. BACKGROUND

A. Wormhole networks

Wormhole switching [20] is a flow control protocol that

provides a good trade-off between performance and buffering

overheads. Each packet in a wormhole network is divided

into a number of fixed size flits, each of which is usually

transmitted in parallel via a number of wires that encode a

1

single data item plus various flow control signals. The first flit

of a packet (header flit) holds the packet size and the routing

information. As the header advances along the specified route,

the remaining flits follow in a pipelined way. If the header flit

encounters a link already in use, it is blocked until the link

becomes available. In this situation, because network nodes

have finite buffering capabilities, the second flit will then be

blocked by the first one, and so on, until all flits stall in a

process known as backpressure. All flits of the packet will then

remain buffered in the routers along the packet route until the

header is released, so the pipelined transmission can continue.

The smaller the buffers on each router, the larger the number

of routers that will have to store a given packet in a blockage

scenario. If there is not enough buffer space distributed over

routers in the packet route, the backpressure will propagate

back to the packet sender, preventing it from injecting further

flits into the network.

Since a packet can be stored by several routers and occupy

multiple links at a time, the potential congestion over the

network is increased. This makes it harder to predict the time

it takes for a given packet to cross the network, because

many of the links along its route may be blocked by other

packets. This is not the case in store-and-forward (SAF)

switching, where each packet uses only one link at a time, or

in virtual cut-through (VCT), where packets are only stored

in the router where they experience blocking [7]. In on-chip

networks, wormhole is preferred over SAF or VCT because

the possibility of small buffers is attractive due to limited

overheads in silicon area and energy dissipation [3]. In order

to cope with the difficulties to predict packet latencies in

wormhole NoCs, several arbitration mechanisms were pro-

posed using resource sharing policies such as time-division

multiplexing [8] and prioritised virtual channels (VCs) [4],

[29]. The first approach tries to avoid latency interference

between packets by reserving link bandwidth to each packet

flow. The second approach allows packets to interfere with

each other but aims to quantify the upper bounds of that

interference over each packet’s latency. In this paper, we focus

on the second approach since it is work conserving (does

not reserve resources) and more flexible (does not require

exact knowledge of packet sizes or injection periods, only

upper bounds on the former and lower bounds on the latter).

In particular, we choose priority-preemptive arbitration at flit

level. We described this in detail in the next subsection.

B. Router architecture

Priority-arbitrated network-on-chip routers were first used in

the QNoC architecture proposed by Bolotin et al. [4], relying

on virtual channels (VCs) to prevent head-of-line blocking

between packets of different priorities: high priority packets

can preempt the transfer of low priority ones in case of con-

tention for the same output port. VCs are usually implemented

as a FIFO buffer per priority level, therefore imposing area

and energy overheads, which make QNoC-like architectures

less attractive in domains that are not performance-sensitive.

However, previous work has shown that 4-16 VCs per port [21]

highest priority

with remaining credit

priority ID

…
data in

credit out

control

logic

data out

credit in

arbitration

…

…

…

…

…

…

…

πe πf πhπg

πi πj πlπk

πa πb πdπc

πm πn πpπo

ξ13 ξ14 ξ15 ξ16

ξ9 ξ10 ξ11 ξ12

ξ5 ξ6 ξ7 ξ8

ξ1 ξ2 ξ3 ξ4

Fig. 1. 2D-mesh network-on-chip and detail of a router with priority-
driven virtual channels

and 2-position FIFO buffers per VC [13] are ideal from

the performance-predictability point of view while imposing

acceptable overheads.

QNoC routers use credit-based flow control [3] to ensure

data is only forwarded to output links when there is enough

buffer space to hold it in the downstream router. The original

QNoC architecture assumed buffering at the input ports of the

router, which are connected to output ports via a crossbar,

preventing packets routed to different outputs from interfering

with each other’s performance. Such an approach has been

used in several works addressing performance-sensitive and

real-time many-cores [29][12][15], has been extended to sup-

port mixed-criticality traffic [5][14], and has been modified

to support output buffering and multiplexed input-output con-

nections (which are respectively referred as outq and inq-1

architectures in [34]).

In this paper, we use the original input-buffered QNoC

architecture as our baseline, as shown in Figure 1. Virtual

channels are shown as FIFO buffers multiplexed according to

the packet’s priority once they flow from each input port. The

header of each packet provides the router with the network

destination it aims to reach (distributed routing) or its desired

output port (source routing). In either case, that information

is used to control the crossbar and connect the packet’s VC

to the correct output port. A priority-preemptive arbitration

mechanism on each output port then keeps forwarding data

from the input VCs connected to it, always giving precedence

to the one with the highest priority that has credit (i.e. buffer

space in the downstream router).

2

Figure 1 also shows an overview of the complete NoC,

including a processing tile attached to each router. They are

depicted as simple white rectangles, but in practice each tile

may include one or more cores, caches or scratchpads, local

memory, hardware accelerators, etc. It also includes a network

interface (NI), which manages the communication between the

tile and the NoC. The NI connects to the NoC router through

a bidirectional pair of input and output ports with credit-based

flow control, same as the ones connecting routers to each other.

So in the case of NoCs with 2D-mesh topologies, routers will

have 3 (in corner routers), 4 (in edge routers) or 5 (in middle

routers) pairs of input and output ports, one of them connecting

the router to its tile (usually called local port, while inter-router

ports are referred to by their direction: north, south, east or

west). The router depicted in detail in Figure 1 is router ξ14,

which is in the lower edge of a 2D-mesh NoC, so the four pairs

of ports shown in the figure are its local, west, east and north

ports. In this paper, we aim to explore local ports and their

connection to the local tiles to improve time predictability in

such NoCs.

C. Schedulability model

We model a wormhole NoC such as the one depicted in

Figure 1 as a set of tiles Π = {πa, πb, . . . , πz}, a set of

routers Ξ = {ξ1, ξ2, . . . , ξm}, and a set of unidirectional

links Λ = {λa1, λ1a, λ12, λ21, . . . , λzm, λmz}. The input and

output ports of a router are the endpoints of the incoming and

outgoing links that connect it to neighbouring routers and its

local tile.

To model the traffic load injected to the network, we define

a set Γ of n real-time traffic-flows (or just flows for short)

Γ ={τ1, τ2, . . . τn}. Each flow τi gives rise to a potentially

unbounded sequence of messages in a similar way to that of

a task giving rise to a series of jobs. An alternative term for

message is packet. The flow has a set of properties and timing

requirements which are characterised by a set of attributes: τi =

(Pi, Ci, Ti, Di, J
D
i , JI

i , πs
i , πd

i). We assume that all the flows

which require timely delivery are either periodic or sporadic.

The lower bound interval on the time between releases of

successive messages is called the period (Ti) for the flow. The

maximum basic network latency (Ci) is the maximum duration

of transmission latency when no flow contention exists [29].

Each real-time flow also has a relative deadline (Di) which is

the upper bound restriction on network latency. In this work

we assume Di ≤ Ti. Any flow can suffer two forms of release

jitter; JD
i is direct jitter and denotes the maximum deviation

of successive message releases from the flow’s period. The

other form of jitter, JI
i , is the indirect interference the flow

may suffer [29], [30]. Here τi suffers interference from some

flow τj which itself suffers interference from flow τk. But

this interference is not accounted for as τk does not directly

interfere with τi.

In addition to these parameters, each flow has a priority

Pi; the value 1 denotes the highest priority and larger integers

denote lower priorities. It also has a source and destination

tile (πs
i and πd

i). The usual X-Y routing [20] is assumed and

hence the source and destination values fully define the route

the flow will take. For example, with a 3x3 grid, a source (3,3)

and destination (2,1), the flow will pass from (3,3) to (2,3) to

(2,2) to (2,1). It follows that, with deterministic routing, only

the header flit must carry the address of the destination node.

D. Schedulability analysis

Schedulability analysis for priority-preemptive wormhole

networks has existed for more than two decades, even before

networks-on-chip were a reality. Its aim is to check, for a set of

sporadic flows of fixed-priority packets, whether the latency of

all packets can be upper-bounded, and such upper-bounds are

less than their respective deadline. Works by Mutka [19] and

Hary and Ozguner [9] in the mid 1990s used classic fixed-

priority schedulability analysis while considering the entire

path of a given packet as a single shared resource, so that

its worst-case latency bound can be found by analysing the

direct interference caused by higher priority packets that share

at least one link of their route. Kim et al. [17] also identified

and accounted for the effects of indirect interference, which

happens when two packet flows do not share any network

links but one of them can still have an impact on the latency

bounds of the other (by affecting the temporal behaviour of a

third packet flow which shares links with both of them).

Most schedulability analyses developed for priority-

preemptive NoCs (such as Shi and Burns [29] in 2008 and

Kashif and Patel [16]) were based on those foundations until

the discovery in 2016 of multi-point progressive blocking [33].

MPB arises when indirect interference happens downstream

from the shared link(s) through which direct interference is

caused (due to backpressure effects caused by finite buffering

per router). Xiong et al. [33] identified this backpressure using

simulations; they showed that downstream indirect interference

can sometimes cause a single packet of some flow τj to

directly interfere on packet τi by more than the amount of

time that τj would take to traverse an unloaded network (i.e.

τj’s basic latency Cj). That scenario disproved one of the

assumptions made by Shi and Burns, and Kashif and Patel, and

showed that a flit of a packet of τj may interfere multiple times

on a packet of τi over multiple shared links. Such scenario

can arise when τj (1) suffers interference from a packet τk
that does not interfere with τi and (2) shares links with τk
downstream from the links it shares with τi. As MPB was

underestimated in the earlier analysis it can leave to optimistic

predictions of schedulability. More details on MPB are to be

found in [34] and [13]).

Rate-limiting and buffer management approaches have been

used to reduce backpressure (for example [10], [2], [11], [32],

[25]), but they only focus on reducing the average packet

latency and are not usable to bound worst-case latency (and

therefore do not explicitly model MPB effects).

Since its discovery, MPB has been safely modelled (i.e. no

known optimistic counter-examples) by three forms of analy-

ses (in increasing order of tightness): Xiong et al. [34] (which

corrected their unsafe attempt reported in [33]), Indrusiak et

al. [13] and Nikolic et al. [24]. Despite the consistent increase

3

in tightness, all of them are still significantly more conservative

than previous analyses that did not model MPB. For instance,

Indrusiak et al. [13] show that for some utilisation ranges

Shi and Burns [29] analysis can deem schedulable twice as

many scenarios as the analysis they proposed, and four times

as many as the analysis proposed by Xiong et al. [34]. That

shows the magnitude of the potential improvements that can

be achieved if MPB could be completely avoided and simpler

analyses could be used.

The fact that it took 20 years to identify the MPB problem is

witness to the fact that scenarios in which the simple analysis

was demonstratively optimistic are very rare events. Counter-

examples were not easily constructed [33], and general flow-

set simulations did not illustrate the problem. Nevertheless,

to guarantee real-time behaviour the applicable analysis must

be sufficient (i.e. safe in all situations). In this paper we

achieve this by retaining the simpler analysis but removing

the potential for optimism by proposing a novel flow control

mechanism, which in turn requires changes to typical NoC

router architectures.

Shi and Burns Analysis: For completeness we briefly de-

scribe the analysis of Shi and Burns [29], which is sufficient

for the proposed flow control mechanism and respective NoC

router changes.

For flow τi its worst-case response time is given by:

Ri = Ci +
∑

τj∈Shp(i)

⌈

Ri + JD
j + JI

j

Tj

⌉

Cj , (1)

where Shp(i) is the set of higher priority flows that share

any link with τi. This equation is solved using the standard

techniques for solving recurrence relations (i.e. fixed point

iteration). Once solved, a flow is deemed schedulable if

Ri ≤ Di; the full set of flows is schedulable if all its flows

are schedulable.

The value of JD
j comes from whatever agent inputs the

flow into the network. For example, if the source of τj is a

periodic task executing on πs
j with period 20ms and response

time 15ms then τj could arrive at the router anytime within an

interval of 15ms; hence JD
j = 15 [1]; The value of the other

release jitter, JI
j , is given by [29]:

JI
j = Rj − Cj . (2)

Indirect interference jitter occurs when a flow (τz) with higher

priority than τj (and therefore higher than τi) shares a link with

τj but not with τi. Flow τi is not directly impacted by τz , but

it is effected indirectly via τj .

Each flow is analysed in turn, from the highest priority (to

compute the Rs) to the lowest (using computed Rs from higher

priority flows).

III. PROPOSED FLOW CONTROL PROTOCOL

The main contribution of this paper is a novel flow control

protocol that avoids MPB effects, and a novel router archi-

tecture implementing that protocol. Our aim is to avoid back-

pressure, which is a common feature in wormhole switching,

and the key cause of MPB [13]. Backpressure happens when a

packet is blocked in a NoC router, i.e. its desired output link is

used by another packet of higher priority, so its incoming flits

are buffered in that router until the buffer is full. At that point,

the next upstream router will not be able to forward flits to

the congested router anymore, so it would start buffering the

flits itself until its buffers are full, then the buffering will start

in the next upstream router, and so on. In off-chip networks,

backpressure has been avoided by using store-and-forward or

virtual cut-through switching [20]. Those mechanisms require

buffers that are large enough to hold a complete packet, which

is impractical in NoCs due to the overheads in silicon area and

power dissipation.

Recent works have also tried to address MPB, proposing

novel protocols for link arbitration and flow control to avoid

backpressure [22][31]. None of these papers address imple-

mentation issues or provide a prototype implementation. In

both papers, the proposed protocols require signalling that goes

beyond neighbouring routers, and possibly across the whole

network. While acceptable in off-chip wormhole networks,

such an approach is impractical in on-chip implementations,

as they require global wires (which are one of the critical

problems that NoCs are supposed to avoid in the design of

on-chip systems, due to their excessive energy dissipation and

difficulties in timing closure and routing [6]).

In this paper, we propose a novel flow control protocol that

avoids MPB by preventing backpressure without resorting to

global wires. Instead, we rely on the communication between

a router and its local network interface. The proposed protocol

avoids backpressure by temporarily ejecting flits from the

network into the local tile whenever their desired output link

is blocked. Once a flit has been ejected to the local tile,

all subsequent flits from its packet will also be ejected. The

ejection of a flit uses dedicated wires that are part of the link

connecting the router’s local output port and the local network

interface, which we refer as an ejection sink, or simply sink.

Once ejected via a sink, flits must be stored in the local tile

until they can be re-injected to the network (i.e. when their

desired output port becomes available) via dedicated local link

wires that we refer as re-injection sources. That way, we can

avoid backpressure in the same way as in SAF or VCT, but

without requiring dedicated buffers in the router.

The implementation of the proposed protocol in a NoC

router can actually simplify some of the components that are

present in the priority-preemptive wormhole router described

in subsection II-B. Firstly, the new router only requires a single

two-position FIFO buffer per input port, i.e. to enable the

pipelined forwarding of flits (one position to receive a flit,

another to forward a flit). Separate buffers for distinct virtual

channels are no longer necessary in input ports connected to

neighbouring routers, as only one flit will be received at a

time at each input port. By the end of the cycle, that flit

will either be forwarded to the desired downstream router,

or it will be ejected from the network. Likewise, credit-based

flow control mechanisms are no longer needed. Notice that the

notion of virtual channels is still maintained (and implemented

4

as additional wires on the link between routers, in order to

indicate the virtual channel ID of each flit, exactly as in the

baseline architecture).

On the other hand, the proposed ejection and re-injection

of flits requires a number of changes to the NoC router and

network interface. We hereby describe the proposed changes,

and use their index number (e.g. change 2) to refer to each of

them in the remainder of this paper.

• change 1: the control logic of the router crossbar must be

changed so that if an input port does not receive a grant

arbitration signal from its desired output port, it must be

connected to the local output port instead, so that it can

use its sink to forward the flit at the head of its FIFO

queue to the local tile;

• change 2: the network interface should be aware of any

flits temporarily stored in the tile’s memory and their

desired output ports, so that it can request arbitration

to those output ports and forward flits through them

whenever they are free;

• change 3: the arbitration logic of each output port must

be changed so that it gives precedence to arbitration

requests from the local port (issued by the NI) attempting

to forward flits temporarily stored in the local tile, over

new flits coming from a non-local port in the same VC.

New incoming flits will instead follow the same path as

their predecessors through the local tile, so that the flit

ordering of the packet is not changed and backpressure

does not occur. The change in arbitration must only be

enforced for requests by the same VC (i.e. same priority),

with no change to the usual preemptive arbitration for

packets of different priority levels.

Let us describe a typical scenario to show how the proposed

mechanism changes the behaviour of the NoC router. We

assume a packet P arriving via VC 3 to the west input port,

which must be routed to a non-local output port (the north port,

in this example). Whenever that output port is busy forwarding

a flit from an input VCs of higher priority (from a packet Q

that was either there before the arrival of P , or arrived anytime

during its transmission and thus preempted it), the flits of P

will be redirected to the local tile via local output port, one

by one, as long as the desired output port is busy (as specified

by change 1 above) . If the desired output is free, flits of

P are forwarded through it to the next downstream router

(exactly as in the baseline architecture). Flits that are sent to

the local tile will be stored there, and will trigger the NI to

request arbitration on their behalf to their desired output port

(as specified by change 2 above). The desired output port of

packet P (the north port in this example) will then receive two

arbitration requests from VC 3 (one from the remaining flits

from P in the west input port, and another one from the NI

over the local input port on behalf of the temporarily stored

flits in the local tile) and possibly more from the higher priority

packet(s) that prevented P from using the output port in the

first place (Q in this example). The north output port will not

grant arbitration to any of the requests from VC 3 until all

flits of higher priority VCs are served. Every time arbitration

is denied to VC 3 in the west input port, one more flit is sent

out via local output port to the local memory. Once all flits

of higher priority VCs are served, there are two possibilities:

either the whole of P has been stored in the local memory and

the local tile’s NI is the only one requesting arbitration (which

will then be obviously granted and the stored flits will be on

their way in FIFO order) or there will be part of P still coming

in via south input port (and thus competing with the local

tile’s NI for arbitration). Change 3 is necessary because of the

latter possibility: if the highest priority arbitration requests are

simultaneously coming from a local and a non-local input port,

precedence should be given to the local port so it can forward

the locally-stored flits that arrived earlier than those in the

non-local port, maintaining the original order of flits of the

packet.

Figure 2 shows two stages of the described scenario. On the

left-hand side, it shows flits of P being sent to the local tile

because the north port is busy forwarding flits of Q. On the

right-hand side, it shows the situation after Q has finished its

transmission and the arbitration of the north output is given to

the local input driven by the NI. In that exact moment, VC3 is

requesting arbitration from inputs west and local respectively

for flits 2 and 6 of packet P . According to change 3, the local

port will be granted arbitration to forward flit 2, while flit 6

will be denied arbitration and will be forwarded to the local

memory.

…
Q4

Q5

Q6

W E

N

P2

P1

Q9

Q8

Q7

…
P6

P5

P4

P3

L

…
Q9

P1

W E

N

P6

P4 P5

…
P9

P8

P7

L

P2

P3

Fig. 2. Two stages of the scenario describing the proposed changes
to NoC router, local link and network interface

One more change to the architecture is required before we

can completely avoid backpressure. Even with the architectural

upgrades proposed so far, it is still possible for a packet to

be blocked and thus prevent the reception of its flits from

upstream routers: when a flit needs to be ejected, but is unable

to acquire arbitration to the local port. In that case, the flit

will stay in the input buffer and will prevent other flits from

moving forward, causing backpressure. This situation could

happen when a higher priority packet has also been redirected

to the local port (i.e. its desired output port was also busy,

or the local tile is actually its final destination). We therefore

propose the following change:

• change 4: the local links should be widened so that they

can simultaneously input/output flits from/to all non-local

5

ports of the router, effectively eliminating the need for

the arbitration unit. Additional control logic and wires

are needed to notify the NI of valid flits to be stored,

their respective VCs and their intended destination ports

(as specified by change 2).

In Figure 2, change 4 is represented by the multiple arrows

coming in and out of the local port of the router. Each black

arrow coming out of the router represents a distinct sink, each

of them used to prevent backpressure by ejecting flits from

each of the router’s non-local input ports (i.e. up to four sinks;

in Section V we consider how this number can be reduced).

Likewise, white arrows coming back into the router represent

the re-injection sources (which can also be minimised, but we

leave that as future work).

Change 4 eliminates contention when flits access the local

tile. Assuming that the NI can always consume all incoming

flits, the problem of backpressure in the NoC can be com-

pletely eliminated. That assumption is not unreasonable, as it

is typically made by all congestion-free NoCs (such as several

TDM architectures [28]). In the proposed approach, it is likely

that the NI will have to use the local memory tile to store

the ejected flits. Such integration of the NI with the memory

controller of the local tile has already been investigated in [26],

enabling direct memory access from incoming flits from the

router as required in change 4. In our approach, however, it is

possible that multiple flits can be ejected (i.e. one from each

input port) and/or re-injected (i.e. one to each output port) at

the same time, and that poses additional design challenges to

the network interface and tile memory (which we will revisit

in Section VII).

Besides contributing to the elimination of backpressure,

and consequently of MPB, change 4 also provides additional

bandwidth to the NoC, reducing the severity of local link

bottlenecks (as we will show in Section IV). On the other

hand, those benefits come with a cost. Despite the elimination

of the local port arbitration unit, change 4 still imposes energy

and area overheads with the additional logic and wires required

for the widening of the local links. Previous research on wider

NoC flits show that the router area has a greater-than-linear

growth with the size of the flit, as the buffer area has a linear

growth rate and the crossbar switch has a quadratic growth

rate [18]. In our proposal, however, the overheads will be far

less significant, since we are only changing the width of the

local link (and not all of them, as in [18]) and we are not

increasing the amount of buffering or the width of the links

in the crossbar.

IV. EVALUATION OF THE IMPACT OF THE PROPOSED

APPROACH ON NOC SCHEDULABILITY

With the elimination of backpressure, there is no need to

account for MPB effects when calculating worst-case packet

latency. This means that in this case, the state-of-the-art

analysis by Nikolic et al. [24] becomes too pessimistic, and

analyses such as Shi and Burns [29] become safe. To quantify

the impact of the proposed approach on the schedulability

of NoCs, we have performed a large-scale comparison of

different analyses applied to synthetic packet flows mapped

to priority-preemptive NoCs with and without the proposed

approach. Below, we describe the experimental setup in detail.

We perform separate experiments on NoC platforms of two

different sizes: 5x5 and 10x10 (i.e. 25 and 100 routers). For

each platform size, we compare the baseline QNoC architec-

ture with an architecture implementing the proposed protocol

described in Section III. The analysis of all architectures as-

sumes implementations with 2D-mesh topology, deterministic

XY routing, 2-position FIFO buffers per VC and operating

frequency of 100 MHz.

To evaluate schedulability of flow sets over each platform,

we generate sets of sporadic packet flows, randomly map each

of the flows in the set onto the platform, and then apply

different schedulability analyses to test whether each set is

fully schedulable, i.e. if all its packet flows will deliver all

their packets by their respective deadlines even in a worst-

case scenario. All packet flows on each set are based on

the following characteristics: periods uniformly distributed

between 0.5 s and 0.5 ms, maximum packet lengths uniformly

distributed between 128 and 4096 flits, rate-monotonic priority

assignment, and deadlines equal to the respective periods.

To show how schedulability changes with the increase of the

communication load handled by the NoC, we generate multiple

flow sets with increasing number of flows in each of them.

Given the random nature of the mapping and of the selection

of periods and packet lengths, we generate 100 different flow

sets for each load level (i.e. amount of flows in the set) and

plot how many of them are fully schedulable in Figures 3 to

6.

Each of the lines on the plots in Figures 3 and 5 represents

a different platform and a different analysis, as follows:

• SotA: flows mapped onto baseline NoC platform, flow set

schedulability evaluated with the state-of-the-art MPB-

aware analysis by Nikolic et al. [24].

• SotAUp: flows mapped onto baseline platform with

widened local links (as described in change 4), flow set

schedulability evaluated with the state-of-the-art MPB-

aware analysis by Nikolic et al. [24]. The only difference

w.r.t the SotA case is that, due to change 4, no interfer-

ence will ever happen over the local port of the routers.

• SB: flows mapped onto baseline platform, flow set

schedulability evaluated with unsafe MPB-unaware anal-

ysis by Shi and Burns [29].

• SBUp: flows mapped onto NoC platform with the pro-

posed protocol and all 4 changes to router and NI, flow

set schedulability evaluated with analysis by Shi and

Burns [29].

The first conclusion we can take away from the experiment

is that despite of all the improvements on tightness obtained

by Nikolic et al. [24] over the preceding MPB-aware analyses

[13][34], it still provides low levels of schedulability (SotA

line in Figures 3 and 5) due to the difficulties of handling the

corner cases imposed by MPB. If no changes to the NoC are

possible, this is still the best we can do though.

6

0

10

20

30

40

50

60

70

80

90

100

1
0

0

1
4

0

1
8

0

2
2

0

2
6

0

3
0

0

3
4

0

3
8

0

4
2

0

4
6

0

5
0

0

5
4

0

5
8

0

6
2

0

6
6

0

7
0

0

7
4

0

7
8

0

8
2

0

8
6

0

9
0

0

9
4

0

9
8

0

1
0

2
0

1
0

6
0

1
1

0
0

1
1

4
0

1
1

8
0

1
2

2
0

1
2

6
0

%
 s

ch
e

d
u

la
b

le
 f

lo
w

se
ts

flows per flowset

SotA SotAUp SB SBUp

Fig. 3. Schedulability results for baseline and proposed platforms with 5x5
topologies. Each point represents the percentage of fully schedulable flow
sets (out of a set with 100 flow sets, each of them with the number of flows
indicated over the X-axis).

0

10

20

30

40

50

60

70

80

90

1
0

0

1
4

0

1
8

0

2
2

0

2
6

0

3
0

0

3
4

0

3
8

0

4
2

0

4
6

0

5
0

0

5
4

0

5
8

0

6
2

0

6
6

0

7
0

0

7
4

0

7
8

0

8
2

0

8
6

0

9
0

0

9
4

0

9
8

0

1
0

2
0

1
0

6
0

1
1

0
0

1
1

4
0

1
1

8
0

1
2

2
0

1
2

6
0

%
 d

if
fe

re
n

ce
 i
n

 f
lo

w
se

t
sc

h
e

d
u

la
b

il
it

y

flows per flowset

% diff SBUp - SotA % diff SBUp - SotAUp % diff SBUp - SB

Fig. 4. Data for 5x5 showing difference in flow set schedulability

The second conclusion is that the widening of the local links

proposed in change 4 can provide some improvement (SotAUp

line in Figures 3 and 5) due to the increased bandwidth and

reduced interference when packets leave and arrive to the local

tile. If the arbitration rules are not changed (as proposed in

changes 1 to 3), MPB is still an issue and so are the difficulties

of handling its corner cases, as described above.

The third and main conclusion is that the proposed flow con-

trol protocol, which completely prevent MPB and thus allow

us to analyse schedulability using Shi and Burns [29], gives us

a significant increase in schedulability (SBUp line in Figures 3

and 5). Such increase reaches up to 77% against the baseline,

and up to 74% against a baseline with widened local links

from change 4 (which is a fairer comparison). Furthermore,

due to the additional local link bandwidth enabled by change 4,

the proposed approach provides even better schedulability than

what could previously be obtained by the unsafe application

0

10

20

30

40

50

60

70

80

90

100

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

4
4

0

4
8

0

5
2

0

5
6

0

6
0

0

6
4

0

6
8

0

7
2

0

7
6

0

8
0

0

8
4

0

8
8

0

9
2

0

9
6

0

1
0

0
0

1
0

4
0

1
0

8
0

1
1

2
0

1
1

6
0

1
2

0
0

1
2

4
0

1
2

8
0

1
3

2
0

1
3

6
0

%
 s

ch
e

d
u

la
b

le
 f

lo
w

se
ts

flows per flowset

SotA SotAUp SB SBUp

Fig. 5. Schedulability results for baseline and proposed platforms with 10x10
topologies. Each point represents the percentage of fully schedulable flow
sets (out of a set with 100 flow sets, each of them with the number of flows
indicated over the X-axis).

0

10

20

30

40

50

60

70

80

90

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

4
4

0

4
8

0

5
2

0

5
6

0

6
0

0

6
4

0

6
8

0

7
2

0

7
6

0

8
0

0

8
4

0

8
8

0

9
2

0

9
6

0

1
0

0
0

1
0

4
0

1
0

8
0

1
1

2
0

1
1

6
0

1
2

0
0

1
2

4
0

1
2

8
0

1
3

2
0

1
3

6
0

%
 d

if
fe

re
n

ce
 i
n

 f
lo

w
se

t
sc

h
e

d
u

la
b

il
it

y

flows per flowset

% diff SBUp - SotA % diff SBUp - SotAUp % diff SBUp - SB

Fig. 6. Data for 10x10 showing difference in flow set schedulability

of the Shi and Burns analysis on the baseline platform (SB

line in Figures 3 and 5) (up to 14%).

Finally, we can see that the improvements due to change

4 are more prominent in the 5x5 architecture because the

reduced number of cores boosts the importance of contention-

free access to the local tile (as more flows will cross a local

link, on average). Similarly, the improvements due to changes

1 to 3 are more prominent in the 10x10 platform, as the packet

routes will be longer and therefore more prone to MPB [13].

V. CUSTOMISED WIDENING OF LOCAL LINKS

The previous section has demonstrated the benefits that are

obtained if MPB is eliminated. The cost of this performance

gain is the changes that must be made to the router – as

explained in Section III. The support for four ejection sinks

per router proposed in change 4, aiming to widen the local port

so that all non-local ports can simultaneously redirect traffic to

7

local memory, requires extra physical resources and increased

energy consumption. However, not all routers require four

sinks. Indeed, some will require none at all (and hence will

require no widening of the local output link), as the flows

going through them would not experience MPB effects. In

this section, we derive the necessary conditions for an arbitrary

router to require a sink for each of its input ports, and then

evaluate the number of sinks required for a range of system

configurations.

A. Requirements for a sink

For an input port to require a sink at a particular router,

the port’s incoming link must be used by two flows of

different priority that diverge at the router (i.e. leave it via

different output ports). Moreover, the higher priority flow must

suffer interference from an even higher priority flow on a

link elsewhere in the network that is not used by the lower

priority flow. These necessary relationships can be modelled

as follows:

Let τ , τ1 and τ2 be flows; let λ and λ1 be links, and ξ be

a router. Define functions Pri(τ) to deliver a flow’s priority;

Use(τ, λ) to be a predicate that is true if flow τ uses link λ;

and Des(τ, ξ) to be the destination of flow τ from router ξ.

Link λ into router ξ will require a sink in ξ if and only if:

∃τ1, τ2, λ, λ1, ξ • Use(τ, λ) ∧ Use(τ1, λ) ∧

Pri(τ1) > Pri(τ) ∧ Des(τ1, ξ) 6= Des(τ, ξ) ∧

Use(τ1, λ1) ∧ Use(τ2, λ1) ∧ ¬Use(τ, λ1) ∧

Pri(τ2) > Pri(τ1)

This implies that flows τ and τ1 arrive at the router along the

same link but leave by different links – and τ1 has the higher

priority. Moreover, there is a link (λ1) that is used by τ1, an

additional arbitrary flow τ2 (with higher priority than τ1), but

is not used by τ . Because τ1 suffers interference (from τ2)

elsewhere in the network it can induce additional interference

on τ at ξ; hence τ needs to be buffered on ξ, and so link λ

needs a sink on ξ.

These conditions are unlikely to be widespread; if for

example two flows share, say, 5 links then only in the last

router will there be a possible MPB problem. And then only if

the higher priority flow suffers interference from another even

higher priority flow elsewhere in the network. In the following

we examine how often are sinks actually required.

B. Evaluation

In this section we investigate the number of routers that

typically require changes if MPB is to be avoided, and also the

scale of such changes (i.e. how many sinks are needed, and

therefore how much wider the local link needs to be). This

evaluation is again undertaken by creating a large number of

flow sets and randomly mapping them onto two different NoC

architectures (once more, 5x5 and 10x10 mesh topologies).

The method of generating the flow sets is the same as that

used in Section IV.

0

10

20

30

40

50

60

70

80

90

100

5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0

5

1
1

5

1
2

5

1
3

5

1
4

5

1
5

5

1
6

5

1
7

5

1
8

5

1
9

5

2
0

5

2
1

5

2
2

5

2
3

5

2
4

5

n
o

rm
a

li
se

d
 p

e
rc

e
n

ta
g

e

flows per flowset

SB AVG DUP % NO DUP % FULL DUP

Fig. 7. Number of routers than require modification, against increasing load
on the system for 5x5 NoC

0

10

20

30

40

50

60

70

80

90

100

2
0

3
2

4
4

5
6

6
8

8
0

9
2

1
0

4

1
1

6

1
2

8

1
4

0

1
5

2

1
6

4

1
7

6

1
8

8

2
0

0

2
1

2

2
2

4

2
3

6

2
4

8

2
6

0

2
7

2

2
8

4

2
9

6

3
0

8

3
2

0

3
3

2

3
4

4

3
5

6

3
6

8

3
8

0

3
9

2

4
0

4

4
1

6

4
2

8

4
4

0

4
5

2

4
6

4

4
7

6

n
o

rm
a

li
se

d
 p

e
rc

e
n

ta
g

e

flows per flowset

SB AVG DUP % NO DUP % FULL DUP

Fig. 8. Number of routers than require modification, against increasing load
on the system for 10x10 NoC

For each random mapping we first establish if the flow set

is schedulable by Shi and Burns [29] analysis. For those that

are schedulable we then use the requirement defined above to

check every link and every route to determine if it needs a

sink. Figures 7 and 8 show the results of this evaluation. Each

figure shows:

• SB: The schedulability curve (how many flow sets are

deemed schedulable by the analysis reviewed in subsec-

tion II-D).

• NO DUP: The number of routers that require no widening

of the local link (this is expressed as a percentage of the

total number of routers in each network – 25 in Figure 7

and 100 in Figure 8).

• FULL DUP: The number (percentage) of routers that

require the maximum widening of the local link (i.e. four

sinks).

• AVG DUP: This is the average number of sinks required

(per router) – here 100% on Y axis means 4, 50% 2 etc.

8

Note that towards the right-hand side of the graphs the

number of schedulable flow sets is reduced and hence all the

sink requirement counts reduce (as only schedulable flow sets

are analysed).

The results of this evaluation are clear: there is never a

need for all routers to have sinks for all their input ports. In

all experiments, the average number of sinks per router never

exceeds 2. If we consider the point on these graphs where

50% of the flow sets are schedulable then we see that, for

the 5x5 NoC only 12% of the routers require sinks for all

inputs and the average number of sinks is less than 2. For the

10x10 NoC, at the 50% schedulability bar, less than 5% of

the routers require all four sinks, and the average number of

sinks is around 1.

C. Implications for NoC design

The results from the targeting evaluations have a number of

practical ramifications.

1) If the NoC is general purpose and not configurable then

although all four sinks would be present on the fabric, a

significant number could be disabled which would reduce

the energy consumption of the NoC.

2) If the NoC is configurable (e.g. implemented using FPGA

technology) then once an application is mapped to the

NoC then the real requirement of each link on each router

would be known and sinks provided only where needed.

3) If the application is flexible, in terms of where tasks

(and hence flow sources and destinations) are allocated,

and/or which routes are available (between sources and

destinations) then as part of the mapping exercise – which

may make use of search techniques such as Genetic

Algorithms (GAs) as in [27] – routers that have, say,

only two sinks could form the building blocks of the NoC

platform.

In the latter case, as the targeting evaluation implies that

on average less than two sinks per router are needed it is

reasonable to ask if indeed two sinks are sufficient (in almost

all cases) when there are sufficient degrees of freedom in

terms of task allocation and flow routing. Experimental work

to investigate this possibility is beyond the scope of this paper,

but will form the basis of future work along other aspects

covered in the Section VII.

VI. IMPLEMENTATION RESULTS

To demonstrate that the proposed protocol is straightforward

to implement and to evaluate the likely hardware overhead

within a NoC router, we have designed and implemented the

proposed router using a Xilinx FPGA through the Vivado

design flow (including Vivado HLS). For the sake of fair

comparison, we have also implemented the baseline wormhole

router through the same design flow, and replicated in both

routers the functionality that is common between them (e.g.

header flit processing, routing). In both cases, we made the

router designs customisable in terms of ports (to discriminate

corner, edge and central routers in mesh NoCs, and to support

other topologies) and virtual channels (to support applications

0

20000

40000

60000

FFbase LUTbase FFprop LUTprop

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7

e
le

m
e

n
t

co
u

n
t

VC count

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3 4 5 6 7 8

e
le

m
e

n
t

co
u

n
t

port count

(a) (b)

Fig. 9. FPGA usage in flip-flop and look-up tables for baseline and proposed
NoC router

with distinct requirements when it comes to real-time guar-

antees). The flit width was set to 64 bits. In the case of the

proposed router, we implemented the maximum widening of

the local links, i.e. to allow for the simultaneous ejection of

flits from all four input ports, as this is the maximum amount

of overhead that the proposed approach would ever require

(even though in practice this may be never needed, as we

show in Section V). On the other hand, the baseline router

was implemented in its leaner form without any local link

widening.

In Figure 9, we show for both baseline and proposed router

how FPGA usage (in terms of required number of flip-flops

and look-up tables) scales with the number of (a) ports and

(b) virtual channels. The plotted results are obtained from

Vivado’s out-of-context synthesis, which provides a fairer

comparison by excluding potential optimisations done by

mapping and place-and-route tools when targeting the design

to a specific FPGA device. When scaling the number of ports,

all designs are implemented with 2 VCs, and when scaling

the number of VCs we fix all designs to be implemented

with 5 ports. The results show that the proposed design is

superior than the baseline, and scales far better due to the

simpler buffering and crossbar structures requiring a lower

usage of look-up tables. It requires a slightly higher number

of flip-flops in larger routers, but this is because unlike the

baseline it does not use any block RAMs to implement its

buffers (while the baseline uses between 12 to 30 block RAMs,

not plotted in Figure 9). We then performed full synthesis of

a complete 2x2 NoC with routers implementing the proposed

approach, mapped it to a Zynq-7000 device set to be clocked

at 250MHz, and obtained the dynamic power dissipation of the

NoC interconnect while scaling the number of VCs (Table I,

error margin of 1mW). We also obtained the dynamic power

dissipation of the complete FPGA (which also implemented

network interfaces, packet sources and sinks, testing circuitry

9

TABLE I
DYNAMIC POWER DISSIPATION (MW) OF THE PROPOSED 2X2 NOC

INTERCONNECT IMPLEMENTED ON A ZYNQ-7000 DEVICE

VCs 1 2 3 4 5 6 7

proposed NoC 28 47 59 67 82 98 111
total 1432 1449 1462 1471 1485 1501 1514

and two integrated ARM Cortex-A9 cores). The obtained

figures for the NoC represented less than 10% of the total

dynamic power dissipation of the device.

VII. LIMITATIONS AND FUTURE WORK

This paper focuses on a network protocol that aims to

eliminate MPB, and provides a solution to this problem within

the scope of a NoC router architecture. The proposed solution,

however, makes two assumptions regarding the operation of

the platform beyond the scope of the NoC router, namely:

1) the NI will always have the oldest ejected flits ready for

re-injection when their desired output ports become free;

2) the NI can always consume all ejected flits.

The first assumption is not critical, and as long as re-

injection happens in bounded time our solution would still

hold (but the equations presented in subsection II-D would

have to be modified to account for the re-injection delay).

The second assumption, on the other hand, is key to

the elimination of backpressure (and of MPB) and therefore

critical to the proposed solution. As mentioned in Section III

when we discussed the introduction of change 4, the NI will

often have to use the memory of the local tile as temporary

storage of ejected flits for the second assumption to hold

(unless the number of ejected flits is small enough to fit in

NI buffers, which we assume to be the exception rather than

the rule). In the case of routers with a single sink (which

would be the most common scenario, as shown in Section

V), the access to the tile memory could be solved with a NI

design such as the one presented in [26]. For the cases where

multiple sinks are needed, the problem becomes more complex

as multiple ejected flits arriving to the NI at each cycle may

require tile memory to support multiple simultaneous reads

and writes, or require the tile to operate at a faster frequency

than the network. In either case, we leave the detailed design

and evaluation of the NI and memory management solutions

as future work.

Besides the future work that is required outside the scope

of the NoC router, there are router design alternatives that

have been identified by this work but not yet exploited or

evaluated. In change 4, we proposed the widening of both

outgoing and incoming local links of the NoC router, but

MPB can be completely avoided only with the widening of

the outgoing local links (i.e. sinks). Backpressure only occurs

if flits cannot advance from one router to the next, and not

when the source is a tile. If only outgoing links are widened

and re-injection happens over an unmodified link (i.e. no

widening, no additional re-injection sources), the overheads in

area and energy dissipation are potentially smaller. In that case,

the improvements in schedulability would not be as good as

reported in this paper because flits that are temporarily stored

in the local tile will have to compete for arbitration upon re-

injection to the NoC. In other words, even packet flows that

did not interfere with each other in the baseline architecture

would suffer or cause interference during re-injection. This

imposes a compelling trade-off between schedulability gains

and implementation overheads, and it would be interesting

to know how significant the impact on schedulability would

be and whether that impact could be mitigated with smart

mapping and routing heuristics.

Also related to task mapping and flow routing, we aim to

investigate how to optimise them so that we can minimise

the number of sinks required on each router (following the

findings from Section V). Finally, the proposed router design

also opens new avenues of research from the point of view

of the analysis, and additional work could be done to assess

whether existing improvements to Shi and Burns analysis

(such as [16] or [23]) are able to improve tightness when

analysing the upgraded architecture in the same way they did

to the baseline.

VIII. CONCLUSIONS

In this paper, we have presented a novel flow control proto-

col to avoid the problem of multi-point progressive blocking

(MPB) in priority-preemptive networks-on-chip. By exploiting

the memory available in the local tile and the widening of

the local link, we could prevent backpressure and therefore

avoid MPB completely. We showed that the proposed protocol

results in significant benefits in schedulability of sporadic

packet flows sent over the network, as simpler analyses can be

used to evaluate the worst-case response time of such flows.

Over a comprehensive series of experiments, we showed that

the proposed approach can guarantee schedulability to up to

77% more cases than a typical priority-preemptive wormhole

baseline.

To enable packets to access the local tile memory without

the possibility of backpressure, we proposed a number of

changes to a priority-preemptive wormhole NoC router archi-

tecture that is widely used in previous works. Unlike other ap-

proaches addressing MPB, ours does not rely on global wires

and is fully compatible with typical on-chip implementation

processes. To demonstrate the feasibility of our approach and

to evaluate its hardware overheads, we designed and compared

FPGA implementations of the proposed architecture and the

baseline. We showed that the implementation overheads of the

proposed approach are comparable or lower than those of the

baseline (and much lower as the router scales up the number

of ports or virtual channels). Furthermore, the implementation

overhead of the proposed NoC can be minimised even further

if routers can be configured according to their individual needs.

The contribution presented in this paper focuses only on

the NoC router operation and analysis. It makes assumptions

about the operation of the NI and the tile memory management

system, and additional research is required to devise designs

10

that make sure those assumptions hold in a concrete imple-

mentation. Additional avenues of research opened by this work

include the exploitation of the trade-off between hardware

overheads and schedulability when widening local links for

flit re-injection, as well as the optimisation of task mapping

and packet routing to minimise local link widening for flit

ejection.

REFERENCES

[1] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Incorporat-
ing unbounded algorithms into predictable real-time systems. Computer

Systems Science and Engineering, 8(2):80–89, 1993.
[2] D. U. Becker, N. Jiang, G. Michelogiannakis, and W. J. Dally. Adaptive

backpressure: Efficient buffer management for on-chip networks. In
Proc. IEEE 30th International Conference on Computer Design (ICCD),
pages 419–426, 2012.

[3] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of Network-on-chip. ACM Comput Surv, 38(1):1, 2006.

[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC: QoS
architecture and design process for network on chip. J Syst Arch, 50(2-
3):105–128, 2004.

[5] A. Burns, J. Harbin, and L.S. Indrusiak. A Wormhole NoC Protocol
for Mixed Criticality Systems. In IEEE Real-Time Systems Symposium,
pages 184–195, 2014.

[6] W. J. Dally and B. Towles. Route packets, not wires: on-chip inter-
connection networks. In Proc. Design Automation Conference (DAC),
pages 684–689, 2001.

[7] W.J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[8] K. Goossens, J. Dielissen, and A. Radulescu. AEthereal network on chip:
concepts, architectures, and implementations. IEEE Design & Test of

Computers, 22(5):414–421, 2005.
[9] S. L. Hary and F. Ozguner. Feasibility test for real-time communication

using wormhole routing. IEE Proceedings CDT, 144(5):273–278, 1997.
[10] J. Hu and R. Marculescu. Application-specific buffer space allocation

for networks-on-chip router design. In Proc. IEEE/ACM International

Conference on Computer Aided Design (ICCAD), pages 354–361, 2004.
[11] J. Hu, U. Y. Ogras, and R. Marculescu. System-level buffer allocation

for application-specific networks-on-chip router design. Proc. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 25(12):2919–2933, 2006.
[12] L. S. Indrusiak. End-to-end schedulability tests for multiprocessor

embedded systems based on networks-on-chip with priority-preemptive
arbitration. J Syst Arch, 60(7):553–561, 2014.

[13] L. S. Indrusiak, A. Burns, and B. Nikolic. Buffer-aware bounds to
multi-point progressive blocking in priority-preemptive nocs. In Design,

Automation Test in Europe Conference Exhibition (DATE), pages 219–
224, 2018.

[14] L. S. Indrusiak, J. Harbin, and A. Burns. Average and Worst-Case
Latency Improvements in Mixed-Criticality Wormhole Networks-on-
Chip. In Proc. ECRTS, 2015.

[15] H. Kashif, S. Gholamian, and H. Patel. SLA: A Stage-Level Latency
Analysis for Real-Time Communication in a Pipelined Resource Model.
IEEE Trans Comp, 64(4):1177–1190, 2015.

[16] H. Kashif and H. Patel. Buffer Space Allocation for Real-Time Priority-
Aware Networks. In RTAS Symposium, pages 1–12, 2016.

[17] B. Kim, J. Kim, S. Hong, and S. Lee. A real-time communication
method for wormhole switching networks. In Int Conf on Parallel

Processing, pages 527–534, 1998.
[18] J. Lee, C. Nicopoulos, S. J. Park, M. Swaminathan, and J. Kim. Do

we need wide flits in Networks-on-Chip? In IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), pages 2–7, 2013.
[19] M. W. Mutka. Using rate monotonic scheduling technology for real-time

communications in a wormhole network. In Workshop on Parallel and

Distributed Real-Time Systems, pages 194–199, 1994.
[20] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques

in direct networks. Computer, 26(2):62–76, 1993.
[21] B. Nikolic, H. I. Ali, S. M. Petters, and L. M. Pinho. Are Virtual

Channels the Bottleneck of Priority-aware Wormhole-switched NoC-
based Many-cores? In Proc. of the 21st International Conference on

Real-Time Networks and Systems, RTNS ’13, pages 13–22. ACM, 2013.

[22] B. Nikolic, R. Hofmann, and R. Ernst. Slot-Based Transmission Protocol
for Real-Time NoCs - SBT-NoC. In ECRTS Conf, pages 26:1–26:22,
2019.

[23] B. Nikolic, L. S. Indrusiak, and S. M. Petters. A Tighter Real-Time
Communication Analysis for Wormhole-Switched Priority-Preemptive
NoCs. arXiv:1605.07888 [cs], 2016.

[24] B. Nikolic, S. Tobuschat, L. S. Indrusiak, R. Ernst, and A. Burns. Real-
time analysis of priority-preemptive NoCs with arbitrary buffer sizes and
router delays. Real-Time Syst, 55(1):63–105, 2019.

[25] U. Y. Ogras and R. Marculescu. Prediction-based flow control for
network-on-chip traffic. In proc. 43rd ACM/IEEE Design Automation

Conference, pages 839–844, 2006.
[26] M. Ruaro, F. B. Lazzarotto, C. A. Marcon, and F. G. Moraes. DMNI:

A specialized network interface for NoC-based MPSoCs. In IEEE Int

Symposium on Circuits and Systems (ISCAS), pages 1202–1205, 2016.
[27] M. N. S. M. Sayuti and L. S. Indrusiak. A function for hard real-time

system search-based task mapping optimisation. In IEEE Int Symposium

on Real-Time Distributed Computing (ISORC), pages 66–73, 2015.
[28] M. Schoeberl, F. Brandner, J. Spars, and E. Kasapaki. A statically sched-

uled time-division-multiplexed network-on-chip for real-time systems.
In 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip

(NOCS), pages 152–160, 2012.
[29] Z. Shi and A. Burns. Real-time communication analysis for on-chip

networks with wormhole switching. In Proc. of the 2nd ACM/IEEE

International Symposium on Networks-on-Chip(NoCS), pages 161–170,
2008.

[30] Z. Shi and A. Burns. Improvement of schedulability analysis with
a priority share policy in on-chip networks. In 17th International

Conference on Real-Time and Network Systems (RTNS), pages 75–84,
2009.

[31] N. Ueter, G. von der Brueggen, J. J. Chen, T. Mitra, and V. Venkatara-
mani. Simultaneous progressing switching protocols for timing pre-
dictable real-time network-on-chips. arXiv:1909.09457v1 [cs.DC],
2019.

[32] S. Umamaheswari, , D. Meganathan D, and J. Raja Paul Perinbam.
Runtime buffer management to improve the performance in irregular
network-on-chip architecture. Sadhana, 40(4):1117–1137, 2015.

[33] Q. Xiong, Z. Lu, F. Wu, and C. Xie. Real-Time Analysis for Wormhole
NoC: Revisited and Revised. In GLSVLSI Symposium, pages 75–80,
2016.

[34] Q. Xiong, F. Wu, Z. Lu, and C. Xie. Extending Real-Time Analysis for
Wormhole NoCs. IEEE Trans Comput, 66(9), 2017.

11

