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An Ultrasound-guided System for Autonomous Marking of Tumor

Boundaries during Robot-assisted Surgery

Nils Marahrens1, Dominic Jones1, Nikita Murasovs1, Chandra Shekhar Biyani2 and Pietro Valdastri1

Abstract—While only a limited number of procedures have
image guidance available during robotically guided surgery, they
still require the surgeon to manually reference the obtained scans
to their projected location on the tissue surface. While the surgeon
may mark the boundaries on the organ surface via electrosurgery,
the precise margin around the tumor is likely to remain variable
and not guaranteed before a pathological analysis. This paper
presents a first attempt to autonomously extract and mark tumor
boundaries with a specified margin on the tissue surface. It
presents a first concept for tool-tissue interaction control via
Inertial Measurement Unit (IMU) sensor fusion and contact
detection from the electrical signals of the Electrosurgical Unit
(ESU), requiring no force sensing. We develop and assess our
approach on Ultrasound (US) phantoms with anatomical surface
geometries, comparing different strategies for projecting the
tumor onto the surface and assessing its accuracy in repeated
trials. Finally, we demonstrate the feasibility of translating the
approach to an ex-vivo porcine liver. We are able to achieve
mean true positive rates above 0.84 and false detection rates
below 0.12 compared to a tracked reference for each calculation
and execution of the marking trajectory for dummy and ex-vivo
experiments.

Index Terms—Robotic Surgery, Autonomous System, Surgical
Assistance, Robotic Ultrasound

I. INTRODUCTION

THe most crucial element in resecting a tumor is isolating

the entirety of cancerous tissue while sparing as much

healthy tissue around it as possible. Therefore, pre-operative

imaging is regularly used in assessing the intervention’s neces-

sity, its treatment plan and projected outcomes. Without intra-

operative imaging, the surgeon must spatially map knowledge

extracted from the pre-operative images to the scene they

perceive during surgery. In open procedures, the surgeon may

rely on their tactile abilities to assess the tumor location

and boundries more accurately. Additionally, intra-operative

imaging, most commonly US, may be used as a real-time

tool for verification during surgery. In Minimally Invasive

Surgery (MIS) on the other hand, the physical separation and

resulting absence of haptic feedback between the surgeon and

the surgical site renders full tactile interaction impossible.

US may present a possible solution for intra-operative tumor

localization. Despite the existence of 3D US probes, they are

*This work was supported by the Royal Society, by the Engineering
and Physical Sciences Research Council (EPSRC) under grant number
EP/R045291/1, and by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant
agreement No 818045).

1Nils Marahrens, Dominic Jones and Pietro Valdastri are Storm Lab U.K.,
School of Electronic and Electrical Engineering, University of Leeds, Leeds,
UK (elnma@leeds.ac.uk; d.p.jones@leeds.ac.uk;
elnmur@leeds.ac.uk; p.valdastri@leeds.ac.uk)

2Department for Urology, James’s University Hospital, Leeds Teachings
Hospitals NHS Trust, Leeds, UK (c.s.biyani@leeds.ac.uk)
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Fig. 1: Concept overview: The internal tumor geometry is

captured via US, projected onto the surface and eventually

marked via an electrosurgical tool.

still largely used with single-line arrays, leading to 2D slices

of the target regions. Regarding intra-operative US imaging,

manual and robotic laparoscopy require specific US systems,

encapsulating miniaturised US probes exclusively available as

2D (B-Mode) US probes. While these systems can potentially

reduce the perceptual gap, they may require extensive training

before they can be accurately used by the surgeon [1]. An

additional challenge may be the spatial mapping of the US scan

from the probe to the endoscopic video scene and then further

onto the actuating instrument to guide the resection. To do so,

it is common for surgeons to mark the projected boundaries of

the tumor onto the organ surface via electrosurgical tools, e.g.

after temporary highlighting via Indocyanine Green (ICG) [2],

[3]. A concept in imaging skins has been proposed to highlight

radioisotopes injected into the bloodstream [4], potentially

enabling Augmented Reality (AR) overlays with preoperative

information. The surgeon’s knowledge of the probe’s 3D

location and the US scan’s location is imprecise, but robotic

systems could excel in reaching specific, predefined locations

through an US scan. This paper presents a first autonomous

tumor boundary extraction and marking concept using IMU

sensor fusion and contact detection from the electrical signals

of an ESU, requiring no force sensing.
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Fig. 2: ROS-embedded system structure showing hardware

and software components as well as their interfaces for data

interchange.

II. STATE OF THE ART

A. Current Intra-operative Imaging Guidance Techniques

Determining and referencing a target location inside the

patient may, in theory, be done via pre- or intra-operative

imaging or conceivably a combination of the two.

Soft tissue registration is a major bottleneck in referencing

pre-operative data, allowing pre-operative imaging data to be

registered to the surgical scene is challenging while being

investigated for various surgical applications [?]. While this

may work relatively well for specific, more constrained, and

potentially more rigid organs such as the prostate [6], this

is not generally the case, particularly for large, soft and

loosely constrained organs such as the liver. In these cases, the

deformation between the pre-operative image data acquisition

and the intra-operative registration process may be substantial

[7]. While works on more constraint organs such as the heart

[9] or the brain [8] have reported errors as low as 2.5mm

or 1.7mm, this is may not be achievable with highly mobile

and flexible organs such as the liver. Some recent works have

evaluated approaches on ex-vivo liver, observing a root mean

square error of 7.9mm [10].

Therefore, research in robotically assisted surgery has pri-

marily focused on intra-operative methods, specifically US.

Intra-operative US may be applied in three ways: extracorpo-

really, endoluminally or intracorporeally. Extracorporeal US is

a well-researched area, including robotic guidance and its po-

tential usage with surgical robotics [11], [12]. The main issue

is limited resolution of these systems, as larger penetration

requires lower frequencies and integration into the patient’s

spatially constrained environment, further requiring spatial co-

registration. Endoluminal probes, such as Transrectal Ultra-

sound (TRUS), have been shown to work well in conjunction

with robotic systems and can be registered to the surgical robot

via the tissue boundary [13]. However, they are limited to a

few target regions close to natural orifices or their attached

tubular organs. Lastly, the most commonly used solution is

intracorporeal US probes, predominantly in the form of a

pick-up probe [14] that have also found their way into the

commercial market. In the following, we shall therefore focus

on intracorporeal US.

B. Automated and Assisted Resection

Automation and autonomous surgical assistance are increas-

ingly relevant areas of research, with applications ranging from

automated suturing to autonomous endoscope guidance [31].

Research on robotic surgery’s automation of tumor resection

primarily focuses on improved scan acquisition and visualiza-

tion, as well as automated resection in general, not necessarily

with intra-operative imaging as a means of verification.

Concerning US, previous works have investigated improving

the visualization by projecting the current 2D US image into

the probe visible in the endoscopic scene, viewed by the

surgeon in the console [16]. This work involves an optical

marker attached to the intracorporeal US probe to extract the

current tool pose for subsequent scan projection into the scene.

While this provides a momentary slice, it does not provide

assistance in reconstructing the 3D anatomical structure.

Our previous works [17] along with [14], have looked

at autonomous US scan acquisition of blood vessels, their

3D reconstruction, and accuracy in robotic surgical scenarios.

Additionally, [18] has looked at newer da Vinci robot versions

and compared their accuracy. However, these results are not di-

rectly transferable since the accuracy is measured in unloaded

conditions. The system’s accuracy under loading such as an

US probe or applied contact with the tissue surface, will cause

clear deviations from these results.

Several approaches have been proposed to enable auto-

mated assistance of cutting and resection of tissues. Previous

work has focused mainly on specific subtasks, such as tissue

stretching [19] via FEM simulation and reinforcement learning

or automation via custom-built pick-up tools on a highly

abstracted planar tissue phantom [20].

While these approaches assist in automating resection, they

may not provide improved resection results, as they do not

reference the tumor beneath the surface.

Recently, [21] demonstrated fully autonomous large bowel

anastomosis. While the application is quite different to the one

intended in this work, it further shows the extensive additional

setup necessary to reference tissue and anatomical stuctures

to perform autonomous assistenace. The system heavily relies

on previously injected optical markers containing toxic ICG

and Cyanoacrylate. Furthermore, it is unclear how the results,

performed on bowel tissue, could be used for improved tumor

resection as they lie below the tissue surface. Work by the

same group has further focused on autonomous electrosurgery,

enabling linear cuts on planar surfaces [22], [23]. Similar to

the group’s previous work in [21], the system relies on injected

markers and is built on a proprietary platform rather than a full

surgical robotic system.
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Research on using reconstructed scan geometries to au-

tonomously perform or assist during tumor resection has

been limited, combining resection and intra-operative imaging.

To date, only a single work has more deeply looked into

automated tumor resection via intracorporeal imaging. Pratt

et al. demonstrate autonomous cutting on a planar phantom

[24]. Custom visual markers are used to track the US probe

and a high-velocity water jet to perform tissue cutting based

on the US image. The system was tested in a benchtop trial

using a custom-designed PVA cryogel phantom and was found

to be capable of dissecting a modelled tumor at a margin with

a mean difference of 0.77mm between desired and visually

measured margins over multiple experiment runs. While this

approach does include US guidance, the experiments are

limited to a simple planar phantom with a curved, linear

contour. The work still incorporates optical markers in the

images, while the endoscopic camera remains static throughout

the experiments. It uses a water jet instead of standard tools

that directly interact with the surface to avoid tissue ablation.

C. Contributions

This work aims at realising a comprehensive approach to

assisting during tumor resection and implementing the first

steps towards fully autonomous execution, thereby providing

means for improved results with smaller tumor margins. It

is the first work to attempt this with a non-planar sur-

face geometry in an intracorporeal, surgical robotic setting.

Contrary to previous work, our method employs standard

electrosurgery and requires no visual feedback aside from

the initially extracted surface point cloud, in particular, no

extensive visual tracking of the tool position over time. Finally,

a comprehensive analysis is carried out to assess the accuracy

of the approach. Finally, the approach’s accuracy is assessed

through a comprehensive analysis on a controlled, replicable

environment and in ex-vivo tissue, marking the first of its kind

in intracorporeal US scanning. An overview over the system

is depicted in Figure 1.

III. MATERIALS AND METHODS

In the following, we will outline the several components

and developed concepts for their realisation. See Figure 2 for

a visual overview of the system’s components and interfaces,

along with Figure 4 showing the algorithmic pipeline. The

nomenclature used throughout this and the following sections

is defined in Appendix VIII.

A. Robotic Setup

To enable US-guided tumor boundary marking, we devel-

oped a platform, based around two Patient Side Manipulator

(PSM), providing integration into Robot Operating System

(ROS). This platform has become the gold standard for re-

search on robotic surgery over the past 20 years [25]. For all

experiments, we used da Vinci Research Kit (dVRK) version

2.1 and calibrated all the arms using the integrated routines.

This included the novel calibration of the third joint that was

recently added to the dVRK software stack. To ensure both

robots have the same base frame, we placed the entire setup

on a levelled vibration isolated optical table (Newport RS2000,

Newport Corporation, Irvine, CA, USA). Additionally, we

integrated four Optitrack Primex 13 Infrared (IR) tracking

cameras (NaturalPoint, Inc., Corvallis, OR, USA) and IR

markers to enable the acquisition of ground truth data. We

further used these markers to ensure both PSM frames were

aligned with each other as well as the levelled tabletop for

calibration, a point that still remains largely unaddressed within

the dVRK framework and community [26].

The initial aim was to provide assistance using only standard

da Vinci monopolar tools. However, we found this to be hardly

feasible with consistent accuracy. While the instruments are

made of rigid components, they are inherently compliant due

the tendon-driven design of the robot. Consequently, they ex-

perience significant backlash, allowing for only very imprecise

inference of the tooltip pose and causing a degradation in

the precision of the marked shapes in preliminary testing.

To increase the precision, we designed a pick-up device that

includes an IMU for improved pose measurement, important

for 3D US scan reconstruction, probe control control as well

as important for marking the tissue surface despite contact

forces. Previous works on tissue cutting have chosen a similar

approach to integrate novel tools into the da Vinci via pick-up

devices [20], [27]. As robotic end-effector tools, we employed

standard da Vinci instruments: a Fenestrated Bipolar Forceps

for engangement with any pick-up devices and a Large Needle

Driver for fiducial registration on each of the two arms.

Additionally, a pick-up device enabled the integration of an IR

tracker, which was crucial for assessing the system’s accuracy

in marking the tumor projection; however, it was not used in

the actual deployment of the final system. Similarly, the US

probe is designed as a pick-up device with an integrated IMU,

the details of which can be found in [17].

B. IMU sensor fusion scheme

We developed an algorithm for fusing IMU measurements

with measured robot kinematics to improve the kinematic accu-

racy and precision regardless of contact forces. Using the Ma-

hony filter [28], we can calculate the update of ∆ωUS
US,fused

based on the direction of gravity (aligning with zPSM ) as

follows

∆ω
US,fused
US = zPSM

US ×
gUS

∥gUS∥
(1)

and then updating the TUS in quaternion space via

∆q
US,fused
US =

1

2
qUS
PSM ⊗

(

0,∆ω
US,fused
US

)
(2)

q
US,fused
PSM =

qUS
PSM +∆q

US,fused
US

∥qUS
PSM +∆q

US,fused
US ∥

(3)

where ⊗ is the quaternion product. Note that this is equiva-

lent to our previous work [17]. Next, we further update the

position of the end-effector based on the newly calculated
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Fig. 3: Overview of setup and frames used. TPSM1 and TPSM2

sit at the fulcrum point of each PSM, while TPH is located at

the center of the US phantom. TCUT and TUS are the tooltip

frame for the marking tool and US probe respectively, along

with the tool-attached IR tracking frames TIRCUT and TIRUS .

orientation. For this, we assume that the first three joints

of the robot are relatively accurate. The motivation for this

is the fact that the first two degrees of freedom (azimuth

and polar angle around the fulcrum point) are actuated in

close proximity to the motor, reducing tendon length and

thus complex tendon elasticity and friction. The third degree

of freedom (tool insertion), in turn, is actuated by a longer

tendon but sits before the coupling plate with the instrument.

Since this joint, however, has no influence on the orientation

of the tool tip, it will not appear in the IMU’s orientational

measurement. Therefore, we now propose a scheme to update

only the last three joints of the robot, on the robotic tool.

Based on the results of equation 3, the transformation of the

last three joints is calculated as

R
tt,fused
l4 = (Rl4

PSM )−1R
tt,fused
PSM (4)

Subsequently, this rotation’s Euler angles (ZY X rotation

order) are calculated. The Euler angles are set up specifically to

match the three joint angles at the tip of the robotic instrument

θl4−l6,fused =





arctan(r2,1, r1,1),

arctan(−r3,1,
√

1− (r3,1)2),
arctan(r3,1, r3,3)



 (5)

where ri,j is the element in column i and row j of R
tt,fused
l4 .

Lastly, the three fused joint angles replace the originally

measured joint angles from the kinematics in the following

manner

qfused =
[
θl1, θl2, θl3, θl4,fused, θl5,fused, θl6,fused

]
(6)

where θl1 to θl3 are the joint angles of the first three

joints, directly obtained from the robot joint measurements,

and θl4,fused to θl6,fused are the fused joint angles from the

previously presented update rule. Plugging these newly ob-

tained, fused joint angles into the direct kinematics equations

x = f(θfused) (7)

to obtain the updated forward kinematics pose (tooltip posi-

tion and rotation) from the updated joint angles. The updated

position allows us to account for the PSMs mechanical play

and compliant design, enabling more precise US scans.

C. Arm Co-Registration

Arm co-registration is a major challenge in collaborative

applications on the dVRK platform. Normally, the PSMs sit

on a patient cart that structurally connects the two robots.

Each PSM can be moved via a passive kinematic chain, often

referred to as the SetUp Joints (SUJ). While the joint angle

along this chain is equipped with encoders and can thus be

measured, the measurements on the first-generation da Vinci

systems are known to be imprecise. These errors are further

exacerbated by a relatively long kinematic chain.

The dVRK Wiki states that the recently introduced SUJ

controllers that allow extracting the SUJ encoder measure-

ments, only achieve an accuracy of ±5cm [29]. This is more

than an order of magnitude higher than that of the active

part. While some approaches, such as [30], externally track

the SUJs, another common option is to co-register different

arms via spatial landmarks, further allowing them to be easily

transferred to a lab bench setup.

Please note that this may not be necessary for more modern

versions of the da Vinci, such as the Xi, which possess a

completely redesigned patient cart and passive SUJ, achiev-

ing submilieter accuracy in their unloaded state [18]. These,

however, do not yet have an open-sourced API that allows

their control, although the da Vinci S and Si are planned to

be more widely integrated into the dVRK framework in the

upcoming years and eventually replace the current dVRK using

the first-generation da Vinci robotic system. Note that the work

including IMU sensor fusion may be still be useful even with

more novel platforms as they can account for deflections due to

external forces as they are present during scanning and surface

marking.

To enable arm co-registration, we resorted to touching

spatial landmarks on 3D printed frames with the robotic

tooltips. We placed the landmarks in a way that allowed for

direct calculation of the predefined axes of the phantom frame

e.g. the connecting vector between two landmarks always

resulted in a TPH axis (see TPH in Fig. 3). We then took

the mean over all calculated axes and adjusted both axes to

result in perpendicular axes. We then calculated the origin

by minimising the squared error for all landmarks via the

following formula

pREF
PSMi =

1

n

n∑

j=0

(p
(j)
PSMi −RREF

PSMip
(j)
REF ) (8)
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Fig. 4: Overview over the algorithmic pipeline: 1) A surface point cloud is extracted from the real sense and referenced to the

robot via ArUco markers 2) Based on the surface information, a scan is acquired 3) The 3D geometry is projected onto the

surface using one of the two suggested methods 4) The planned path is executed on a second robotic arm

Where pPSMi is the landmark position as measured by the

robot in its own frame, pPH is the landmark position in TPH

as known from the design of the phantom frame and RREF
PSMi

is the rotation between frames TPH and TPSMi as previously

obtained.

In total, we achieve a fiducial registration error of 0.65 ±
0.21mm.

D. 3D surface point cloud registration

While position, pitch, and yaw can all be determined through

the US image, this is not the case for the roll angle (see Figure

1 for roll, pitch, and yaw correspondence). Adapting the roll

angle usually requires knowing the surface normals to move

the probe tangentially to the surface. This can be achieved via

a stereo camera that visually estimates the surface normals.

This is a common approach in extracorporeal US. Previous

works have already used this information to automate specific

tasks, such as tissue retraction [31].

We extracted the surface geometry using a stereo camera

(Intel Realsense 405d, Intel Corporation, Santa Clara, CA,

USA), analogous to a stereo endoscope. The camera was

placed at a distance of roughly 13cm from the surface to

account for the larger lens disparity compared to an endoscope.

The average point distance was downsampled to 3mm for

the phantom surface to filter outliers, and the closest point

on the surface was found by interpolation. To calculate the

surface normal, we performed Principle Component Analysis

(PCA) of all points within a 10mm radius around the found

point using VTK (Visualization Tool Kit (VTK), Kitware

Inc., Clifton Park, NY, USA). For hand-eye calibration, we

employed ArUco markers attached to the 3D-printed frame

used for IR tracking and arm co-registration. Using the mesh

from the phantom mold CAD model as ground truth, we

calculated the mean angle error of the normal vectors extracted

from the point cloud to be around 4.63◦ with a maximum

error of 16.95◦ that was mainly observed on the edges of the

phantom. The mean and root mean square errors were 0.16mm

and 0.91mm, respectively.

E. Modified Electrosurgical Unit

For autonomous marking, we employed a commercially

available ESU (Valleylab Force FX-8, Medtronic plc, Min-

neapolis, MN, USA). The system includes two DB-15HD

ports at the back capable of providing real-time data from the

system. To use this data, we fed the signals from both ports

into a Teensy 3.6 that processed the data and then published

it into the ROS environment (see Figure 2).

Since the dVRK does not offer reliable force estimation,

further measures are needed to ensure proper contact of the

tooltip with the tissue surface. Previous research has already

looked at using the da Vinci tools to estimate tissue impedance

[32]. Similarly, the impedance of the instrument changes once

contact with the tissue surface is established. While the ESU’s

internal controller will try to reach target values for current and

voltage, it might not always be feasible; if there is no contact

with the tissue surface, a voltage difference can be created, but

the current flow will be prohibited. Consequently, the power

output Pout will vary

Pout = U · I (9)

where U and I are the measured voltage and current,

respectively.

The goal is to apply as little force to the surface as necessary

but establish enough contact to maintain a clean mark. In

order to control the instrument, we observe the output over

the desired power ratio

rP =
Pout

Pdes

(10)

When contact is lost, the average achievable power will be

significantly lower. Figure 5 shows the ratio over different

desired output power settings. This is an observation that we

will use to control the probe. To adjust the contact, we lifted

off the probe until contact was lost before reapproaching the

surface until contact was restored.

F. US tumor Scan

For detecting features in the US image, we trained a standard

U-Net [33] in PyTorch to segment out feature-dense regions.
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Fig. 5: Difference between measured voltages and current

between contact and no contact over desired power settings.

Additionally, we employed a custom-built deep neural network

to estimate the coupling quality between the US probe and the

tissue surface based on the US image. The details of these

can be found in our previous work on autonomous vessel

navigation [17]. We use a Philips L15-7io probe driven by a

Philips iU22 US machine (Philips, Amsterdam, NL). To ensure

the probe is not applying excessive pressure, we let the robot

slightly lift off the probe as it moves. As soon as the probe

detaches from the tissue surface, the contact detection sets in

and slightly adjusts the probe position towards the surface. In

this manner, we can autonomously scan without requiring an

additional force sensor, unlike our previous publication [17].

Initially, we assume the probe starts at a location in the

approximate vicinity of the tumor and propagates along the

image normal axis, also commonly referred to as elevation

direction. Once a tumor is detected, it is centered in the image

while continuing to move in the image normal direction. Once

the probe has passed the tumor, the current centroid of the point

cloud is calculated and used to determine the center of rotation

on the tissue surface. Subsequently, the probe is rotated by 30◦

and propagated back towards and across the tumor. Lastly, this

is repeated a second time with a 60° angle compared to the

initial position. We found that for the phantom tissue three

scans were necessary to capture the full 3D geometry despite

varying contact quality that was used as a control measure.

Rotation angles 30◦ and 60◦ were chosen to allow for varying

angles while reducing the risk of the robot running into joint

limits. Note that for ex-vivo experiments, we only relied on a

single scan as tissue movement caused significant differences

between the scans, while we did not observe contact quality

changes to the same degree as we did with the phantoms.

G. Trajectory Generation

According to surgeon feedback, there is no standardised way

to project the internal 3D tumor geometry onto the surface.

We suggest that this will depend on the eventual goal of the

resection. If the goal is to resect a liver segment or lobe,

a direct upward projection with the same vector for every

point may be desirable (Direct Point Projection (DPP)). This,

however, may not be practical for an actual resection since

a cylindrical cut-out is usually not feasible. In these cases, it

may be desirable to project the internal geometry to its closest

point on the surface (Closest Point Projection (CPP)). This

may be seen as a simple representation of the commonly seen

wedge-shaped tissue extraction for simplified reconstruction.

The difference between the two methods becomes further ex-

acerbated depending on the surface structure. In the following,

we will assume the surface to be either planar or convex since

this primarily reflects the general surface structures metabolic

organs such as the liver or kidney. While for a planar surface,

the two projection methods might be almost identical, this

may not be the case if the shape of the surface is convex.

In these cases, the CPP will result in a larger projected area.

The difference between the two methods is further depicted in

Figure 6. Furthermore, the formulas used for plane projection

are defined in Appendix IX.

To marginalise the tumor, we first find its outer surface.

In the following, we assume that we are dealing with a

relatively round tumor without major concave surface regions.

In this case, finding the outer surface reduces to finding the

convex hull, for whose calculation numerous methods exist.

The convex hull of A, referred to as {ACV }, is the smallest

convex set of points that encloses all of the points in A.

For calculating the convex hull, we employ the Quickhull

algorithm provided by Scipy [34]. Once the set of points

p
(ACV )
i of the convex hull {ACV } is found, we determine the

centroid p
(ACV )
c of the resulting surface. We then calculate

the normal vector pointing away from the contour for each

convex hull point. We achieve this by considering the vector

connecting the centroid to each convex hull point. Since we

know the centroid needs to lie within the contour, it can be

expressed as a linear combination of the surface tangent and

normal at that point. We thus define the connecting vector from

the centroid to point i of the convex hull as

v
(ACV )
c,i = p

(ACV )
i − p(ACV )

c (11)

We further guarantee with this method that the fraction in

the normal vector direction always points outward, away from

the contour. We start by calculating the two tangent vectors

tj,0 and tj,1 of each simplex that point p
(ACV )
i is part of

t
(sj)
j,k =

(p
(sj)
k+1 − p

(sj)
k )

∥p
(sj)
k+1 − p

(sj)
k ∥

(12)

where k = {0, 1} and p
(sj)
k is the kth point of simplex

sj . This leads to a simplex normal n
(sj)
i,k at point i via the

following formula

n
(sj)
j,k = v

(ACV )
c,i + t

(sj)
j,k

((

t
(sj)
j,k

)T

v
(ACV )
c,i

)

(13)

The normal ni for each point is then inferred by calculating

the average over-all simplex face normal. Finally, the set of
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Fig. 6: Comparison between different projection methods. Left: CPP using the closest point as surface projection.Center: DPP

using the same vector to project each point to the surface. nCCP marks the surface normal plane at the surface point closest to

the centroid of the tumor. A clear difference can be observed in the size of the different projections both on the surface marked

as red contours {MPCV }, as well as on the projected outline on nCCP plane. Right: Zoomed in view showing the different

point sets and vector quantities involved in the calculation of the margin, in particular the surface normal n
(ACV )
i and surface

point p
(ACV )
i .

points {M} = p
(M)
i defining the margin is calculated by

updating each point with its scaled surface normal vector

p
(M)
i = p

(ACV )
i + dmn

(ACV )
i (14)

with dm being the desired margin.

To infer the trajectory on the surface, we project all points in

{M} up onto the surface using one of the previously outlined

methods, resulting in {MP }. Next, we need to identify all

points on the outer edge of the projected points. For this, we

further project all points {p
(MP )
i } onto the surface normal

plane at the point closest to the centroid Pc. In the planar

projection, we then determine all points in {MP } that are part

of the convex hull in the planar projection, resulting in the

final set of points {MPCV } making up the surface trajectory.

This process is further depicted in Figure 6.

H. Marking Tool Control Scheme

While the IMU on the US probe is predominantly used to

determine the correct location of the US scan, the IMU on the

marking tool feeds back into a controller to adjust the probe

location. For this, we implemented a Proportional Integral (PI)-

controller that provides an updated cartesian position to the

dVRK software framework in the form

xctrl,i+1 = xdes,i +Kp∆xdes,i +Ki

k=i+1∑

k=0

∆xdes,k (15)

where xctrl,i describes the six-dimensional vector composed

of 3D location, roll, pitch, and yaw angles at the ith time

step and xdes,i describes the difference between desired and

current pose. Kp and Ki, in turn, are diagonal matrices

defining the gains for updating the components of ∆xctrl,i.

We start each trajectory by moving the end-effector at a

safe distance of 10mm from the surface. We then initialise

the controller by slowly adapting ∆xctrl,i along with the

AGTAPRED

A

Fig. 7: Different areas used in the calculation of metrics.

end effector pose until root squared error for position and

orientation are below 0.75mm and 0.25◦, respectively. After

that, we start approaching the tissue surface until a contact

is detected. We then start moving along the trajectory on the

surface. During the following, we gradually and slightly lift

the probe off the surface. After a 3mm (10mm for ex-vivo)

distance, we adapt the contact. For this, we lift the probe off

the surface until the contact is lost, if necessary, and then re-

approach it. This way, we achieve a saw-tooth motion that

prevents the marking tool from getting stuck inside the tissue

and minimises contact forces. Since we are only interested in

marking the surface, ensuring contact every 3mm is sufficient

to outline the contour, as the ESU will also mark the tissue

surface if slightly above the surface.

I. Metrics

To compare the different scans on the tissue surface, we

project all results, both IR-tracked and inferred, into the same

tangential plane. Using the ground truth mesh, we chose the

tangential plane at the point closest to the IR-tracked centroid.

For the assessment of the projections in this plane, we

consider the True Positive Rate (TPR) (sensitivity) rTP or,
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Fig. 8: Point clouds showing the projected scan along with outline of the trajectories resulting from direct projection (left) and

closest point projection (right) and for IR-tracked (red) and IMU-fused kinematics (green)

equivalently, the False Negative Rate (FNR) rFN = 1− rTP ,

also known as miss rate, as well as the False Discovery Rate

(FDR) rFD. Based on the areas outlined in Figure 7, they are

defined as follows:

rTP =
APRED ∪AGT

AGT

=
ATP

AGT

= 1− rFN (16)

rFD =
AGT −ATP

AGT

=
AFP

AGT

(17)

J. US phantom design

In order to develop and assess the system under controllable

conditions, we designed an ultrasound phantom, keeping in

mind a final application. For the design and subsequent exper-

iments, we made the following assumptions: (1) tumor masses

are relatively small in diameter (d < 20mm), such as very

early-stage Hepatocellular carcinoma (HCC) [35]. We also

assume the tumors to be (2) relatively round and (3) lie closely

below the surface (starting around 5− 10mm from the organ

surface). The last assumption is necessary for a minimally

invasive resection to make more sense than performing a full

lobectomy. As target margin we chose 7.5mm, roughly half

the tumors diameter. This is slightly smaller than the suggested

minimum 10mm safe margin from literature [?], [36], [38].

By choosing a smaller margin be may better capture the

inaccuracies in our target measures TPR, FNR and FDR.

To provide a realistic chance of translating results from the

lab bench to an ex-vivo organ, we extracted the curved surface

geometry of a CT liver scan, which we integrated into a mold

with a support surface of 95× 95mm. The gelatin-water ratio

was chosen to make the tissue phantom as soft as possible

while maintaining US-properties close to those of real tissue.

The precise phantom composition is attached in Appendix

Fig. 9: Point clouds showing the projected scan along with

outline of the trajectory resulting from closest point projection,

along with the executed trajectory measured by IMU-fused

kinematics pexec,IMU and by IR tracking pexec,IR.

VII. The used phantom is further shown in Figure 3. For the

tumor masses, we chose 15−18mm hydrated Polyacrylamide

(PAM) beads that, due to their acoustic properties relative

to the gelatine, make them appear as dark areas in the US

slices.Unfortunately, we noted that, presumably due to the

applied heat during phantom production, the masses’ diameter

was reduced by 2− 3mm.
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IV. EXPERIMENTAL VALIDATION

To scrutinise the developed approach, we carried out ex-

periments of increasing complexity. First, we let the system

perform autonomous scans on a tumor phantom, allowing a

comparison of the results against a ground truth surface and

creating a controlled environment for an in-depth assessment of

the system’s accuracy. Eventually, we translated the approach

onto an ex-vivo liver sample for initial conclusions about its

feasibility under more realistic circumstances.

A. Phantom Trajectory Generation

We cast three phantoms with identical surfaces and placed

a single mass in each, varying its locations. We placed the

masses as far apart from each other as possible to cover a wider

range of scenarios and surface topologies. As a consequence

on mass lay close to the peak of the convex surface, while other

two masses were at lower points close to the surface and on

opposite sides of the phantom. We ran five repetitions on each

of the three masses, making 15 distinct scans, and calculated

the trajectory for further evaluation. To begin with, the probe

was set at a random location around the tumor, before the

scanning procedure was run as outlined in Section III-F. Once

the scans were acquired, the results were processed, calculating

the direct and closest point projections. The results of the 15

scans are outlined in Table I. The TPR for both methods

lies around 0.9, slightly above these values for CPP and

slightly below for DPP. Similarly, the FDR for both methods

is comparable, yet slightly lower for the CPP. Furthermore, the

mean standard deviation of all runs is again slightly lower for

the closest point method. We assume the higher robustness may

be explained by the fact that the projection vector is calculated

individually for each point rather than based on a single

estimate of the connecting vector between the mass centroid

and its closest point. Examplary results for both projection

methods are shown in Figure 8.

TABLE I: True Positive Rate, False Discovery Rate and False

Negative Rate for the two different projection methods: DPP

and CPP. Note that results for rFD are complements of rTP

(rFD = 1− rTP ).

Method rTP rFD rFN

DPP 0.879± 0.059 0.151± 0.088 0.121± 0.059

CPP 0.907± 0.036 0.148± 0.060 0.093± 0.036

When comparing the 3D scans, we found the average dis-

tance between the projected scan centroids to be 3.2±1.4mm.

This is coherent with the results since the shift also accounts

for roughly 10% of the radius of the margined mass (15mm

diameter plus twice the 7.5mm margins). Similarly, we get a

10% reduction in the TPR. While this error is likely caused

by the inaccurate kinematics of the PSM, even after IMU

fusion, another potential source of error might be the grid size

of the extracted point cloud. Currently, this is limited to a

grid of 3mm average distance, which is used for closest point

interpolation.

Comparing the inferred trajectory against the convex hull of

an unmargined tumor, we find an overlap of 0.992. Only in two

yCAM

TCAM

xCAM

zCAM

yEXV

TEXV

xEXV
zEXV yPSM1

TPSM1

xPSM1

zPSM1

yPSM2

TPSM2

xPSM2

zPSM2

Porcine

Liver

Grounding

Electrode

IR Markers

Spatial

Landmarks

ArUco

Marker

Fig. 10: Experimental setup for ex-vivo trials, including frame

with ArUco markers and IR-trackers

cases did the convex hull slightly cross the ground truth tumor

outline. Since we do not expect the inaccuracies to scale up

with margin size, we would expect this to vanish for a larger

margins.

B. Phantom Marking

Based on the results of the trajectory generation, we selected

CPP for further investigation since it resulted in a higher TPR,

a slightly lower FDR, and a lower variance. However, we can

expect the results of the execution to be translatable to arbitrary

surface trajectories, regardless of the projection method. Since

the gelatine phantom melts under electrosurgery, we tested the

phantom marking on a dummy device. Rather than applying

actual power and measuring the power-out-ratio, we integrated

a capacitive touch sensor that generates a binary signal (touch /

no touch) comparable to the thresholded power output signal of

the ESU. We further covered the top surface of the US phantom

with a Low Density Polyethylene (LDPE) film to prevent the

probe from poking through the surface. This also allowed us to

repeat the execution several times without altering the phantom

surface. We coated the LDPE film with US gel to produce a

clearer change in the capacitive signal.

Similarly, for the surface trajectories generated from the

US scans, we compare the overlap between the executed

circular trajectory and the IMU-generated trajectory, using the

calculated ground truth normal plane for projection.

To calculate the overlap between the executed and the

inferred or ground truth trajectory, we downsampled the exe-

cution trajectory to only the points where the probe is initiating

contact with the tissue surface. This resulted in a roughly
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Fig. 11: Left: Projected ex-vivo results including point set obtained from the surface point scan. Right: Marked profile on the

liver surface

3 − 5mm spacing and ensured the trajectory points lay on

the surface.

The controller provided good tracking with a mean error

norm and mean error norm variation of 0.54 ± 0.30mm and

0.7± 0.53◦ between the desired and executed IMU trajectory

over all 15 runs and for position and orientation, respectively.

Overall, we found the mean positional error between the

projected trajectories for ground truth (IR) and IMU to be 3.4±
0.7mm. This resulted in an overlap (TPR) of 0.875 ± 0.035
with the inferred area. FDR was found to be 0.135 ± 0.058.

Both values are similar to the ones found for the 3D projection.

Figure 9 shows exemplary results of an executed marking.

V. EX-VIVO FEASIBILITY TEST

To assess the approach under more realistic conditions and

to test the proposed control scheme with an actual ESU,

we performed both previously tested routines on an ex-vivo

porcine liver. In preparation, we cut a small pocket into the

side of the liver, through which we inserted a hydrated PAM

bead, representing a dummy tumor mass. The mass had similar

dimensions (around 15mm diameter) to the ones previously

used for the phantom study.

Similar to the phantom, we co-registered the IR tracking

system as well as the stereo camera using spatial landmarks

and ArUco markers. Figure 10 shows the setup for the ex-

vivo trials, consisting of a polymer box for liquid retention

and contamination prevention. Inside the box, we fixed a laser-

cut frame holding the 3D-printed platform that contained all

the necessary spatial landmarks to co-register PSM, stereo

camera and IR tracking. On the bottom of the container, we

placed the ground electrode of the ESU, covered with folded

cloths soaked in saline, with sufficient osmolarity to match the

required electrical impedance for the ESUs safety mechanism.

In addition to electrical conductance and impedance matching,

the cloth ensured sufficient friction to prevent the liver from

slipping during scanning and marking.

At first, we scanned the liver with the stereo camera. To

ensure that we caught the QR markers and the whole liver,

we adjusted the distance between the camera and surface to

165mm, slightly further than for the phantom, giving a more

robust reconstruction of the surface structure and considerably

less noise. We attribute this to the fact that the phantom

surface contains more fine features than the relatively shiny

and structureless gelatine surface. Additionally, this allowed

us to decrease the point cloud grid size to 1mm.

Equivalent to the phantom study, we placed the probe at

a random location around the tumor with the US image

plane normal pointing towards the phantom. After performing

the scans, we calculated the projection; again choosing CPP.

Lastly, we completed the execution of the marking onto the

surface of the liver. For further validation, we used the 3D

camera to scan the liver surface again. Using black ink, we

dyed the trajectories. Figure 11 shows the color thresholded

point set markered as blue dots ppost. This allowed us to

perform colour thresholding on the 3D point cloud to extract

the marked path directly from the surface scan. Aside from
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Fig. 12: 3D point cloud of ex-vivo liver, overlayed with the different trajectories corresponding to Figure 11

the previously employed kinematic data, this gave us a further

means to assess the system’s accuracy under these conditions.

Assessing the scan projection before execution, we found the

TPR to be 0.844 and the FDR to be 0.119, comparable to those

observed in the phantom study. Note, however, that as opposed

to the phantom study, both projections were referenced against

the same point cloud, as no ground truth point cloud was

available.

Looking at the execution, we determined the TPR to be

0.905 and the FDR to be 0.130 when compared against the

control input trajectory. Similarly, the TPR compared to the

ground truth trajectory was 0.863, with an FDR of 0.133.

Figure 11 shows the results of the marking. We measured

the width of the marking to be around 4mm. The points at

which the impedance adjustment occurred are clearly visible,

marked by slight carbonisation and a deeper insertion into the

tissue. The rest of the mark looks relatively even.

Looking at the extracted trajectories, we can see a relatively

good match with the planned and executed trajectories (see

Figure 11). Figure 12 further shows the overlay of these

trajectories in 3D space. Looking at the IR-tracked trajectories,

we find a TPR of 0.905 and an FDR of 0.129 for this single

run, when compared to the input trajectory.

The distance between the two points in the cloud is 6.1mm.

This is significantly higher than the results of the tumor study.

We believe a major reason for this may be the more flexible

structure of the ex-vivo tissue, along with the more difficult

segmentation of the US images.

VI. DISCUSSION AND CONCLUSIONS

We provided a novel approach for automating the marking

of the resection margin on the tissue surface via electrocautery,

including the integration of IMUs into US probe and a pick-up

marking tool. We successfully demonstrated the feasibility and

effectiveness of our approach in automating the marking of tu-

mor boundaries on an organ surface in a controlled lab setting

including an in-depth assessment of marking path planning

and execution. Additionally, we sucessfully demonstrated the

feasibility the approach onto an ex-vivo porcine liver sample.

While we were able to reduce the error to a range of

several millimeters, this still had a noticeable effect on the

results of the scanning and marking. We value the achieved

TPR between 0.8 and 0.9 and FDR between 0.05 and 0.15
as a success and a potential benchmark for future attempts

to automate tumor margin marking. The quantified positional

accuracy of around 3mm needs to be further improved to

ensure reliability, an increase in TPR and decrease in FDR. It

should also be noted that the 3mm error is relatively close to

the roughly 15mm mass size. Employing the system for larger

masses will consequently increase the TPR, and decrease the

FDR and increase the likelihood of reaching an acceptable

reliability level. While there is a maximum tumor size that

can be considered for laparoscopic resection, it may still be

useful for certain pathologies. It should further be noted that

in its current state the system may only be employed on

convex tumors, although an extension should be implementable

through more complex methods such as using concave instead
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of convex sets.

Further improvements should also be made to reduce car-

bonization and the thickness of the marking. As a first step, a

smaller marking tip could be used. This, however, will most

likely also influence the contact surface and thus the power

transfer. A more generic solution would be to investigate a

more fine-grained method to measure impedance and thus the

contact quality. Being a feasibility study, an optimisation of the

contact control and detection for the electrosurgery tool are out

of scope. Improving it would require further insights into the

workings of the controller or more precise measurements of

the contact impedance. This could include a more thorough

characterisation of the power output over different surface

impedances, a modification of the ESU, or a further opening

of the data interface by the manufacturer.

Future work will be focused on further increasing the

accuracy of the system. Currently, this is mainly limited by the

robot’s positional accuracy as well as the point cloud obtained

through the camera. Additionally, we intend to transition

towards a more practical solution for hand-eye calibration, as

ArUco markers are not well suited to be employed within the

abdomen as outlined in Section III-D. With these challenges

solved, we intend to assess the system in an even more realistic

cadaveric or animal studies. For the latter, further approaches

would need to be investigated to account for breathing and

heart beat motion that have been ignored for the scope of this

work. Another possibility could be to account for uncertainty

along the pipeline and integrate this into the calculation and

even the outlining of the margined tumor projection [39].

Additionally, an improved 3D reconstruction of the tumor may

be achieveable by following approaches for fusing IMU signals

and US images as investigated in [41] for freehand scans.

In terms of medical applications, it would be interesting to

extend the approach to marking further anatomical boundaries,

such as the resection lines along segments. Additionally, more

elaborate methods for calculating the projection on the surface

are possible, in particular methods that reduce the resection

volume in a more discriminate manner. It could also be

interesting to investigate performing full resections of tumors

or organ segments. Furthermore, we could see the markings to

be used for AR projections to give the surgeon a clearer image

of where the tumor lies with respect to the outlined projection.

Future work should also include moving away from ArUco

markers and towards a more practical solution. One promising

direction may be to use instrument surface registration, as

previously explored in [40].

APPENDIX

VII. US PHANTOM COMPOSITION

TABLE II: Ingredients for US phantom

Ingredient Function Mass Ratio

DI Water Tissue mimicking base structure 67.7%

Gelatin Tissue mimicking base structure 22.5%

Glycerol Flexibility 9.7%

Flour Scattering 0.1%

VIII. NOMENCLATURE

In general we use bold variables to denote vectors and

normal italic variables to denote single value variables.

A. Point Sets

We use curved brackets to denote point sets e.g. {A}, such

as the convex hull. To denote individual points within this set

we use p
(A)
i . Additional subscription may be used to further

denote the set such as {ACV } and p
(ACV )
i , to denote a convex

hull set.

B. Transformations

Transformations with just a single subscript such as TA

(including RA and pA) are used to refer to the coordinate

frames themselves, while the transformation from a coordinate

frame TB to coordinate frame TA, e.g. transforming a point

expressed in TB coordinates into TA, is written as TB
A and

denoted with subscript and superscript. Further superscripts

may be added T
B,des
A to specify frames more accurately, in

this case the desired (abbreviated as des) relative pose of B

with respect to A. TB
A defines a homogeneous transformation,

combining a rotation RB
A and a translation pB

A

TB
A =

[
RB

A pB
A

0 0 0 1

]

(18)

For vectors, we use uppercase letters for the superscript

to denote defined coordinate frame quantities (e.g., relative

position of the origin pB
A or coordinate axes xB

A , yB
A and zBA).

We further use lowercase letters to specify relative positions

without defined coordinate frames. The only exception is the

gravity vector gA, which does not specify a reference frame

or lowercase subscript, as gravity is a world-implicit quantity

(e.g., implying a specific orientation).

C. Kinematic Notation

We denote robotic end-effector poses, composed of transla-

tion p and rotation θ roll, pitch and yaw angle as

x =
[
px, py, pz, θr, θp, θy

]
(19)

Equivalently, in joint space, we express the set of six joint

angles θ as

θ =
[
θl1, θl2, ql3, θl4, θl5, θl6

]
(20)

the ultimate joint angle (ql7), corresponding to the jaw

opening, is excluded as it describes a separate separate degree

of freedom.

The forward kinematics solution can be calculated by multi-

plying the parameterised transformations from the base of the

robots until the tooltip (e.g., following the Denavit-Hartenberg

convention).

x = f(θ) (21)
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Inverse Kinematics are the inverse of forward kinematics,

defined as

q = f−1(x) (22)

Note that the solution to this equation is generally not

guaranteed to exist in symbolic form. A general approach is to

approximate the solution numerically. In this work, the inverse

solution is provided by the dVRK software framework.

IX. PLANAR PROJECTIONS

For the projection of an arbitrary point xa via an arbitrary

unit vector va into a plane defined by point xp and normal

vector np the following equation must hold

nT
p · (xa − (xp + σva

︸ ︷︷ ︸

xa,proj

)) = 0 (23)

Solving for σ and plugging the result into the definition of

xa,proj leads to the following result

xa,proj = xp +

(

nT
p · (xp − xa)

nT
a · va

)

︸ ︷︷ ︸

σ

np (24)

Note that in the particular case of va being the normal

vector, nT
p · np = 1 reduces the denominator leading to

xa,proj = xp + (nT
p · (xp − xa))

︸ ︷︷ ︸

σ

np (25)
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