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Acoustic Echo-Localization for Pipe Inspection Robots

Rob Worley', Yicheng Yu?, Sean Anderson'

Abstract— Robot localization in water and wastewater pipes
is essential for path planning and for localization of faults, but
the environment makes it challenging. Conventional localization
suffers in pipes due to the lack of features and due to
accumulating uncertainty caused by the limited perspective
of typical sensors. This paper presents the implementation
of an acoustic echo based localization method for the pipe
environment, using a loudspeaker and microphone positioned
on the robot. Echoes are used to detect distant features in the
pipe and make direct measurements of the robot’s position
which do not suffer from accumulated error. Novel estimation
of echo class is used to refine the acoustic measurements before
they are incorporated into the localization. Finally, the paper
presents an investigation into the effectiveness of the method
and the robustness of the method to errors in the acoustic
measurements.

I. INTRODUCTION

Water supply and wastewater pipes are in need of con-
stant maintenance. This maintenance is costly, and would
be improved by more precisely locating faults in the pipe
network. Current location methods are inefficient, requiring
manual inspection from above ground or using remotely
controlled robots. These methods might be improved by
using autonomous robots for persistent, pervasive inspection
of a pipe network. These robots would be small, with limits
on the size, power requirement, and cost of hardware.

Localization is important for pipe-inspection robots as it
allows for effective path planning and for the location of
faults to be accurately returned to an operator. However, this
environment is challenging for localization. The environment
restricts the use of typical robot sensors such as GPS and
magnetic compasses [1], and vision-based localization is
challenging due to feature sparseness [2], and due to the
limited perspective in a pipe causing accumulated error from
the integration of the uncertain relative position estimates
made between images with little overlap in content.

A number of in-pipe robot localization methods have been
demonstrated including the use of visual odometry [2], [3],
[4], visual feature recognition [5], [6], and inertial [7], [8],
[9], magnetic [1], and acoustic [10] sensing. These show a
number of approaches to measuring aspects of the robot’s
state which could be used in sensor fusion.

Few investigations have been made into direct estimation
of the position of the robot relative to distant features in a
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pipe beyond the view of a camera, which would reduce limits
on the robot’s perspective.

The use of an artificial field such as a radio signal in a pipe
[11] has been shown, but it requires a separate transmitter,
limiting the flexibility of the system in this application. The
use of time of arrival (TOA) of acoustic signals has been
demonstrated for in-pipe robots [12], where the delay arrival
of an acoustic signal is used to estimate the distance travelled
by the robot. However, in this case the robot is tethered
to the sound source so that the delay in arrival can be
measured, limiting the desired autonomy. To circumvent this,
a loudspeaker can be positioned on the robot, allowing the
measurement of TOA of acoustic echoes. This can give an
absolute estimate of the position of features relative to the
robot which does not suffer from accumulated error.

A number of methods for acoustic robot localization have
been demonstrated. Recent work has used the direction of
arrival of sounds from moving sources [13]. Other recent
work has demonstrated the use of a single co-located acoustic
source and receiver to estimate the position of a robot
in a structured room [14], [15]. These methods use the
room impulse response from a room with reflective walls
to iteratively estimate a moving robot’s position, the former
using Bayes filtering and incorporating knowledge of the
robot’s motion, and the latter using optimization. These
methods have been developed for multi-walled rooms where
multi-path echoes are not considered and where it is assumed
that each detected echo can be associated with a specific wall.
However, the reflective pipe environment differs as multi-
path echoes are observed and data association is challenging
due to uncertainty in the echo measurements.

The measurement of acoustic echoes may be challenging
in this application due to acoustic dispersion and the presence
of environmental noise from flowing water and robot motion.
Estimation of impulse responses in the presence of uncer-
tainty has been done by finding acoustic model parameters
that minimize the error between the predicted and measured
impulse response [16].

This paper presents a method of acoustic echo-based
localization for a robot moving through a pipe without a
tether, which is demonstrated using experimental data. The
incorporation of multi-path echoes is presented along with
robust data association for measurements. The main novel
contributions of this paper are a method of classifying the
acoustic echoes by robustly estimating the length of the
pipe (in Section II-D.2), required for removing undesired
measurements, and the analysis of the sensitivity of the
localization method to spurious or missing measurements (in
Section III).
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Fig. 1. A photograph of the pipe used to record experimental data, and an
illustration of the robot within a pipe emitting a sound which echoes from
the ends of the pipe. Three different scenarios are shown, which have been
created experimentally. In all cases one end is open, and in each case the
other end is open, closed, or filled with absorber, respectively.

II. METHODS
A. Problem Definition

The robot moves along the axis of a pipe by a known
input u; to position x; at time k with the state-space model

Xk = Xp—1 + U +wg (D

where additive normally distributed noise wy is added to uy
at each step. This models the uncertainty in motion along the
axis of the pipe due to obstruction to motion such as debris
and due to unmeasured motion off the axis of the pipe. The
aim is to estimate x; in the presence of noise wy.

After moving, the robot stops and makes an acoustic mea-
surement. It is assumed that the robot is in an isolated pipe
of unknown length which has acoustically reflective ends.
The robot has a co-located loudspeaker and microphone
so it can emit and receive a sound, as illustrated in Fig.
1, and use the measured impulse response to estimate the
distances to the ends of the pipe. These measurements are
used for localization, estimating the robot’s position x; and
the positions of the ends of the pipe.

B. Acoustic Signal Processing

When the loudspeaker transmits an acoustic signal, the
received signal is modelled in discrete time [17] by

() = 5(6) % hr) = 2 Sl —2) @

where the received signal r at time index ¢ is given by the
convolution of the transmitted signal s and the pipe transfer
function between the loudspeaker and microphone at robot
position x through the pipe, #,.

An impulse with sufficient energy is difficult to produce
using a small loudspeaker. Therefore the impulse response
is not found directly but instead by using deconvolution, as
the response is equal to the transfer function
Hy(w) = % 3)
where each term is the Fourier transform of each correspond-
ing term in Equation 2. This allows a chirp signal to be used,
which has energy across a band of the frequency spectrum.

The impulse response is expected to be a series of impulses
corresponding to each path an acoustic wave can take from
source to receiver [15], [16], [18]. This is represented as

N
he(t) =Y 8a8(t — 1) 4)
n=1

where there are N components, each of which is a Dirac
delta impulse where the n'" component has magnitude g,
and delay T,.

A band-pass filter is applied to r(z) and s(¢) to remove
the effect of higher frequency dispersive wave effects and
low frequency oscillation in the impulse response, allowing
detection of each impulse component. This filtering adds
delay which is removed using cross-correlation between the
filtered pipe impulse response and the impulse response
of the filter itself, and oscillation which is removed using
envelope detection.

The signal processing is illustrated in Fig. 2(a), where the
time delay 7, has been converted to a distance to the source
of reflection &, by

1
én = ECTn 5)

where c is the wave speed. It is assumed that the wave speed
is known, requiring calibration in the case of operation in
varying temperature and humidity.

C. Experimental Acoustic Measurements

Fig. 2(b) shows the response found from measurements
made in the 15 metre pipe seen in Fig. 1, where the robot
is 1.5 metres from one end. Fig. 2(c) shows the estimated
impulse response in the form of Equation 4, from which
measurements &, can be taken.

The first impulse corresponds to the direct path between
the source and receiver, and is ignored in the subsequent
methods. The second and third impulses correspond to first
order echoes from the ends of the pipe. Fig. 2(d) shows that
as the robot moves, these impulses move accordingly, so can
be used as measurements of map features in localization.

The fourth impulse corresponds to the path equal to twice
the length of the pipe, giving a distance to the reflection
source equal to the pipe length, 15 metres. In Fig. 2(d) an
impulse at this distance is seen for every robot position, so is
a static measurement which, if used in the same way as the
other measurements, would incorrectly appear to correspond
to a feature which varies in position.

The further impulses correspond to the first order echo
signals which have then travelled the path of the static
measurement, adding a further delay equal to the length
of the pipe. The multiple order echoes are simply offset in
distance by multiples of the length of the pipe. Therefore,
they could be used as direct measurements of the positions of
the echo sources if the offset can be detected and removed, or
as measurements of position of fictional echo sources outside
the pipe. In this work, the latter approach is used.

If the robot is large enough with respect to the pipe,
there may be significant acoustic reflection from it, which
will result in echoes that appear to have travelled twice the
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Fig. 2. The acoustic signal processing used to estimate the distances to
reflective features in the pipe from the robot. (a) The signal processing
sequence: Deconvolution is used to find the impulse response between the
loudspeaker and microphone. A band-pass filter removes low frequency
oscillation and high frequency diffuse wave effects. Cross-correlation and
envelope detection are used to remove the offset and oscillation caused
by the filtering. (b) The processed impulse response when the robot is
1.5 metres from an end of a 15 metre long pipe. (c) The envelope of
the filtered impulse response. The detected impulses are labelled with
their corresponding distance. (d) A set of experimental data showing the
impulse response as the system moves through the pipe in steps of 1 metre.
The position at which each impulse response was found is labelled. The
amplitude is arbitrary, and the impulses are shown offset in amplitude.

distance to the feature. It is assumed that these echoes are
able to be removed from the set of measurements, either by
using a similar method to that described in section II-D.2,
or by also using the amplitude of the impulse component,
which will be smaller in this case.

Further processing is needed to use these measurements,
desired and undesired, for robot localization.

D. Robot Localization

The measurements &, will be subject to additive noise, and
spurious or missing measurements are expected. With only
one microphone there is only information about distance to
features and not direction. Due to the uncertain and limited
measurements the robot must combine multiple measure-
ments in order to give a robust unique position estimate.
This is formulated as an optimization problem in related
work [15] using impulse measurements only. However, in

a pipe a set of impulse responses cannot uniquely identify
a trajectory. Therefore, information about the robot’s motion
must be incorporated into the localization, as in related work
using Bayes filtering [14].

In this work, the Bayes filter is implemented as a Kalman
filter [19], fusing acoustic measurements with the state space
model, giving robustness to measurement noise and motion
noise. Other implementations could also be applied, however
the Kalman filter is suitable as the system is well modelled as
linear with Gaussian noise, and the estimate is expected to be
unimodal as ambiguities in sensing are resolved immediately.

The state to be estimated is defined as y; =
[xk pPL P2 .- DPm pM]T , where x; is the robot’s
position at time k, and p,, is the position of the m echo
source, where there are M estimated echo sources. The
sources of multiple order echoes are modelled as features at
positions further than the ends of the pipe, as they appear to
be in a fixed position like the sources of first order reflections.
The state space model is therefore expanded from that in
Equation 1, and is given by

Uy Wi
0 0

Ve =AYkt +we =Ty + | L+ | (6)
0 0

The estimate is parameterized as a Gaussian distribution
over each state dimension with mean M, and covariance
matrix X. This estimate is initialised as o= [xo pi] -
[0 O] T When the robot is at one end of the pipe. The size
of this vector is increased as measurements are made and the
estimated number of echo sources increases. Apart from the
defined echo source at position p,, estimated echo sources
that are not observed for a number of time steps are removed
from the estimation and the state is resized accordingly.

At each time k, the robot moves, finds the acoustic
impulse response as a set of N; distance measurements
& ={&x & &n,k }» and performs the following
two functions to update the localization estimate.

1) Estimate State: The Kalman filter uses the acoustic
measurements &, and pipe length estimate Ar to update
the estimate of state y;. Two filter steps are required at
each time step. The prediction step propagates the state
estimate through the state-space model. The predicted mean
and covariance are given by

By= AW +uy (7N
=A% AT + R, (®)

where Ry is the motion uncertainty matrix. The update step
is computed firstly for the pipe length estimate and then
separately for each acoustic measurement.

Only the distance corresponding to each acoustic measure-
ment is known, not the direction. Therefore, data association
is computed for both positive and negative displacements
for each distance measured, giving Iy = 2N; measurements.
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Fig. 3. An illustration of the function of the robot localization method in

a 15 metre pipe. Two values are seen from the measurement-only estimate.
The multivariable output from the Kalman filter is shown with a single robot
position estimate and multiple feature position estimates.

At each time index k, for each of these measurements i, for
each of the existing features m, a data association value 7; , ¢
equal to the Mahalanobis distance [19] is computed by

Y, i = CoZiCh + 0 ©9)

ik = (&g — Emx)* ,_,,11k (10)

C,, is the output vector for the robot position and the
feature m, equal to [1 0O ... 0 -1 0 O] or
-1 0 ... 010 0] depending on the direc-
tion of p,, from X, and their relative positions in the vector
H;. O is the measurement uncertainty parameter, used to
give a measure of the feature’s covariance ¥ ,,, k. 7; k1S the
data association value computed using the i’ measurement
é,-,k and the expected measurement for feature m, Em,k.

The smallest value of 7 is found. If it is larger than a
threshold, a new feature is created. If it is smaller than
the threshold, the corresponding feature j and measurement
direction are used to compute the Kalman filter update using

Kijk =L CIY, (n
Be= i+ K ja(Eix— &) (12)
£ = (I1-K;;xC)Ex (13)

These Kalman filter steps are repeated at each time step to
estimate the state y; using the set of measurements &. For
the measurement A, the equivalent to Equation 12 is

By = By + Kok (Mg — pg)

where p,, is the position of feature at the other end of the
pipe from p,.

An illustration of the function of the Kalman filtering is
shown in Fig. 3. The probability distribution estimated for
each component of the state y; is shown. Estimated features
positioned at multiples of the pipe length can be seen, as
expected given the definition of y;. The dead reckoning
estimate, using only the initial velocity, is shown to have a
large variance. The measurement-only estimates are shown to
give accurate distances to the end of the pipe but are unable
to estimate which measurement corresponds to which end,
giving two estimates of position.
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Fig. 4. An illustration of a measure of the probability distribution of
possible pipe lengths given a number of measurement sets in a 15 metre
pipe. The multimodal probability distribution defined as a sum of Gaussian
distributions each parameterised by a mean and variance. It can be seen
that the most likely estimated length is correct, and that other likely length
estimates correspond to multiples of the pipe length.

2) Estimate Echo Class: 1t is desired to classify a mea-
surement as either corresponding to a first or multiple order
reflection from a pipe feature, or corresponding to a multiple
of the pipe length. This has two purposes: Firstly, the
static measurement corresponding to the pipe length can be
removed from the set & as it is detrimental to the localization
estimate. Secondly, the estimate of the pipe length can be
used as a virtual measurement between the features at each
end of the pipe, which can improve the localization estimate.
This is done by estimating the pipe length from the acoustic
measurements.

For pipe length A, given uncertainty in the measurements,
the pipe length estimate A; is described as a probability

distribution p(A[&,, &z, &) = p(Al&1, &z, -, &), which
is the probability of pipe length estimate Aj; given the
current and previous measurement sets &. This distribution
will be estimated recursively as a Bayes filter, as it is
equivalent to p(Ag|A;_,,&) using the Markov assumption
[19]. This distribution is expected to be multimodal, so will
be described as a sum of L Gaussian components p given

by

L L
PAlA 1, &) = Y aipr =Y arV (A, v)  (15)
=1 =1

1

each with a weighting @; = L~!, a mean A;, and variance
v;. L varies as described in Algorithm 1. This probability
distribution is illustrated in Fig. 4. The distribution is updated
using the following three steps, with Algorithm 1 described
in Fig. 5.

1) Data association is found between the measurements &
and each of the components p;, using a similar measure
to that in Equation 10. If a match is found with an
existing component, the component mean and variance
are updated using the computed Kalman gain similarly
to Equations 11 to 13. This is equivalent to calling
Algorithm 1 with parameters { =&, =1, and § = 1.

2) The static measurements will result in a number of
components at integer multiples of the pipe length due
to higher order echoes. Therefore, integer fractions of
each of the components (34, é/ll, ...) can be fused
with the other components. This is equivalent to calling
Algorithm 1 with parameters § = {él,ék,...}, o=
0.5, and B =0.



Algorithm 1: Pipe Length Kalman Filter Update
1: procedure UPDATE(Ay, vy, L, O, &, a, )

2: for each §, in £ do
3: Get data association 7:
4: for each [4;, v;] pair in A; and v; do
5: Wi =vi+ 0k
6: T = (6 — X)?F,,)
7: end for
8: if min 7w, < «a then
9: Do Kalman update:
10: Jj = argmin; 7,
11: Ki=v'¥,!
12: A = Aji+Ki (G — Ajx)
13: Vik = (1- K,-)v_,-k
14: else
15: Create new component:
16: if B =1 then
17: L=L+1
18: Ak =G
19: vig = Ok
20: end if
21: end if
22: end for
23: return Ay, v, L

24: end procedure

Fig. 5. The algorithm used to update the probability distribution over
possible pipe lengths A given input measurements or virtual measurements
§. The data association and Kalman filter updates are the equivalent of
Equations 9 to 13 in a slightly different form since the variables are all
scalar rather than vectors.

3) The current set of components can be consolidated,
combining similar measurements, equivalent to calling
Algorithm 1 with parameters { = A, @ =2, and § =0,
and removing one of the components if a match is
found, reducing L and reindexing Ay.

To infer an estimate of pipe length from p(AAr_,,&)
seen in Fig. 4, the peaks of each Gaussian component are
compared to a threshold probability. If the largest peak is
sufficiently higher than the second largest peak, its mean
value is used as the pipe length estimate A;. Measurements
&, similar to multiples of Ay according to a comparison

Y > |Eux — aly| (16)

for a = (1,2,3,...) where ¥ is a threshold, can be removed
from &;. Ay can be used as a virtual measurement between
map features p,, as in Equation 14.

III. RESULTS

In this section, the localization method is evaluated over
50 trajectories and over a range of parameters for measure-
ment uncertainty. This is done using simulations based on
experimental data which has been recorded for 11 positions
along a 15 metre pipe at 0.5 metre intervals, giving impulse
responses such as those shown in Fig. 2(d).

Synthetic measurement sets & can be created using this
data to allow simulation of any robot trajectory through
the pipe. Evaluation of the front-end acoustic processing in

section II-B showed that the measurement output distances
&, are well modelled as normally distributed additive noise
on the true distance, with a mean of zero and a variance of
0.09 metres.

The Kalman filter based methods are compared here
to a dead reckoning method which simply integrates the
command motion of the robot, and a simple measurement-
only method, which uses either the first or second (denoted
by (1) and (2) respectively) value in the measurement set &;
as the position of the robot relative to the starting position.

Fig. 6 shows a comparison of these different estimation
methods over a complete trajectory along the length of the
pipe. The dead reckoning estimate is seen to drift consid-
erably. The simple estimates using only the instantaneous
measurements are seen to be reasonably accurate over half of
the trajectory each, but completely incorrect otherwise. The
Kalman filter estimated position is seen to be consistent along
the full trajectory, with a lower error when Aris incorporated.

To investigate the robustness of the localization method,
the synthetic measurement sets can be modified, either
adding spurious measurements or removing measurements,
modelling errors that may occur in acoustic signal process-
ing. At each time step, a number of measurements drawn
from a uniform distribution from 0 to 6; or 6, is added
or removed respectively from the set &. The measure-
ments added are a product of random variables, defined by
U(0,2)U(0,%) where U(0,%) is a uniform distribution
between 0 and half the pipe length, used to produce values
which are more likely to interfere with first-order echoes.

Fig. 7 shows the sensitivity of the localization method to
spurious or missing measurements over a range of values of
parameters 6; and 6,,. Similar trends are seen for increase of
both parameters. The error for measurement-only estimation
(using the closer of the two estimates, assuming that it
can be correctly chosen) is seen to increase with both
parameters, surpassing the benchmark dead-reckoning error,
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Fig. 6. The estimate of robot position over time as it moves through a 15
metre long pipe. The true robot position is estimated well by the Kalman
filter output, which gives much lower estimate error than the dead-reckoning
estimate. The estimates using measurement only give low error, but only
for half of the trajectory as filtering is needed to determine the direction of
the acoustic measurements made using only one microphone.
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giving a best case for comparison. The Kalman filter estimate with an
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showing the need for filtering. The use of the Kalman filter
using only measurements & is shown to keep the median
estimate error at a constant value, however it is larger than
the measurement-only estimate for zero missing or spurious
measurements. Incorporating Ay into the Kalman filter is
shown to reduce the error further, and this estimate is seen
to be only slightly sensitive to the increase in parameters.

As expected, the use of acoustic echoes at direct mea-
surements of the robot’s state is effective for localization.
The algorithm proves to be robust to a significant number
of measurement errors, showing promise for practical appli-
cation. The use of the estimated pipe length is seen to give
a surprising increase in accuracy, and similar uses of the
known structure of the environment may be useful in other
applications of acoustic localization.

The localization approach may be improved further by
using a smoothing approach rather than a filtering approach.
By estimating the full robot trajectory along the pipe rather
than the instantaneous position of the robot, spurious mea-
surements can be more easily detected and removed before
they influence the estimation.

IV. CONCLUSIONS

This paper has presented a complete acoustic echo-
localization method, from acoustic processing to state es-
timation, for a robot moving along a pipe. A novel means
of estimating the echo class from the acoustic data has been
presented and demonstrated, which allows refinement of the
acoustic measurements before state estimation, reducing the
estimation error. The robustness of the method to spurious
and missing feature measurements has been demonstrated.
The presented method would give a useful input to sensor fu-
sion filtering, which might be improved by using a smoothing
approach to allow easier detection of spurious measurements.

ACKNOWLEDGMENT

We acknowledge funding support from EPSRC grant
EP/S016813/1 Pervasive Sensing for Buried Pipes (Pipebots),
and the support and advice from Kirill Horoshenkov and
EPSRC grant EP/N010124/1, TWENTY 65: Tailored Water
Solutions for Positive Impact.

REFERENCES

[1] B. Park, “Resilient Underground Localization Using Magnetic Field
Anomalies for Drilling Environment,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 2, pp. 1377-1387, 2018.

[2] H. Najjaran and D. Krys, “INS-ASSISTED MONOCULAR ROBOT
LOCALIZATION,” Proceedings of the ASME 2010 International
Mechanical Engineering Congress & Exposition, pp. 1-8, 2010.

[3] P. Hansen, H. Alismail, B. Browning, and P. Rander, “Stereo visual
odometry for pipe mapping,” IEEE International Conference on Intel-
ligent Robots and Systems, pp. 40204025, 2011.

[4] P. Hansen, H. Alismail, P. Rander, and B. Browning, “Pipe mapping
with monocular fisheye imagery,” IEEE International Conference on
Intelligent Robots and Systems, pp. 5180-5185, 2013.

[5] A. Kakogawa, Y. Komurasaki, and S. Ma, “Anisotropic shadow-

based operation assistant for a pipeline-inspection robot using a single

illuminator and camera,” IEEE International Conference on Intelligent

Robots and Systems, vol. 2017-Septe, pp. 1305-1310, 2017.

W. Zhao, M. Kamezaki, K. Yoshida, M. Konno, A. Onuki, and S. Sug-

ano, “Modeling and simulation of FLC-based navigation algorithm

for small gas pipeline inspection robot,” IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, AIM, vol. 2018-

July, pp. 912-917, 2018.

H. Lim, J. Y. Choi, Y. S. Kwon, E.-j. Jung, and B.-j. Yi, “SLAM in

Indoor Pipelines with 15mm Diameter,” Int. Conf. on Robotics and

Automation, pp. 4005-4011., pp. 4005-4011, 2008.

[8] A. C. Murtra and J. M. Mirats Tur, “IMU and cable encoder data
fusion for in-pipe mobile robot localization,” IEEE Conference on
Technologies for Practical Robot Applications, TePRA, pp. 1-6, 2013.

[9] W. M. Al-Masri, M. E. Abdel-Hafez, and M. A. Jaradat, “Inertial
Navigation System of Pipeline Inspection Gauge,” IEEE Transactions
on Control Systems Technology, vol. PP, pp. 1-8, 2018.

[10] K. Ma, M. Schirru, A. H. Zahraee, R. Dwyer-Joyce, J. Boxall, T. J.
Dodd, R. Collins, and S. R. Anderson, “PipeSLAM: Simultaneous Lo-
calisation and Mapping in Feature Sparse Water Pipes using the Rao-
Blackwellised Particle Filter,” IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, AIM, pp. 1459-1464, 2017.

[11] T. Seco, C. Rizzo, J. Espelosin, and J. L. Villarroel, “A Robot
Localization System Based on RF Fadings Using Particle Filters inside
Pipes,” Proceedings - 2016 International Conference on Autonomous
Robot Systems and Competitions, ICARSC 2016, pp. 28-34, 2016.

[12] Y. Bando, H. Suhara, M. Tanaka, T. Kamegawa, K. Itoyama, K. Yoshii,
F. Matsuno, and H. G. Okuno, “Sound-based online localization for an
in-pipe snake robot,” SSRR 2016 - International Symposium on Safety,
Security and Rescue Robotics, pp. 207-213, 2016.

[13] C. Evers, S. Member, P. A. Naylor, and S. Member, “Acoustic SLAM,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 26, no. 9, pp. 1484-1498, 2018.

[14] M. Krekovic, I. Dokmanic, and M. Vetterli, “EchoSLAM : Simulta-
neous Localization and Mapping with Acousitc Echoes,” 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 11-15, 2016.

[15] M. Krekovic, I. Dokmanic, and M. Vetterli, “Look, no Beacons!
Optimal ~ All-in-One EchoSLAM,” 2016. [Online]. Available:
http://arxiv.org/abs/1608.08753

[16] U. Saqib and J. R. Jensen, “Sound-based distance estimation for indoor
navigation in the presence of ego noise,” European Signal Processing
Conference, vol. 2019-Septe, pp. 1-5, 2019.

[17] J. Mourjopoulos, “On the variation and invertibility of room impulse
response functions,” Journal of Sound and Vibration, vol. 102, no. 2,
pp. 217-228, 1985.

[18] D. Salvati, C. Drioli, and G. L. Foresti, “Sound Source and Micro-
phone Localization from Acoustic Impulse Responses,” IEEE Signal
Processing Letters, vol. 23, no. 10, pp. 1459-1463, 2016.

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics.
Press, 2006.

[6

=

[7

—

The MIT



