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Decision Making For Multi-Robot Fixture Planning

Using Multi-Agent Reinforcement Learning

Ethan Canzini , Member, IEEE, Marc Auledas-Noguera , Simon Pope , Ashutosh Tiwari

Abstract—Within the realm of flexible manufacturing, fixture
layout planning allows manufacturers to rapidly deploy optimal
fixturing plans that can reduce surface deformation that leads to
crack propagation in components during manufacturing tasks.
The role of fixture layout planning has evolved from being
performed by experienced engineers to computational methods
due to the number of possible configurations for components.
Current optimisation methods commonly fall into sub-optimal
positions due to the existence of local optima, with data-driven
machine learning techniques relying on costly to collect labelled
training data. In this paper, we present a framework for multi-
agent reinforcement learning with team decision theory to find
optimal fixturing plans for manufacturing tasks. We demonstrate
our approach on two representative aerospace components with
complex geometries across a set of drilling tasks, illustrating the
capabilities of our method; we will compare this against state
of the art methods to showcase our method’s improvement at
finding optimal fixturing plans with 3 times the improvement in
deformation control within tolerance bounds.

Note to Practitioners—Fixture layout planning is one of the
most fundamental manufacturing tasks that must be carried out
before production cycles can begin, to ensure that deformation
is within tolerances to avoid crack propagation and component
damage. However, reliance on humans to generate these plans has
led to sub-optimal solutions, leading to manufacturers incurring
losses and wanting to explore analytical methods for fixture
planning. In this vein, there may be the temptation to find a
single solution that can be applied to all problems regardless
of complexity. However, in the age of flexible manufacturing,
the benefits of building tailored solutions within a framework
- referred to as ”freedom within a framework” - become
more apparent. This paper outlines the framework for multi-
agent reinforcement learning for fixture layout planning, and
demonstrates the capabilities of this framework to outperform
current state of the art methods with a simple algorithm through
extensive experiments on representative aerospace components.
We provide code implementations of our work on GitHub1

Index Terms—Multi-Agent Systems; Reinforcement Learning;
Aerospace Manufacturing; Fixture Planning; Robotic Fixturing
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Fig. 1. A set of robotic flexible fixtures working with a serial manipulator
for aerospace sheet metal milling where task and component information
(GREEN) is used with a multi-agent reinforcement learning network (BLUE)
allows reconfigurable fixtures to reduce deformation during tasks (RED)

I. INTRODUCTION

W ITH the increased demand placed on producers to meet

the needs of consumers, manufacturing practises and

techniques have seen a revolution that signals the beginning

of new paradigms in manufacturing. Dubbed Industry 4.0, this

new industrial revolution has steered large scale industries

to deploy technological trends such as autonomous robotics,

artificial intelligence (AI) and digital simulation systems to

their production benefit. However, this revolution has brought

the realisation that manufacturers need to become flexible

to meet the shifting demands of consumers. This flexibility

has led to the rise of reconfigurable machines for industrial

production so customer demands can be met efficiently.

An area that has seen a rise in interest is the use of

intelligent fixtures for reconfigurable manufacturing purposes.

Fixtures - referred to as fixturing/fixel elements interchange-

ably - are used within jig structures to constrain a component

to complete manufacturing tasks such as drilling, joining or

riveting [1]. These fixtures are used to ensure that there is no

deformation that is outside of tolerance limits, to mitigate the

possibility of large component deflections and the probability

of internal cracks propagating through the component. In the

past, these jigs were large static structures that constrained a

component without allowing for any flexibility or reconfigu-

ration. Recently, reconfigurable fixtures have seen an increase

in research in two particular areas:

1) The physical design of fixturing elements such as

clamps, pin arrays and robotic fixtures, such as those

in figure 1

2) Design of the fixturing plan that determines where the

fixturing elements are placed on the component

The design of physical fixtures, particularly robotic end ef-

fectors which have received the most interest in recent years,
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remains a discussion for manufacturers as it is dependent on

the type of component that is being constrained. However,

the process of algorithmic fixture planning can be applied to

robotics fixtures and static fixtures alike. The goal of fixture

planning is to find the location of fixturing elements in such

a way that they minimise any potential residual stress or

deformation a component will experience when it undergoes

a manufacturing task. This task is crucial to the long-term

success of manufacturers to ensure their components retain

their strength and capability. However, such a task requires

the coordination of mechanical elements acting in parallel

with material properties of components. These components

are subjected to operational forces that can distort a com-

ponent if not constrained correctly, leading to a non-trivial

task for determining optimal plans. Historically, the design of

such plans fell to experienced design engineers with years

of experience, but research has also examined the use of

optimisation-based approaches for determining the location of

the elements. Despite these advances, fixture layout planning

remains an open problem due to the nature of the drawbacks

in optimisation methods [1].

As an alternative to optimisation methods, reinforcement

learning has emerged as a useful method for finding optimal

actions. Traditional methods have relied on a single agent,

defined in the context of this problem as a single robotic

fixture, operating in an environment and being able to interact

individually. However, many real-world systems deal with

multiple agents that have distributed decision making within

a shared environment.

This paper will introduce a framework for multi-agent rein-

forcement learning (MARL) when applied to the fixture lay-

out planning problem for multiple robotic fixturing elements

working in a cooperative manner. The layout of the paper will

be as follows: Section II will review current fixture planning

methods and their limitations followed by an overview of

multi-agent reinforcement learning. Section III will introduce

the Multi-Robot Fixture Planner (MRFP) methdology and

detail the process in which optimal fixture plans are computed.

Section IV will evaluate the performance of the MRFP method

on a case study for aerospace wing panel and spar drilling and

compare the performance against state of the art methods for

fixture planning. Finally, section VI will summarise the work

presented in this paper and discuss any directions or further

work that needs to be completed. Mathematical notation will

follow conventions in [2] for fixture design, [3] for multi-agent

reinforcement learning and [4] for team theory.

II. RELATED WORK

This section encompasses a brief review and introduction to

the work in this paper. Section II-A will provide an overview of

fixture design and current approaches to planning. Section II-B

will introduce multi-agent reinforcement learning (MARL)

and provide examples of current state of the art methods.

Section II-C outlines the gap in the research area.

A. Fixture Layout Planning

As mentioned in section I, fixture design for manufacturing

processes is broken down into the design of physical fixtures

and the grasping strategy for component constraining. Whilst

physical fixture design has seen relevant innovation through

the use of robotic fixturing elements, the design of fixture

plans has remained a key challenge as this is a task primarily

performed by operators with considerable experience in the

field. The purpose of these plans is to ensure that a component

is fully constrained before performing a task, commonly

drilling or riveting [5] such that any experienced deformation

is minimised.

Definition 1: Let A ⊆ A be a set of fixture locations chosen

from the global set of positions A. The locations of A during

a manufacturing operation τ should reduce the experienced

deformation in 3-dimensions fw(τ):

A∗ ∈ argmin
A⊆A

|fw(τ)| (1)

The majority of literature regarding fixture design planning

can be split into three main sections: firstly, design via similar

part matching [6]; secondly, design through optimisation [5];

finally, design through machine learning methods [7].

The initial research in fixture design planning was cen-

tered around finding optimal plans through similarity between

models. Case-Based Reasoning (CBR) is one of the earliest

methods of fixture design planning and operates on the as-

sumption that components within production Stock Keeping

Units (SKUs) are similar to the extent that fixture plans

can be reused [8]. CBR methods represent the oldest known

autonomous method of generating new fixture designs, and

has seen other variations in the form of Rule-Based Reasoning

(RBR) which generates rules for finding similarities between

components. CBR and RBR methods find their usefulness in

fixturing tasks where the components being fixtured are vari-

ations of the same SKUs and therefore the feature extraction

method can find the necessary features. The most common

way of representing CBR/RBR fixture plans is through a

computer language package such as that by Liqing [9]. Liqing

uses an XML-based system to store the relevant fixturing

plans in a database to allow for sorting and indexing in the

future. Luo et al. take a different approach by transforming

component shapes into graph representations where faces are

nodes and vertices are edges [10]. By analysing components

in the database with new components, new fixturing plans

could be generated from any existing suitable plans. CBR

and RBR methods, whilst initially seemed promising, rely on

components having some level of similarity between them

for plans to be generated, and that the initial plans stored

in the database are optimal in terms of fixture placement.

Additionally, McSherry notes that the effective retrieval of

cases is hindered by the inseparability characteristic which

can lead to misidentifying fixture plans for similar components

[11].

Alongside CBR and RBR methods, optimisation-based ap-

proaches found similar appeal for fixture layout planning.

Within the context of fixture layout planning, optimisation

methods expand definition 1 to include constraints and pa-
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rameters [12]:

minimise
τ∈T

(max |fw(τ)|)

s.t. ai ≤ xi ≤ bi

ci ≤ yi ≤ di

(2)

where:

T = Set of manufacturing operations performed

xi, yi = Coordinate positions of fixture i

a, b = Upper and lower position limits in the x-direction

c, d = Upper and lower position limits in the y-direction

fw(τ) = Deformation in component due to task τ

Optimisation methods have a similar history to the

CBR/RBR methods described previously, dating back to the

1990s [13]. With solution methods, one of the most common

has been the genetic algorithm through its ability to start with

initial sub-optimal solutions and explore the search space to

find better solutions. Other optimisation methods that have

seen interest include Particle Swarm Optimisation (PSO) [14]

and active pin minimisation [2]. Xiong et al. decided to use

a different approach by using the original genetic algorithm

but adding the N-2-1-1 constraint that specifies the number of

fixtures that can be present on a single face [12]. However,

all optimisation methods can encounter sub-optimal or quasi-

optimal solutions due to being stuck in local minima during

the training process.

Recent methods in fixture design planning have utilised

the data-based approach of machine learning techniques to

find optimal fixture plans. Early work sought to mimic the

methodology of CBR and RBR by using pattern recognition

through neural networks to find suitable similar fixtures [15],

with further work looking at using other supervised methods

of machine learning [16]. However, supervised methods that

rely on prior data collection fall victim to similar drawbacks as

CBR and RBR due to the lack of guarantee of optimal fixturing

plans. Recently, self-supervised learning (SSL) methods such

as reinforcement learning (RL) have shown their ability to

find fixturing plans without the need for a set of labelled data.

Both Low et al. [7] and Cronrath et al. [17] use RL as their

solution tool for fixture design, where Low et al. start with the

maximum number of fixtures possible and let the RL agent

remove a fixture at each time step and Cronrath et al. uses a

quasi-optimal policy to train a digital twin using RL to find

more optimal solutions. Both methods are limited in that they

only allow one fixture change per train step, which can lead

to long train times and inefficient policies. Furthermore, Low

et al. only allow for training on individual tasks and not over

a set of tasks, meaning that a new policy would need to be

trained for each task. For a more comprehensive review on

fixture planning, the reader is directed to [1].

B. Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) builds on the

traditional RL methods by scaling the Markov decision pro-

cesses (MDPs) to multiple agents. Single agent RL is char-

acterised by the tuple ⟨S,A,R,P, γ⟩, where at each state st
the agent takes an action at which transitions the environment

to the next state st+1 and provides reward Rt to the agent

[18]. The agent seeks to maximise the expected value of the

discounted reward from the current state:

V (s) = Est+1∼P,at∼π

[

∞
∑

t=0

γtRt|s0 = s

]

(3)

where actions at each step at are chosen from a policy π.

The agent’s overall goal is to find a policy that maximises the

cost found in equation 3. For multiple agents, the sequen-

tial decision making of multi-agent reinforcement learning

(MARL) is now a factor of all the agents operating in the

environment. This can be formulated as a Markov or Stochastic

game [19], defined as a tuple ⟨N,S, {A}1:n, P, {R}1:n, γ⟩.
In a Markov game, each agent n ∈ N takes an action from

their action space which forms the joint action for all agents

at = a1t × ...× ant , ∀n ∈ N . The probabilistic state transition

function P now maps the joint action and the current state

into the new state P : st ×at → st+1. Similarly to the single

agent problem, each agent wants to maximise their cumulative

reward through the value function:

V n
πn,π−n(s) = Eat+1∼P,at∼π

[

∞
∑

t=0

γtRn
t |s0 = s

]

(4)

Equation 4 shows that the value function is dependent on the

joint policy of all agents π = {π1, ..., πn}. This gives way to

the equilibrium condition known as Nash equilibrium.

Definition 2: For a set of agents N , an agent’s policy πn
∗

can be considered a best response to the set of policies for

all other agents π
−n
∗ = {π1

∗, ..., π
i−1
∗ , πi+1

∗ , ..., πn
∗ } excluding

agent n provided that the inequality:

V n

πn
∗
,π

−n
∗

(s) ≥ V n

πn,π
−n
∗

(s), ∀s ∈ S (5)

holds true for all policies, leading to a Nash Equilibrium.

Generally, MARL literature focuses on two different types

of training for the policies of the agents, shown in figure 2.

Centralized training has a single policy for all agents that

governs what actions each agent selects, whilst decentralized

training relies on each agent having their own policy for

choosing actions at each state. Sets of agents that are ho-

mogeneous can be trained in a centralized manner and then

deployed decentralized, referred to as Centralized Training and

Decentralized Execution (CDTE) [3]. However, if agents are

heterogeneous or not in a cooperative setting, then distributed

training and execution is needed as agent policies may differ in

their desired action selection. This decentralized setting may

be more appealing to most applications, as most settings have

agents that are distributed or have a heterogeneous nature.

Due to the distribution of agents, MARL solution methods

have to account for a non-stationary environment. Hu and

Wellman demonstrated that Q-learning can be adapted to find

a Nash equilibrium point by augmenting the Q-value with

knowledge of the other agent’s actions [19], a process that

can be expanded with function approximators such as neural

networks. Actor-critic methods have also shown promise for

multi-agent systems, both with a single actor-multiple critics

and multiple actors and critics [20], and MARL can also be

applied to human and autonomous agents interacting through
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Fig. 2. Comparison between the architecture of a centralized multi-agent reinforcement learning (LEFT) and the decentralized multi-agent reinforcement
learning (RIGHT) architectures

social modelling [21]. A full review of multi-agent reinforce-

ment learning can be found in [3].

C. Research Gap

As noted in section II-A, most fixture design methods

are focused on approaches that either optimise the fixture

plan over a set of tasks or try to find similarities between

component fixture plans. These approaches are limited in their

effectiveness as group-based optimisation methods will fall

into sub-optimal local minima or trade per-task optimality for

a single fixturing plan. With the advent of robotic fixtures

that can be reconfigured during the production process, these

single-plan methods provide no benefit and can be detrimental

to the component. Machine learning methods are promising,

particularly the use of RL where there is not a requirement for

labelled data, but applying game-theoretic MARL techniques

proves difficult as rewards for fixture design would be global

rather than local for each agent. In future sections, we demon-

strate that our method overcomes the problem arising from

optimisation methods by determining an optimal fixture plan

for each task using MARL where team theory is used to enable

cooperative fixture planning for multiple robotic fixtures.

III. MULTI-AGENT FIXTURE PLANNING

This section will explain the Multi-Robot Fixture Planner

(MRFP) system using MARL. Section III-A will introduce

the simplified version of RL for fixture planning, which leads

into section III-B outlining the process of cooperation between

agents. Section III-C will provide a complete overview of the

fixture design planner in a multi-robot setting.

A. Contextual Bandits

As noted in [17], there exist a large number of systems that

do not need the full MDP model for RL. These are referred

to as contextual bandits, a variation of the multi-arm bandit

that is present in RL literature [18]. The core idea behind the

contextual bandit is that the states presented to the agent are

independent of each other, meaning that the state transition

probability function P no longer exists. Therefore, the tuple

presented at the beginning of section II-B becomes ⟨S,A,R⟩.
For fixture planning, contextual bandits represent the pro-

cesses that are performed when fixtures are applied to a

system, in particular drilling tasks. The set of drilling positions

can be defined as the states S , where the agent is then allowed

to choose an action from its policy that represents a fixturing

position. This action and state is then used in the reward

function R that is based on the maximum deformation that the

component is experiencing during this task, which the agent

uses to update its policy.

In the contextual bandit setting, agents are looking to

minimise the episodic regret over the total set of states:

R(S) = E

[

∑

s∈S

Rs,a∗ −Rs,a

]

(6)

where a∗ is the optimal action that yields the highest reward at

each state Rs,a∗ compared against the received reward Rs,a.

However, as mentioned previously, standard RL and contextual

bandit methods rely on a single action taken at each step.

Whilst this approach would be suitable for fixture planning

with a single agent positioning fixtures, many industrial set-

tings have multiple fixturing elements being placed across

a component, leading to an intractable solution for a single

agent.

B. Decision Making for Multi-Agent Fixtures

Using multiple robotic fixtures for a single large component

requires there to be cooperation between the fixtures during

operation, ensuring that the agents are working together to

reduce the experienced deformation. We can augment the

standard contextual bandit tuple to incorporate the num-

ber of agents with their individual action spaces, giving

⟨S,G,R, {A}1:N ⟩ where G is a team of agents of size N .

In this team, the agents are not homogeneous due to phys-

ical constraints of where the robots can place their fixtures,

therefore their action spaces are unique to each agent. At each

round, the team are presented with a drilling position and each

agent vn ∈ G, ∀n ∈ N must choose a fixturing position from

their action space an ∈ An∀vn ∈ G. The set of actions taken

by the team of agents for each drilling hole is known as the

joint decision rule:

a =

N
∏

i=1

ai and a−n = a \ an

∀vn ∈ G, n ∈ N

(7)
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As we are now considering a team of agents acting on the

component, the regret in equation 6 has to be modified:

R(S) = E

[

∑

s∈S

∑

vn∈G

Rs,a∗ −Rs,a

]

(8)

As noted in definition 1, the goal of the fixture design

plan is to minimise the expected deformation from the task

being performed. This allows us to frame equation 8 as an

optimisation problem that needs to be minimised for each

agent policy ϕn ∈ Φ2 where Φ denotes the set of policies

for all agents in G:

J(R) = minimise
φn∈Φ

E

[

∑

s∈S

∑

vn∈G

Rs,a∗ −Rs,a

]

s.t. a
∗ ←

N
∏

n=1

argmaxan
Q(s, an)

Rs,a ∼ R(s,a)

(9)

To determine an equilibrium for the optimal actions that agents

take the cost function can be analysed using team decision

theory, a sub-discipline of game theory that deals with the

control of distributed agents with a shared objective throughout

the team [4].

Theorem 3.1: Let J({an,a−n}) denote the cost function in

equation 9 for the team decision rule a ∈ {A}1:N . A proposed

optimal team decision rule a
∗ can be considered a player-by-

player equilibrium provided that the decision rule satisfies the

inequality:

J({a∗n,a
∗
−n}) ≤ J({an,a

∗
−n}) (10)

If the following criteria holds for the decision rule:

1) The reward function R : s × a → R is convex and

differentiable

2) The cost function J({a∗n,a
∗
−n} is locally finite

3) The decision rule a
∗ ∈ {A}1:N is stationary

Then a
∗ can be considered the optimal decision rule.

Theorem 3.1, within the context of multi-robot fixture plan-

ning, gives that if an any agent chooses a new fixture location

that is not optimal, provided that all other agents do not change

their strategies, then the position would lead to an increase

in the deformation in the component and thus an increase

in the regret. Theorem 3.1’s player-by-player equilibrium can

be compared to Nash equilibrium in game theory, with the

optimal decision rule satisfying Pareto optimality [4].

For the fixturing positions, there is the discussion as to

whether the locations of fixel elements is continuous or

discrete. Prior literature has relied on continuous spaces for

optimisation methods by defining boundaries that the fixtures

can be placed in [12]. However, this does not account for areas

of components that cannot be grasped due to other features or

perhaps material variations such as composites and metals. For

this reason, a discrete action set is used for each agent that

can incorporate preferences related to positions of fixturing

positions and areas that cannot allow fixels to be connected.

2We wish to avoid confusion with the irrational number π and will use ϕ
for agent policies in the rest of this paper

Definition 3: We denote the action set of agent vn ∈
G, ∀n ∈ N as An as a finite discrete set of fixturing positions

that each agent can take for each drilling position. The set of

positions must satisfy the relationship:

An := {a | a ∈ Γ and 0 < |An| < |Γ|}

where
⋃

n∈N

An ⊆ Γ (11)

As agents cannot place fixels in other areas, we state that

the sets of actions are disjointed for all agents, such that the

intersection of all agents
⋂

n∈N An is the empty set ∅.
For each drilling hole s ∈ S , the agents select an action

an ∈ An that corresponds to a fixturing position based on

their policy ϕ(·|s). The joint decision rule defined in section

III-B as a denotes the position of all fixtures on a component,

which is translated into a reward using the reward function

R : s× a→ Rs,a.

Choosing a useful and meaningful reward function can be

difficult for RL problems. Whilst traditional literature uses

binary rewards such as r ∈ [0, 1], defining what deformation

limit constitutes to a reward can vary between components.

Additionally, as noted in theorem 3.1, the reward function

must be convex to facilitate team-based learning and show

that there is a minimum point to optimise towards. This can

prove difficult for most solutions where the optimal reward

Rs,a∗ is unknown or undefined. The optimal reward can be

defined as the mean of the reward function R̄ [22], over a

finite set of states T , which can reduce equation 8 to:

R(S) = E

[

∑

s∈S

∑

vn∈G

R̄ −Rs,a

]

= TNR̄ − E

[

∑

s∈S

∑

vn∈G

Rs,a

] (12)

This reduction allows us to redefine the cost function in equa-

tion 9 as a maximisation problem which are more common

in RL as the first term in equation 12 is constant, leaving us

with the objective function for training as:

max
φ∈Φ

Ea∼Φ

[

∑

s∈S

∑

vn∈G

Rs,a

]

(13)

This objective function allows us to make some specific

generalisations for the multi-agent team theory solution:

1) The problem can be interpreted as maximising the sum

of rewards for all agents, known as the return of a policy

2) The inequality in theorem 3.1 still holds, provided

equation 13 remains the objective during training

3) The reward function must still be differentiable, but

now can be determined as concave for a maximisation

problem

For a concave optimisation problem, the agents should receive

greater reward as they bring the deformation closer to zero. A

Gaussian reward function can be used:

R(s,a) = exp

[

−
d2x
2σ2

x

−
d2z
2σ2

z

]

s.t. dx, dz ∈ R
2
>0

R ∈ [0, 1]

(14)
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Fig. 3. The multi-variable Gaussian reward function. The values of dx and
dz are taken from the FEA solver the computes that deformation in the x and
z directions respectively. This deformation then is converted into a reward R
that is returned to the agents

where:

dx, dz = Maximum deformations in the x, z directions

σx, σz = Variables determining the width of the curve

The z-direction remains a requirement as it is the direction

in which the drilling is being performed. As for the x-

direction, this corresponds to the longitudinal shear direction

when the component is supported, and adding a third dimen-

sion to the reward function would over-constrain the reward

function. Whilst a single dimension for deformation measure-

ment could be used, many applications of deformation control

require maintaining two dimensions within tolerance levels.

The mean reward R̄ can be calculated over the function’s

measurement domain U ∈ R
2
>0, shown in figure 3:

R̄ =
1

Area(U)

∫

U

R(s,a)dA (15)

By definition, however, the mean of the reward function over

the entire domain limdx,dy→∞ R̄ = 0. To mitigate this, we

can restrict the quasi-optimal reward to the domain within the

tolerance for crack propagation within thin-walled composite

materials [23].

Lemma 3.2: Let ζ represent the tolerance limit for crack

propagation of 1.5µm. The quasi-optimal reward R̄ is there-

fore
∫

U
R(s,a) dA ≈ 0.7331, U ∈ [0, ζ]2.

C. Multi-Robot Fixture Planning

For training the multi-robot fixture planning system, each

robot has a policy ϕn ∈ Φ that is trained on a set of drilling

positions. The algorithm of choice for this implementation

is Nash-Q learning due to its ability to converge to optimal

solutions in normal form games with discrete action spaces

[19]. Compared to other MARL algorithms, Nash-Q remains

best suited for this application as it can achieve human-

level performance compared to many other learning algorithms

[24]. Additionally, Nash-Q is an off-policy approach for RL

problems, meaning that it can use any data that has been

collected to train the model. Furthermore, this process is

data efficient when compared against policy gradient methods

and can learn from fewer samples compared to on-policy

methods, which is beneficial for agents that are trained through

fictitious play. Another benefit of using Nash-Q as opposed to

other popular RL algorithms, such as policy gradient (PG)

methods, is the reduction of uncertainty in action selection.

PG methods generate action probabilities through a stochastic

policy, leading to policies not being repeatable and increasing

the uncertainty in action selection which would be a cause for

concern within aerospace manufacturing. This is particularly

true in Bayesian games, a subset of Markov games where the

players only possess partial information about the actions of

the other players [25]. As Nash-Q allows agents to build a

policy that are capable of mitigating uncertainty in complex

games and reducing the amount of data collection is required

for training, this makes our approach most appropriate for

determining optimal robotic fixture placement. For a more

detailed comparison and examination of on-policy versus off-

policy methods, readers are encouraged to consult [26].

We can rewrite the equation in theorem 3.1 with the maximi-

sation approach in equation 13 to determine Nash equilibrium

Q-values for each agent at each state in the game:

Q(s, {a∗n,a
∗
−n}) ≥ Q(s, {an,a

∗
−n}) (16)

Additionally, the lack of state transitions in contextual bandits

means that the performance of other algorithms is dictated by

the exploration-exploitation trade-off, which is a major field

of research with RL literature and beyond the scope of this

work [18]. The training cycle is shown in figure 4, where the

agents each observe a drilling task and contribute to the joint

action which yields the reward based on the deformation. The

training approach can either be done using a Q-table or by

function approximation using neural networks, both of which

will be shown in section IV. Algorithm 1 shows the overall

training approach for the multi-robot fixture planning method

using a neural network approximator. As the agents are non-

homogeneous, each agent has its own multi-layer perceptron

(MLP) policy network that they update in batches. During

training, the agents engage in fictitious play to train their

policies. For a broader overview, further details and in-depth

technical requirements regarding creating and training multi-

agent systems, readers should consult [20].

IV. RESULTS

This section of the paper will outline the experimentation

and results for evaluating the multi-agent reinforcement learn-

ing approach for robotic fixtures. To benchmark our approach,

this section will cover two extensive case studies that are

common within fixture design planning and a conceptual

approach: section IV-A will cover a repeated matrix game

example on a single drilling task for a wing panel, and section

IV-B will expand this into optimising over a set of holes for

an entire wing span. Section IV-C will introduce an ablation

study into optimising for wing spar drilling to demonstrate the

effectiveness of this method. For all experiments, component

models and drilling positions were provided by Airbus UK

and integrated into a simulation environment. Component

characteristics (thickness, materials etc.) were kept constant
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Fig. 4. An outline of the training process for the multi-robot fixture planner. Each agent policy ϕ maps an action to a drilling position based on the joint
action learning process. The FEA solver uses the drilling positions and the joint action to generate a deformation profile, which the reward function uses to
generate a reward for all the agents to optimise their policies

Algorithm 1 Multi-Robot Fixture Planner Training Loop

Require: T > 1 ▷ Require more than 1 episode

Require: S ≠ ∅ ▷ Set of non-empty drilling positions

Require: vn ∈ G ▷ Set of agents

ϕn ← Initial Bandit Policy ∀vn ∈ G
t← 0 ▷ Total number of steps taken

Tn ← ∅ ▷ Empty set of agent trajectories

while T < Tmax do

for s ∈ S do

a← ∅ ▷ Initialise empty joint action set

for vn ∈ G do

as ←

{

argmax
a,s

Qn
t−1(s, a) Pr(1− ε)

random action Pr(ε)
a← a ∪ an ▷ Create joint action set

end for

Rs,a ← R(s,a) ▷ Reward from max deformation

Tn ← Tn ∪ {s, an, Rs,a}, ∀vn ∈ G
for vn ∈ G do

B ← Random batch of trajectories from T
for ⟨s, an, Rs,a⟩ ∈ B do

Qn
t (s, a)← NashQUpdate(Qn

t−1, ⟨s, a,R⟩)
end for

L(θ)← 1

|B|

∑

⟨s,a,R⟩∈B L(Q
n
t , Q

n
t−1)

Adam update ϕn,θ with L(θ)
end for

t← t+ 1 ▷ Increase the time step counter

end for

T ← T + 1 ▷ Increase the episode counter

end while

across experiments, with the FEA model being implemented

within MATLAB. Our hyperparameters were chosen from

academic literature [19], [20] and are detailed in table II. For

our test bed, we consider two components

A. Repeated Matrix Game For Fixture Placement

To evaluate the player-by-player equilibrium for optimal

actions, we first test the multi-agent reinforcement learning

approach on a single drilling position for a wing panel, a

representation of which is shown in figure 7. We will test

TABLE I
COMPARISON OF POLICY TYPES FOR NASH-Q LEARNING

Policy Training Time (s)
Method n = 2 n = 3

Q-Table 83,189 ± 876 87,810 ± 127

MLP 60,800 ± 1,129 63,220 ± 1,281

the ability of n ∈ [1, 2, 3] agents to learn optimal fixturing

positions, whilst examining the presence of an equilibrium

position for a 2-player game. A drilling position is selected

on the wing panel based on the framework outlined in [27],

and a payout graph is constructed for 2 agents and a trained

response for 1-3 agents is created in a similar manner to the

multi-armed bandit model [18].

In figure 5a, the action numbers for each agent correspond

to a fixture on the panel in figure 7, where the payout is

the outcome from the Gaussian reward function. As shown

in the figure, there is a definite position of equilibrium that

satisfies the conditions outlined in theorem 3.1, indicating the

presence of a player-by-player equilibrium for the multi-agent

fixture design problem at the point where each agent chooses

their best action. When the agents are trained in simulation

to find the optimal positions for a single drilling hole in the

method of the multi-armed bandit [18], the results of which are

shown in figure 5b, we see that 2 agents outperform a single

fixturing agent and reach the equilibrium action set found in

figure 5a. Furthermore, the use of 3 fixturing agents compared

to 2 improves the performance and reduces the deformation

further.

However, whilst the Nash-Q learning method is capable of

finding equilibrium solutions on single state repeated matrix

games, there are two major limitations to this method. Firstly,

compared to the quasi-optimal reward outlined in lemma 3.2,

the agents under perform and don’t reach an optimal solution.

Secondly, as noted in [19], the space complexity of the Nash-Q

learning algorithm is n|S| · |A|n where n is the number of Q-

tables. As the number of possible global actions is constant and

the number of Q-tables is governed by the number of agents,

the space complexity is exponential to the number of agents

and linear with regards to the number of drilling positions.

A function approximator can accommodate for this curse of
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(a) (b)

Fig. 5. Results from the n-player game scenario for the wing panel: (a) An equilibrium plot for the 2-player game that demonstrates the existence of a
player-by-player equilibrium, marked with the red circle; (b) The training curves for n ∈ {1, 2, 3} agents demonstrating the improving performance of
increasing the number of agents and the presence of an equilibrium between them

dimensionality in fixture design by modelling the Q-table as

a neural network with an input of the observed state and an

output of the fixture position. This neural network mitigates

the space complexity issue of the base Nash-Q algorithm by

removing the complexity completely with a neural network,

but also allows the use of GPU acceleration for model training

and the ability to use parallel processing with multiple com-

pute units. In table I, the Q-table approach from this section is

compared against an MLP policy trained on the same drilling

holes for with a multi-agent setting with n ∈ {1, 2}. When

comparing a MLP policy function against a Q-table policy

function, the training time is vastly improved due to the use of

parallel computation and the MLP policy benefits from having

its network stored on the GPU memory rather than in the

slower system memory. These reasons necessitate the use of

a function approximator for scaling the number of agents to

ensure the optimal design of fixture layout plans.

B. Multi-Robot Fixture Planner For Wing Panels

The next set of experiments will be concerning the optimi-

sation of wing panel fixture positions over a set of holes. We

will compare our method against the current state of the art for

wing panel fixture positioning mentioned in [12]. As in section

IV-A, the wing panel model is used for experimentation. The

agents are trained in PyTorch and MATLAB on a single

computer with an Intel Core i9-10920X CPU and Nvidia

GeForce RTX 3080 GPU, where 10 runs are trained with

the average presented alongside the standard deviation from

this average. Full experimentation details can be found in

table II, including the hyperparameters used in creating the

neural network approach. To compare directly against other

methods, our wing panel was scaled to the same approximate

dimensions as each of the components that are shown in table

III.

The results of the training step can be found on the first

row of graphs in figure 6 where some initial observations can

be made. In figure 6c, we can see that only fixture sets 5 and

greater are able to improve on the quasi-optimal policy based

TABLE II
TRAINING DETAILS FOR THE WING PANEL AND WING SPAR

Parameter Value

Number of Episodes 100

ϵ-decay Starting Value 0.9

ϵ-decay Ending Value 0.05

ϵ-decay Rate 3500

Q-Value α Parameter 0.8

Learning rate 1× 10
−4

Number of drilling holes 500

Batch Size 64

Reward Function Directions x and z

Skin Panel Thickness 5mm

Spar Thickness ≈ 7mm

Material type Isotropic Aluminium composite

Number of trials 10 per agent set

TABLE III
COMPARISON OF METHODS FOR FIXTURE PLANNING FOR PANEL-STYLE

COMPONENTS AGAINST THE PROPOSED MARL APPROACH

Method Component Fixtures dmax (µm)

N-2-1-1 Genetic
Algorithm [12]

Thin-Walled
Panel

3 5.68 ± 2.92

Particle Swarm
Optimisation [14]

Thin-Walled
Frame Panel

5 21.5 ± 4.79

Colony
Optimisation

Algorithms [28]

Thin-Walled
Bracket

6 3.61 ± 0.09

Supervised ML
Methods [16]

Thin-Walled
Panel

5 126.4 ± 0.6

Active Pin
Maximisation [2]

Automotive
Panel

36 41.8 ± 111

MARL Fixture

Planner

Aircraft
Wing Panel

5 1.02 ± 0.95

on the deformation tolerance. Additionally, the performance

benefits of having 11 fixturing elements as opposed 9 elements

does not offset the cost of adding the additional extra fixturing

elements. Another benefit of this training method is the low

variance in the final results, shown as the shaded regions

in figures 6a to 6c, indicating that the training results are

repeatable even in the face of uncertainty.

For evaluating the performance of the agent sets relative

to state of the art methods, we can examine the maximum
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Results of the training and evaluation of the wing panel multi-agent fixture planner, the top row being training results and bottom row being evaluation
results: (a) The step reward of the agent sets; (b) The episodic return of the agent sets which should be viewed alongside (c) the episodic regret of the agent
sets with the zero line indicating the relative performance to the quasi-optimal reward; (d) the distribution of the holes and their percentage improvement
relative to the quasi-optimal reward; (e) The percentage improvement over the entire set of holes relative to the quasi-optimal regret and (f) number of holes
within the tolerance limit ζ for the set of agents

deformation dmax experienced by the panel and compare it

against recent work in the field. Due to different papers using

a variety of number of fixtures, we will take the average of the

papers for using our analysis and use the average deformation

across all holes during evaluation. The comparisons, shown

in table III, demonstrate the ability of our method to out-

perform other data-driven ML methods, particularly those

that rely on pre-trained data-sets and supervised learning.

Additionally, our method displays significant improvement

over two popular optimisation methods, the genetic algorithm

and particle swarm optimisation. Compared to these methods,

each agent in our method has an individual policy that contains

all the information it needs regarding actions and states. This

would mean that, at train time, if there were any specific

criteria a single agent would need - variable force control,

illegal actions due to component properties - agents can be

given specific encoded parameters, which can influence their

individual decision making.

Another point to analyse is the performance per hole,

shown in the figures 6d-6f. For examining these holes, we

refer to the approximate tolerance for deformation within

aerospace components, denoted as ζ in lemma 3.2. In figures

6d and 6e, we see the distribution of percentage difference

from ζ per hole and the overall percentage ratio based on

the regret respectively. Based on these graphs, it could be

concluded that using 5 fixturing elements would be sufficient

to see an improvement in the fixture plan. However, figure

6f indicates that to get all holes within tolerance for all three

dimensions, 7 agents are needed to operate within the 5th-

percentile. This figure also demonstrates an unintended benefit

of our approach: as mentioned in table II, the reward function

R only considered the maximum deformation in the x − z

directions as to minimise the shear deformation that occurs

when drilling tasks are performed. Our approach was able to

minimise deformation in all 3 directions and enable tolerance

management across an entire set of holes for a wing panel

with a single policy for each agent.

C. Wing Spar Grasping Optimisation

To further demonstrate the capability of the multi-agent

fixture planning approach, another aerospace component can

be tested. Continuing with the theme of wing-box assembly,

this ablation study is centered around the front wing spar, a

representation of which is shown in figure 9. The training

approach is the same as that for the wing panel with different

drilling positions for the spar drilling points, but for evaluation

there are some different parameters. Firstly, there exists very

little literature on wing spar deformation due to drilling as a

result of the wing spar being a more complex component that

is unique to aerospace assembly systems. Secondly, wing spar

surface deformation tolerances are lower compared to the wing

panel by reason of them being internal to the wing box and not

subjected to airflow across its surface. Thirdly, wing spar crack

propagation occurs when surface deformation expands when
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(a) (b)

(c) (d)

Fig. 7. (a) Representative model of the wing spar used in experimentation;
(b)-(d) FEA plots of the deformation across the panel for three holes across
the leading edge of the wing panel, units are in meters

under loads during flight, therefore the tolerances are placed

below the maximum surface deformation limit to reduce the

probability of cracks in the structure [29]. Therefore, during

evaluation, we can consider the tolerance band limit ζ to

be 3µm as this is a factor under the maximum tolerance of

deformation cracks forming before failure in non-thin-walled

structures [30].

The results of the training stage, shown in figure 8a,

showcase that the multi-agent fixture planning approach is also

capable of learning optimal positions for fixtures on a wing

spar. This modularity showcases the strength of the multi-

agent fixture planner as new agents in different locations can

be added to the system without risking the prospect of them

finding local optima in their search space. Another observation

is that the improvement in performance when increasing the

number of agents is greater for the wing spar compared to

the wing panel. A reason for this is the higher complexity

of the geometry of the wing spar, making it require more

fixtures during the drilling process. However, this geometry is

the reason for the performance shown in figure 8b. Whilst all

the sets of agents are able to keep the number of holes within

the 5th-percentile, not all three dimensions are maintained to

within tolerance and there exists some uncertainty. A reason

for this could be that, due to the geometry of the spar, other

grasping locations need to be fixtured such as the bottom of the

spar and on the extrusions that are present. Another possible

explanation is the presence of multiple equilibria for fixture

placements on the wing spar, a problem that can be mitigated

with multi-objective methods [31].

V. DISCUSSION

Over the three sets of experiments provided in this paper,

we have demonstrated the capability of our MARL framework

combined with team theory to out-perform traditional fixture

planners. The framework provides a scalable solution with no

hard requirements regarding the number of robotic fixtures that

are being used and is capable to find global optimal solutions

through individual robot collaboration. In all studies, each

agent has a single policy that is capable of determining optimal

positions for each drilling task in a manufacturing process

and isn’t restricted to a single sub-optimal fixturing plan for a

component. This allows individual agents to manage their own

policies which can enable different robot fixtures to be used to

best suit the manufacturing needs. A major accomplishment of

this framework is the ability to surpass the colony optimisation

method put forward in Ramachandran et al. [28], achieving a

3 times improvement in deformation reduction. What’s more,

our framework provides optimal performance across different

aerospace components, evidenced through our experiments on

two different components in the wing box assembly process.

Another benefit of our approach is the scalability of the

proposed framework. As noted in section IV-A, the complexity

of Nash-Q learning is O(n|S| · |A|n) due to the number of

Q-tables needed to be maintained. When compared directly

against the methods referenced in table III, the exponential

complexity of vanilla Nash-Q with no function approximation

is a worse offering than the other methods. However, when

using the neural network model, as each agent only has a

single MLP who’s input is the location of the drilling hole and

output is the fixture position, this can be scaled to any number

of holes and positions at a much lower linear complexity,

which can be further reduced as neural networks can be trained

in parallel on GPU hardware. As mentioned in section III-C,

many RL methods that are on-policy require a large number of

collected data points to learn an optimal policy. This is echoed

in [17], which noted that their implementation of proximal

policy optimisation (PPO) failed to converge to an optimal

fixture plan in 10k environment steps. In contrast, as shown

in figure 6a and figure 6c, our MARL approach with Nash-

Q was able to converge to optimal fixturing plans within

approximately 7.5k which shows an increased data efficiency

when training an ML model.

Despite the successes of our work, there are some limi-

tations that need to be addressed. The first limitation, one

which is prevalent across all fixture planning literature, is the

verification of the plans outside of simulation on hardware

[2], [12], [14], [16], [28]. The main reason for this limitation

is two-fold: firstly, acquiring the components mentioned in

both this work and the work cited prior and developing an

experimental test-bed remains costly in an academic setting;

secondly, measuring the deformations exhibited by all the fix-

ture planners requires high resolution sensors. This limitation

can be mitigated by using a detailed FEA solver that can

provide the resolution and accuracy needed to get a realistic

representation of the component during the simulation step.

Furthermore, when deploying robotic hardware considerations

need to be made regarding the safety of the robot decision

making movement. For the decision making safety, the low

uncertainty of the graphs in figure 6 indicates the agent’s

confidence in its actions, indicating robustness in the agent’s

decision making. For robot movement safety, the fixture layout
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(a) (b)

Fig. 8. Results of the training and evaluation of the front spar multi-agent fixture planner: (a) The episodic return at training time; (b) number of holes within
the tolerance limit ζ for the set of agents at evaluation time

Fig. 9. Representative model of the wing spar model used in the experimen-
tation. The actual model, supplied by Airbus UK, contains additional bends,
faces and extrusion points, making it a far more complex model compared to
the wing panel

planner could be combined with a path planning algorithm

for multi-robot systems such as that in [32] to ensure that the

robotic fixtures are moving safely without colliding with each

other or human operators.

To this end, the next limitation is the choice for FEA simu-

lator in MATLAB. Whilst we are able to account for dynamic

loading and internal stresses in the component during drilling

tasks, a simulator with more fidelity and the capabilities such

as examining the thermo-mechanical properties and elastic

bending would improve the accuracy of the FEA results.

However, with a more complex FEA simulator comes higher

computational complexity and hardware requirements, leading

to slower training times for algorithms. This trade-off between

computational cost and fidelity could be mitigated with the use

of a trained surrogate model, which would improve training

speed and can be customised to the desired process that is

being modelled [33].

Another possible limitation of the current approach is that

the agents are only evaluated on the trained holes, which for

rapidly reconfigurable manufacturing may be a requirement.

A mitigation for this would be to develop a multi-task frame-

work allowing agents to learn optimal actions across out-of-

distribution tasks, where learning a distribution over a set of

tasks allows agents to adapt to new drilling positions.

As we mentioned in our Note To Practitioners, we have

open-sourced our implementation of the MARL fixture planner

on GitHub. This implementation utilises our FEA simulator in

MATLAB and the agent policies in PyTorch, with a transla-

tion layer between them to allow for efficient training and

reproducible results. Whilst our implementation supports the

wing spar and panel that were introduced in this work, future

implementations could consider expanding the library of parts

to other manufacturing modalities to accelerate adoption by

industrial practitioners. Additionally, whilst our agent policies

are written in PyTorch and support parallelisation, the MAT-

LAB FEA is limited to single-threaded CPU performance.

For manufacturing operations, it would be beneficial to use

an FEA simulator that allows for scalable training across

parallel computing paradigms. Another challenge for future

practical implementations is choosing the locations on the

component that the fixture agents can constrain to. Current

RL implementations don’t allow for complex action spaces for

agents, meaning that manufacturing software engineers may

want to develop new software tools and libraries that build

upon our framework and allow for a greater abstraction that

suits their requirements.

VI. CONCLUSION

In this paper, we introduced a multi-agent reinforcement

learning method for finding optimal fixture plans for compo-

nents during drilling tasks. We outlined how robotic fixtures in

a multi-agent system can constrain components and reorganise

themselves to positions that are optimal for the desired task.

We outlined the combination of multi-agent reinforcement

learning and team decision theory into a framework that

enables robotic fixtures to reconfigure themselves into optimal

positions. Our method was compared directly against the state

of the art methods for thin-walled panel-like components,

along with a further ablation study on a more complex
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geometry for an aircraft wing spar. Future work in this field

would benefit from considering meta-learning as a tool for

determining optimal plans on unseen tasks, the development

of hardware tools that would allow the deployment and sensor-

based verification of the algorithms on components and further

simulation of a wider variety of components.
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