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Sparse Bayesian Identification of
Polynomial NARX Models
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Abstract: In this paper a novel sparse Bayesian structure detection algorithm is introduced for
the identification of nonlinear autoregressive with exogenous inputs (NARX) dynamic systems.
The main advantage of this algorithm over alternatives is that parameter uncertainty is naturally
incorporated, and parameter estimation by variational inference is computationally efficient,
consisting of a sequence of closed form updates. The proposed framework is demonstrated
through a commonly used simulated benchmark problem.
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1. INTRODUCTION

A popular model class for the identification of nonlinear
dynamic systems is the polynomial nonlinear autoregres-
sive with exogenous inputs (NARX) model (Leontaritis
and Billings, 1985). One reason for the popularity of the
NARX model is that it can produce a much more compact
description compared to the Volterra series class of model,
especially when there are nonlinear output terms in the
description (Chen and Billings, 1989). The NARX model
class also possesses a linear-in-the-parameters structure
that simplifies parameter estimation. The most challenging
part of the system identification procedure for NARX
models is structure detection: choosing a subset of terms
from a superset to be included in the final model, lead-
ing to a parsimonious representation of the system under
investigation.

System identification, specifically structure detection, of
NARX models has received a great deal of attention since
the model class was first established. A popular method is
the forward regression orthogonalisation (FRO) algorithm,
developed by Chen et al. (1989), which calculates an error
reduction ratio based on the one step ahead model predic-
tion. FRO has undergone several modifications over the
years - see Billings (2013) and references therein. Piroddi
and Spinelli (2003) adopted a method which aims to min-
imise the simulation error - especially advantageous when
the input is not persistently exciting, while Baldacchino
et al. (2012) used an expectation-maximisation (EM) algo-
rithm for identification, which is useful in scenarios where
there are missing data. Kukreja et al. (2004) developed
an algorithm that quantifies parameter uncertainty using
bootstrapping.

* W. Jacobs is financially supported by an EPSRC scholarship
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There is however, little precedent for the identification
of NARX models within a Bayesian framework. Bayesian
learning is advantageous for a number of reasons: (i) it
naturally penalises overly complex models thus avoiding
overfitting, (ii) it naturally captures uncertainty about
the model, useful in simulation and control design, (iii) it
can accurately quantify model uncertainty even for short
data lengths and (iv) it uses prior distributions, which give
the modeller a much greater degree of influence over the
modelling process because information about the system
can be incorporated into the priors (Gelman et al., 2014).

To our knowledge, the only instance of a Bayesian ap-
proach to parametric modelling of NARX models appears
in Baldacchino et al. (2013). The authors of that paper use
a Markov chain Monte Carlo (MCMC) sampling method in
order to numerically obtain posterior distributions of both
the model structure and parameters. However, sampling
methods are often computationally intensive to implement
because they tend to rely on large numbers of samples to
accurately estimate distributions (Ninness and Henriksen,
2010).

There is therefore a need for computationally efficient
Bayesian system identification techniques capable of pro-
ducing parsimonious models of dynamic systems. In this
work we present a novel Bayesian structure detection algo-
rithm capable of identifying accurate and compact NARX
models, which is both simple to implement and relatively
computationally efficient. The NARX identification algo-
rithm is based on variational Bayesian inference, resulting
in a sequence of closed-form equations in an iterative
algorithm (Bishop, 2006). Structure detection is driven by
the inclusion of a sparsity inducing hyperprior, referred
to as automatic relevance determination (ARD), which is
used to prune redundant terms from the model (MacKay,
1995).



The paper is organized as follows. Section 2 first intro-
duces the polynomial NARX model and then continues
to present the approximate Bayesian inference problem
and the structure detection algorithm. Section 3 gives a
simulated example of the modelling framework.

2. METHODS
2.1 The polynomial NARX model representation

Discrete-time input-output dynamic systems can be effi-
ciently represented as a polynomial NARX model Leon-
taritis and Billings (1985). The system is described by
some unknown nonlinear function, f(.), of lagged sys-

tem inputs, u = [u1,ug,...,un]’ and outputs, y =
[yhy‘z»--wyN]T
yr = f(y) + e, (1)
where
Dr = [Ye—10 s Yty Ut 1y oo Ug |- (2)

e; are independently sampled from an iid white noise
sequence and are assumed to be zero-mean and variance
2. ny and n, represent the maximum dynamic order of

the output and input terms respectively.

The nonlinear function f(.) can be decomposed into a sum
of weighted basis functions such that

M .
Fldy) = 0;01, (3)
j=1

where M is the number of terms in the model, 8; is the
jth model parameter and ¢! is the j’th polynomial basis
function. Hence, in matrix form the polynomial NARX
model is defined as

y =®0+e, (4)

such that
D =[¢1;¢2;...;0n], (5)
9:[91,‘92,~-~791\17]T7 (6)

The structure detection task is defined as the selection of a
subset of M basis functions from the complete set, denoted
M, that forms a parsimonious description of the system
dynamics. Parameter estimation is greatly simplified by
the linear in the parameters structure of the NARX model
allowing the use of least squares based techniques.

2.2 Bayesian linear regression

The posterior distribution over the parameters of the
NARX model defined by equation (4) is given by Bayes
theorem as

p(y|®,0,7)p(6,7) %
p(y)

where p(y|®,0,7) is the likelihood function, p(#, ) is the

joint prior distribution over the model parameters and

precision, 7 = 1/02, and p(y) is the model evidence or

marginal likelihood.

p(0,7ly) =

Under the assumption of Gaussian noise the likelihood
function for the data, y, can be written

p(y|®,0,7) =[] p(vile:. 0,7) (8)

=[[Nwlo0,7") (9)
t
where N represents the Gaussian distribution.

2.8 Priors and Automatic Relevance Determination

Bayesian estimation incorporates prior knowledge of the
system under investigation into the modelling process
through the choice of prior distributions of the model
parameters. Modern Bayesian estimation can use non-
informative prior distributions in order to force the infer-
ence of the posterior distribution to be driven by the data.
In this work a sparsity inducing hyper-prior is introduced
which will be the mechanism through which the model
structure detection is driven.

The conjugate normal gamma distribution is chosen as the
prior over f and 7 such that

p(0, 7)) = N (8]0, (TA)~1)Gam(7|ag, bo), (10)
where A is a matrix with diagonal elements a =
(a1, ...,ap), which is a vector of hyperparameters that

are independently associated with each parameter of the
model and Gam is the Gamma distribution.

The hyperparameter, o, is assigned the hyperprior

M
p(e) = [ | Gam(eyco, do).
=0

(11)

The hyperparameter A effectively determines the extent
to which each of the the model parameters is allowed to
move from zero. Hence the sparsity of the inferred model
parameters can be directly controlled by the choice of
hyperparameter p(ca). The value of a; provides a measure
of how relevant the corresponding input (basis function)
is to the model, aj_l = 0 implies that the corresponding
basis function is not relevant to forming the distribution
of the output.

Having defined all the priors of the model the parameter
posterior is reformulated to include all the unknowns
p(y|®.0,c,7)p(0, . 7)

p(y)

p(07a7T|Y) = (12)

2.4 Variational inference

Due to the introduction of the hyperprior (11) we are
unable to compute the posterior (12) because the model
evidence p(y), in the denominator, is intractable. In or-
der to overcome this difficulty an approximate learning
algorithm is required to train the model. Here we use vari-
ational Bayesian linear regression although other Bayesian
model fitting methods, such as relevance vector machines
(Tipping, 2001) could be used.

An outline of the variational framework only is presented
here for brevity. The interested reader is referred to Bishop
(2006) for a fuller description. Variational inference relies
on the assumption that the posterior p(@, a, 7|y) can be
approximated by the the variational distribution ¢(0, c, )
which factors into ¢(0, a)q(7).



Given that the approximation is a good one, it can be
shown, Bishop (2006), that the variational posteriors can
be found by maximisation of the variational lower bound

// (0,7, )

(y|®,0,7)P(0, T|o) P(c)

1
= (0,7, )

dodrda

(13)

<Inp(y),

where P(y) is the model evidence and the assumption has
been made

Using the calculus of variations we can obtain the following
variational posteriors, see Drugowitsch (2013) for deriva-
tions,

q(0,7) =N(0|0k, 7 'Vi)Gam(T|ag,bx),  (14)
a)= H Gam(ajck, dr), (15)
j=1
where
Vi =Eq[A] + ¢,
k= Vk®ly,
ag =ag + 2—7
1
br =bo + 5((}’ —00k)" (y — POK)
+0"E,(A)0x, (16)
1
CK =Co + 5,
1
drj =do + §E0¢a[7—62‘]7
Eg,a[792] 92b— + (VK)”—,

where E,[A] is a diagonal matrix with elements E,[A] =
diag(ck /di 1, ..., cx/dr ) and the subscript K indi-
cates the current iteration over k. The distribution (14)
is updated using the expectation of the statistics of (15)
and visa-versa in an iterative algorithm that is terminated
when the change in the lower bound £(Q) is less than the
threshold T (), see Algorithm 1. The method is hence
analogous to the EM algorithm within a Bayesian context.
The variational lower bound is given by

N .
L£(Q) =~ In2r — % > <:—2(yn —$0K)* + qthVqut)

1 M
F2In|Vi| + = — InD(ag) + agnby — bo- X + ag
2 2 b

+> (colndg —nT(co) + InT(cx) — cx Indy ;).(17)
J
The quantity £(Q) can be used as a measure of model

performance without risk of over-fitting since it provides
a lower bound for p(y).

The predictive density is obtained by marginalising the
product of the likelihood and posterior distributions with
respect to @ and 7. In order to achieve this, the posterior

density p(0,7,aly) is approximated by the variational
posterior ¢(8,7)g(a) given by equation (14) such that

p(yw |®) ://P(yt'|¢)t/,9,T)p(@,r,a|y)d0d7-da
:///P(?/t’|¢t'vevT)Q(H,T)q(a)dedeOz (18)

2(1}()
K

where ' =t + 1 and St is the Student-t distribution. The
above steps make use of standard results in convolving
probability distributions. o does not appear in the pre-
dictive distribution because it integrates to unity since
it does not appear in the likelihood. The mean of the
Student-t distribution is ¢,,0 x and the predictive variance

is (1+¢; Vi, )bx/(ax — 1).

st <yt/|¢t,oK (1+ ¢! Vicop,)™!

2.5 Structure detection

In order to achieve parsimonious structure detection at
each iteration (denoting this iteration number by ) the
variational inference procedure, described in the previous
section, is performed for different model structures.

At the i'th iteration, a new model structure M, is deter-
mined by calculating the ARD values associated with each
parameter of the current model structure M;_; expressed
as

ARD; = {(cx /dr ;)" 1}, (19)

Basis functions corresponding to ARD values that fall
below some pre-defined value, Tx ), are pruned from the
model, where

(max(ARD?) — min(ARD?)
r

and r is a tuning parameter. Small values of r result in
pruning more terms at each iteration, whilst larger values
of r tend to retain more terms in the model at each

iteration, hence increasing computation time.

Tj{RD = (20)

The structure detection algorithm (Algorithm 1) will con-
verge to a model of size M = 1 in a finite number of
iterations because the algorithm is guaranteed to prune
at least one term from the superset of model terms at
each iteration. The choice of optimal model structure is
simply the model that corresponds to the maximum of
the variational lower bound L(Q);.

2.6 Model performance

The performance of the NARX models identified using
Algorithm 1 is evaluated using an independent validation
data set consisting of new unseen input data and the
performance is measured by the fit to the real data. The
MSPE (Mean square prediction error) given by

% Z(yt - Qt)z

t
is used as a measure of performance.

MSPE = (21)
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Fig. 1. ARD values for the NARX model at iteration 1,15 and 30. The correct model terms given in equation (22) are
coloured black, a competing term (y?_,u; 1u; 4) is shown in green. The threshold for pruning terms is indicated
by the dashed red line and pruned terms are also coloured red.
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Fig. 2. ARD values for the NARX model at iteration 1,5 and 10 with » = 10. The correct model terms given in equation
(22) are coloured black. The threshold for pruning terms is indicated by the dashed red line and pruned terms are

also coloured red.

3. NUMERICAL EXAMPLE
3.1 A nonlinear benchmark example

In order to investigate the performance of Algorithm 1
we use the following test system, which has previously
been used for benchmarking in Mao and Billings (1997),
Piroddi and Spinelli (2003) and Baldacchino et al. (2013),
particularly because it is designed so that the standard
FRO algorithm fails on this problem by selecting incorrect
terms,

Yr = — 0.5y4—0 + 0.7y _1us—1 + 0.6u7_,0.2y3_,
(22)

where the input signal, uy, is a uniformly distributed white
noise sequence in the range (—1,1) and the noise ¢, is
normally distributed white noise. The system was used to
generate three sets of N = 1000 input-output data samples
with signal to noise ratio (SNR) & 5dB, 10dB and 20dB.

— 0.7yt_2uf_2 -+ €.

Algorithm 1 was applied to perform structure detection
on the nonlinear system given in (22). A superset of basis
functions was considered with dynamic order n, = n, =4
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Fig. 3. Estimated parameter distributions for each term identified by the ARD algorithm at SNR = 5,10 and 20. The
red line indicates the true value and the dashed lines indicate the mean of the Gaussian distribution. Parameter
values are given in the same order as for the system given by equation (22).

Table 1. Comparison of true and estimated parameters with assosiated standard deviations
for the structure detection of the benchmark model given by equation (22) using the ARD

algorithm.
Regressor True value SNR =~ 5 SNR ~ 10 SNR ~ 20
Yt—2 —-0.5 —0.5118 £ 0.0213 —0.4883 £ 0.0189 —0.4802 £ 0.0127
Yt 1Ut—1 0.7 0.6918 4 0.0247 0.6856 + 0.0215 0.7096 + 0.0144
u§72 0.6 0.5960 4+ 0.0169 0.6061 4 0.0130 0.5961 4+ 0.0073
yf‘_l 0.2 0.1921 4 0.0098 0.2004 £+ 0.0116 0.1948 £+ 0.0082
yr—2uZ_, -0.7 —0.5911 £ 0.0522 —0.7697 £ 0.0460 —0.7330 £ 0.0279

Algorithm 1: NARX Structure detection
Set 1-(q), TArRD,a0, bo, co, do, _
Tnitialise model structure to all basis functions Mg = {®7 }Jl‘i 1
1=0
while M > 1
t=1+1
k=1
while £L(Q)r — L(Q)r-1 < Tr(q)
k = k+1
update parameter estimates for model M;_1 using (16),
calculate £(Q)g via equation (17)
end while
Set £(Q); = £(Q)
Calculate T% ., via equation (20)
Initialise pruning terms set, M~ = 0,
for j=1:|M;_1]
if ARD; <Tigpp _
collect terms to prune, M~ = M~ U PJ|
end if
end for
Set current model structure to M; = M,;_; \ M~
end while
Set optimal model M* = M, where i* = arg max £(Q);
2

and polynomial order n, = 4 providing a set containing
M = 494 terms in which to search. Terms were removed
from the model that fell below a threshold ARD value,
Tarp, given by equation (20) with the resolution r = 50,
this value was chosen as it provided an acceptable trade
off between algorithm speed and accuracy. Uninforma-
tive priors were used by choosing hyperparameters for
Gam(7|ag, by) and Gam(a;|cg, dy) as: ag = cp = 1 x 1072
and by = dy = 1 x 1072, these are common choices for
setting uninformative priors. The number of iterations over
the variational update equations (16) was set to 200, this
value provided a satisfactory convergence of the varia-
tional lower bound, £(Q). The algorithm was run until
all but one term was pruned from the model. The final

1000 T T T T T

800

600

400

200

Lower Bound

-200

10 20 30 40 50 60
Iteration, i, over outer loop

Fig. 4. Variational lower bound against iteration number
of the outer loop in Algorithm 1 for » = 10 (Red) and
r = 50 (Blue). The vertical dashed lines indicate the
largest value of the lower bound and hence the chosen
model.

model M* is given by the model that corresponds to the
largest value of the variational lower bound, £(Q);. The
time for the algorithm to run was 83 seconds (Intel i5
3470@3.20GHz,4GBRAM).

The algorithm correctly identified the structure of the
system system for all three levels of noise, the final model
terms and the estimated parameters are given in Table
1. The progression of the algorithm for SNR ~ 20 dB
can be seen in Figure 1, where the ARD values have
been plotted on a In scale for clarity. After the first
iteration all the correct model terms, shown in black, are



automatically assigned high ARD values indicating a high
relevance to the data. However, some surplus terms are
also assigned comparably large values, most notable the
term y?_yu;_qug—y (shown in green) is assigned a value
higher than that given to one of the correct model terms.
As the algorithm advances the least relevant terms (those
associated ARD values falling below a specified threshold
indicated by the dashed red line) are pruned from the
model (coloured red), the remaining non model terms
are observed to gradually decrease in relevance. Posterior
distributions over the parameters are calculated for all
three noise levels, their means are within one standard
deviation of the true parameter values, see Figure 3.

In order to demonstrate the effect of the choice of the
tuning parameter r, the algorithm was run again using the
same data (SNR~ 20dB) and initialisation but choosing
r = 10. It can be noted that the pruning of terms is
much less conservative in this case, see Figure 2. Although
the correct structure is still identified, the figure indicates
that the choice of r should be treated with caution as
reducing this value more could result in the pruning of
desirable model terms. The advantage of choosing a small
r is seen in the number of pruning iterations completed by
the algorithm and hence computation time, see Figure 4.

Table 2. Comparison of true and estimated

parameters for the structure detection of the

benchmark model given by equation (22) using
the FRO algorithm.

Regressor ERR True value Estimated parameter
ye—au?_,  0.3587 0.0086
Yi—1ui—1  0.1351 0.7 0.6884
ul_, 0.1217 —0.0085
Yt—2 0.2316  —0.5 —0.5064
u?_, 0.0331 0.6 0.6010
y—ou? , 0.0267  —0.7 —0.6900
T 0.0239 0.2 0.1940

The structure detection task was performed again using
the FRO algorithm, see Table 2. The FRO algorithm
predicts more terms than the generating system, a real
system is not governed by true polynomial basis functions
and so a method which models the dynamics of the system
in a parsimonious way is desired. The run time for the
FRO algorithm using the same computer was 3374.98
seconds,indicating that a significant speed up is achieved
with our algorithm.

4. SUMMARY

The benchmark problem tackled in Section 3.1 demon-
strates the applicability of the ARD structure detection
framework developed in this work. The correct model
structure is identified in a situation where standard FRO
techniques fail. Although more sophisticated additions to
the FRO scheme as well as simulation based algorithms
have achieved success in this area, these methods tend
to be computationally intensive and do not naturally de-
scribe the uncertainty in the model parameters. The novel
algorithm presented here has distinct advantages in this
respect. To further this investigation we need to consider
the effects of how uncertainty in the parameters effects the
prediction.

The main contribution of the algorithm presented in this
work is the quantification of the model uncertainty within
a Bayesian framework that is simple to implement and
computationally efficient. The simplicity of the method de-
rives from the closed form nature of the variational update
equations, removing the necessity of using sampling meth-
ods that are required by many Bayesian algorithms. In
this case the steps in the iterative identification algorithm
are closed form, which leads to relatively fast computation
times.
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