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Automated Model Based Assurance Case
Management Using Constrained Natural Language

Ran Wei, Zhe Jiang*, Haitao Mei*, Konstantinos Barmpis*, Simon Foster, Tim Kelly, and Yan Zhuang

Abstract—Assurance cases are used to communicate and assess
confidence in critical system properties, e.g, safety and security.
Historically, assurance cases have been manually created docu-
ments, validated by engineers through lengthy and error-prone
processes. Recently, system assurance practitioners have begun
adopting model based approaches to improve the efficiency and
quality of system assurance activities. This becomes increasingly
important, for example, to ensure the safety of Robotics and
Autonomous Systems (RAS), as they are adopted into society.
Such systems can be highly complex, and so it is a challenge
to manage the development life-cycle and improve efficiency,
including coordination of validation activities, and change impact
analysis in inter-connected system assurance artifacts.

However, adopting model based approaches requires skills in
model management languages, which system assurance practi-
tioners may not be acquainted with. In this paper, we contribute
an automated validation framework for model based assurance
cases, which promotes the usage of a Constrained Natural
Language (CNL), that can be automatically transformed and
executed against engineering models involved in assurance case
development. We apply our approach to a case study based on
an Autonomous Underwater Vehicle (AUV).

Index Terms—Safety Critical Systems Engineering, Model
Based Assurance Case, Automated Assurance Case Validation.

I. INTRODUCTION

Safety-critical systems require justifications that they are
acceptably safe to operate in their defined operational contexts.
Assurance cases provide an explicit means for arguing, justify-
ing and assessing the confidence in system properties such as
safety and security. The submission of an assurance case is in-
creasingly being required during system certification processes
in many safety-critical industries, such as aviation [1], nuclear
power [2], transportation [3], [4], and defence [5]. Ideally, an
assurance case is the central point of reference for all system
stakeholders, to allow effective communication and traceability
from the assurance case to its referenced engineering artifacts.
Prior to certification, an assurance case must be rigorously, and
often independently, validated, ensuring the safety arguments
and their supporting evidence are coherent and convincing.

Assurance cases are not typically self-contained documents,
in the sense that they organise, refer and pull together con-
textual and evidential information stored in other documents
(e.g. requirements, design models, etc.) in order to form an
argument about the safety of the systems under question.
Hence, the validation of an assurance case involves the
validation of the engineering artefacts/documents it depends
on/refers to, which is often an informal, manual, and error-
prone process [6].
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Over the past decade, system assurance practitioners have
begun adopting Model-Driven Engineering (MDE). Benefits
provided by MDE promise the interoperability, integration
and coordination of diverse artifacts/models to provide the
basis for an automated, coherent, and self-contained assurance
case. However, current assurance case notations, such as the
Goal Structuring Notation (GSN) [7] and Claim-Argument-
Evidence (CAE) [8], do not have sufficient model based foun-
dations to systematically fulfil such promises. Consequently,
existing model based assurance case approaches cannot pro-
vide the automated validation of an assurance case and the
engineering artifacts that it may depend on. The inspection,
validation, and change management of engineering artifacts
mostly remain manual. To address this limitation, approaches
for maintaining traceability from a model based assurance case
to its supporting engineering artifacts have been proposed [9],
[10]. However, such traceability links are mere “hyperlinks”,
in the sense that the validation of the referenced artifacts is
still performed manually. To address such problem, we propose
an approach and tool support to add validation rules besides
the traceability links to refine the traceability to specific parts
(i.e. model element(s)) of an engineering artifact. To further
promote automation in model based assurance case devel-
opment, validation rules can be written in model validation
languages and embedded to the assurance case to support the
automated validation of referenced engineering artifacts within
an assurance case.

Whilst automated validation via means of validation rules
provides a significant improvement on the efficiency for the
validation of the overall assurance case, one more problem
arises: system assurance practitioners are often not acquainted
with low-level model validation languages used to write
validation rules. Stakeholders involved in an assurance case
development process typically communicate the validation
of engineering artifacts in natural languages (e.g. English).
To introduce model validation languages to stakeholders, it
typically means that they would spend substantial amount of
time to learn such languages before they can perform the
validation of assurance cases in an efficient manner. In this
paper, we contribute an approach for automated assurance
case validation, using which, fine-grained traceability links
from an assurance case to its depending engineering model
elements can be established with embedded model validation
rules. We contribute an approach for expressing validation
rules using a Constrained Natural Language (CNL), to promote
comprehensibility of the traceability from an assurance case
to its supporting engineering model elements.

Our contributions are:

1) An approach and its supporting tool to manage assurance
cases and validate their referenced engineering artifacts
in an automated manner;
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2) A CNL metamodel and grammar that can be used to
express validation rules against arbitrary models;

3) Automated means to validate an assurance case and its
referenced engineering artifacts by executing validation
rules written in CNL;

4) The application of all of above to an AUV case study.

II. BACKGROUND AND MOTIVATION

A. Assurance Cases

The concept of assurance cases has been well-established
in the safety-related domains, where the term safety case is
normally used. For many industries, the development, review
and acceptance of a safety case form a key element of
regulatory processes. This includes nuclear, defence, aviation
and railway industries [11]. Safety cases form the basis for
certification in the safety engineering lifecycle, as illustrated
in Figure 1. It typically organises all information regarding
safety throughout the engineering process, detailed in [6]

Fig. 1: Safety engineering lifecycle [6].

Historically, safety arguments were communicated in safety
cases through free text. However, problems were experienced
when text is the only medium available for expressing complex
arguments. One problem of using free text is that the lan-
guage used in the text can be unclear, ambiguous and poorly
structured. There is no guarantee that system engineers would
produce safety cases with clear and well-structured language.
Also, the capability of expressing cross-references with free
text is very limited, multiple cross-references can also disrupt
the flow of the main argument.

To overcome the problems of expressing safety arguments
in free text, graphical argumentation notations were developed.
They are capable of explicitly representing the elements that
form a safety argument (i.e. requirements, claims, evidence
and context), and the relationships between these elements (i.e.
how individual requirements are supported by specific claims,
how claims are supported by evidence, and the assumed
context that is defined for the argument).

One important remark is that an assurance case often refers
to other documents in the process of arguing the safety of
systems. The references typically serve two purposes:

Contextual: in arguing the safety of systems, practitioners
need to refer to other types of documents to provide contextual
information. For example, the developer of an assurance case
can refer to a Hazard Log document, so that the Hazard
Log document can be used for discussion when reviewing the
assurance case.

Evidential: the argument regarding the safety of the system
typically involves safety goals (or safety requirements) and

evidence to support them (i.e. how they are met). Therefore,
evidence needs to be referenced in the assurance case to
assemble the argument. For example, in order to claim that
a component is acceptably safe, the developer of an assurance
case can refer to a safety analysis document (e.g. Failure Mode
and Effect Analysis - FMEA), which provides proof that the
safety-related failures of the component have an acceptably
low probability to occur.

Hence, an assurance case is not a self-contained document,
in the sense that one cannot validate the assurance case
just by looking at the assurance case alone - it refers to,
and pull together, information from other documents to form
the argument about the safety/security of the system. This
becomes particularly problematic in assurance case valida-
tions, as practitioners need to trace, navigate to, review and
validate the engineering artifacts that assurance case depends
on on [12], [13], which is often a time-consuming and error-
prone process.

B. Goal Structuring Notation

The Goal Structuring Notation (GSN) [7] is a well-
established graphical argumentation notation that is widely
adopted within safety-critical industries for the presentation
of safety arguments within safety cases. The core elements of
GSN are shown in Figure 2.

{Strategy Identifier}

<Strategy Statement>

{Solution 
  Identifier}

<Solution
  Statement>

{Context Identifier}

<Context Statement>

Goal Strategy Solution Context

{Assumption Identifier}

<Assumption Statement>

A

Assumption

{Justification Identifier}

<Justification Statement>

J

Justification Undeveloped

{Goal Identifier}

<Goal Statement>

Undeveloped Goal

{Goal Identifier}

<Goal Statement>

Fig. 2: Core GSN elements.

A Goal represents a safety claim within the argumentation.
A Strategy is used to describe the nature of the inference that
exists between a goal and its supporting goal(s). A Solution
represents a reference to an evidence item or multiple evidence
items. A Context represents a contextual artefact, which can
be a statement or a reference to contextual information. An
Assumption represents an assumed statement made within
the argumentation. A Justification represents a statement of
rationale. An element can be Undeveloped, which means that
a line of argument has not been developed yet (meaning it
is abstract and needs to be instantiated). The Undeveloped
notation can apply to Goals and Strategies. The Undeveloped
Goal in Figure 2 is an example. Core elements of GSN are
connected with two types of connectors, as shown in Figure 3.
The SupportedBy connector allows inferential or evidential
relationships to be documented. The InContextOf relates con-
textual elements (i.e. Context, Assumption and Justification) to
Goals and Strategies.

SupportedBy InContextOf

Fig. 3: GSN connectors.

When elements of GSN are linked together in a network,
they are often referred to as a goal structure. The purpose of
a goal structure is to show how Goals are successively broken
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down into sub-Goals until a point is reached where Goals
can be supported by direct reference to available evidence
(Solutions). An example of a goal structure is shown in
Figure 14.

GSN has been adopted in many industries for its power
of expressiveness [11] and is being increasingly used in
Robotic and Autonomous Systems [14]–[16]. After Uber’s
2018 incident, a Safety Case Framework for Aurora’s self-
driving vehicles has been developed to provide guidance and
best practice1.

Fig. 4: Models at Runtime on Different Abstraction Levels.

C. Runtime System Assurance

In recent years, Robotic and Autonomous Systems (RAS)
emerge. Industries see huge economic potential in such sys-
tems - particularly due to their open (RASs connect to each
other at runtime) and adaptive (RASs adapt to changing
contexts) nature, which enables new types of promising appli-
cations in domains such as automotive, healthcare, and home
automation [17]. Since the majority of application domains
of RASs are safety-critical, it is imperative to assure the
safety and/or security of such systems. However, due to the
open and adaptive nature of RAS, it becomes impossible to
sufficiently anticipate the runtime overall system structure, and
the system’s operational context at development time [6].

Therefore, existing design time system assurance activities
are insufficient to enable dynamic system assurance for RAS
at runtime. In [6], [18], the importance of system assurance at
runtime for RAS is identified and the idea of Models@Runtime
on four different abstraction levels are proposed, as shown in
Figure 4. As discussed in [19], the ideal balance of system
assurance at runtime is on the AssuranceCase@Runtime, in
which a system is able to evaluate the safety of itself, as well
as other systems that interact with the system at runtime. Thus,
there is a need to shift design time assurance case documents to
runtime assurance case models to assure open adaptive systems
at runtime, which would require the support for automated
assurance case validation.

D. Model Based Assurance Cases

Over the past few years, model based assurance case ap-
proaches have been proposed due to the benefits introduced by
MBSE. Studies have shown how automated MBSE operations
can be performed on model based assurance cases (cre-
ated using GSN) to check the well-formedness of assurance
cases [10], generate and assemble structured argumentation
within assurance cases [12], and automatically generate texts
for assurance case reports [10]. However, existing model based
assurance case approaches (GSN and CAE) do not provide
sufficient support for traceability to engineering artifacts.

1https://safetycaseframework.aurora.tech/gsn

To address the limitations of GSN and CAE, the Object
Management Group (OMG) standardised the Structured As-
surance Case Metamodel (SACM) [20]. SACM allows the
users to define AssuranceCase packages, which contain Ar-
gumentation packages, and additional Artifact packages and
Terminology packages [9]. The additional facilities allow the
creation of assurance case models, which contain references
to external digital artifacts (more details in SectionIII). This
facility is briefly discussed in [9], and a traceability mechanism
is discussed. Such traceability mechanism only provides a
“hyperlink” that points to the location of the referenced
engineering artifact. To provide fine-grained traceability, atop
of the “hyperlink”, we provide an approach and tool support
to store model validation rules in assurance cases created
using SACM, and to execute such validation rules to enable
automated validation of assurance cases.

Whilst automated model validation is crucial to assurance
case development [19], [21], the usage of low-level validation
languages can lead to a couple of problems. First, the develop-
ment and review of an assurance case typically involve stake-
holders with different expertise, who may not be acquainted
with model validation languages that is used to write the
validation rules. This could lead to problems in comprehending
and communicating the assurance case, and therefore lead
to a decrease in productivity for assurance case development
and review. Secondly, fixating on specific validation languages
contribute to undesirable technology lock-in for assurance case
development and review. For interoperability purposes, not
only the metamodel for assurance cases should be defined
and standardised (like SACM), it is also necessary to define
the language used in assurance cases (presumably for different
domains) so that the semantics of the terms/expressions used
in the assurance cases are consistent. To address the above
problems, in this paper we make a first practical step towards
a fully model based assurance case approach by defining and
using an executable Constrained Natural Language (CNL)
within an assurance case to validate engineering artifacts that
the assurance case refers to/depend on.

III. APPROACH OVERVIEW

Fig. 5: Overview of the Assurance Case Management Envi-
ronment (ACME).

Our approach is backed by our tool – Assurance Case
Management Environment (ACME), the components of which
are illustrated in Figure 5. ACME is an integrated modelling
tool which provides graphical editors for creating models
conforming to the Structured Assurance Case Metamodel
(SACM) [20]. Since SACM is relatively new and has not
been widely adopted, we made the design decision to use
a GSN metamodel [9] to build the prototype for ACME.
In this way, ACME supports the creation of model based
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GSN diagrams, and at the same time provides access to all
other features of SACM. We implement SACM and GSN
with the Eclipse Modelling Framework (EMF) [22], and use
Graphical Modelling Framework (GMF) [23] to create
graphical editors for SACM and GSN. We use Epsilon [24]
to manage models defined in different modelling technologies
(EMF, Simulink, etc). And we use Xtext [25] to implement
the CNL, together with their generated development tools such
as a dedicated editor, content assist and language validation.

It is necessary to discuss SACM concepts relevant to this
work to better explain our approach. In SACM, the containing
element is AssuranceCasePackage, which may contain a num-
ber of TerminologyPackages (for terms defined in the assur-
ance case), ArtifactPackages (to record artifacts referenced in
the assurance case) and most importantly ArgumentPackages
(to caontain structured arguments for the system safety/secu-
rity).

SACM provides concepts for self-contained model based
assurance cases (although currently there has not been ap-
proaches and tools to achieve it) in its Base component shown
in Figure 6. For a ModelElement in SACM, it can have a
number of UtilityElements, in this work, we particularly focus
on the ImplementationConstraint concept, using which we
describe the validation rules against engineering models. In
addition, it can also be seen that a ModelElement can “cite”
other SACMElement via its CitedElement association. This is
a powerful mechanism, as it allows the users of SACM to cite
any ModelElement contained within one model.

Fig. 6: The Base component of SACM [20].

Fig. 7: The (partial) Artifact component of SACM [20].

Another SACM component worth mentioning is the Artifact
component. , as shown in Figure 7. In this work, we make use
of the Artifact class for demonstration purposes. It is worth
mentioning that SACM concepts do not provide facilities

to refer to engineering artifacts external to the assurance
case. Therefore, we make use of the Property concept in the
Artifact component, to create a Property for each Artifact,
named “document”, that record the location of an external
engineering artifact (stored in the +description feature of the
Property as illustrated in Figure 6). Since the engineering
artifacts we refer to are meant to be models, they often
have their corresponding metamodels or metadata. Thus, in
the Property’s ImplementationConstraint feature, we store the
location of metamodel/metadata of the “document” we refer
to. In this way, we can support the referent to an engineering
artifact with its metamodel/metadata (more in Section V). The
above mechanism works for all sub-classes of ArtifactAsset.

Fig. 8: Overview of the proposed approach.

We now discuss our assurance case validation approach,
which is illustrated in Figure 8. There are 6 steps in our
approach. In Step 1©, we use ACME to create an assurance
case. In this paper, we focus on the relationship between Argu-
mentPackages and ArtifactPackages. We create ArgumentPack-
ages containing arguments regarding system safety, and we
create ArtifactPackages containing traceability to referenced
engineering artifacts/models. In Step 2©, we establish links
from GSN elements to elements in ArtifactPackages, using
the “cite” mechanism provided by SACM. In Step 3©, we
establish traceability links from Artifacts (contained in an Ar-
tifactPackage) to engineering models. As discussed above, for
an Artifact, we record the locations of an engineering model
and its metamodel/metadata. In Step 4©, we use SACM’s
ImplementationConstraint concept to create validation rules
(IC_1 and IC_2 in Figure 8) for the referenced engineering
models. Validation rules are used to check certain properties
in the engineering models with regard to system safety (e.g.
system behaviour model). For ACME, validation rules can be:
1) code written in the Epsilon Validation Language (EVL) or
2) expressions conforming to the CNL. If the validation rule is
written in EVL, ACME executes it using Epsilon against the
engineering model that the Artifact refers to, the validation
result is processed and error are reported in ACME. If the
validation rule is written in CNL, in Step 5©, the rule is
processed by the integrated CNL Processor, which parses CNL
expressions into validation rule models, and then generate
executable code (in this work we generate validation rules
written in EVL). However, it is to be noted that the CNL
can be transformed into any programming language. In Step
6©, the executable code is executed by Epsilon against the
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engineering model (that the Artifact refers to), the validation
result is processed by ACME and errors are reported.

IV. IMPLEMENTATION OF CNL AND GENERATION TO

EXECUTABLE CODE

In this section, we discuss in detail the implementation of
the CNL, inspired by the works discussed in [26], [27].

Fig. 9: A segment of the CNL metamodel.

A. CNL Metamodel

In MDE terms, the CNL metamodel captures the abstract
syntax of the language, in the sense that it only contains the
concepts (types) of the CNL, but not how the CNL looks like.
Figure 9 shows an essential segment of the CNL metamodel.
We discuss briefly these key concepts:

• ConstrainedNaturalLanguageRule acts as the root ele-
ment, it contains a list of ValidationRules (validation rules
written in CNL against the model to be validated) and a
list of MetaData (metadata/metamodel concepts of the
model to be validated).

• MetaData is used to list meta elements inside a model
to be used by the validation rules. For example, if we
want to validate a state machine model, then in our
MetaData, we need to specify TypeCollection, with their
legalValues (captured by class MetaValue, which is of
type BaseExpression): State{name}, Transition{source,
target}, where “State” is a Type and “name” is a Feature,
same principles apply to “Transition” and its features
“source” and “target”. In addition, enumeration types are
captured using classes EnumCollection and Enum.

• ScopedRule is the first type of ValidationRule, where
one or more rules are written against a single scope
(captured using ElementScope, which points to a Type
in the metadata). When describing validations, a scope
must always be provided. For example, consider the code
segment written in Epsilon Object Language (EOL) to
query a state machine model:

1 var hcm = State.all().select(s|s.name = "HCM").
2 first();
3 var transitions = Transition.all().
4 select(t|t.source = hcm);
5 return transitions.size();

In this code segment, we want to query the size of
Transitions which have their sources connected to a State
named “HCM”. We define the scope of our query, Transi-
tion.all(), which includes all instances of Transition in the
state machine. The same principle applies to validation
languages such as Epsilon Validation Language (EVL):

1 context Transition {
2 constraint rule_1 {
3 check {
4 return self.source.name = "HCM"
5 implies Sequence{’t4’, ’t5’, ’t6’}.
6 includes(self.name);
7 }
8 }
9 }

where the “context” of the validation rule is focused on
all Transitions.

• MatchScopedRule is the second type of ValidationRule,
where a single rule is written against a sub-collection
of data defined in the matches (captured using Matchin-
gRule). These collections can be in different scopes, al-
lowing rules to link queries of multiple domain elements
together into a single rule. In the above code example,
first-order logic operations select() and includes() can be
considered MatchingRules.

• CNLRule is a rule written against elements in the meta-
data domain. It contains a root element (captured by the
Expression class), which defines the rule once parsed.

• GPLRule is used to capture rules written in Generic Pro-
gramming Language against elements in the metadata do-
main. It contains a String with relevant syntax conforming
to the language (i.e. syntax native to the programming
language). This rule allows complex expressions which
may not be expressible in CNL to be written in the same
document as the natural language rules.

• Expression is the common supertype for all expression
elements a rule can be made up of. In our CNL im-
plementation we include: CompareisonExpressions such
as “equality”, “inequality”, “greater than”, “less than”,
“greater than or equal to” and “less than or equal to”;
ArithmeticExpressions such as addition (“+”), deduction
(“-”), multiplication (“*”) and division (“/”); LogicalEx-
pressions such as “implies”, “or”, “xor”, “and”, “if and
only if”; DateExpressions such as before date, after date,
on or before date and on or after date.

• BaseExpression captures atomic expressions such as fea-
ture call expression, primitive type expressions, Enum
expressions, value containment expressions, etc.

B. CNL Xtext Grammar

We now discuss the Xtext grammar which is used to
automatically generate the CNL parser, the CNL text editor,
and associated facilities such as content assist and syntax
validation. The CNL grammar definition is made publicly
available2. For simplicity, we discuss grammar that is relevant

2https://github.com/SystemsAssuranceGroup/ACMECNL/blob/
58ce2b5c3959e45ac04831e7ccffbc159030765f/org.eclipse.acme.cnl/src/
org/eclipse/acme/cnl/ACMECNL.xtext
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to the segment of the CNL metamodel shown in Figure 9, and
we refer to the segments of the grammar by identifying their
line numbers in the grammar definition, the readers are invited
to refer to the grammar definition alongside this paper.

The declaration of our CNL (named “ACMECNL”) is in
lines 1–4. We want the Xtext parser to produce instance
models of the CNL metamodel, so we import the CNL
metamodel and the Ecore metamodel. We then define our own
terminals in lines 11–30, we override terminals INT and ID
from Xtext’s default terminals definition to 1) tell Xtext parser
to generate EInt for INT terminals and 2) support more flexible
IDs.

We also define ConstrainedNaturalLanguageRule, in line 6,
it should have a number of ScopedRules or MatchScopedRules,
and some MetaData instances.

The ScopedRule and MatchScopedRule are defined in lines
32 and 54. For a ScopedRule, the users can write CNL
expressions as below:

for all State the name must exist

in which “State” is an ElementScope (defined in line 67) and
“the name must exist“ is a ComparisonExpression (defined in
line 67), where its left hand side expression is a FeatureValue
(“the name”, defined in line 214) and its right hand side
expression is an ExistanceValue (“must exist”, defined in
line 271). For a MatchScopedRule, the users can write CNL
expressions such as:

find all data in Transition
where name from source is ’MOM’

then the name is either ’t4’ or ’t5’ or ’t6’ or ’t9’

in which “find all data in ... where ... then ...” is a Matchin-
gRule (defined in line 61), with “Transition” an ElementScope
(defined in line 67), “name from source is ’MOM’ ” a
EqualityExpression (defined in line 132), of which the left
hand side is a VariableFeatureValue (defined in line 217) and
right hand side a StringValue (defined in line 229); then we
specify a rule: “the name is either ‘t4’ or ‘t5’ or ‘t6’ or ‘t9’ ”,
which is a ValueContainment expression (defined in line 203),
in which “the name” is a FeatureValue (defined in line 214).

As previously discussed, Rule can be either a CNLRUle
or GPLRule. CNLRule has a LogicalExpression (defined in
line 91) as root, LogicalExpression supports logical operators
and, or, xor, implies and if and only if, and can be used
in conjunction with ComparisonExpressions (defined in line
93). ComparisonExpressions support comparison operators
equality, inequality, greater than, less than, greater than or
equal to and less than or equal to. ComparisonExpression
can in turn be used in conjunction with ArithmeticExpression
(defined in line 130), which supports arithmetic operators
+, -, * and /. The above expressions need to be used with
BaseExpressions, as defined in line 163 (we do not go into
details about BaseExpressions).

In contrast, a GPLRule contains simply a String, which con-
tains the general programming language rule (in our example,
validation rules written in EOL). The purpose of the GPLRule
is to avoid having tedious CNL statements when expressing
nested property access. For example, to check the equality of
nested property in EOL, one may write:

a.b.c.d.e = "hvel"

which is simple and easy to understand. However, written in
CNL grammar, it becomes:

e from d from c from b from a is "hvel"

which is tedious to write and difficult to comprehend. Hence,
the users have the flexibility of using GPLRules in scenarios
of this kind, in which CNL grammar loses its power of
expressiveness.

As previously discussed, a ConstrainedNaturalLan-
guageRule should contain MetaData (defined in line 250), so
that ScopedRules or MatchScopedRules can be aware of the
meta information in the model to be validated. MetaData can
be either Types (line 253) or Enumerations (line 256). Types
can have legalValues of type TypeValue (which corresponds
to Type in the CNL metamodel, line 262); Enumerations can
have legalValues of type Enum (which corresponds to Enum
in the CNL metamodel, line 259). In our case study (a state
machine example), before we write any rules in CNL, we
must declare meta information as follows:

types State{name}, Transition{source, target}

which corresponds to the syntax explained above, and declares
that there is a Type called “State”, with a Feature called
“name”, and another Type called “Transition”, with two Fea-
tures called “source” and “target”.

The Xtext grammar is consumed by the Xtext framework,
which automatically generates a CNL parser, and a text editor
with syntax highlighting.

C. Executable Code Generation

With the Xtext grammar defined, we are able to obtain
instance models that conform to the CNL metamodel. Our
next step is to perform a model-to-text transformation, which
generates executable code written in our choice of validation
languages – EVL [28].

CNL is designed for validation against data in the different
backends, which can be documents, models and databases.
Sometimes there are variations of similar concepts, such as
wrapping identifiers or escaping special characters. To promote
the general use of the CNL for validation, we allow configura-
tions to be made inside a mapping model, which is used to map
CNL terms to terms in the target backend. Such configurations
can be injected to the CNL instance model before the model-
to-text transformation.

Fig. 10: The Mapping metamodel.

Figure 10 shows the mapping metamodel. Class Mapping
is the container for the mapping from CNL to a target
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backend. In ConfigOption, one can specify whether type names
need to be converted to lower case, wrapper character for
wrapping identifiers, wrapping character for String values,
special characters in the CNL and characters to replace such
special characters in the target backend. A mapping model
contains a number of StructuralMappings, which essentially
map names of types, enumerations and features into their
correspondences in the target backend. For example, in CNL,
identifiers have to be one continuous String. For a feature,
named “firstName”, it may map to a column name in a
relational data based called “first name”. In this situation,
we may use a FeatureNameMapping to map “firstName”
(sourceName in the FeatureNameMapping) in CNL to “first
name” (targetName in the FeatureNameMapping)in the rela-
tional database. TypeNameMapping, EnumNameMapping and
FeatureNameMapping can be considered as 1 to 1 mappings
(we perform model validation on the mapping model to
enforce that the cardinality of feature “targetName” for these
classes are 1), we also support 1 to n mappings through Com-
plexFeatureMapping. ComplexFeatureMapping is designed to
enable the accesses to multiple features in the backend through
one feature in CNL. For example, in CNL we can define a
Feature called “fullName”, in the mapping model, we can
define a ComplexFeatureMapping and state that we want to
map “first name” and “last name” in the target backend, with
complexMappingOperation to be “concatenation”, by doing
this, we can validate against one Feature defined in CNL but
actually validate against two features in the target backend.
We can perform numerical ComplexMappingOperations such
as “summation” and “multiplication”, as well as comparative
ComplexMappingOperations such as “average”, “minimum”
and “maximum” on features that are of numerical types or
collection types. At last, different backends may use differ-
ent symbols for denoting logical operators such as equality,
negation, etc., hence it is necessary to perform a mapping on
logical operators (for example EVL uses = instead of == for
equality).

With the defined mapping model, we perform an model
transformation to migrate the declared CNL type, feature
and enumeration names into their mapped names3. Then,
we perform a model-to-text transformation, written in the
Epsilon Generation Language (EGL) [29]. Our transformation
targets EVL, but the approach can be generalised to target any
validation language, such as the Object Constraint Language
(OCL). We provide the pseudo code for the transformation in
Algorithm 1.

We provide a helper function, named flatten() to help turning
nested CNL model elements into flat Strings. Helper function
flatten() takes four parameters and returns a String, “ret”
enables the users to insert any String before the returned
result, “scopedElementVariable” is the variable name of the
scoped element, “context” is the name of the scope and
“scopedCollection” is the collection of model elements in
the defined scope. flatten() produces strings based on the
element that calls it (the self variable). For example, for a
ValueContainment in CNL:

the name is either ’t4’ or ’t5’ or ’t6’ or ’t9’

the flatten() function will produce the String:

Sequence{’t4’, ’t4’, ’t6’, ’t9’}.includes(self.name);

3For simplicity we do not discuss this transformation in detail

Before moving on to explaining the transformation, it is
necessary to discuss the syntax for EVL, shown in Listing 1.

1 context <name> {
2 (guard (:expression)|({statementBlock}))?
3 (invariant)*
4 }
5 constraint <name> {
6 (guard (:expression)|({statementBlock}))?
7 (check (:expression)|({statementBlock}))?
8 (message (:expression)|({statementBlock}))?
9 }

Listing 1: The Syntax for EVL context and invariant

In EVL, a scope can be declared by context (line 1) where
“name” is used to specify a type (in the backend to be
validated). In the context, an optional guard can be defined
to limit the applicability of the context to a narrower subset of
instances. A context may contain a number of invariants which
are validation rules applicable to the context. A constraint is
an invariant, in which an optional guard can be defined to
limit the applicability of the constraint, an optional check can
be defined to contain the validation rules, which can be either
an expression or an statementBlock. In addition, an optional
message can be defined to notify information upon failed
validations.

Algorithm 1: Generating executable code from CNL
instance model.

1 for sr in {all ScopedRules} do
2 let context = sr.scope.type.name
3 output "context" + context + "{"
4 let root = sr.root
5 let name = rule.name
6 output "constraint ValidateScopedRule_" + name +"{"
7 "check { return " + root.flatten("", "self", context, null) +

"}"
8 "message{" + rule.message == null? "no error message":

rule.message + "}"
9 end

10 for msr in {all MatchScopedRules} do
11 let name = msr.rule.name
12 output constraint ValidateMatchedScopeRule_ + name +

"{"
13 "check{
14 let expression = "var collection = new Sequence;"
15 let rule = msr.rule
16 let matches = msr.matches
17 for match in {mathces} do
18 let context = match.scope.type.name
19 expression+= "collection.addAll(" + context+".all.

select(v|"+match.root.
flatten("","v",context,null)+");"

20 end
21 expression += "for (element in collection) {"
22 expression += "var result =" +

rule.root.flatten("","element",null,collections) + ";"
23 expression += "if (result = false) return false;}"
24 expression += "return true;";
25 output expression
26 output }
27 end

We generate validation rules in EVL for all ScopedRule
and MatchScopedRule in Algorithm 1. The generation for
ScopedRules is straight forward. We generate a context in EVL
in line 3, in which we generate a constraint (line 6) with the
name of the ScopedRule, we generate a check (line 7), in which
we obtain a flattened String by calling the flatten() function,
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we generate a message in which we preserve the massage from
the ScopedRule.

For MatchScopedRules, we are creating a “contextless”
constraint for each MatchScopedRule (line 12), since we
are aggregating the collections of elements in the backend
through MatchingRules (note that a MatchScopedRule can
have a number of MatchingRules which may not be in the
same scope). Thus, we generate a Sequence (line 14) to
contain the elements for the MatchingRules. We iterate through
each MatchingRule in line 17–20, and generate texts to ask
EVL to collect model elements based on the MatchingRule.
Finally, we generate text to iterate through all elements in the
Sequence (line 21–24), and perform validation against each
of the elements, false is returned if any validation fails (line
23), we output the text in line 25. With the transformation, the
CNL ScopedRule:

for all Transition the source is not empty and
the target is not empty

Listing 2: Example CNL rule 1.

will be transformed into:

context Transition {
constraint ValidateRule_0{

check{return ‘Model‘.isPropertySet(self,’source’) and
‘Model‘.isPropertySet(self,’target’);}

message{return "no error message defined for rule: 0";}
}

}

The CNL MatchScopedRule:

find all data in Transition where name from source
is "MOM" and name from target is "HCM"

then name is either "t4"or "t5" or "t6" or "t9"

Listing 3: Example CNL rule 2.

will be transformed into:

constraint ValidateMatchingRule_0 {
check{

var collection = new Sequence;
collection.addAll(Transition.all

.select(v|v.source.name == ’MOM’ and
v.target.name == ’HCM’));

for (element in collection) {
var result = Sequence{’t4’,’t5’,’t6’,’t9’}

.includes(element.name);
if (result = false)
return false;

}
return true;

}
message{ return "no error message defined for rule: 0"; }

}

The CNL metamodel, CNL grammar and model transforma-
tions come together as shown in Figure 11. CNL metamodel
and CNL Xtext grammar are consumed by the Xtext engine
( 1©), which automatically generates a CNL parser and a CNL
editor ( 2©). Xtext allows the definition of Generator (used to
generate artifacts from parsed Xtext grammar), in which we
define 1) endogenous transformation (based on the mapping
model) to migrate CNL names (for Types, Enums and Features)
to target backend names; and 2) model-to-text transformation
to generate EVL validation rules from CNL instance models
( 3©). CNL rules are created using the CNL editor, which parses
the rule and produces CNL model ( 4©). With the CNL model
and the mapping model as inputs to the Generator, it generates

Fig. 11: CNL implementation and executable code generation.

the executable code (in our case the EVL code) ( 5©). To run
the validation rule against a backend, one needs to setup a run
configuration (e.g. for EVL), specify the backend document
(e.g. model) and its metadata (e.g. metamodel) and execute
the validation rules against the backend.

V. INTEGRATION WITH ACME AND THE AUV CASE

STUDY

In this section, we discuss the integration of the CNL
implementation into ACME. We discuss the approach of
automatic assurance case validation and apply our approach on
an assurance case developed for an Autonomous Underwater
Vehicle (AUV). The assurance case is developed based on a
RoboChart [30] model, from which we develop a modular
assurance case using ACME, and apply our approach for
traceability and automated evaluation with CNL.

The AUV is a portable untethered Remotely Operated
Vehicle, equipped with a visual mapping system and verified
on-board autonomy. The aim is to make it capable of con-
ducting light intervention tasks, such as oil and gas surveys
and offshore coring. Industrial partners for the AUV engage
with regulators through ongoing contributions to autonomy
regulatory work to ensure regulatory compliance. Thus, the
use of a structured assurance case is vital to communicate the
evidence of safe operation to non-specialists, especially in the
aspect of software controlled autonomous behaviour.

In this paper, we focus on the assurance case for the
Last Response Engine (LRE), which provides runtime safety
assurance. The AUV can either be under operator control,
or running autonomously. If operating autonomously, the re-
sponsibility for satisfying the safety requirements lies with the
LRE, which can engage evasive manoeuvres if necessary.

The overall architecture of the AUV is modelled in Fig-
ure 12 using the RoboChart language. The robotic platform
(AUV_Platform) acts as an abstraction layer for the hard-
ware, and provides access to sensors and actuators. The
LRE (LRE_Ctrl) sits between the operator (AUV_Operator)
and the autopilot component (AUV_Autopilot). The operator,
which can be either a human or navigation system, provides
instructions to the LRE to support execution of tasks, such
as requesting a particular heading and velocity. The autopilot
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Fig. 12: Overall Architecture of the AUV and LRE.

controls the AUV actuators, and takes advice only from the
LRE.

The LRE functions in four modes: Operator Control Model
(OCM), Main Operating Mode (MOM), High Caution Mode
(HCM) and Collision Avoidance Mode (CAM). Whilst in
OCM, the LRE passes through control inputs from the operator
to the autopilot. MOM is where the LRE takes control for
normal behaviour at maximum speed. HCM is for the situation
when the AUV is getting close to an obstacle, and so the
LRE lowers the velocity. Finally, CAM is the mode where
a potential unavoidable collision has been detected, and the
AUV is manoeuvring away from the obstacle.

The LRE keeps an obstacle register, which stores identified
obstacles, through sensor readings. In each behavioural cycle,
the LRE calculates the closest obstacle and determines whether
it should apply evasive manoeuvres or switch into high caution
mode (HCM).

The LRE state machine is shown in Figure 13. It imple-
ments the LRE’s behavioural requirements and specifies the
conditions on switching to different operation modes. We are
particularly interested in the Transitions from MOM to HCM
(i.e. ‘t4’, ‘t5’, ‘t6’ and ‘t9’). ‘t4’ is triggered when hvel >= 0.1
(horizontal velocity of the AUV is greater than or equal to 0.1
m/s) and hdist(cstc) (horizontal distance of a cstc (closest static
obstacle)) is shorter or equal to StaticObsHorizDist (shortest
distance allowed to an obstacle horizontally), ‘t5’ is triggered
when vvel >= 0.1 (vertical velocity of the AUV is greater
than or equal to 0.1 m/s) and vdist(cstc) (vertical distance
of a cstc) is shorter or equal to StaticObsVertDist (shortest
distance allowed to an obstacle vertically), ‘t6’ is triggered
when vdist() (vertical distance to an obstacle) is less than or
equal to StaticObsDfltVertDist (default distance allowed to an
obstacle vertically), and finally ‘t9’ is triggered upon reqHCM
(the LRE requests HCM model).

A. Assurance case for the AUV

With the defined behavioural model for the AUV, we discuss
the assurance case (created using ACME) for the AUV, and
focus on relevant parts of it for the LRE. We focus on the
scenario of static obstacle avoidance for the LRE, the safety

argument fragment of which is shown in Figure 14. The
top level Goal C6_a states that upon detecting a close static
obstacle, LRE should advise the autopilot to switch to HCM
and reduce the velocity of the AUV to 0.1m/s. C6_a is in the
context of, and thus contingent upon, Assumption LRE_A1, and
Away Goals Autopilot and Sensors4. LRE_A1 ensures that the
argument need only hold when the operator is not in control;
the alternative case is handled by the Operator module. We
support C6_a by decomposition. Strategy LRE_S1 states our
argument strategy, which is in the context of Context LRE_C1.

We focus on Goal C7_a for illustration. In C7_a, we state
that the LRE should activate HCM if there are potential
collision risks. We support this Goal with Solution Sn1, which
states that transitions to HCM mode from MOM should be
modelled by the behavioural model in Figure 13.

B. Traceability to AUV Models and Evaluation

Certain GSN elements, such as Contexts and Solutions, can
refer to models/documents external to the assurance case. With
traditional GSN approaches, references to external models/-
documents are informal (only names of the models/documents
are referenced and tracing is performed manually) and their
validation is often performed manually. In ACME, we provide
this traceability support by using SACM’s ArtifactPackages
(as discussed in Section III) and the ability to automatically
validate linked artifacts.

We illustrate traceability with C7_a, which is supported
by several transitions in the RoboChart state machine. To be
able to reference elements of the RoboChart model shown
in Figure 13, we create an Artifact named LRE_HCM_R1,
which will be used by solution Sn1. In ACME, elements
can be edited using property dialog windows. The properties
of LRE_HCM_R1 are shown in Figure 15. As discussed in
Section III, for elements in the ArtifactPackage, it is possible
to attach Propertys to them. Therefore, we make use of this
feature to store locations of models/documents external to the
assurance case. In ACME, we add a default Property for each
Artifact, and we record “document” (which stores the location
of the document/model), and “metadata” (which stores the
location of the metadata/metamodel)5, the users can browse
and select their document/madatada pairs external to their
assurance cases in the “References” section of the dialog in
Figure 15.

C. Validation of traced model and integration of CNL into
ACME

With our established way to refer to external models/doc-
uments, our next step is to look into making use of such
models/documents within the assurance case. As discussed
in Section III, we use ImplementationConstraints to store
model validation rules in Artifacts. We support validation rules
written in the Epsilon Object Language (EOL) [24] and rules
written in CNL. For CNL rules, we integrate the CNL editor
in our property dialog. But instead of relying on Xtext’s
Generator, we obtain the CNL instance model directly, and
perform the model-to-text transformation from CNL to EVL
programmatically. Since we are evaluating against models

4The away goals must be supported in the Platform and Autopilot GSN
modules for the LRE module to be valid.

5It is to be noted that engineering artifacts should be organised in the same
project where the assurance resides.
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Fig. 13: LRE RoboChart State Machine

Fig. 14: LRE assurance case module for obstacle avoidance.

directly in ACME, no mapping is needed. Remember that in
our CNL syntax, before a Type, Enum or Feature is used, it
needs to be declared in the editor first. In ACME, since we
obtain the model and the metamodel through the “Reference”
section of the property dialog, we automatically inject names
of all Types Enums and Features in the editor, so that the users
can start writing CNL rules without worrying about declaring
names.

In the Artifact dialog shown in Figure 15, in the “Im-
plementation Constraint” section, we attach the validation
rule in Listing 3 in Section IV. In this rule, we obtain all
Transitions from “MOM” to “HCM” in the state machine
in Figure 13. We check that the names of the Transitions
are either ‘t4’ or ‘t5’ or ‘t6’ or ‘t9’. This is due to the
fact that in the LRE development process, unique global
IDs for elements are used, if for example, Transition “t4”
is deleted, the name “t4” cannot be used any more. In
addition, LRE_HCM_R1 depends on four more Artifacts:

Fig. 15: ACME dialog to edit properties of an Artifact.

LRE_HCM_R1_t4, LRE_HCM_R1_t5, LRE_HCM_R1_t6 and
LRE_HCM_R1_t9. In LRE_HCM_R1_t4, we specify rule

find all data in Transition where name = "t4"
then
<EOLExpression>
return condition.left.left.name = "hvel" and

condition.left.right.value = 0.1 and
condition.right.left.name = "hdst" and
condition.right.left.args.first = "cstc" and
condition.right.name = "StaticObsHorizDist";

</EOLExpression>

to check the condition of ‘t4’ (shown in Figure 13). In here
we make use of the GPLRule in which we incorporate EOL
expressions in the “<EOLExpression>” tag. This is because
that the RoboChart metamodel is rather complex, and the
condition

[hvel ≥ 0.1 ∧ hdist(cstc) ≤ StaticObsHorizDist]

in the RoboChart model is rather complex, such that if CNL
is used, instead of writing

condition.left.left.name = "hvel"
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we would write nested property access expressions such as

name from left from left from condition is "hvel"

which is currently not supported (to avoid incomprehensible
statements of this sort) This is an example of when verbose-
ness of the CNL is adversarial. However, the use of GPLRule
addresses this problem efficiently. Artifacts LRE_HCM_R1_t5,
LRE_HCM_R1_t6 and LRE_HCM_R1_t9 have similar valida-
tion rules.

The user can evaluate the query inside the dialog by pressing
the “Query” button. ACME will load the model specified in
the “Reference” section and transform-execute the validation
rule, the result of which is displayed in the “Query Result” text
field. It is to be noted that any Artifacts that LRE_HCM_R1
will also be validated, and the results will be displayed in
the “Query Result” text field. It is important to note that
since Epsilon supports arbitrary modelling technologies, in
theory in ACME we can support models defined using other
technologies such as Simulink, and PTC Integrity Modeller.

D. Automated validation of the assurance case

With trace and validation rule defined, Artifact
LRE_HCM_R1 can then be used as supporting evidence
for our assurance case (Solution Sn1). To do this, within
Sn1 we “cite” LRE_HCM_R1 (defined in the AUV_Artifact
package) in the “Citation” section of the property dialog,
shown in Figure 16.

Fig. 16: ACME dialog to edit Solution Sn1.

With Artifacts “cited” by GSN elements, it is possible
to validate the assurance case from a single point. For this
purpose, we create a context menu entry “validate” in GSN
editors. When we validate a GSN module in ACME, it auto-
matically traces to Artifacts from either Solutions or Contexts;
then, ACME executes model validation rules in the Artifacts
written in either EOL or CNL. If there are problems (model
validation returning “false”), ACME puts an error marker on
the offending element, as shown in Figure 14.

This process of validation can be performed at regular in-
tervals to ensure that updates to models and other engineering
artifacts do not invalidate the assurance case. For example, if
a developer removed one of the transitions from MOM to
OCM, ACME will be able to detect this change and flag
an error. In this way, we can automate the validation of
heterogeneous evidence in an assurance case. In addition, we
can proactively manage changes in the engineering artifacts
from the perspective of the assurance case.

VI. EVALUATION

In this section, we present the empirical results obtained
when evaluating the CNL integration into ACME for the AUV
case study.

A. Coverage

We first classify the rules (used in the AUV case study) into
8 categories and then analyse the coverage of the CNL with
respect to the total number of rules. These rules are provided
originally in a mixture of natural language and pseudo codes,
and are written so that domain experts can understand them,
hence are not amenable to machine consumption in any way. In
order for these rules to be executed against the AUV model,
they have to be understood by a domain expert and then a
technical expert will have to write the appropriate low-level
(EVL) code representing these rules. This process requires
stakeholders with different expertise to collaborate and can
introduce further risk as the two interpretation steps need to
be in line with one another.

Category Count
type/enum check 155
comparison 32
comparison + logic 7
using variables 155
duplicate check 2
multi-key match 11
enumeration sub-matching 3
complex rule 7

372

TABLE I: Classification of queries.

Table I presents these categories. We observe that the large
majority of rules fall under either simple type/enumeration
checks or elaborate rules requiring the use of variables and
functions (matching rules), often across different domain el-
ements. From the remaining rules, the 7 complex rules are
noteworthy as it was decided that attempting to further classify
them or convert them to CNL was not efficient. Instead, these
rules are flagged as complex and meant to be executed through
the use of GPL rules that are written in the target language
used to execute against the data itself. Finally, the category of
enumeration sub-matching is not yet supported, even though
such a feature can be added in further iterations of the tool, as
mentioned in Section 8. As such, we achieve 98% coverage
(as we do not currently offer CNL expressiveness for complex
rules and enumeration sub-matching rules), whilst opening the
possibility (through the use of GPL rules) for any rule to be
written in the CNL document regardless, in order to ensure
that a single document contains all the rules that need to be
executed, regardless of whether they can be actually expressed
in CNL.

B. Verboseness

We then evaluate the verboseness of the rules written in
CNL. Should the CNL form of the rules be disproportionate
to the complexity of the rules (the size of the rule written
in the execution language) then it may be unreasonable to
expect them to be written by domain experts as it will
become tedious to write extremely long CNL rules. As such,
we compare the size in characters (ignoring whitespaces) of
various rules written in CNL with the rule written in EVL, as
a representative sample of verboseness.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, XXX 2023 12

Category CNL EVL
type/enum check 33 86
comparison 51 118
comparison + logic 135 270
using variables 308 523
duplicate check 55 226
multi-key match 63 485

TABLE II: Rule character count ignoring spaces.

Table II shows the relevant character count for a representa-
tive rule written for each of the categories the tool supports. It
can be seen that CNL rules are much less verbose than EVL
constraints written in Epsilon. Considering the fact that the
EVL programs are generated by the tool and as such attempt
to be as minimal as possible (as they do not care about human
readability at all), we have gained confidence that writing rules
in CNL require less effort than the same rule written by the
relevant expert in EVL or any other validation languages.

C. Extensibility

Extensibility shall be considered in three aspects. First,
language extension can be achieved by simply modifying
the CNL grammar and re-configure the CNL parser to extend
expressions/semantics for intended use. Regarding extending
the subset of English supported by the CNL, this would require
adding the new expressions in the Xtext parser that reads the
CNL document and creates the relevant model. Since adding
new English phrases is unlikely to affect the model itself
but rather the parser, we believe that the CNL framework is
extensible in this regard as only one component of the system
needs to be adapted to add this functionality. We attempted
10 re-configurations by adding new expressions in the Xtext
parser, and the result confirms our intuition with regard to
language extension. Secondly, domain extension is naturally
supported since CNL does not target a specific domain with
the help of the mapping model. Finally, execution technology
extension is supported by the design of our approach, in the
sense that any data storage technology can be supported, and
the target validation language is not bound to EVL alone.
Hence, any validation execution technology is supported by
creating a transformation which targets the intended validation
language.

D. Efficiency of CNL with ACME

We then evaluate the efficiency of CNL integrated with
ACME in the AUV assurance case. Two test subjects are
invited for an experiment, A (unfamiliar with Epsilon) and B
(experienced with Epsilon). Test subject A is a professional in
safety case development and review (in GSN) in the aviation
industry, and has extensive experience in hardware design
and software verification. But, test subject A has limited
knowledge of modelling and model management. Test subject
B is a professional in the automotive industry (certified ISO-
26262 engineer), and have a basic understanding of safety case
and have seen safety cases developed in GSN. Test subject B
has plenty of experience in modelling and model management.
CNL is explained briefly to both A and B, and a brief trainings
on Epsilon is provided to A. There are two workloads WL1
and WL2, WL1 involves validating two GSN solutions (trace
to and validate two different models), where WL2 involves
validating a GSN module with 2 Contexts and 3 Solutions

(trace and validate four different models). Each test subject A
and B are asked to complete WL1 and WL2 with CNL and
Epsilon, respectively.

Test subject Language WL1 (minutes) WL2 (minutes)
A CNL 2.5 5.5
A EVL 40 80
B CNL 2 3.5
B EVL 25 58

TABLE III: Efficiency experiment.

As shown in the table III, the time it takes for both A and B
to complete the task using CNL is much less than using EVL.
Test subject A takes more time to complete the tasks than B
using EVL due to the limited knowledge on modeling and
EVL. Test subject B take less time to complete the tasks than
test subject A using both EVL and CNL, as he/she is more
familiar with modelling and model validation languages. Test
subject B claims that he/she prefers the mixture of CNL and
EVL as the verboseness of CNL for complex models can be
redundant to write.

Student CNL(minutes) EVL(minutes)
1 35 330
2 38 400
3 40 320
4 32 290
5 33 300

TABLE IV: Normalised efficiency experiment.

To normalise our findings, we expand the evaluation for
efficiency to a group of test subjects with similar expertise. We
ask 5 MSc students with an (more or less) equal amount of
training on safety cases and hardware design to construct a par-
tial assurance case for a sensor power supply unit for an AUV.
We provide the hardware design model in Matlab/Simulink
to the students and ask them to perform Failure Mode and
Effect Analysis (FMEA) on the design and store the analysis
results in an Excel spreadsheet. We then ask them to identify
the safety goals for the power supply unit and construct an
assurance case with the identified safety goals. We ask that
they shall create at least 1 Context in GSN and 2 Solutions in
the assurance case, and they shall refer to the Simulink model
and the FMEA result in their assurance case. We then ask them
to create validation rules in CNL and Epsilon respectively
in the GSN elements so that they can refer to the Simulink
model and the Excel spreadsheet and validate them within
their assurance case. Again, training on CNL and Epsilon
are provided to the test subjects. The time it takes to write
validation rules and execute them for complete assurance case
validation for each test subject is shown in Table IV.

In summary, validating assurance cases with CNL in ACME
boosts the efficiency of validation, up to a factor of 10 compar-
ing to validation with Epsilon. In addition, we also note that
all experiment participants found the executable traceability
link from the model-based assurance case and engineering
models promotes the comprehensibility of the assurance case
significantly, in the sense that the participants do not need to
manually find the referenced engineering models, and perform
validations on the models separately.

VII. RELATED WORK

There are a number of assurance case tools that adopt
MDE, such as AdvoCATE [10], ASCE [31] and CertWare
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[32]. Among them, only AdvoCATE provides the support
to express the traceability from an assurance case to its
supporting documents. It provides “hyperlinks” to external
models/documents to provide traceability, however, no means
for validating the referenced engineering artifacts has been
provided. AdvoCATE also provides a query language to check
the well-formedness of the assurance case, it resembles model
query languages such as OCL and EOL, however, its syntax
dictates that the users need to spend some time to learn the
query language before using it. In [12], the authors use a
weaving model to link system models for automated assurance
case instantiation. Rushby conceived of an evidential tool
bus [33] that would allow integration of various verification
tools to provide evidence to an assurance case, an idea that
was later realised by Cruanes et al. [34]. In [35], the authors
propose the use of formal languages to express assurance cases
using Isabelle/SACM. Whilst the validation of Isabelle/SACM
is performed by the theorem prover on Isabelle server to show
the logical integrity of the assurance case, there currently is
no way for the formal assurance case to trace to and validate
engineering models external to the assurance case. In addition,
theorem proving takes a significant amount of time, which
renders this approach infeasible for the validation of assurance
cases at runtime. For CNL, [26] discussed an approach to map-
controlled natural language to business rules that align with
Semantics of Business Vocabulary and Business Rules stan-
dard (SBVR); in [36] the authors presented a mapping from
expressions written in SBVR to Drools. As good as SBVR
is at introducing structure to constrained natural languages,
its inherent complexity means that for smaller dialects the
overhead of the standard may overshadow its usefulness.

VIII. SUMMARY AND FUTURE WORK

In this paper, we presented our approach for automated
model based assurance case validation and management. With
our implementation of SACM and its tool support ACME,
we are able to provide a systematic approach to managing
engineering artifacts (models and/or structured documents)
within an assurance case, with the traceability support to
the granularity at the model element level. For engineering
models, we provide support which enables practitioners to
attach model validation rules to SACM elements, which are au-
tomatically executed when the assurance case is validated. We
point out the challenges in using model validation languages
for system assurance practitioners adopting MDE, and we
propose a solution to address such challenges through the use
of CNL. We presented our preliminary CNL metamodel, CNL
grammar and the model-to-text transformation from validation
rules written in CNL to validation rules written in EVL.
We then discussed the integration of our CNL framework
into ACME to support the automated validation of assurance
cases using CNL. This work promises that system assurance
practitioners adopting MDE do not need extensive training for
MDE programming languages, and the comprehensibility of
traceability to models within an assurance case is promoted.

In this work, we only incorporate CNL in validation rules
for engineering artifacts. In the future, we plan to support
CNL in the description of SACM elements, so that we may
1) define terms and expressions used in an assurance case
using SACM’s Terminology component; 2) relate elements in
Terminology packages within the arguments of the assurance
case to promote consistency; 3) translating CNL descriptions

into formal notations for machine checking the logical in-
tegrity of assurance cases. The use of CNL in arguments of
an assurance case provides the possibility to promote stan-
dardisation of the language used in assurance cases, therefore
provides a solid foundation for more automated operations on
such completely model based assurance cases. We also plan
to support validation of engineering models defined in other
modelling technologies such as Simulink and PTC Integrity
Modeller.
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