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Aerodynamic Shape Optimisation Using a Machine

Learning-augmented Turbulence Model

Omid Bidar∗1, Ping He†2, Sean Anderson‡1, and Ning Qinğ1

1The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
2Iowa State University, Ames, Iowa, 50011, USA

This paper presents an aerodynamic shape optimisation approach that utilises machine

learning techniques to augment the turbulence model for the steady-state Reynolds-averaged

Navier-Stokes (RANS) simulations—which are prone to inaccuracies for complex flows involving

phenomena such as separation. We employ the field inversion and machine learning (FIML)

approach which infers model discrepancies by solving a number of inverse problems (for different

shapes and/or flow conditions) given some high-fidelity data, and uses machine learning (such as

neural networks) to generalise the discrepancy fields for unseen cases. As a proof-of-concept we

use direct numerical simulation (DNS) data for a set of parameterised periodic hills to augment

the two-equations 𝑘 − 𝜔 SST model using FIML, then incorporating it in the CFD solver for

aerodynamic shape optimisation where the cost function is the drag minimisation. To illustrate

the inherent optimisation sensitivity to the choice of turbulence model, we also use the Wilcox

𝑘 − 𝜔 model for comparison. Once the optimal shapes are achieved for the different turbulence

models, we propose using the hybrid RANS-LES improved delayed detached eddy simulations

(IDDES) to validate the flow predictions, which in turn is validated against the available DNS

data. Results highlight the sensitivity of optimisation to the turbulence model in the presence of

flow separation, and the FIML-augmented 𝑘 −𝜔 SST model is able to achieve much higher drag

reduction (20.8 − 25.3%) with fair agreement to the IDDES predictions (in terms of velocity

and skin friction). The baseline SST model achieves a drag reduction of 4.5 − 6.5%, and the

velocity and skin friction compares poorly to the IDDES results.

I. Introduction
Aerodynamic shape optimisation based on computational ŕuid dynamics (CFD) analyses is a vibrant research őeld

and is expected to play a signiőcant role in industry [1, 2], for applications such as modern aerospace vehicles design,

more efficient renewable energy solutions (e.g. wind turbines), etc. Turbulence is a ubiquitous ŕow phenomenon in

these applications, which can be numerically simulated using techniques with various levels of ődelity. Low ődelity

approaches such as potential-ŕow or Euler equations ignore viscous effects, while turbulence can be partially or fully

resolved in large eddy simulations (LES) and direct numerical simulations (DNS), respectively. As aerodynamic

shape optimisation is an iterative process, that requires many function evaluations, LES and DNS are computationally

prohibitive. Alternatively, simulations based on the Reynolds-averaged Navier-Stokes (RANS) equations are considered

adequate for CFD-based on-design aerodynamic shape optimisation due to their relative simplicity, low computational

cost, and robustness. However, RANS simulations have well-documented deőciencies for complex ŕows (e.g. [3]),

such as those involving separation, which means the models are inadequate in these scenarios, especially for off-design

conditions. In this work, we explore aerodynamic shape optimisation in the presence of a massive ŕow separation,

simulated by a machine learning-augmented RANS-based turbulence model.

Like many areas of science the use of machine learning techniques in aerodynamic shape optimisation has received

noticeable attention. Main application areas as identiőed by Li et al. in the recent review are [4]: geometric

parameterisation of the design space to exclude aerodynamic shapes which are deemed abnormal, thus allowing the

use of fewer design variables; predictions of aerodynamic coefficients leveraging machine-learning-based predictive

simulations; and new optimisation architectures, such as replacing CFD-based optimisation with surrogate-based
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optimisation. However, the use of machine learning techniques in aerodynamic shape optimisation for more accurate

turbulence ŕow predictions in the RANS setting is less well-explored.

Investigation of aerodynamic shape optimisation sensitivity to the choice of turbulence model has shown that while

it is less sensitive in on-design conditions with relatively simple ŕows (e.g. small or no separation, no shock boundary

layer interactions, etc.), it can be sensitive in off-design conditions in deterministic optimisation setups (i.e. when

uncertainty due to turbulence modelling is unaccounted) [5]. Cook et al. investigated performing shape optimisation

while accounting for structural uncertainties in turbulence closure modelling through the eigenspace perturbation

approach [6]. They concluded that performing design optimisation under turbulence model uncertainty can lead to more

robust solutions, and avoids sub-optimal designs where turbulence model sensitivities are unaccounted.

Shortfalls of existing turbulence models in RANS-based simulations can be categorised as parametric (arising

from the turbulence model constants tuned on a limited set of canonical ŕows); functional (due to the PDE form of

the turbulence model variables such as turbulent kinetic energy 𝑘 etc.); and structural (due to simplifying modelling

assumptions, such as the Boussinesq hypothesis employed in eddy-viscosity models) [7]. In recent years there has been

a surge in the application of data-driven and machine learning techniques to address the errors in all three categories.

For instance, novel machine learning architectures with embedded invariance properties for eddy viscosity Reynolds

stress models based on isotropic basis tensors [8, 9]; and formulation of algebraic nonlinear closures using gene

expression programming and symbolic regression [10ś12]. These have been extensively reviewed in the following

papers: [7, 13, 14].

One approach to turbulence model augmentation is őeld inversion and machine learning (FIML) [15ś18], which

we use in this work. In this approach the transport equation(s) for an existing turbulence model is modiőed by a

corrective factor. Then, given some high-ődelity data, őeld inversion is performed for a number of ŕows with varying

ŕow conditions (e.g. Reynolds number, angle of attack for a wing/airfoil, etc.) and/or geometries. In essence, őeld

inversion is a variational (also called adjoint-based) data assimilation approach, and has been successfully applied

by many researchers for turbulent mean ŕow reconstruction [19ś22]. Ensemble-based őeld inversion has also been

concurrently pursued by other researchers, for example [23ś25]. Field inversion-based ŕow reconstruction is case

speciőc, i.e. it cannot be used for prediction of unseen ŕows. Therefore, machine learning approaches such as deep

neural networks (e.g. [17]) or Gaussian processes (e.g. [16]) are used to generalise the model corrections for unseen

ŕow conditions/geometries for predictions. Beneőts of the FIML approach are model-consistency, and the ability to

work with relatively sparse data, e.g. [17, 22].

Inspired by the FIML approach, Fidkowski recently investigated aerodynamic shape optimisation for unsteady

turbulent ŕows [26]. The unsteady RANS-based turbulent ŕow simulations (with the existing Spalart-Allmaras model)

are used as training data to correct the steady RANS-based ŕow simulations. The design objective and constraints

were time-averaged quantities. The results achieved demonstrated that accounting for unsteady ŕow behaviour leads to

improved designs, compared to steady ŕow simulations. However, it is important to note that the unsteady reference

data used in this methodology was still based on the eddy viscosity-based turbulence closure which means that the

aforementioned parametric, functional and structural shortfalls in the model still exists. In this work we augment

an existing steady turbulence model (𝑘 − 𝜔 SST) trained on time-averaged high-ődelity simulation data from DNS

thus addressing the short-falls inherent in the RANS-based predictions. Admittedly, generating the DNS results is

computationally very expensive, however, we are currently investigating the use of hybrid RANS-LES [27] (which are

considerably cheaper than DNS or wall-resolved LES) simulations for generating the high-ődelity training data.

The rest of the paper is structured as follows. Starting with an overview of the proposed methodology, in Section II

we describe the RANS-based turbulence model, the őeld inversion and machine learning approach, the aerodynamic

shape optimisation setup, and the hybrid RANS-LES model for validating the optimal shape ŕow predictions. Results

are presented and discussed in Section III and őnally conclusions are drawn and future works outlined in Section IV.

II. Methods

A. Overview

An overview of the proposed methodology for aerodynamic shape optimisation is outlined in Fig. 1. We start by

introducing the periodic hill test case in Section II.B, followed by the governing equations and the baseline turbulence

model, 𝑘 − 𝜔 SST in Section II.C. Then, the baseline model augmentation is introduced through őeld inversion and

machine learning in Section II.D. The aerodynamic shape optimisation problem is formulated in Section II.E, and shape

optimisation is performed using the baseline SST model, the FIML-augmented SST model, and the Wilcox 𝑘 −𝜔 model.
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Finally, the framework for validating the ŕow predictions with a higher ődelity simulation (improved delayed detached

eddy simulation, IDDES) is outlined in Section II.F.

Baseline turbulence
model (k-omega

SST)

High-fidelity data
for parametrised
baseline shape

Field inversion and
machine learning

Augmented k-omega
SST turbulence

model

Aerodynamic Shape
Optimisation

Optimal shape 1 Optimal shape 2

Validation through
high-fidelity flow

simulation

Fig. 1 Overview of the proposed methodology for aerodynamic shape optimisation using machine learning-

augmented turbulence model.

B. Proof-of-concept test case: periodic hill

To test the proposed framework, we select the periodic hill case. This choice is driven by the public availability of

high-ődelity data (DNS) for a set of parameterised geometries involving complex ŕow features that are not accurately

predicted by most existing eddy-viscosity models.

Fig. 2 illustrates the őve parameterised conőgurations (with modiőcation parameter, 𝛼) by Xiao et al. [28]. The

conőgurations involved mild to massive ŕow separation due to the presence of the hills. The baseline geometry (𝛼 = 0.1)

has been widely studied, experimentally ([29]), and using high-ődelity simulations (e.g. DNS ([30], LES [31]) for a

range of Reynolds numbers, and has become a prototypical test case for investigating data-driven turbulence models.

The hill steepness is systematically varied by stretching/contracting the hill width in the streamwise direction as a

function of 𝛼, where the total horizontal length 𝐿𝑥 , normalised by the constant hill crest height, 𝐻, is given by:

𝐿𝑥/𝐻 = 3.858𝛼 + 5.142. (1)

In the RANS simulations, the ŕow is assumed two dimensional, with no-slip boundary conditions at the upper and

α=0.5 0.8 1.0 1.2 1.5

H

Lx

Ly

Fig. 2 Parameterised periodic hill geometries.

lower walls, and cyclic boundary conditions at the hills. Structured meshes, with 14,751 cells, provided by Xiao et

al. [28] are used. A constant bulk velocity is maintained in the streamwise direction by adding a forcing term in the

𝑥-momentum equation, where the bulk Reynolds number is deőned as:

𝑅𝑒𝑏 =
𝑈𝑏𝐻

𝜈
, 𝑈𝑏 =

1

2.035𝐻

∫ 3.035𝐻

𝐻

𝑈𝑥 (𝑦) 𝑑𝑦, (2)
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where 𝑈𝑏 is the bulk velocity, 𝜈 is the kinematic viscosity, and 𝑈𝑥 is the streamwise velocity component.

Table 1 outlines the geometries used for training in the preliminary results reported at present. In the őnal paper, we

will investigate how the results are affected if fewer geometries are used in the training.

Table 1 Geometries used for training and testing FIML implementation.

Training cases Testing case

𝛼 = {0.5, 0.8, 1.2, 1.5} 𝛼 = 1.0

C. RANS equations and the 𝑘 − 𝜔 SST model

The steady, incompressible Reynolds-averaged Navier-Stokes equations are expressed as follows, and solved using

the SIMPLE algorithm in OpenFOAM:

∇ ·𝑼 = 0, (3)

∇ · (𝑼𝑼) + ∇𝑝 − 𝜈eff∇ ·
(

∇𝑼 + ∇𝑼𝑇
)

= 0, (4)

where 𝑼 is the velocity, 𝑝 is the pressure, 𝜈eff = 𝜈 + 𝜈𝑡 is the effective viscosity with 𝜈 and 𝜈𝑡 representing the molecular

and turbulent kinematic viscosity, respectively.

The RANS closure used is the popular two-equation linear eddy-viscosity 𝑘 − 𝜔 SST model. The SST model is a

synergy of the standard 𝑘 − 𝜖 and the Wilcox 𝑘 − 𝜔 models, blending the freestream independence of the former, and

the improved predictions in the near-wall boundary layer of the latter. The turbulent kinematic viscosity 𝜈𝑡 in Eqn. 4 is

calculated as follows:

𝜈𝑡 = 𝑎1

𝑘

max (𝑎1𝜔, 𝑆𝐹2)
, (5)

where 𝑘 is the turbulent kinetic energy, 𝜔 is the turbulence dissipation rate, 𝑆 is the strain rate, 𝐹2 is a blending function,

and 𝑎1 = 0.31 is a constant.

The transport equations for the turbulent kinetic energy 𝑘 and turbulent dissipation 𝜔 are:

𝜕𝑘

𝜕𝑡
+ 𝜕𝑘

𝜕𝑥 𝑗

= 𝑃𝑘 − 𝛽∗𝑘𝜔 + 𝜕

𝜕𝑥 𝑗

[

(𝜈 + 𝜎𝑘𝜈𝑡 )
𝜕𝑘

𝜕𝑥 𝑗

]

, (6)

𝜕𝜔

𝜕𝑡
+
𝜕𝜔𝑢 𝑗

𝜕𝑥 𝑗

=
𝛾

𝜈𝑡
𝑃𝑘 − 𝛽𝜔2 + 𝜕

𝜕𝑥 𝑗

[

(𝜈 + 𝜎𝜔𝜈𝑡 )
𝜕𝜔

𝜕𝑥 𝑗

]

+ 2(1 − 𝐹1)𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
, (7)

𝑃𝑘 = 𝜇𝑡

(

𝜕𝑢𝑖

𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)

𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2

3
𝜌𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑖
, (8)

where 𝑃𝑘 represents the production of turbulent kinetic energy, 𝐹1 is another blending function, 𝜌 is the density, 𝜇𝑡 is

the dynamic turbulent viscosity, 𝛽∗, 𝜎𝑘 , 𝛾, 𝛽, 𝜎𝜔 , and 𝜎𝜔2 are constantsÐrefer to [32, 33] for details.

D. Field inversion and machine learning

The őeld inversion and machine learning framework [16ś18] for turbulence model augmentation involves the

following steps: solving a number of inverse problems to reconstruct turbulent mean ŕows given some high-ődelity

data for a quantity/quantities of interest; generalise the reconstruction using deep learning for cases beyond the training

dataset; and őnally embedding the augmented model in a RANS solver for improved predictions, as outlined in Fig. 3.

1. Field inversion

In őeld inversion the turbulent ŕow reconstruction is performed by perturbing one of the transport equations in the

turbulence model, in this instance 𝜔, by a scalar őeld 𝛽FI. The transport equation for the turbulence dissipation is thus

expressed as follows in the general form:
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Fig. 3 Graphical overview of the field inversion and machine learning framework.

𝐷𝜔

𝐷𝑡
= 𝛽FI (𝒙) P (𝜔, 𝒘) + T (𝜔, 𝒘) − D (𝜔, 𝒘) , (9)

where P, T , and D are the production, transport, and dissipation terms of the transport equation respectively, as shown

in Eqn. 7.

Optimum values for 𝛽FI is sought in all the mesh cells by minimising an objective function of the following form:

min
𝛽FI

L = ∥G (𝛽FI) − 𝒅∥2
2 + 𝜆∥𝛽FI − 1.0∥2

2, (10)

where ∥·∥2 is the 𝐿2 norm, 𝜆 is a relaxation or regularisation parameter to bias the solution closer to the baseline model

and to avoid an ill-posed optimisation problem. In the present results, the data used for training are the streamwise

velocity őelds for the hill geometries given in Table 1. In terms of software implementation, we employ our open-source

tool, previously introduced in [34].

2. Machine learning formulation

The discrepancy őeld 𝛽FI (𝒙) inferred in the őeld inversion step is only applicable to the ŕow conditions and the

particular geometry it has been applied to, and cannot be extended for predictions for a different case. In order to allow

for the predictive capability, the corrective őelds must be generalised in terms of non-dimensional ŕow features. This

has previously been achieved using machine learning techniques, where an additional optimisation problem is solved,

through back-propagation, for instance:

min
𝒘

L[𝛽𝑖FI (𝒙), 𝛽ML (𝜂, 𝒘)], (11)
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with 𝒘 representing the trainable parameters, e.g. weights and biases in a deep neural network, and where the goal to is

to map the corrective őelds 𝛽FI from the spatial coordinates to non-dimensional features space 𝜂. The ŕow features used

in this work are shown in Table 2, some or all of which have been used in many previous works [28, 35ś37], and found

to be useful.

Table 2 Features used as neural network inputs.

Feature Description Formula Normalisation

𝜂1 Q-criterion 1
2

(

∥𝛀∥2 − ∥𝑺∥2
)

∥𝑺∥2

𝜂2 Turbulence intensity 𝑘 1
2
𝑈𝑖𝑈𝑖

𝜂3 Wall-distance based Reynolds number min
(√

𝑘𝑑
50𝜈

, 2
)

not applicable

𝜂4 Pressure gradient along streamline 𝑈𝑘
𝜕𝑃
𝜕𝑥𝑘

√︃

𝜕𝑃
𝜕𝑥 𝑗

𝜕𝑃
𝜕𝑥 𝑗

𝑈𝑖𝑈𝑖

𝜂5 Ratio of pressure normal stresses to shear stress
√︃

𝜕𝑃
𝜕𝑥𝑖

𝜕𝑃
𝜕𝑥𝑖

1
2
𝜌
𝜕𝑈2

𝑘

𝜕𝑥𝑘

𝜂6 Non-orthogonality between velocity and its gradient |𝑈𝑖𝑈 𝑗
𝜕𝑈𝑖

𝜕𝑥 𝑗
|

√︃

𝑈𝑙𝑈𝑙𝑈𝑖
𝜕𝑈𝑖

𝜕𝑥 𝑗
𝑈𝑘

𝜕𝑈𝑘

𝜕𝑥 𝑗

𝜂7 Ratio of total to normal Reynolds stress ∥𝑢′
𝑖
𝑢′
𝑗
∥ 𝑘

𝜂8 Streamline curvature | 𝐷Γ

𝐷𝑠
| where 𝚪 ≡ 𝑼/|𝑼 |, 1

𝐿𝑐

𝐷𝑠 = |𝑼 |𝐷𝑡

𝜂9 Ratio of convection to production of TKE 𝑈𝑖
𝑑𝑈
𝑑𝑥𝑖

|𝑢′
𝑗
𝑢′
𝑘
𝑆 𝑗𝑘 |

While a number of machine learning techniques are applicable, in this work we use a fully-connected deep neural

network. The neural network results shown here used 10 hidden layers, 100 nodes per layer, with the hyperbolic tangent

activation function, and the 𝑅2 loss function. TensorFlow was used for the neural network implementation, and coupled

with OpenFOAM using a similar approach to Maulik et al. [38].

E. Aerodynamic shape optimisation

We solve an aerodynamic shape optimisation problem where the goal is to optimise the lower wall for minimum

drag. This objective function formulation for this particular case is more of a mathematical construct than an application

of aerodynamic engineering design optimisation. We stress that the goal is to assess the proposed framework in the

presence of complex ŕow structures which are encountered in engineering applications, making this proof-of-concept

case a suitable one, nonetheless.

The objective functions and constraints are deőned as follows:

min
Δ𝑦

𝐶𝑑,lower wall =
1

1
2
𝜌𝑈2

𝑏
𝑆

(∬

𝑆

𝜏𝑤 (𝑡 · 𝑖)d𝑠 +
∬

𝑆

𝑝(𝑛̂ · 𝑗)d𝑠
)

,

subject to − 0.4 ≤ Δ𝑦/𝐻 ≤ 0.4, ∇𝑝 = ∇𝑝prescribed, 𝑇 .𝐵. =

𝑁𝑐𝑒𝑙𝑙𝑠
∑︁

𝑖=1

𝜙𝑉𝑖𝜈𝑡 ,𝑖 ≥ 𝑇.𝐵.prescribed, 𝜙 = 103,

(12)

where Δ𝑦 (representing the manipulation of the lower wall in the 𝑦-direction) is the design variable, and 𝐶𝑑 is the drag

coefficient. The unit vectors 𝑖, 𝑗 , 𝑡 and 𝑛̂ represent the directions parallel and perpendicular to the bulk velocity, 𝑈𝑏.

𝜏𝑤 , 𝑝, 𝜌, and 𝑆 are the wall shear stress, wall pressure, density, and surface area. The constraints are the upper and

lower bounds for the possible 𝑦-coordinates values, the prescribed pressure gradient to achieve a constant bulk ŕow (as

described in Eqn. 2), and the sum of turbulent viscosity over the entire ŕow őeld. The last constraint, 𝑇.𝐵., is used to

penalise the optimiser tendency to essentially turn the lower wall into ŕat wall to reduce the drag by eliminating the ŕow

separation. This is to ensure that a certain turbulence level continues to characterise the ŕow.

In terms of the aerodynamic shape optimisation implementation we utilise DAFoam [39] (also used in őeld inversion),

which couples many open-source modules required for gradient-based multi-disciplinary design optimisation utilising

the discrete adjoint approach for efficient gradient calculationsÐrefer to [39] for detailed workŕow description in

DAFoam. Finally, the geometry is parameterised using the free-form deformation (FFD) approach, shown in Fig. 4.
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Fig. 4 The structured mesh for the periodic hill case, overlayed by the FFD points. Red squares represent the

FFD control points that are allowed to move to morph the surface.

F. Surrogate truth model: Spalart-Allmaras IDDES

Once the aerodynamic shape optimisation is performed, it is important to validate the predictive capabilities of

the different turbulence models using a higher-ődelity method. In this work, we use a hybrid RANS/LES approach

as the truth model. Hybrid methods utilise a closure model in the near-wall region of the ŕow, while performing

eddy-resolving simulation away from the wall. The predictions with these methods can be signiőcantly more accurate

than RANS models, while requiring a coarser mesh than required for wall-resolved LES, or DNS [27, 40].

The particular hybrid approach we use is the Spalart-Allmaras improved delayed detached eddy simulation (IDDES).

The PDE for the Spalart-Allmaras IDDES, deőned as a function of the surrogate eddy viscosity 𝜈̃ is given as [41]:

𝜕𝜈̃

𝜕𝑡
+𝑈𝑖

𝜕𝜈̃

𝜕𝑥 𝑗

= 𝑐𝑏1𝑆𝜈̃ +
1

𝜎

[

∇ · (𝜈̃∇𝜈̃) + 𝑐𝑏2 (∇𝜈̃)2
]

− 𝑐𝑤1 𝑓𝑤

(

𝑟

(

𝜈̃

𝑙IDDES

)2
)

, (13)

where the turbulent eddy viscosity is deőned as 𝜈𝑡 = 𝑓𝑣1 𝜈̃. The functions 𝑓𝑣1 and 𝑓𝑤 are for near-wall corrections, 𝑆 is

the strain rate tensor, the non-dimensional term 𝑟 is deőned as 𝜈𝑡/(𝑆𝜅2𝑑2
𝑤), where 𝜅 is the von Kármán constant, 𝑑𝑤

is the distance from the wall, and {𝜎, 𝑐𝑏1, 𝑐𝑏2, 𝑐𝑤1} are model constants. The modiőed length scale 𝑙IDDES is used to

switch the transition from the unsteady RANS to scale-resolving LES, and along with the intermediate variables and

functions, is deőned as:

𝑙IDDES = 𝑓𝑑 (1 + 𝑓𝑒) 𝑑𝑤 + (1 − 𝑓𝑑)𝑙LES, (14a)

𝑙LES = 𝐶DES𝜓Δ, 𝐶DES = 0.65, (14b)

Δ = min(max( [𝐶𝑤𝑑𝑤 , 𝐶𝑤ℎmax, ℎ𝑤𝑛])), (14c)

𝑓𝑑 = max(1 − 𝑓𝑑 , 𝑓𝐵), (14d)

𝑓𝑑 = 1 − tanh
[

8
(

𝑟3
𝑑

)]

, (14e)

𝑓𝐵 = min
[

2exp
(

−9𝛼2
)

, 1.0
]

, (14f)

𝛼 = 0.25 − 𝑑𝑤

ℎmax

, (14g)

𝑓𝑒 = max [( 𝑓𝑒1 − 1), 0] 𝜓 𝑓𝑒2, (14h)

for detailed discussions refer to Shur et al. [41].

For the preliminary results in this abstract, we only consider the S-A model, however, we will also investigate the

𝑘 − 𝜔 SST IDDES for the őnal paper. Additionally, to ensure the training and validation turth models are consistent, in

the őnal paper we will replace the DNS data with the IDDES results, while still validating the IDDES results against the

DNS.

The three-dimensional mesh employed is extruded by 𝐿𝑥/2 in the spanwise direction, with periodic boundary

conditions. The total number of mesh cells are: 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 400 × 220 × 80 = 7.04 × 106.
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III. Results and Discussions

A. Baseline shape

First, we present results for the baseline periodic hill geometry, 𝛼 = 1.0 in Fig. 2. We compare quantities of interest

predicted by the three RANS-based turbulence models (𝑘 −𝜔 SST, FIML-augmented 𝑘 −𝜔 SST and Wilcox 𝑘 −𝜔), and

the hybrid RANS-LES (IDDES) using the Spalart-Allmaras model which will be used for validation of ŕow predictions

of the optimised shapes. We quantify the error in these predictions against DNS results from Xiao et al. [28] (dataset

used for training the FIML-augmented 𝑘 − 𝜔 SST model, as described in Section II.B), and the DNS wall quantity data

(surface pressure and skin friction) from Krank et al. [42], since these are not available from [28]. The skin friction and

surface pressure, 𝐶 𝑓 and 𝐶𝑝 , respectively, are deőned as,

𝐶 𝑓 =
𝜌𝜈𝒕𝑇 · (∇𝑼 · 𝒏)

1
2
𝜌𝑈2

𝑏

, 𝐶𝑝 =
𝑝 − 𝑝0

1
2
𝜌𝑈2

𝑏

, (15)

where 𝜌 is the ŕuid density, 𝑼 is the velocity, 𝒕 = [𝑡1, 𝑡2, 𝑡3]𝑇 and 𝒏 = [𝑛1, 𝑛2, 𝑛3]𝑇 are the tangential and wall-normal

vectors, and 𝑝0 is the pressure at the hill crest (𝑥/𝐻, 𝑦/𝐻) = (0, 1).

Table 3 Comparison of root-mean-square error between different models and reference DNS data for the

baseline shape. The velocity and Reynolds stress DNS data are from Xiao et al. [28], while the surface data are

from Krank et al. [42].

RMSE RMSE RMSE RMSE

Quantity 𝑘 − 𝜔 SST FIML 𝑘 − 𝜔 SST Wilcox 𝑘 − 𝜔 S-A IDDES

Streamwise velocity 0.92381 0.32672 0.57346 0.30831

Wall-normal velocity 0.18535 0.08797 0.06988 0.03910

Reynolds stress (normal) 0.33238 0.14572 0.12966 0.04056

Reynolds stress (shear) 1.82788 0.03320 0.03248 0.00858

Surface friction, hill wall 0.00339 0.00205 0.00476 0.00103

Surface pressure, hill wall 0.16991 0.07869 0.04342 0.11662

Table 4 Comparison of drag coefficient predictions using the different RANS models for the baseline shape.

The final column shows the percentage error in the total drag with respect to the IDDES predictions.

Turbulence model Pressure drag, 𝐶𝑑,𝑝 Viscous drag, 𝐶𝑑,𝑣 Total drag, 𝐶𝑑 Error

IDDES Spalart-Allmaras 0.033883 0.000982 0.034866 -

𝑘 − 𝜔 SST 0.037437 0.000408 0.037844 8.54%

FIML-augmented SST 0.038481 0.000907 0.039387 12.97%

Wilxoc 𝑘 − 𝜔 0.050553 0.001528 0.052081 49.37%

The root-mean-square error results in Table 3, and the drag predictions in Table 4 are summarised as follows:

1) Of the two baseline turbulence models consideredś𝑘 − 𝜔 SST and Wilcox 𝑘 − 𝜔śthe later is more accurate for

all the quantities considered, except the surface friction.

2) The FIML-augmented 𝑘 − 𝜔 SST model signiőcantly reduces the errors in all the quantities compared to the

baseline SST.

3) IDDES results have signiőcantly lower errors compared to the reference DNS data for all quantities, except the

surface pressure. It is unclear at present what causes this signiőcant difference. The Wilcox 𝑘 − 𝜔 model is

the closest to the DNS data from Krank et al. [42]. This discrepancy will also be reŕected in the surface drag

predictions in Table 4.

4) The dominant component in the total drag are from the pressure forces. The aforementioned discrepancy in

surface pressure predictions from IDDES will skew the drag coefficient errors reported in Table 4.
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5) All the RANS-based turbulence models over-predict the drag coefficient, especially the Wilcox 𝑘 − 𝜔, which is

consistent with the surface pressure distribution shown in Fig. 5.

6) The baseline 𝑘 − 𝜔 SST drag prediction is the closest to the IDDES result, despite the discrepancies in all other

quantities reported in Table 3. This can be misleading, since the surface pressure and friction predictions by the

baseline SST model is very poorly predicted compared to the other RANS-based models, and the reference DNS

data, as shown in Fig. 5.

7) The viscous drag component from FIML-augmented 𝑘 − 𝜔 SST is closest to the respective component from

IDDES. This can be explained by the consistently close match in the velocity predictions as shown in Fig. 6, and

Table 3. This is anticipated given that the viscous forces are a function of the velocity (see the expression for 𝐶 𝑓

in Eqn. 15) and the FIML model is trained on the streamwise velocity őeld data from DNS.
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Fig. 5 Comparison of the surface quantities on the hill wall for the baseline periodic shape. The DNS data are

from Krank et al. [42].
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Fig. 6 Comparison of the streamwise velocity profiles for the baseline periodic shape. The DNS data are from

Xiao et al. [28].

The surface pressure and surface drag predictions on the lower wall (hills) are shown in Fig. 5. Both the baseline

RANS-based turbulence models are unable to accurately predict the surface friction. While the Wilcox 𝑘 − 𝜔 model

predicts the reattachment somewhat accurately, it fails to capture the skin friction in the region of separated ŕow near

the initial hill. The baseline 𝑘 − 𝜔 SST skin friction prediction are most erroneous, as it signiőcantly over-predicts the
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ŕow separation in the shear layer, resulting in a much delayed ŕow reattachment location. The FIML-augmented 𝑘 − 𝜔

SST model is able to match the DNS data on the ŕat portion of the lower wall, while some discrepancies are present on

the hills. The IDDES results also match the DNS reference very well. In terms of surface pressure predictions, the

baseline 𝑘 − 𝜔 SST is once again very inaccurate in the separated region (particularly on the ŕat surface between the

hills). The Wilcox 𝑘 − 𝜔 on the other hand is close to the reference DNS, followed by the FIML-augmented 𝑘 − 𝜔 SST.

Unfortunately, as stated previously, the IDDES pressure predictions do not compare well with the reference DNS. The

causes for this require further investigation.

a) Baseline SST b) FIML c) DNS 

 

Fig. 7 Velocity fields comparison for the baseline periodic hill case (𝛼 = 1.0).

Fig. 8 Corrective field 𝛽 comparison between field inversion (left) and FIML model prediction (right) for the

PH test case (𝛼 = 1.0).

Fig. 6 shows the streamwise velocity proőles. The baseline 𝑘 − 𝜔 SST is clearly the least accurate. It consistently

struggles to accurately capture the ŕow in the separated shear layer, and over-predicts the size of the separation bubble,

as further illustrated by the streamlines in Fig. 7. The Wilcox 𝑘 − 𝜔 is more accurate compared to the baseline SST in

the separated ŕow region near the lower wall. The FIML-augmented 𝑘 − 𝜔 SST is able to match the DNS data fairly

well. The IDDES results match the DNS very well.

Finally, for reference we show the corrective őeld, 𝛽, in the FIML-augmented SST model in Fig. 8. As mentioned

previously, when training the FIML model, we do not use the data for the baseline periodic hill shape (𝛼 = 1.0).

For reference we show the 𝛽 őeld from őeld inversion in Fig. 8. While there are discrepancies between the őeld

inversion and the neural network-predicted corrective őelds, we did not observe major differences in the predictions of

physical quantities of interest (e.g. velocity, surface quantities such as the skin friction, and turbulence variables), as the

augmented SST model is not too sensitive to these differences.

B. Optimised shapes

The aerodynamic shape optimisation results using the three turbulence models considered, 𝑘 − 𝜔 SST, FIML-

augmented 𝑘 − 𝜔 SST, and the Wilcox 𝑘 − 𝜔 model will be presented in this section, with comparisons to IDDES

predictions.

The optimised shapes, along with lower wall pressure and skin friction distributions are shown in Fig. 9. Tables 5

and 6 show comparisons of the drag coefficients. Contours of streamwise velocity, and the streamlines for the RANS

models and IDDES results are shown in Fig. 10, with velocity proőles comparisons in Fig. 11. Finally, turbulent ŕow

structures are illustrated through Q-criterion contours from IDDES in Fig. 12. The key őndings are summarised as

follows:

1) The choice of turbulence model for ŕow predictions clearly impacts the aerodynamic shape optimisation outcome,

as the three models result in three distinct łoptimal" shapes. The FIML-augmented 𝑘 − 𝜔 and the Wilcox 𝑘 − 𝜔

share some similarities which we will discuss shortly.
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Fig. 9 The baseline shape overlaid with the optimised shapes for the three RANS-based turbulence models.

The lower wall surface friction and surface pressure for the baseline and optimised shapes are also shown using

the three respective turbulence models. In addition, IDDES predictions for the optimised shapes are shown for

comparison.

2) Table 5 shows that the baseline 𝑘 − 𝜔 SST model achieves the least drag reductionśbased both on the RANS

predictions and the IDDES results. The FIML-augmented 𝑘 −𝜔 SST and the Wilcox 𝑘 −𝜔 achieve considerably

higher reductions. However, there are considerable errors between the RANS and IDDES predictions. This

could be as a result of the issue in pressure predictions in the IDDES results, as discussed for the baseline shape

in Sec III.A.

3) All three models attempt to reduce the drag in the baseline shape by decreasing the ŕow separation. The FIML

augmented 𝑘 − 𝜔 SST and the Wilcox 𝑘 − 𝜔 achieve this by raising the lower wall. This results in a smaller

separated shear layer compared to the baseline shape, as demonstrated by the earlier ŕow reattachment locations

on the skin friction plots (Fig. 9), and the streamlines in Fig. 10. On the other hand, while the baseline 𝑘 − 𝜔

SST reduces the size of the recirculation zone after the őrst hill, it introduces a second larger recirculation zone

adjacent to the őrst one (based on the RANS predictions).

4) In all three cases reduction is achieved by decreasing the pressure drag (Table 6) while the viscous (or friction)

components rise compared to the baseline shape (Table 4).

5) In terms of the skin friction predictions, the baseline 𝑘 − 𝜔 SST model continues to be the most erroneous,

similar to the baseline shape. Both the FIML-augmented 𝑘 −𝜔 SST and the Wilcox 𝑘 −𝜔 model predictions are

similar to the IDDES.
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6) For the surface pressure distributions, there are considerable discrepancies between the SST RANS models (both

baseline and FIML-augmented), while the Wilcox 𝑘 − 𝜔 predictions are similar. Again, further investigation is

required to discern how accurate the IDDES predictions are before using these for benchmarking the RANS

predictions.

7) The baseline 𝑘 − 𝜔 SST model continues to over-predict the ŕow separation in the shear layer, in comparison to

the IDDES results, as shown in the velocity contours in Fig. 7 and the streamwise velocity proőles in Fig. 11.

The Wilcox 𝑘 − 𝜔 model is somewhat more accurate in velocity predictions, however, discrepancies exist near

the walls. On the other hand, the FIML-augmented 𝑘 − 𝜔 SST match the IDDES velocity predictions fairly well

(Fig. 11).

8) Finally, turbulent ŕow structures are visualised using the Q-criterion in Fig. 12. The baseline case has much

larger structures near the hills. These are reduced by various degrees in the different optimised cases.

Table 5 Drag coefficient predictions for the optimised hill walls using the different models. 𝐶𝑑 RANS column

is the drag prediction by the turbulence model used during aerodynamic shape optimisation, i.e. the model in

column one. Δ𝐶𝑑 is the percentage drag reduction compared to the baseline shape.

Optimisation case 𝐶𝑑 RANS 𝐶𝑑 IDDES Error Δ𝐶𝑑 RANS Δ𝐶𝑑 IDDES

𝑘 − 𝜔 SST 0.035371 0.033291 6.25% 6.53% 4.52%

FIML-augmented SST 0.031191 0.026043 19.77% 20.81% 25.30%

Wilcox 𝑘 − 𝜔 0.033695 0.027963 20.50% 35.30% 19.80%

Table 6 Predictions of drag components for the three turbulence model optimisation scenarios. 𝐶𝑑,𝑝 and 𝐶𝑑,𝑣

refer to the pressure and viscous (friction) forces.

Optimisation case 𝐶𝑑,𝑝 RANS 𝐶𝑑,𝑝 IDDES 𝐶𝑑,𝑣 RANS 𝐶𝑑,𝑣 IDDES

𝑘 − 𝜔 SST 0.03514 0.03211 0.00024 0.00119

FIML-augmented SST 0.02867 0.02423 0.00252 0.00181

Wilcox 𝑘 − 𝜔 0.03132 0.02608 0.00237 0.00188

FIML-augmented             SST
         
   SST Wilcox

Ba
se

lin
e 

RA
N

S
O

pt
im

ise
d 

RA
N

S
ID

D
ES

-0.3

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Fig. 10 The baseline and optimised streamlines with normalised streamwise velocity. The first two rows show

the predictions from the respective RANS-based turbulence models used during the shape optimisation, while

the final row shows the IDDES predictions of the optimised shapes.
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IV. Conclusions
In this paper we presented an aerodynamic shape optimisation framework in which a RANS-based baseline

turbulence modelÐ𝑘 − 𝜔 shear stress transport (SST)Ðis augmented using the őeld inversion and machine learning

(FIML) approach. The two-step process involved ŕow reconstruction through inverse modelling (an adjoint-based

optimisation where the goal is to minimise the errors between some high-ődelity data and the baseline RANS model by

applying a correction őeld, 𝛽, to the production term of the turbulent transport equation), and the generalisation of the 𝛽

őeld using neural networks, used for predictions beyond the training dataset. The framework was applied to a proof of

concept periodic hill case. Key steps and őndings are summarised as follows:

1) We augmented the baseline 𝑘 − 𝜔 SST model using the FIML approach. The augmented model was trained

on DNS streamwise velocity őelds for a set of parameterised periodic hills involving mild to massive ŕow

separations. To test the effectiveness of the approach, we left the baseline geometry (starting point for shape

optimisation) outside the training dataset.

2) The baseline SST model was shown to be very inaccurate in ŕow predictions of the baseline shape. It failed to

accurately capture the separated ŕow in the shear layer, and over-estimated the size of the separation bubble.

3) The augmented 𝑘 − 𝜔 SST model was able to signiőcantly reduce the errors in most of the quantities of interest,

and was shown to match reference DNS data well.

4) The adjoint-based aerodynamic shape optimisation was formulated as that of reducing the surface drag on the

lower wall of the periodic hill geometry.

5) In order to demonstrate the inherent sensitivity of the shape optimisation outcome on the choice of RANS-based

turbulence model for ŕow predictions, we also used the Wilcox 𝑘 − 𝜔 model to perform shape optimisation. We

also demonstrated that of the two existing (baseline) turbulence models considered, the Wilcox 𝑘 − 𝜔 model was

overall more accurate in terms of ŕow prediction comparisons to the reference DNS data.

6) We also proposed using a higher-ődelity approach to validate RANS-based ŕow predictions for the optimised

shapes. For this, the Spalart-Allmaras based improved delayed detached eddy simulations (IDDES) was used.

We validated the IDDES results against the available reference DNS data. While the IDDES results were much

more accurate compared to the baseline RANS-based predictions in most quantities (velocity, Reynolds stress

components, and skin friction), it failed to match the reference DNS pressure distribution. The cause of this

discrepancy is subject to ongoing investigations.

7) The three different RANS-based turbulence modelsÐbaseline 𝑘 − 𝜔 SST, FIML-augmented 𝑘 − 𝜔 SST, and

the Wilcox 𝑘 − 𝜔Ðresulted in different optimal shapes, highlighting the sensitivity of the őnal outcome to the

turbulence model.

8) The drag reductions were quantiőed both based on the respective RANS-based ŕow predictions of the baseline

and optimised shapes, and the IDDES-based predictions, Table 5.

9) The baseline 𝑘 − 𝜔 SST model led to the least drag reduction: 4.5 − 6.5%. The FIML-augmented 𝑘 − 𝜔 SST

model achieved a drag reduction of 20.8 − 25.3%. The Wilcox 𝑘 − 𝜔 model achieved an error reduction of

19.8 − 35.3%.

10) In comparison to the IDDES predictions, the baseline 𝑘 −𝜔 SST model was the least accurate in terms of velocity

and skin friction predictions. Both the Wilcox 𝑘 − 𝜔 and the FIML-augmented 𝑘 − 𝜔 SST model matched the

skin friction and velocity predictions from IDDES fairly well.

Overall, the preliminary results demonstrate that creating augmented turbulence models using data-driven approaches

(e.g. FIML) for aerodynamic shape optimisation in separated ŕows is a promising research topic, which requires further

investigations. In the future we will also investigate: replacing the DNS training data with IDDES to ensure that the

training data and validation data use a consistent approach (while still using the DNS data for IDDES validation), using

different deep neural network architectures and features/inputs in the FIML training, increasing/reducing the number of

parameterised shapes used for FIML training, and using different quantities for the training data, e.g. for the present

results we only used the streamwise velocity őelds, but could also use surface data such as skin friction and surface

pressure.
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