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Abstract
It has long been known that (classical) Peano arithmetic is, in some strong sense,
“equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including
choice) in which the axiom of infinity is replaced by its negation. The intended model
of the latter is the set of hereditarily finite sets. The connection between the theories
is so tight that they may be taken as notational variants of each other. Our purpose
here is to develop and establish a constructive version of this. We present an intuition-
istic theory of the hereditarily finite sets, and show that it is definitionally equivalent
to Heyting Arithmetic HA, in a sense to be made precise. Our main target theory,
the intuitionistic small set theory SST is remarkably simple, and intuitive. It has just
one non-logical primitive, for membership, and three straightforward axioms plus one
axiom scheme. We locate our theory within intuitionistic mathematics generally.
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1 Intuitionistic arithmetic and intuitionistic finite set theory

It has long been known that (classical) Peano arithmetic is, in some strong sense,
“equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including
choice) in which the axiom of infinity is replaced by its negation. The intended model
of the latter is the set of hereditarily finite sets. The connection between the theories
is so tight that they may be taken as notational variants of each other.

Our purpose here is to develop and establish a constructive version of this. We
present an intuitionistic theory of the hereditarily finite sets, and show that it is
definitionally equivalent to Heyting Arithmetic HA, in a sense to be made precise.1

We also include a brief comparison to the classical counterparts of our results.
Our main results carry over without modification (although some of them, such as
the decidability of identity, are not needed in the classical context). The result is, we
believe, an improvement on the present understanding of the classical situation.

Our main target theory, the intuitionistic small set theory SST presented in the
next section, is remarkably simple, and intuitive. It has just one non-logical primi-
tive, for membership, and four straightforward axioms. We locate our theory within
intuitionistic mathematics generally.

Logical preamble: Unless explicitly indicated otherwise, all reasoning here—
concerning both object languages and metalanguages—is strictly intuitionistic and
is representable in weak subtheories of the intuitionistic set theory IZF (Myhill’s Con-
structive Set Theory CST [24], Aczel’s Constructive Zermelo–Fraenkel Set Theory [4],
Beeson [9], 162–166, McCarty [18], 54–62, Aczel and Rathjen [6, 7], and, indeed,
in our own SST). Accordingly, � refers always to formal derivability, in the relevant
language, defined by the rules of Heyting’s first-order predicate logic (see Troelstra
[36] and Troelstra and van Dalen [37], 36–50).

1 See Sect. 12.
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Definition 1.1 Heyting Arithmetic or HA is the formal system of first-order arithmetic
adopted as standard (e.g., Troelstra and van Dalen [37], 126–131) for the formaliza-
tion of elementary arithmetic in intuitionism. In most of the following sections, HA
is assumed to contain, for each primitive recursive number-theoretic function f , a
distinguished symbol fa and, among its axioms, familiar defining equations for f .
HA is complete with respect to primitive recursive functions and basic facts involving
them at least in that, for each primitive recursive function λxλy. f (x, y), and natural
numbers n and m,

HA � fa(n,m) = f (n,m),

where n is the canonical numeral in the language of HA for n.

If one wants to go to subtheories of HA, the foregoing approach of including function
symbols for all primitive recursive functions is not necessarily a germane one. It would
be quite interesting to study small intuitionistic set theories corresponding to systems
of bounded arithmetic. Presumably, many of the results of this paper would apply to
them, too. At several places in the paper, the authors will raise interesting questions
(many of them due to a referee of this paper) about subsystems of SST and their
relationship to ones of HA.

2 The small set theory SST

Definition 2.1 (Intuitionistic Small Set Theory SST) The language of the intuitionistic
small set theory SST is the standard first-order language of Zermelo–Fraenkel or ZF
set theory, featuring both ∈ and = as primitives. The = sign is subject to standard
logical laws of identity. The nonlogical axioms of SST are these:

1. Extensionality: ∀x∀y (∀z (z ∈ x ↔ z ∈ y) → x = y).
2. Empty Set: ∃x∀y y /∈ x .

Our symbols for the empty set will be the familiar ∅ and 0, as context demands.
3. y-Successor of x : ∀x∀y∃z∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

Classical set theorists have called this operation both ‘adjunction’ and ‘adduction’
([15]). Our unofficial (and eliminable) notation for the y-successor of x is

x ∪ {y}.

Please note that, when writing x∪{y}we do not presume thereby that an operation
of binary union exists over the class of all sets.

4. Adduction: For any formula φ(x) in the language of set theory—featuring perhaps
set parameters—if φ(0), and if

∀x∀y((y /∈ x ∧ φ(x) ∧ φ(y)) → φ(x ∪ {y})),

then ∀x φ(x).

We will occasionally note a variant on this:
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Weak Adduction: For any formula φ(x) in the language of set theory—featuring
perhaps set parameters—if φ(0), and if

∀x∀y(φ(x) → φ(x ∪ {y})),

then ∀x φ(x).

We shall soon see that Weak Adduction is indeed weaker than Adduction.
As usual, we take x ⊆ y as an abbreviation of ∀z(z ∈ x → z ∈ y).

Historical Antecedents: Some people call the theory axiomatized by (2) and (3)
Adjunctive Set Theory, AS.

1. In [33], Szmielewand Tarski announce the interpretability ofRobinsonArithmetic
Q in AS plus extensionality (the authors’ (1), (2), (3)). See also [35, p. 34].

2. A proof of the Szmielew-Tarski result is given by Collins and Halpern in [10].
3. Montagna and Mancini, in [20], give an improvement of the Szmielew-Tarski

result. They prove that Q can be interpreted in an extension of AS in which one
stipulates the functionality of empty set and adjoining of singletons.

4. In Appendix III of [23], Mycielski, Pudlák and Stern provide the ingredients of
the interpretation of Q and AS. See also [22].

5. A new proof of the interpretability of Q in AS is given in [40] by Visser. A very
nice presentation of the converse interpretability of (an extension of) AS plus
extensionality in Q, is given by Nelson in [25]. This is an interpretation with
absolute identity.

6. Damnjvanovic [11] shows that this theory (as well as our axioms (1), (2), and (3))
is mutually interpretable with Q.2

7. Using strictly intuitionistic logic, Previale [28] has given a set of axioms that
extends those of the present paper by including primitive notions for y-predecessor
of x in addition to y-successor of x , and explicit axioms governing the transitive
closure of a set.

8. Jeon [13] examines bi-interpretability subtheories of finitary CZF and Heyting
Arithmetic.

Proposition 2.2 ∀x∀z(x ⊆ z → z /∈ x).

Proof By Adduction. Let φ(x) be ∀z(x ⊆ z → z /∈ x). The base case, where x = ∅,
is immediate.

Induction hypothesis: y /∈ x ∧ φ(x) ∧ φ(y). We need to show φ(x ∪ {y}). So,
suppose (i) x ∪ {y} ⊆ z. We need to show z /∈ x ∪ {y}. We therefore suppose that
z ∈ x∪{y}. Then, (ii) either z ∈ x or z = y.But we have x ⊆ x∪{y} and x∪{y} ⊆ z.
By the induction hypothesis, z /∈ x . Hence, z = y (disjunctive syllogism on (ii)).

Then, (i) is x ∪ {y} ⊆ y. This implies that y ∈ y. However, that contradicts the
induction hypothesis, since y ⊆ y. �
Corollary 2.3 ∀x x /∈ x.

2 See Sect. 12. below for definitions.
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Remark 2.4 Weak Adduction wouldn’t suffice to prove ∀x x /∈ x . This can be seen as
follows. In the set-theoretic world of hereditarily finite sets, HF, take the collection
of all finite pointed accessible directed graphs (apgs for short) (see Aczel [5, p. 4]),
and identify two such apgs if they are bisimular. This gives rise to a model of ZFC
bereft of the axioms of Foundation and Infinity (see Aczel [5, Sect. 3]). In this model
Weak Adduction holds since any set can be obtained from the empty set by applying
the operation x �→ x ∪ {y} finitely many times. However, this is also a model of the
Anti-Foundation axiom, refuting ∀x x /∈ x .

3 T-sets

In order to single out the naturals in SST, we introduce the notion of T-set.

Definition 3.1 (Predecessor, T-set)

1. We say that a set x has a predecessor if and only if ∃y ∈ x x = y ∪ {y}.
2. A set x is a T-set if and only if

(a) x is a transitive set of transitive sets, and
(b) Either x = ∅ or x and all of its non-zero elements have predecessors.

When x is a T-set, we write T(x).

Proposition 3.2 1. T(∅).
2. Whenever T(x), T(x ∪ {x}) as well.
3. The class of all T-sets is itself inductive: for all formulae φ, if φ(0) and if φ(x ∪

{x}), whenever T(x) and φ(x), then, for every T-set x, φ(x).
4. For all T-sets x, either x = 0, x = {0}, or {0} ∈ x.

Proof Items 1 and 2 are straightforward from the definition.
For item 3: we prove that the class of all T-sets is inductive. First, we assume that φ(∅)

and that φ(x ∪ {x}) whenever T(x) and φ(x). The goal is to prove, by induction in
SST, that, for all sets x , ψ(x), wherein ψ(x) is the following conjunctive expression.

∀y ∈ x(T(y) → φ(y)) ∧ (T(x) → φ(x)).

Clearly, once we prove ∀x ψ(x), we are home and dry.
The base caseψ(∅) is immediate. So we make the relevant additional assumptions for
adduction in SST, briefly,

ψ(a), and ψ(b).

In other words, we are assuming that

∀y ∈ a(T(y) → φ(y)) ∧ (T(a) → φ(a)), plus

∀y ∈ b(T(y) → φ(y)) ∧ (T(b) → φ(b)).
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The goal is to prove from all these that

ψ(a ∪ {b}),

that is,

1. ∀y ∈ (a ∪ {b})(T(y) → φ(y)), and
2. T(a ∪ {b}) → φ(a ∪ {b}).
Ad (1): When y ∈ (a ∪ {b}), either y ∈ a or y = b. In either case, the assumptions
show that

T(y) → φ(y).

Ad (2): To show that T(a ∪ {b}) → φ(a ∪ {b}), assume that T(a ∪ {b}). By definition
of T-set, it follows that a ∪ {b} has a predecessor z such that

z ∈ (a ∪ {b}),
T(z), and

a ∪ {b} = z ∪ {z}.

By the proof of (1), immediately above,

φ(z).

From the original inductive hypothesis at the start of the proof, we know that

φ(z ∪ {z}).

Therefore,

φ(a ∪ {b}),

we are finished with (2) and the proof of induction over the T-sets.
Item 4 follows immediately from 3. �

4 Internal natural numbers

The class of T-sets is our choice for canonical natural numbers internal to SST. Between
T-sets, the relation of membership ∈will serve, within the set theory, as the “less than”
relation < between natural numbers internal to SST. Our ultimate goals with regard to
HA are to

1. Develop a recognizable theory of hereditarily finite and decidable sets within STT,
2. Demonstrate that, within the latter theory, Heyting Arithmetic HA is soundly

interpreted,
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3. Show that SST is soundly interpreted within HA, and
4. Show that SST and HA are definitionally equivalent (in the sense of Sect. 12).

We prove all this intuitionistically.

Definition 4.1 (Class of natural numbers) Let N be the SST-internal class of T-sets.
Note that N is a proper class in SST, and not a set.
For x ∈ N, Sx—the natural number successor of x—will stand for x ∪ {x}. As Kirby
[15] has emphasized, successor Sx on the internal natural numbers is the diagonal of
the ‘y-successor of x’ operation.
Induction on N can now be formulated

[φ(0) ∧ ∀x ∈ N(φ(x) → φ(Sx))] → ∀x ∈ N φ(x).

Proposition 4.2 These are provable within SST:

1. 0 ∈ N.
2. Whenever x ∈ N, then Sx ∈ N.
3. For x, y ∈ N (Sx = Sy → x = y).
4. For x, y ∈ N (x ∈ y ∨ x = y ∨ y ∈ x).
5. For x, y ∈ N (x = y ∨ x �= y).

Proof Ad 3: If x and y ∈ N, while Sx = Sy, then either x = y or x ∈ y ∈ x . But the
latter, since x is transitive, yields x ∈ x , which is impossible by Corollary 2.3.

Ad 4: This is a straightforward nested induction on N, essentially the same as the
proof of the corresponding theorem in HA (see Proposition 2.8 (v) in Troelstra and
van Dalen [37], Volume 1, p. 124).

Ad 5: Immediately from 4 by Corollary 2.3. �

5 Finiteness and decidability

The usual notion of finiteness in set theory is based on that of 1-1 correspondence with
particular sets. So one first has to look at the notion of function in set theory. Since
sets in SST are closed under the operation

x, y �→ (x ∪ {y}),

there are Kuratowski pairs, triples, quadruples, and so on, for all sets. As one would
expect, functions for SST are sets of pairs, or of triples, or of quadruples, etc. that
satisfy a uniqueness condition on the last component.

Crucially, one has to show in SST that if 〈a, b〉 denotes the Kuratowski pair
{{a}, {a, b}}, then a, b are uniquely determined by 〈a, b〉, that is to say,

if 〈a, b〉 = 〈a′, b′〉 then a = a′ ∧ b = b′. (1)

The proofs one finds in books on classical set theory rely on the instance x ∈ y ∨ x /∈ y
of excluded middle, which isn’t guaranteed intuitionistically. An intuitionistic proof,
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though, can e.g. be found in [6, Proposition 3.1] or [7, 4.1.1]. But as it will turn out
later in Theorem 5.8, SST proves excluded middle for atomic formulas anyway, and
so the classical proof works just fine in SST.

Definition 5.1 (Finiteness) A set is (internally) finite whenever it is in bijective
correspondence with some natural number (i.e., a T-set).

We shall write x ≡ n if there exists a bijection between x and n.

5.1 Lemma on cardinality

Lemma 5.2 (on the uniqueness of finite cardinality) If m, n ∈ N stand in bijective
correspondence, then m = n.

Proof The proof of [7, Corollary 8.2.4] works in SST. �
Definition 5.3 For any finite set x , |x | is its unique cardinality, the unique n ∈ N such
that n and x are in bijective correspondence.

Theorem 5.4 (universal finiteness) Every set is finite.

Proof (by adduction in SST) ∅ is certainly finite. Assume that x is a finite set and that
y /∈ x . Then, x ∪ {y} is finite (the clause y /∈ x is really used here). By adduction in
SST, every set is finite. �

Note that the previous proof fully utilizes adduction. Our guess is that with weak
adduction we do not get decidability of elementhood.

5.2 Decidability for10-predicates

In intuitionists’ parlance, a predicate or formula that obeys the principle of excluded
middle is often said to be decidable.

Definition 5.5 (Decidability for set identity) A set x is decidable for identity just in
case ∀y (x = y ∨ x �= y).

Proposition 5.6 Every set is decidable for set identity.

Proof Let x and y be sets. {x, y} is a finite set by Theorem 5.4, and thus stands in
bijective correspondence with a natural number. As we have seen in Proposition 4.2,
identity on the natural numbers is decidable. Hence, x = y or x �= y. �
Definition 5.7 (Decidability for membership) A set x is decidable for membership just
in case, ∀y (y ∈ x ∨ y /∈ x).

Proposition 5.8 (Decidability for membership) All sets are decidable for membership.

Proof (by adduction in SST) First, for any set y, either y ∈ 0 or y /∈ 0. Second, assume
that x is decidable for membership.3 Consider x∪{y}.Because x is assumed decidable

3 Here we use only the weak adduction principle from Sect. 2.
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for membership, for any set a, either a ∈ x or a /∈ x . If a ∈ x , then a ∈ (x ∪ {y}).
On the other hand, when a /∈ x , we know that, since y is decidable for identity, either
a = y or a �= y. If the first, then a ∈ (x ∪ {y}). If the second, a /∈ (x ∪ {y}). �
Corollary 5.9 Every set is finite and decidable for both ∈ and =.

Definition 5.10 A formula of SST is said to be�0 if all quantifiers in it are of bounded
form, that is to say, of either form ∀x ∈ a or ∃y ∈ b.

Theorem 5.11 Any �0 formula ϕ is decidable in SST, that is, SST proves ϕ ∨ ¬ϕ.

Proof The proof proceeds by metainduction on the buildup of ϕ. The atomic cases
are dealt with in Propositions 5.6 and 5.8. Suppose ϕ is of the form ∀x ∈ a θ(x).
Metainductively we have that SST proves θ(x) ∨ ¬θ(x). Working in SST, we can now
use weak adduction on a to prove ∀x ∈ a θ(x) ∨ ¬∀x ∈ a θ(x). This is clearly the case
for a = 0. Suppose a = b ∪ {c} and inductively that ∀x ∈ b θ(x) ∨ ¬∀x ∈ b θ(x).
Note that we also have θ(c) ∨ ¬θ(c). Now, ∀x ∈ b θ(x) and θ(c) yield ∀x ∈ a θ(x)
whereas in all the other possible cases ¬∀x ∈ a θ(x) ensues.

The other cases are handled in a similar vein. �
At this point it is perhaps in order to point out that SST does not prove ϕ ∨ ¬ϕ for

all formulas. This will follow from results in Sects. 15 and 16, e.g., Corollary 15.1 (i).

6 Axioms for general set theory

Now, one can prove that sets in SST satisfy several of the familiar axioms of Zermelo–
Fraenkel set theory with choice:

1. Pairing,
2. Arbitrary Union,
3. Decidable Separation,
4. Replacement,
5. Power Set,
6. Strong Collection,
7. ∈-Induction, and
8. Foundation.

Since SST entails that all sets are finite, it will not admit the existence of an infinite set
(if it is consistent). So, of course, we do not include the axiom of infinity in this list.

The theory axiomatized by the principles just listed constitutes the intuitionistic
analogue to a classical theory of Wilhelm Ackermann, from 1937, named allgemeine
Mengenlehre, ‘General Set Theory’. Intuitionistic proofs of these principles, in an
hereditarily finite setting, appear also in Previale [28].

Recall that in Sect. 3, we noted our notation x ∪ {y} does not presuppose that an
operation of binary union exists over the class of all sets. Here we establish just that:

Theorem 6.1 (Binary Union) ∀x∀y∃z∀w(w ∈ z ↔ (w ∈ x ∨ w ∈ y))

123



S. Shapiro et al.

Proof We proceed by (weak) Set Induction. Let φ(x) be ∀y∃z∀w(w ∈ z ↔ (w ∈
x ∨ w ∈ y)). Clearly, φ(∅). Assume φ(a). Then, for any y, a ∪ y exists. Let b be any
set. Then, for any y, (a ∪ {b}) ∪ y is a ∪ (y ∪ {b}). The latter exists, by the induction
hypothesis. �
Theorem 6.2 (Arbitrary Union) If x is a set, so is

⋃
x, its union.

Proof Using (weak) adduction, we see that

⋃
(a ∪ {b})

is just the binary union of
⋃

a with b. �
Definition 6.3 (Decidable over x) A formula ψ(y) is decidable over the set x just in
case

∀y ∈ x (ψ(y) ∨ ¬ψ(y)).

Theorem 6.4 (Decidable Separation) If x is a set and ψ(x) is decidable over x, then
the collection {y ∈ x : ψ(y)} is also a set.
Proof By (weak) Adduction. Letψ be decidable over a∪{b}. Because of decidability,
either (i) ψ(b) or (ii) ¬ψ(b). By the induction hypothesis,

{x ∈ a : ψ(x)}

is a set. If (i), then

{x ∈ (a ∪ {b}) : ψ(x)}

is just

{x ∈ a : ψ(x)} ∪ {b}.

If (ii),

{x ∈ (a ∪ {b}) : ψ(x)} = {x ∈ a : ψ(x)}.

�
Corollary 6.5 If ψ(x) is �0, then for every set a, {x ∈ a : ψ(x)} is a set.
Proof By Theorems 5.11 and 6.3. �
Theorem 6.6 (Strong Collection) For any formula φ(x, y), if ∀x ∈ a ∃y φ(x, y) then
there is a set c such that ∀x ∈ a ∃y ∈ c φ(x, y) and ∀y ∈ c ∃x ∈ a φ(x, y).
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Proof We use weak Adduction on a with the formula

ψ(a) := ∀x ∈ a ∃y φ(x, y) → ∃z θ(a, z),

where θ(a, z) := ∀x ∈ a ∃y ∈ z φ(x, y) ∧ ∀y ∈ z ∃x ∈ a φ(x, y).
Obviously,ψ(0). Assumingψ(a), one has to showψ(a∪{b}) for all b. So suppose

∀x ∈ a ∪ {b} ∃yφ(x, y). Owing to ψ(a) there exists c such that

∀x ∈ a ∃y ∈ c φ(x, y) ∧ ∀y ∈ c∃x ∈ a φ(x, y).

Also, there is a d such that φ(b, d). Thus θ(a ∪ {b}, c∪ {d}), and hence ψ(a ∪ {b}). �
Definition 6.7 (Class function) A formula φ(x, y) (which may contain other param-
eters) is a class function just in case, for all x , there is a unique y such that φ(x, y).
We then also write Gφ(x) to refer to the unique y such that φ(x, y).

A formula φ(x, y) (which may contain other parameters) is a class function on a
set a just in case, for all x ∈ a, there is a unique y such that φ(x, y).

Theorem 6.8 (Replacement) A class function on a set is a set function. The image of
a set under a class function is again a set.

Proof Suppose ∀x ∈ a ∃!y φ(x, y). Thus, ∀x ∈ a ∃!z ∃y [φ(x, y) ∧ z = 〈x, y〉]. By
Strong Collection, {〈x, y〉 : x ∈ a ∧ φ(x, y)} is a set. The latter set is also a function
on a. �
Definition 6.9 (Power set) For a set x , the power set of x is the collection

{y : y ⊆ x},

the collection of all subsets of x .

Theorem 6.10 (Power Set) If x is a set, so is the power set of x.

Proof By (weak) Adduction. The power set of a ∪ {b} is the union of the power set of
a (call it P(a)) together with the collection

{x ∪ {b} : x ∈ P(a)}.

The latter is a set by Replacement. �
Theorem 6.11 (∈-Induction) Assume, for any formula φ(x) and set x,

(∀y ∈ x φ(y)) → φ(x).

It follows that

∀x φ(x).
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Proof Proof by Adduction. First, assume that

∀x((∀y ∈ x φ(y)) → φ(x)).

Then, for Adduction, assume that

1. ∀x ∈ a φ(x) ∧ φ(a) and
2. ∀x ∈ b φ(x) ∧ φ(b).

It suffices to show that

(i) ∀x ∈ (a ∪ {b}) φ(x) and
(ii) φ(a ∪ {b}).
(i) Follows immediately from 1, 2, and the definition of a ∪ {b}.
(ii) Now holds by the assumption for Adduction applied to (i).

�
The previous result allows us to prove the common axiom of foundation in classical

set theories, stating that each non-empty set has an element that is disjoint from the
set.

Theorem 6.12 (Foundation) ∀x [∃y y ∈ x → ∃y ∈ x ∀z ∈ y ¬z ∈ x].
Proof Let a be any inhabited set. Suppose (1) ∀y ∈ a ∃z ∈ y z ∈ a. Then,
(2) ∀u [∀v ∈ u v /∈ a → u /∈ a], because in view of (1), ∀v ∈ u v /∈ a and u ∈ a
yield ∃v ∈ u v ∈ a. Whence, by ∈-Induction, ∀u u /∈ a. But this is ridiculous since a
is inhabited. Thus (1) is false, so by classical logic for �0 formulas (Theorem 5.11),
we must have ∃y ∈ a ∀z ∈ y z /∈ a. �

6.1 The axiom of choice

Definition 6.13 (Base) A set x is a base if, for all sets y, r , whenever

∀a ∈ x ∃b ∈ y 〈a, b〉 ∈ r ,

there is a function f with domain x such that

∀a ∈ x [ f (a) ∈ y ∧ 〈a, f (a)〉 ∈ r ].

Theorem 6.14 (Axiom of Choice) Every set is a base.

Proof Use Adduction. Clearly, 0 is a base. Suppose c is a base. We want to show that
c ∪ {d} is a base for every set d /∈ c. Suppose ∀a ∈ c ∪ {d} ∃b ∈ y 〈a, b〉 ∈ r . Since
c is a base, there is a function g with domain c such that

∀a ∈ c [g(a) ∈ y ∧ 〈a, g(a)〉 ∈ r ].

Also, there is b0 ∈ y such that 〈d, b0〉 ∈ r . Hence, with f := g ∪ {〈d, b0〉} we have a
function satisfying ∀a ∈ c ∪ {d} [g(a) ∈ y ∧ 〈a, g(a)〉 ∈ r ]. �
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7 Recursion onmembership

Definition of functions and class functions by ∈-Recursion is a central tool of set
theory. It is available in SST, too. The proofs are similar to those in [6, 11.2] and
[7, 19.2], where they are carried out in intuitionistic Kripke-Platek set theory for �

predicates.

Theorem 7.1 (Definition by ∈ Recursion in SST) Let �x := x1, . . . , xn. If G is a total
(n + 2)–ary class function, that is,

∀�x yz∃!u G(�x, y, z) = u,

then there is a total (n + 1)–ary class function F such that

∀�x y [F(�x, y) = G(�x, y, (F(�x, z) | z ∈ y))], (2)

where (F(�x, z) | z ∈ y) := {〈z, F(�x, z)〉 : z ∈ y}.
For the avoidance of doubt, the claim is that for every formula G ′(�x, y, z, u), we

can effectively find a formula F ′(�x, y, v) such that SST proves the following: when-
ever ∀�x yz∃!u G ′(�x, y, z, u) then ∀�x y ∃!v F ′(�x, y, v) and (2) hold, where G(�x, y, z)
denotes the unique u such that G ′(�x, y, z, u) and F(�x, y) denotes the unique v such
that F ′(�x, y, v).

Proof Let dom( f ) denote the domain of f . Let 	( f , �x) be the formula

[ f is a function] ∧ [dom( f ) is transitive] ∧ [∀y ∈ dom( f ) ( f (y) = G(�x, y, f � y))].

Set

ψ(�x, y, f ) = [	( f , �x) ∧ y ∈ dom( f )].

Claim ∀�x, y∃! f ψ(�x, y, f ).

Proof of Claim: By ∈ induction on y. Suppose ∀u ∈ y ∃gψ(�x, u, g). By Strong Col-
lection, that is Theorem 6.6, we find a set A such that ∀u ∈ y ∃g ∈ Aψ(�x, u, g)
and ∀g ∈ A∃u ∈ y ψ(�x, u, g). Let f0 = ⋃{g : g ∈ A}. Since for all g ∈ A,
dom(g) is transitive we have that dom( f0) is transitive. We want to show that f0
is a function. But it is readily shown by another induction that if g0, g1 ∈ A, then
∀x ∈ dom(g0) ∩ dom(g1)[g0(x) = g1(x)]. Therefore f0 is a function. Moreover,
if u ∈ y, then u ∈ dom( f0). Hence, by our general assumption, there exists a u0
such that G(�x, y, ( f0(u) | u ∈ y)) = u0. Set f = f0 ∪ {〈y, u0〉}. Then f is a
function, too, and dom( f ) is transitive since all u ∈ y are in dom( f0). We also have
∀w ∈ dom( f )[ f (w) = G(�x, w, f � w)], confirming the claim.

Now define F by

F(�x, y) = w iff ∃ f [ψ(�x, y, f ) ∧ f (y) = w].

�
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Corollary 7.2 There is a class function TC such that

∀a[TC(a) = a ∪
⋃

{TC(x) : x ∈ a}].

Moreover, we have

1. TC(∅) = ∅.

2. For all sets x, y, and z, z ∈ TC(x ∪ {y}) if and only if

z ∈ TC(x) ∨ z ∈ TC(y) ∨ z = y.

3. Whenever x is a set, so is TC(x).

Proof The existence of TC is a consequence of Theorem 7.1. 1 and 2 are immediate
from the definitions. �
N.B. Items 1 and 2 in the preceding theorem are axioms in the system of [28].

Proposition 7.3 (Definition by TC–Recursion)Under the assumptions of Theorem 7.1
there is an (n + 1)–ary class function F such that

∀�x y[F(�x, y) = G(�x, y, (F(�x, z) | z ∈ TC(y)))].

Proof Let θ( f , �x, y) be the formula

[ f is a function] ∧ [dom( f ) = TC(y)] ∧ [∀u ∈ dom( f )[ f (u) = G(�x, u, f � TC(u))]].

Prove by ∈–induction that ∀y∃! f θ( f , �x, y). Suppose ∀v ∈ y ∃!g θ(g, �x, v). We then
have

∀v ∈ y∃!a∃g[θ(g, �x, v) ∧ G(�x, v, g) = a].

By Replacement there is a function h such that dom(h) = y and

∀v ∈ y ∃g [
θ(g, �x, v) ∧ G(�x, v, g) = h(v)

]
.

Employing Strong Collection to ∀v ∈ y ∃!g θ(g, �x, v) also provides us with a set A
such that ∀v ∈ y ∃g ∈ A θ(g, �x, v) and ∀g ∈ A ∃v ∈ y θ(g, �x, v). Now let f = (

⋃{g :
g ∈ A}) ∪ h. Then θ( f , �x, y). �
Definition 7.4 A set x is said to be transitive if whenever y ∈ x and z ∈ y, then z ∈ x .
In an intuitionistic setting, ordinals are defined as transitive sets all of whose elements
are transitive sets.

Let Ord be the class of ordinals. Then x ∈ Ord is the �0 formula expressing that
x is an ordinal. As per tradition, we use variables α, β, γ, . . . to range over ordinals.

However, to show that ordinals are linearly ordered, that is,α ∈ β ∨ α = β ∨ β ∈ α,
one needs classical logic.As it turns out, one only needs that�0 formulas are decidable,
which is guaranteed by Theorem 5.11.
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Corollary 7.5 There is a class function rank assigning a rank to every set. That is to
say,

rank(x) =
⋃

{rank(y) + 1 : y ∈ x}

where u + 1 := u ∪ {u}. Moreover, rank(x) is always an ordinal. For ordinals α one
has α = rank(α).

Proof Clearly, this class function exists by Theorem 7.1. Moreover, one can easily
verify by ∈-Induction that rank(x) is a transitive set consisting of transitive sets, thus
rank(x) is always an ordinal.

Furthermore, one shows by induction on ordinals that α = rank(α).
�

Theorem 7.6 In SST, ordinals are linearly ordered. Moreover, the class of ordinals
coincides with the class of natural numbers and all ordinals are cardinals in that they
cannot be put in one-one correspondence with a smaller ordinal.

Proof One proves ∀β (α ∈ β ∨ α = β ∨ β ∈ α) by induction on α. Given β, we
have ∃ξ ∈ α (ξ = β ∨ β ∈ ξ) or ¬∃ξ ∈ α (ξ = β ∨ β ∈ ξ) by classical logic for �0
formulas. In the first case, β ∈ α. In the second case we get ∀ξ ∈ α ξ ∈ β from the
induction hypothesis. Thus α ⊆ β. If α �= β, then, by Foundation, there exists ξ0 ∈ β

such ξ0 /∈ α and ∀δ ∈ ξ0 δ ∈ α. The induction hypothesis also implies that α ⊆ ξ0.
Whence, α = ξ0, so α ∈ β. (Note that we used classical logic for �0 formulas several
times).

It is clear that every natural is an ordinal. Let ϕ(x) be the formula
(∃n ∈N) rank(x) = n. To show ∀x ϕ(x) we use Adduction. Clearly, ϕ(0). Now sup-
pose ϕ(x) and ϕ(y) hold. Then rank(x) = n and rank(y) = m for some naturals m
and n. Note that

rank(x ∪ {y}) =
⋃

{rank(a) + 1 : a ∈ x ∪ {y}}
=

⋃
{rank(a) + 1 : a ∈ x} ∪ (rank(y) + 1)

= rank(x) ∪ (rank(y) + 1) = n ∪ (m + 1). (3)

We have n = m or n ∈ m or m ∈ n by Proposition 4.2. Thus, in view of (3),
rank(x) = n + 1 or rank(x) = m + 1 or rank(x) = n, whence rank(x) is a natural.

Since rank(α) = α holds for ordinals α by Corollary 7.5, all ordinals are naturals.
It follows from the proof of Theorem 8.2.2 in [7] (which carries over to SST) that

a natural cannot be put in one-one correspondence with a smaller natural. �
Corollary 7.7 SST refutes the Infinity Axiom.

Proof Arguing in SST (towards a contradiction), suppose there is an inhabited set a
such that ∀x ∈ a ∃y ∈ a x ∈ y. Let n = rank(a). Notice that n is a natural by the
previous Corollary. As a is inhabited, n �= 0, and hence n = k + 1 for some natural k.
Moreover, k = rank(x) for some x ∈ a. By assumption, there exists y ∈ a such that
x ∈ y. But then k = rank(x) < rank(y) < rank(a) = k + 1 which is impossible. �
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Sometimes we just want to define a partial class function where the recursion
variable ranges over N but not the entire universe. This can be arranged by modifying
Theorem 7.1.

Theorem 7.8 (Definition by Recursion on N in SST) Let �x = x1, . . . , xr , �m =
m1, . . .ms. If G ′ is a partial (r + s + 2)–ary class function such that

∀�x ∀ �m ∈ N∀n ∈ N∀z ∃!u G ′(�x, �m, n, z) = u,

then there is a total (r + s + 1)–ary class function F such that

∀�x,∀ �m ∈ N∀n ∈ N [F(�x, �m, n) = G ′(�x, n, (F(�x, k) | k ∈ n))].

Proof FromG ′ one obtains a total class functionG by declaring thatG(�x, �y, u, z) = 0
in case some member of �y, u is not inN and G(�x, �y, u, z) = G ′(�x, �y, u, z) otherwise.
This is possible as elementhood in N is a �0 property (e.g. by Theorem 7.6), and
hence decidable. So one can apply Theorem 7.1 to G ′ to obtain the desired F . �
Corollary 7.9 As a consequence of the previous theorem, addition and multiplication
of naturals and indeed all primitive recursive functions on N can be defined in SST.

The upshot of that is that HeytingArithmetic has a “canonical” interpretation in SST
once the collection of natural numbers is equated with that of the ordinals of SST and
the successor function is interpreted as the familiar successor function α �→ α∪{α} on
ordinals. Note that this successor function in combination with the defining equations
for addition and multiplication uniquely determines the latter in SST.

8 Proving Gödel’s incompleteness theorems

Because of its expressive power, SST would be a perfect place to carry out proofs of
Gödel’s two Incompleteness Theorems. For one thing, since SST represents notions
and demonstrates facts pertaining to finite sets, functions, and (especially) sequences
as such, little or no encoding of sequences of symbols or sequences of sequences by
numbers would be required. Note that Gödel originally developed his theorems using
set-theoretic coding. It was perhaps only John von Neuman’s questioning that made
him invent Gödel numbering.

Indeed, as in Sect. 1 through 9 of Świerczkowski [34], 6–35, full proofs of both
Incompleteness Theorems may be carried out in SST without hand-waving or gaps.4

These realizations formed the metalogical framework for Paulson’s automated proofs
of the Incompleteness Theorems (see Paulson [27]). An elegant use of set-theoretic
coding is also made by Zambella [41].

4 One of the referees admitted that this was a good point but also raised an interesting counter argument,
namely that this set-theoretic coding can sometimes block the road to other observations: “the usual proof
of Rosser’s theorem employs the fact that we can order the proofs. The natural way to realise that in finite
set theory would be to induce the usual ordering of the Ackermann codes of sets on the finite sets. However,
that does detract from the simplicity of the argument. It seems to me that it would have been more difficult
to find the Rosser argument if we had only worked with the hereditarily finite sets.”
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9 A self-interpretation of SST

Ackermann’s bijection between the naturals and the hereditarily finite sets furnishes
a self-interpretation of SST in the intuitionistic context, too.

Definition 9.1 Let us define: Set(0) = 0 and

Set(2n1 + 2n2 + · · · + 2nk ) = {Set(n1), . . . ,Set(nk)} (4)

whenever n1 > n2 > · · · > nk . The definition of Set in SST falls under the scope of
Theorem 7.8. More precisely, one would first show that every natural number, save 0,
has a unique binary expansion as in (4), and then use Ackermann’s primitive recursive
Bit function on naturals such that, for all natural numbers n and i ,

Bit(n, i) =
{
1 if the i th bit in the binary notation for n is 1

0 otherwise,

where the i th bit of n is 1 if 2i occurs in the binary expansion of n and 0 otherwise. In
terms of Bit, one can define Set by

Set(n) = {Set(i) : Bit(n, i) = 1}.

Note that Bit(n, i) = 1 entails that i < n, so it is a proper recursion.

Lemma 9.2 (SST) Set furnishes a bijection from N onto the universe V .

Proof For injectivity, use induction on n +m (or course-of-values induction) to show
that Set(n) = Set(m) yields n = m. Suppose Set(n) = Set(m). Thus, for every i with
Bit(n, i) = 1 there exists j such that Bit(m, j) = 1 and Set(i) = Set( j). Moreover,
Bit(n, i) = 1 and Bit(m, j) = 1 entail that i < n and j < m so that inductively
we have i = j . Likewise, for every j with Bit(m, j) = 1 there exists i such that
Bit(n, i) = 1 and Set( j) = Set(i), so that inductively we get j = i . As a result,
n = m.

For surjectivity we useAdduction. Given sets a and b such that b /∈ a, suppose there
exist n0 and i such Set(n0) = a and Set(i) = b. b /∈ a implies that Bit(n0, i) = 0,
and hence Set(n0 + 2i ) = Set(n0) ∪ {Set(i)} = a ∪ {b}. �
Corollary 9.3 (SST) There is a bijective class function Num : V → N such that

Num ◦ Set = idN and Set ◦ Num = idV .

Moreover,

b ∈ a ⇔ Bit(Num(a),Num(b)) = 1,

Num(a) =
∑

b∈a
2Num(b).
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Proof This follows directly from Lemma 9.2. �
Definition 9.4 Let ∈∗ be the relation on N defined by i ∈∗ n if Bit(n, i) = 1. For a
set-theoretic formula ϕ, define its translation ϕ∗ inductively as follows: (x ∈ y)∗ :=
x ∈∗ y; (x = y)∗ := x = y; ∗ commutes with the logical particles ¬,∧,∨,→, and
(Qx φ(x))∗ := Qx ∈ Nφ(x)∗ for quantifiers Q.

Theorem 9.5 (Ackermann intuitionistically) For any set-theoretic formula
ϕ(x1, . . . , xr ) with all free variables exhibited,

SST � ϕ(x1, . . . , xr ) ↔ ϕ∗(Num(x1), . . . ,Num(xr )).

Proof This is a consequence of Corollary 9.3. Formally one proceeds by (meta)
induction on the complexity of ϕ. �

Note that Theorem 12.5 says that, in the category of theories and interpretations
(see [39]), where two interpretations are the same if they are provably the same in the
target theory, the Ackermann interpretation is the same as the identity interpretation.

10 Interpreting SST soundly into arithmetic

The interpretation ∗ of Definition 9.4 lends itself to an interpretation of SST into a
system of formal arithmetic. We’d like to ascertain that Ackermann’s interpretation
also leads to an interpretation of SST into Heyting Arithmetic.

Definition 10.1 For the function Bit of Definition 9.4 we assumed that it is defined in
the set-theoretic language. Here we need to distinguish it from its definition in Heyting
Arithmetic, for which we use the notation Bita. Let x ∈a y be the arithmetic formula
Bita(y, x) = 1. For a set-theoretic formula ϕ, define its Ackermann interpretation,5

ϕa, inductively as follows: (x ∈ y)a := x ∈a y, (x = y)a := x = y, a commutes
with the logical particles¬,∧,∨,→, as well as the quantifiers, that is, (Qx φ(x))a :=
Qx φ(x)a for quantifiers Q.

Theorem 10.2 Whenever SST � φ, then HA � φa.

Proof It suffices to check that the a-translations of SST axioms are deducible in HA.

1. (Extensionality)

∀x∀y [x = y ↔ ∀z (Bita(x, z) = Bita(y, z))]

is a theorem of HA provable in the same way as in Lemma 9.2.
2. (Empty set) ∀x Bita(0, x) = 0 is an obvious theorem of HA.
3. (y-successor of x)

∀x∀y∃z∀u [u ∈a z ↔ (u ∈a x ∨ u = y)]
5 Here we adopt the symbol a for it from [14].
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is provable in HA since for given numbers x, y this works with

z =
{
x if Bita(x, y) = 1

x + 2y otherwise.

4. (Adduction) Let ψ(x) be any formula in the language of HA. The following is a
theorem of HA.

ψ(0) ∧ ∀x∀y [¬(y ∈a x) ∧ ψ(x) ∧ ψ(y) → ψ(x + 2y)] → ∀x ψ(x).

To see this inHA, one employs induction to demonstrate formally that every number
is either 0 or is a sum of pairwise distinct powers of 2.

�

11 Interpreting HA soundly into SST

In view of Corollary 7.9, we obtain a canonical interpretation of HA into SST. This
together with Theorem 10.2 yields the mutual interpretability of SST and HA. The aim
of this paper, however, is to show that a very tight connection obtains between the
two theories, not just mere interpretability in both directions, namely that there is an
inverse b to the interpretation a, showing that the theories are definitionally equivalent.
The latter notion will be clarified in Definition 12.1.

The usual language of HA has function symbols for the successor, addition and
multiplication functions (and perhaps more primitive recursive functions), but the
language of SST has no function symbols. To interpret the terms of HA in SST one
would have to unwind these terms or beef up the set-theoretic language by function
symbols. Here wewill assume thatHA is formulated with relation symbols for the less-
than relation< and the graphs of the successor, addition, and multiplication functions,
which we denote by Suc,Add andMult, respectively. The version of HAwith function
symbols is then an extension by definitions of its version with relation symbols in the
usual sense (cf. [32, p. 60]).

Definition 11.1 (The interpretation of HA into SST) For a formula ϕ of the language
of HA, the formula ϕb of SST is obtained as follows.

1. Replace the constant 0 by 0o (where we now assume that SST’s language has a
constant 0o for the empty set).

2. Leave = untouched but replace x < y, Suc(x, y), Add(x, y, z), andMult(x, y, z)
by Num(x) <o Num(y), Num(x) +o 1o = Num(y), Num(x) +o Num(y) =
Num(z), and Num(x) ·0 Num(y) = Num(z), respectively, where <o is the less-
than relation on ordinals, 1o is the next ordinal after 0o, and +o, ·o stand for the
obvious functions of ordinal addition and ordinal multiplication, respectively, as
formalized in the language of SST.

3. b commutes with the connectives ¬,∧,∨,→ as well as the quantifiers, that is,
(¬ϕ)b := ¬ϕb, (ϕ � ψ)b := ϕb � ψb for � ∈ {∧,∨,→}, (∃uϕ)b := ∃uϕb and
(∀uϕ)b := ∀uϕb.
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Theorem 11.2 For all sentences φ of (the relational version of) HA, if HA � φ, then
SST � φb.

Proof Given previous results, this is obvious. For instance, the deducibility of the
interpretation of successor induction follows from Theorem 6.11. �

12 Definitional equivalence and conservativeness

In view of Theorems 10.2 and 11.2we know thatHA and SST aremutually interpretable
in each other. One goal of this paper, however, is to show that the connection between
the theories is even tighter, namely that the interpretations a and b are inverses of each
other, which will be captured by the notion of definitional equivalence. We now define
the key notions.

Definition 12.1 (Mutual interpretability and definitional equivalence of theories)

1. To simplify matters, we will assume that all languages are purely relational. Let
T1 and T2 be theories with languages L1 and L2, respectively. A translation f
from L1 to L2 is given by a formula ψD(x) of L2 (with sole free variable x) such
that T � ∃xψD(x) and a mapping of atomic formulas R(x1, . . . , xr ) of L1 to
formulas R(x1, . . . , xr ) f of L2 in the same free variables. Moreover, we require
that (x1 = x2) f be just x1 = x2. f is then canonically extended to all formulas
of L1 by requireing f to commute with the connectives, i.e., (¬ϕ) f is ¬ϕ f and
(ϕ1 � ϕ2)

f is ϕ
f
1 � ϕ

f
2 (� ∈ {∧,∨,→}), and letting (∀xθ(x)) f and (∃xθ(x)) f be

∀x[ψD(x) → θ(x) f ] and ∃x[ψD(x) ∧ θ(x) f ], respectively.
f is said to interpret T1 in T2 if, for all sentences θ of L1, T1 � θ yields T2 � θ f .

2. Theories T1 and T2 are mutually interpretable if there are interpretations both
ways.

3. When the conditions listed in (1) are met, f and g are the interpretation functions.
4. Theories T1 and T2 are definitionally equivalent whenever, in addition to the

conditions listed in (1),6

(a) For any sentence φ of T1, (φ f )g is provably equivalent to φ in T1, and
(b) For any sentence ψ of T2, (ψg) f is provably equivalent to ψ in T2.

N.B. A crucial improvement of definitional equivalence over mere mutual inter-
pretability is its faithfulness, namely that nontheorems are transformed into non-
theorems, too. It is easy to come up with simple examples showing that mutual
interpretability does not suffice for definitional equivalence. 7

Proposition 12.2 Definitional equivalence is transitive.

Proof Obvious.
�

6 Definitional equivalance is sometimes called “synonymy”. Slightly different notions go by those names.
See, for example, Friedman and Visser and Visser [39] for insightful comparisons between various notions
of the equivalence of theories.
7 For instance, let T1 be predicate logic with equality and a unary predicate P plus the axiom ∃!x P(x)
and let T2 be T1 + ∀x∀y x = y. See [8].
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13 Classical counterpart

Kaye and Wong [14], 497, describe the (classical) “folklore” as follows:

The first-order theories of Peano arithmetic and ZF set theory with the axiom of
infinity negated are equivalent.

Let ZF− be ordinary Zermelo–Fraenkel set theory (without choice), but with the axiom
of infinity replaced by its negation. And let PA be classical Peano arithmetic. Of course
PA is obtained from HA by adding excluded middle. So the “folklore” is that ZF− is
equivalent to PA.

Equivalent in what sense? Kaye and Wong point out that ZF− is not definitionally
equivalent to PA (see also [15]). Moreover, unlike ZF, ZF− does not prove induction
for membership (what we call ∈-induction in Sect. 6), nor does it prove that every
set has a transitive closure. Indeed, ZF− does not prove that every set is a subset of
a transitive set, a principle sometimes called “transitive containment.” Again, all of
these are provable in SST (see Theorem 6.11 and Corollary 7.2).

Kaye and Wong [14] call ZF-inf* the theory ZF− plus transitive containment. They
show that this theory is equivalent to ZF− plus a statement that every set has a transi-
tive closure, and also equivalent to ZF− plus ∈-induction. It follows from the results
in Sect. 6 that SSTC just is ZFC-inf*. All told, then, we have a simple and elegant
axiomatization of the classical theory of hereditarily finite sets.

Moreover, Kaye and Wong [14] show, in effect, that ZF-inf* is definitionally
equivalent to PA. Hence, SSTC and PA are definitionally equivalent.

We now return to matters intuitionistic.

14 The definitional equivalence theorem

Theorem 14.1 The systems SST and HA are definitionally equivalent.

Proof This is basically the same proof as for [14, Theorem 19], but for the readers
convenience we present it all the same.

We will show that the interpretations a : SST → HA and b : HA → SST are inverse
to each other, meaning that

HA � ∀�x [(ϕ(�x )b)a ↔ ϕ(�x )] (5)

SST � ∀�x [(ψ(�x )a)b ↔ ψ(�x )] (6)

hold for all formulas ϕ(�x ) of HA and all formulas ψ(�x ) of SST. Fortunately, since
these interpretations do not affect the logical connectives, the quantifiers, and equality,
it suffices to check this for atomic formulas not involving =.

To show (5), we argue in HA. Write x <′ y for (x < y)ab, 0′ for the <′-least num-
ber, 1′ for <′-least number after 0′, x +′ y for the unique z such that Add(x, y, z)ab,
and x ·′ y for the unique u such that Mult(x, y, u)ab. One checks that 0′ = 0,
1′ = 1, and ∀x Suc(x, x +′ 1′). In consequence, by induction on y this implies
that ∀x∀y Add(x, y, x +′ y). As x < y ↔ ∃z (z �= 0 ∧ Add(x, z, y)) and also
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x <′ y ↔ ∃z (z �= 0 ∧ y = x +′ z), one infers that ∀x∀y (x < y ↔ x <′ y).
In the same vein one shows x ·′ (y +′ 1′) = x ·′ y +′ x , so that by induction,
∀x∀yMult(x, y, x ·′ y), as desired.

For (6) one works in SST. Writing x ∈′ y for (x ∈ y)ba one shows by ∈-induction
that ∀x∀y(x ∈ y ↔ x ∈′ y) from which the desired result follows. �
Corollary 14.2 SST is conservative over HA, with respect to b, in that, for φ from the
language of HA, when SST � φb, HA � φ. Similarly, HA is conservative over SST
with respect to a. (In the context of interpretations the notion of conservativy is also
known as faithfulness.)

Proof Immediate from the definition of definitional equivalence. �

15 Somemetamathematics of SST

Heyting arithmetic is known for having several pleasing meta-mathematical features,
among them the disjunction property and the existence property (due to Kleene [16]).
Owing to definitional equivalence, they propagate to SST.

Corollary 15.1 (i) SST has the disjunction property, that is, whenever SST � φ ∨ ψ ,
where φ and ψ are sentences, then SST � φ or SST � ψ .

(ii) SST has the existence property, that is, whenever SST � ∃xθ(x) for a sentence
∃xθ(x), then there exists a formula ϑ(x) with at most x free such that

SST � ∃!x [ϑ(x) ∧ θ(x)].

Proof (i) By Theorem 10.2, SST � φ ∨ ψ yields HA � φa ∨ ψa, thus HA � φa

or HA � ψa, whence, by Theorem 11.2, SST � (φa)b or SST � (ψa)b, and
consequently, SST � φ or SST � ψ , owing to Theorem 14.1.

(ii) Suppose that SST � ∃xθ(x). Then HA � ∃x θ(x)a. The existence property for
the usual functional version of HA furnishes a numeral n̄ such that HA � θ(n̄)a.
However, for the interpretation b we used the relational version of HA. So let
φ(x) be a description of the n-th natural number in the relational language. Then
HA � ∃!x [φ(x) ∧ θ(x)a] and therefore SST � ∃!x [φ(x)b ∧ (θ(x)a)b], whence
SST � ∃!x [ϑ(x) ∧ θ(x)], with ϑ(x) being φ(x)b.

�

15.1 Church’s theses for sets

HA is known to be consistent (e.g. via Kleene’s realizability interpretation [16]) with
Intuitionistic Church’s Thesis or CT, that is, the statement that every total binary
relation on the natural numbers comprises the graph of a natural number function that
is Turing computable. CT lends itself to various versions germane to SST.

Definition 15.2 1. Let T(n,m, p) be Kleene’s informal arithmetic computation or
T-predicate. Informally, T if and only if p is the complete code of a computation
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of the Turing machine with index n on inputm. Let Tset(x, y, z) be corresponding
predicate defined within the language of SST via the b-translation as (T(x, y, z))b.

2. Let U(n,m) be Kleene’s upshot predicate. Informally U(n,m) just in case when-
ever n is the code of a complete computation, then m is the output of that
computation. Let Uset(u, v) be the predicate defined within the language of SST
via the b-translation as (U(u, v))b.

3. A total (class) endofunction F on the universe of sets is said to be Turing
computable on sets if there exists a set e such that

∀y ∃z [Tset(e, y, z) ∧ Uset(z, F(y))].

Church’s Thesis for Sets or CTset is the claim that every total (class) relation on the
universe of SST comprises the graph of a class function F that is Turing computable
on sets. In the language of SST, CTset is expressed by the following scheme, with
φ a formula,

∀x∃y φ(x, y) → ∃e∀x∃u∃v [Tset(e, x, u) ∧ Uset(u, v) ∧ φ(x, v)].

In view of Theorem 14.1 we then have:

Theorem 15.3 SST+CTset is a consistent theory. Moreover,HA+CT and SST+CTset
are definitionally equivalent theories.

CTset embodies a version of Church’s thesis that is based on the idea of using the
coding function Num of Corollary 9.3 to pull Turing computability over N back onto
the class of all sets, the universe of hereditarily finite sets of SST. This approach can
be chided for being too parasitic on Turing computability. Perhaps, in its stead one
would like to see a genuinely set-theoretic notion of computability on sets.

Such an alternative approach exists. It is known as set recursion or E-recursion (see,
e.g., [26] or [21] or [31, Ch.X]). In it, one has unlimited application of sets to sets,
conveyed by the symbol {e}(x), where e and x are sets. Here Kleene’s curly bracket
notation is used to signify that e is viewed as an index for a partial (class) function on
the universe of sets which takes a set input x to produce a result {e}(x) if x happens
to be in the domain of that function. This notion of computability over the universe
of sets is based on a few simple starting functions (known as rudimentary functions,
such as x, y �→ x ∪ {y}) and also has the combinators k and s from combinatory logic
baked in. Formally, it’s introduced via an inductive definition (similar to [37, Ch. 3,
7.2]). It allows one to view the universe of sets as a class-sized partial combinatory
algebra. Various notions of realizability can be based on this pca (see [30]). Moreover,
it gives rise to a general set-theoretic version of Church’s thesis, dubbed CTS (see also
[36] and [38]).

Definition 15.4 Wewrite {e}(x) � y to indicate that x is in the domain of the function
with index e and y is the value of that function applied to x . In the language of set
theory, let CTS be the following scheme, with φ any formula:

∀x∃y φ(x, y) → ∃e∀x∃y [{e}(x) � y ∧ φ(x, y)].
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Indices for set recursive functions can serve as realizers of formulae.

Definition 15.5 We define a relation a � θ between sets and set-theoretic formulae
ϕ by induction on the buildup of ϕ. Below a • c � θ will be an abbreviation for
∃x[{a}(c) � x ∧ x � θ ].

a � ϕ iff ϕ holds true, whenever ϕ is an atomic formula

a � ϕ ∧ θ iff (a)0 � ϕ ∧ (a)1 � θ

a � ϕ ∨ θ iff [(a)0 = 0 ∧ (a)1 � ϕ
] ∨ [(a)0 = 1 ∧ (a)1 � θ

]

a � ¬ϕ iff ∀c ¬ c � ϕ

a � ϕ → θ iff ∀c [
c � ϕ → a • c � θ

]

a � ∀xϕ(x) iff ∀c a • c � ϕ(c)

a � ∃xϕ(x) iff (a)1 � ϕ((a)0)

� θ iff ∃a a � θ.

Theorem 15.6 Let φ(u1, . . . , ur ) be a formula all of whose free variables are among
u1, . . . , ur . If

SST + CTS � φ(u1, . . . , ur ),

then one can effectively construct an index of an E-recursive function g such that

SST � ∀a1, . . . , ar g(a1, . . . , ar ) � φ(a1, . . . , ar ) .

Proof Similar to [30, Theorem 4.2]. �
There is also a version of realizability combined with truth (see [30, 3.1]) that can
be used to prove the disjunction and existence properties for SST directly rather than
using definitional equivalence with HA.

An obvious question is how the two set-theoretic versions of Church’s thesis are
related to each other. One can show the following.

Theorem 15.7 SST+CTset and SST+CTS are the same theories, more precisely, they
prove the same theorems.

Proof One shows that every set recursive function induces a Turing-computable func-
tion on N via the translation b. Conversely, one shows that every Turing computable
function on N gives rise to a set-recursive function via a. �

16 Categoricity of SST in Markovian set theories

Prominent principles of Markov’s constructivism are Church’s thesis (CT) and
Markov’s Principle (MP). McCarty showed in [19] that augmentations of standard
intuitionistic set theories (e.g., IZF and CZF) by CT and MP prove the categoricity of
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HA, that is, that all models of HA are isomorphic. Notably, the latter entails that there
are no nonstandard models of arithmetic. This result carries over to models of SST as
will be spelled out below. But first the definition of MP.

Definition 16.1 Markov’s Principle or MP is the following statement expressed in the
language of set theory.

If S is a decidable subset of the natural numbers, and ¬¬∃n ∈N n ∈ S, then
∃n ∈N n ∈ S.

We could well have pursued the preceding study of SST and its interpretations
entirely within the Intuitionistic Zermelo–Fraenkel set theory IZF or Constructive
Zermelo–Fraenkel set theoryCZFplusCTandMP. IZF+CT+MP is consistent relative to
IZF and CZF+CT+MP is consistent relative to CZF; number realizability for cumulative
sets demonstrates this (see [18] and [29], respectively).

As described in Corollary 9.3, the isomorphism articulated by the function Set
between natural numbers and hereditarily finite sets shows that models of SST contain-
ing only standard natural numbers, i.e., T-sets representing standard natural numbers,
must be standard. It is known (see McCarty [19]) that, within the contexts of IZF and
CZF, CT implies that there are no nonstandard natural numbers, while CT plus MP
imply that all models of HA are isomorphic. Therefore, we have the following theorem.

Theorem 16.2 (i) IZF + CT and CZF + CT prove that in models of SST there are no
nonstandard natural numbers.

(ii) IZF + CT + MP and CZF + CT + MP prove that SST is categorical: SST’s sole
model—up to isomorphism—is the universe of hereditarily finite sets.
Indeed, there is a single theorem of SST that is itself categorical, as per the
techniques developed in [19].

Remark 16.3 The categoricity results have miniaturised counterparts in terms of
interpretability. See for example Appendix C of [17].
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