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A Priori Sensor Placement Strategy for Turbulent Mean Flow

Reconstruction Using Parametric Model Perturbations

Omid Bidar∗1, Sean Anderson†1, and Ning Qin‡1

1The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK

This paper investigates an a priori approach for sparse sensor placement to generate

experimental data for turbulent mean flow reconstruction—data assimilation—in the context of

steady Reynolds-average Navier-Stokes (RANS) simulations. The strategy utilises perturbations

of the turbulent model constants to generate a map of regions in the flow that are most

sensitive to the turbulence model. Sensors are targeted at regions of highest sensitivity using a

genetic-algorithm optimiser with a minimum distance constraint between any two sensors, to

avoid clustering. The data assimilation approach is based on the adjoint-based field inversion,

which modifies the transport equation(s) for an existing model with a spatial field, which is then

iteratively optimised with the goal of reducing the error between the baseline model output and

the high-fidelity data. The separated flow over the periodic hill is used as a test case, with the

one-equation Spalart-Allmaras turbulence model. Direct numerical simulation data is used as

surrogate experimental data to allow examining the effectiveness of the framework for various

scenarios. Preliminary results show that errors in the streamwise velocity predictions can be

reduced by over 30% with only five sensors, compared to over 74% reduction when using the

data over the entire domain (i.e. data for the ∼ 14.7 × 103 cells in the mesh).

I. Introduction
In this work we explore an a priori strategy for sparse sensor placement to experimentally generate the data required

for turbulent mean flow reconstruction in the context of Reynolds-averaged Navier-Stokes (RANS) solutions. Turbulent

flow simulation, utilising the RANS equations, is a widely used computational fluid dynamic (CFD) method for

predicting fluid flow in various engineering fields. RANS-based simulations are favoured due to their simplicity and

low computational demands, but they often suffer from inaccuracies when dealing with complex flows, due to the

modelling of all turbulent scales[1]. The research community has been exploring the combination of RANS solutions

with higher-fidelity data obtained from turbulent scale-resolving numerical simulations (e.g., large eddy simulations or

direct numerical simulations) and experimental measurements [2]. This approach aims to reconstruct turbulent flow

more accurately, thus reducing errors in RANS-based turbulence modelling. Several frameworks have been developed,

enabling significant improvements by utilising limited data that can be measured experimentally (e.g. [3–5]). This

progress is particularly promising, as generating large and extensive datasets either through experiments or numerical

simulations can be prohibitively expensive.

Inaccuracies in RANS-based turbulence modelling can be broadly classified into three categories [2]: parametric

(arising from turbulence model constants), functional (stemming from the form of the solved transport equation(s) for

turbulence modelling), and structural (resulting from the underlying assumptions used to derive the model, such as the

widely employed linear eddy viscosity hypothesis in many popular RANS-based models [6]).

Broadly, turbulent mean flow reconstruction has been investigated in two main streams: ensemble-based, and

variational or adjoint-based. In this context, the goal in both streams is to reduce the error in the baseline RANS

predictions by solving an inverse problem. Examples of the former include the ensembles-based Kalman filter (EnKF)

approach used for turbulent mean flow reconstruction using wall measurements (pressure and skin friction) [7], and a

regularised EnKF method using disparate data [4]. While ensemble-based methods minimises a cost function without

requiring the derivative of the system states with respect to the control variable, adjoint-based approaches utilise

the gradient of the cost function with respect to the system states to search for the optimal solutions. Due to the

high-dimensionality of the problem, efficient gradient computations require the adjoint method [8]. Some examples of
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adjoint-based flow reconstruction include using velocity profiles [8, 9], wall measurements (skin friction [10], surface

pressure [11]), integral data (e.g. lift coefficient [3]), and disparate data (combination of velocity profiles and wall

quantities) [5].

Recently, sensor placement has been investigated for ensemble-based data assimilation. Mons et al. have investigated

unsteady [12] and mean flow reconstruction [13] using the adjoint-based data assimilation, however, they have only

investigated this in the context of laminar flows. In the most successful approach [13], they used second-order

adjoint solutions to guide sensor placement. While effective, this can be computationally prohibitive for complex

three-dimensional turbulent flows of industrial interest. In [14], Deng et al. utilise the EnKF approach to perform

flow reconstruction by adjusting the model constants. For sensor placement they used a deep neural network which

generated the spatial sensitivity of the streamwise velocity field with respect to perturbations in the RANS model

constants (i.e. parametric perturbations). This approach has the advantage of being a priori (i.e. data is not required for

sensor placement), and is relatively straight-forward to implement. However, flow reconstruction by only adjusting

a small number of model constant may not be sufficient to address functional and structural inaccuracies in baseline

turbulence models [15].

In the current study, we present a sensor placement strategy that incorporates the parametric perturbations strategy

introduced by Deng et al [14]. Additionally, we employ adjoint-based data assimilation techniques to tackle functional

uncertainties inherent in the baseline turbulence model, instead of just adjusting model constants. To reconstruct the

flow, we adopt a field inversion approach, where the turbulence model’s transport equation is modified by introducing a

scalar field in each mesh cell. This scalar field is adjusted through a gradient-based optimisation, aiming to achieve a

close match with the high-fidelity data. In parallel, we have also pursued another approach based on the eigenspace

perturbations of the Reynolds stress tensor to generate the uncertainty map [16].

The remainder of the paper is structured as follows: in Section II we provide an overview of the overall framework,

followed by the details of each component. Preliminary results and discussions are provided in Section III, and finally

conclusions and planned future work for the final manuscript are outlined in Section IV.

II. Methods

A. Overview

Fig. 1 illustrates an overview of the proposed framework. We start by perturbing the baseline turbulence model

constants, in this case the one-equation Spalart-Allmaras turbulence model, and solving the RANS equations. Uncertainty

maps for any given quantity (e.g. velocity component, pressure) is generated as a function of the variance for the different

perturbations. Given a number of sensors, locations with highest variances are targeted using a genetic algorithm

constrained optimisation. Once the optimal sensor locations have been identified, we use the data to perform data

assimilation using the field inversion approach.

RANS uncertainty  
via parametric
perturbations

Optimal sensor
placement using  
genetic algorithm

Sparse  
high-fidelity  

data

Turbulent flow
reconstruction

Fig. 1 Overview of the proposed framework.

B. Incompressible RANS

The incompressible steady Navier-Stokes equations are:

∫

𝑆

𝑼 · 𝑑𝑺 = 0, (1)

∫

𝑆

𝑼𝑼 · 𝑑𝑺 +

∫

𝑉

∇𝑝𝑑𝑉 −

∫

𝑆

(𝜈 + 𝜈𝑡 ) (∇𝑼 + ∇𝑼𝑇 ) · 𝑑𝑺 = 0, (2)

where 𝑼 is the velocity, 𝑝 is the pressure, 𝜈 and 𝜈𝑡 are the molecular and turbulent viscosity, respectively. The RANS

equations are solved using the semi-implicit method for pressure linked equations (SIMPLE) algorithm in OpenFOAM.

2



C. Spalart-Allmaras Baseline Model and Parametric Perturbations

As the turbulence closure, we utilise the popular one-equation Spalart-Allmaras [17] model which defines the

turbulent viscosity in Eqn. 2 as a function of the surrogate viscosity �̃�,

𝜈𝑡 = �̃� 𝑓𝑣1 (3)

where the transport equation for �̃� is:

∫

𝑉

∇ · (𝑼�̃�)𝑑𝑉 − 𝐶𝑏1

∫

𝑉

Ω̃�̃�𝑑𝑉

︸           ︷︷           ︸

production

−
1

𝜎

∫

𝑉

∇ · [(𝜈 + �̃�)∇�̃�] + 𝐶𝑏2 |∇�̃� |
2𝑑𝑉

︸                                           ︷︷                                           ︸

transport

+𝐶𝑤1

∫

𝑉

𝑓𝑤

(

�̃�

𝑑

)2

𝑑𝑉

︸                    ︷︷                    ︸

dissipation

= 0, (4)

with the following intermediate functions

𝑓𝑣1 =
𝜒3

𝜒3 + 𝐶3
𝑣1

, 𝜒 =
�̃�

𝜈
, 𝑓𝑤 = 𝑔

[

1 + 𝐶6
𝑤3

𝑔6 + 𝐶6
𝑤3

]1/6

, 𝑔 = 𝑟 + 𝐶𝑤2 (𝑟
6 − 𝑟),

𝑟 =
�̃�

Ω̃𝜅2𝑑2
, Ω̃ = Ω +

�̃�

𝜅2𝑑2
𝑓𝑣2, 𝑓𝑣2 = 1 −

𝜒

1 + 𝜒 𝑓𝑣1

, 𝐶𝑤1 =
𝐶𝑏1

𝜅2
+

1 + 𝐶𝑏2

𝜎
,

(5)

where Ω̃ is the strain rate tensor, 𝜅 = 0.41, 𝜎 = 2/3, 𝐶𝑏1, 𝐶𝑏2, 𝐶𝑤2, 𝐶𝑤3 and 𝐶𝑣1 are model coefficients. The S-A

specific model constants are:

𝐶𝑏1 = 0.1355, 𝐶𝑏2 = 0.622, 𝐶𝑤2 = 0.3, 𝐶𝑤3 = 2.0, and 𝐶𝑣1 = 7.1. (6)

Following Deng et al. in [14], we vary the constants between 50-150% of their original values. Perturbations include

perturbing each constant separately, as well as, perturbing all constants simultaneously, with the bounds for each constant

outlined below:

0.0678 ≤ 𝐶𝑏1 ≤ 0.2033,

0.311 ≤ 𝐶𝑏2 ≤ 0.933,

0.15 ≤ 𝐶𝑤2 ≤ 0.45,

1.0 ≤ 𝐶𝑤3 ≤ 3.0,

3.55 ≤ 𝐶𝑣1 ≤ 10.65.

(7)

D. Sensor placement using a genetic algorithm optimiser

Each parametric perturbation described in the previous subsection results in a corresponding CFD prediction of all

system states, i.e. velocity, pressure, and turbulent viscosity. To generate the uncertainty map, i.e. regions of flow most

sensitive to parametric perturbations to target for sensor placement, we calculate the variance of any quantity, 𝑄, from

all the perturbed solutions.

Upon the calculation of the uncertainty map, optimal sensor locations are sought by solving a gradient-free

optimisation with a cost function of the following form:

min
𝒙

[
𝑁𝑆∑︁

𝑖=1

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑄)𝒙,𝑖

]−1

,

subject to 𝑑𝑆 ≥ 𝑑min,

(8)

where 𝑁𝑆 is the total number of sensors to be placed, 𝒙 ∈ Ω is a vector of the optimal sensor coordinates to be found,

with Ω as the region encompassing all potential sensor positions. The constraint is essential as it is imposed to avoid

the clustering of sensors in one region with highest variance. Thus, the minimum distance between any two sensors,

𝑑𝑆 , must be greater than or equal to a minimum distance specified by the user 𝑑min, defined as a percentage of the

characteristic length of the geometry.
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E. Turbulent flow reconstruction through field inversion

For turbulent mean flow reconstruction we use the adjoint-based field inversion method. In order to conduct field

inversion, a multiplicative scalar field is introduced into the production term of the transport equation in an existing

turbulence model. For the one-equation Spalart-Allmaras model the general form of the model’s transport equation

(Eqn. II.C) for the surrogate variable, represented as �̃�, is then modified as follows:

∫

𝑉

∇ · (𝑼�̃�)𝑑𝑉 − 𝛽 (𝒙) P (�̃�, 𝒘) − T (�̃�, 𝒘) + D (�̃�, 𝒘) = 0, (9)

where P, T , and D are the production, transport, and dissipation terms of the transport equation respectively, and

are functions of the surrogate viscosity variable �̃� and 𝒘, which represents all the Reynolds-averaged conserved flow

variables. 𝛽(𝒙, 𝑡) ∈ R𝑛𝛽 with 𝑛𝛽 representing the number of mesh cells, is the corrective field, and 𝛽 = 1 everywhere in

the mesh recovers the baseline model.

To minimise the functional error in the baseline turbulence model, we seek to determine the optimum discrepancy

field by minimising the difference between high-fidelity data, denoted as 𝒅 ∈ R𝑁𝑑 (where 𝑁𝑑 represents the number

of data points), and the RANS output, denoted as G (𝛽). This minimisation process involves optimising an objective

function of the following form:

min
𝛽

J = ∥G (𝛽) − 𝒅∥2
2 + 𝜆∥𝛽 − 𝛽prior∥

2
2, (10)

where ∥·∥2 represents the 𝐿2 norm. The parameter 𝜆 serves as a relaxation or regularisation parameter, while 𝛽prior is

usually assumed to be 1. This assumption biases the solution towards the baseline model and helps prevent an ill-posed

optimisation problem.

Due to the high-dimensional nature of the optimisation problem, gradient-free approaches are computationally

infeasible, and thus a gradient-based approach is preferred. Yet still, to compute the gradients efficiently, the adjoint

method should be utilised. For this we employ our open-source tool previously introduced in [8].

III. Results and Discussions

H

H

H

9

3
.0

3
5

No-slip wall

No-slip wall

C
y
clicC

y
cl

ic Flow direction

Ux

Fig. 2 The structured mesh for the periodic hill, along with the normalised dimensions, and the boundary

conditions.

The periodic hill case, depicted in Fig. 2, is used as a test case for the proposed framework. As the flow progresses

over the initial hill, it experiences separation, resulting in a large recirculating bubble surrounded by an unsteady shear

layer. Subsequently, reattachment occurs, followed by intense acceleration at the subsequent hill. The flow along the

top wall remains attached with high pressure gradients. These complex characteristics pose challenges for accurate

predictions using RANS turbulence models, hence the popularing of the periodic hill as a benchmark case. We use the

direct numerical simulation data by Xiao et al. [18]. The Reynolds number based on the bulk velocity is 5600. To

maintain a constant bulk velocity a source/forcing term is incorporated into the 𝑥-momentum equation (Eqn. 2) as

follows:
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𝑅𝑒𝑏 =
𝑈𝑏𝐻

𝜈
, 𝑈𝑏 =

1

2.035𝐻

∫ 3.035𝐻

𝐻

𝑈𝑥 (𝑦) 𝑑𝑦, (11)

where 𝑈𝑏 is the bulk velocity, 𝜈 is the kinematic viscosity, and 𝑈𝑥 is the streamwise velocity component.

Fig. 3 shows key results from the parametric perturbations. The velocity profiles clearly show discrepancy between

the baseline S-A predictions, and the DNS data. In particular, the baseline model struggles to capture the flow near the

walls, especially, in the separated shear layer next to the initial wall. These are also reflected in the perturbation results,

where the maximum bounds for the streamwise velocity profiles (Fig. 3 (a)) are in the near wall regions.

The uncertainty maps—variance of the predicted quantities following parametric perturbations—show very different

regions of uncertainty depending on which quantity is being illustrated, Figs. 3 (c-f). The key map is for the streamwise

velocity, as the velocity components are commonly measured experimental quantities. We focus on the streamwise

velocity as it is the dominant component, and henceforth, use it for sensor placement, and subsequently, turbulent mean

flow reconstruction.

0 2 4 6 8 10

x=H 1:5Ux=Ub+x=H

0

1

2

3

y
=H

Spalart-Allmaras DNS S-A Perturbed

(a) Streamwise velocity profiles

0 2 4 6 8 10

x=H 8Uy=Ub+x=H

0

1

2

3

y
=H

(b) Wall-normal velocity profiles

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

var(Ux)

(c) Streamwise velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

var(Uy)

(d) Wall-normal velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

var(p)

(e) Pressure

0 0.2 0.4 0.6 0.8 1

var(~8)

(f) Surrogate turbulent viscosity

Fig. 3 Uncertainty maps for various quantities, and velocity profiles.

In these preliminary results, we start with five sensors. The optimal locations from the genetic algorithm optimisation

is shown in Fig. 4. The minimum distance constraint (as described in Section II.D) is half of the hill height, 𝐻. While

the optimiser targets generally regions of high uncertainty, as desired, some regions, e.g. the separation bubble close to

initial hill, is missed. This will be further explored for the final paper.
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Fig. 4 Optimal sensor locations for five sensors illustrated by the green squares.

The main reconstructed flow results are shown in Fig. 5. The streamwise velocity profiles are better matched

to the DNS predictions in the regions near the walls. However, there are some discrepancies towards the centre of

the domain, which is identified the least susceptible to parametric perturbations (Fig. 3 (c)). This means that this

approach of identifying regions of uncertainty may only be partially adequate. Nevertheless, it is still possible to achieve

considerable error reductions in the flow predictions with only 5 sensors, as also highlighted in the wall-normal velocity

profiles in Fig. 5 (b), and the skin friction predictions in Fig. 6.

0 2 4 6 8 10

x=H 1:5Ux=Ub+x=H

0

1

2

3

y
=H

Spalart-Allmaras FI: 5 Sensors
DNS S-A Perturbed
Data

(a) Streamwise velocity

0 2 4 6 8 10

x=H 8Uy=Ub+x=H

0

1

2

3

y
=H

(b) Wall-normal velocity

Fig. 5 Comparison of the velocity profiles components after data assimilation with just 5 𝑈𝑥 data points.

Table 1 Comparison of root-mean-squared error reduction.

Scenario RMSE 𝑈𝑥 % reduction RMSE 𝑈𝑦 % reduction

Baseline Spalart-Allmaras 0.0027 - 0.0007 -

Field inversion: 5 sensors 0.0019 30.15 0.0005 20.34

Field inversion: entire 𝑈𝑥 field 0.0007 74.37 0.0002 66.74

The root-mean-squared error comparison in Table 1 shows that data assimilation with just 5 sensors can reduce the error
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Fig. 6 Comparison of skin friction predictions on the lower wall. Field inversion results only used 5 data points.

in corresponding data used by over 30%, compare to over 74% reduction when using the data for the entire domain. The

streamwise velocity contours for the scenarios shown in the table are also illustrated in Fig. 7 (b). There are considerable

discrepancies in the baseline predictions, which are significantly reduced with field inversion. Fig. 7 (a) shows the

corrective field modifying the baseline equation to reconstruct the flow. It is clear that this is a very complex, highly

non-linear, correction where the production of turbulent viscosity is generally magnified near the walls.

0

2

4

6

8

-

(a) Corrective field for field inversion with 5 sensors.

Baseline S-A

FI: entire Ux -eld DNS

FI: 5 sensors

0

0.2

0.4

0.6

0.8

1

U
x
=
U

b

(b) Normalised streamwise velocity fields.

Fig. 7 Corrective field modifying the surrogate viscosity and a comparison of the streamwise velocity fields for

different scenarios.
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IV. Conclusion and future work
We introduced a sensor placement strategy which allows data assimilation for turbulent mean flow reconstruction

with sparse data. One of the key advantages of this approach is its a priori nature, i.e. no experimental measurements are

needed when deciding sensor locations. Instead, we rely on perturbing the model constants for an existing turbulence

model, Spalart-Allmaras in this case, and using it to generate a spatial uncertainty map highlighting regions of flow

most sensitive to the perturbations. These regions are then targeted for sensor placement through an optimiser—genetic

algorithms in this work. Initial results on a typical benchmark case—the periodic hill—which is poorly predicted by the

baseline turbulence model, demonstrate encouraging results where substantial error reduction is achieved with only five

sensors/data points. However, there are two key parameters in the optimisation process when placing the sensors which

will be investigated in the future: 1) number of sensors, 2) minimum distance between sensors. The latter is required to

ensure that sensors are not clustered in just one region of uncertainty.
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