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Figure 1: Given a single input image (column 1), our method can produce realistic re-aging results (10 years old to 80 years old) in both

facial appearances with skin color changes (column 2−5) and detailed shapes with high-frequency geometric changes, such as skin wrinkles

(column 6−7).

Abstract

While current facial re-ageing methods can produce realistic results, they purely focus on the 2D age transformation. In this

work, we present an approach to transform the age of a person in both facial appearance and shape across different ages while

preserving their identity. We employ an α-(de)blending diffusion network with an age-to-α transformation to generate coarse

structure changes, such as wrinkles. Additionally, we edit biophysical skin properties, including melanin and hemoglobin, to

simulate skin color changes, producing realistic re-ageing results from ages 10 to 80 years. We also propose a geometric neural

network that alters the coarse scale facial geometry according to age, followed by a lightweight and efficient network that adds

appropriate skin displacement on top of the coarse geometry. Both qualitative and quantitative comparisons show that our

method outperforms current state-of-the-art approaches.

CCS Concepts

• Computing methodologies → Texturing; Reflectance modeling; Shape modeling;

1. Introduction

Facial age editing has a long history in computer graphics and vi-
sion due to its various applications. Recent films, such as Indiana

Jones and the Dial of Destiny (2023), apply digital age transfor-
mation to the actors to represent the past, present, and future; for
example, they de-aged the actor Harrison Ford from 80 to 40 years
old. This has stimulated facial age transformation to become a pop-

ular and significant research direction.
Several challenges exist in this field. It is impossible to find

a large number of paired facial photos spanning a long pe-
riod. Consequently, some studies employ image-to-image trans-
lation techniques, such as age-conditioned Generative Adversar-
ial Networks (GANs), to convert faces from source ages to tar-
get ages [OESF∗20, HKSC19, LLS19]. While these methods can
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produce satisfactory re-aging results, they often struggle to pre-
serve identity, especially in transitions from childhood to adult-
hood. Hence, many of these approaches focus only on age trans-
formation within adulthood [YPN∗20, ZCS∗22].

Another significant challenge is generating plausible 3D shape
reconstructions with detailed face re-aging effects, such as wrin-
kles. Although some works successfully reconstruct high-quality
3D coarse shapes using model-free regression approaches [BV99],
statistics facial models [CWZ∗14, LBB∗17, PKA∗09], or geomet-
ric neural networks [RBSB18, ZBT22], they often overlook age as
a controllable parameter for head size.

Moreover, simulating changes in optical skin properties due to
ageing remains challenging. Most related works in computer vi-
sion and graphics focus on structural changes, such as producing
wrinkles [OESF∗20, HKSC19, LLS19, YPN∗20, ZCS∗22], while
neglecting changes in skin properties. For instance, concentrations
of principal chromophores (melanin and hemoglobin) typically de-
crease with age, resulting in lighter and paler skin. In contrast,
[IGAJG15] proposes a comprehensive biophysical skin model to
simulate the optical effects of ageing, which informs our work.
However, their method does not include structural changes in skin.

In this work, we aim to transform the facial age of a person
in both facial appearance and shape across different ages while
preserving their identity. To edit facial appearances, we first em-
ploy a skin model to simulate skin color changes by adjusting
the concentrations of the two primary chromophores (melanin and
hemoglobin). We further employ an α-(de)blending diffusion net-
work [HBC23] to edit faces within a paired dataset from ages 10
to 80 years, controlling the parameter α. However, the relationship
between age and α is non-linear; hence, we introduce an age-α
transformation method to achieve more plausible re-aging results.

For the age-dependent transformation of facial geometry, we
build upon part of the trained DECA [FFBB21] to capture accu-
rate latent space information, such as camera, lighting, and facial
geometry, from a single input image. The geometry information
can be fed into FLAME [LBB∗17] to produce high-quality 3D fa-
cial reconstructions. However, current methods related to 3D recon-
struction generally ignore the effects of age. Therefore, we employ
a geometric neural network to incorporate the age factor into the
FLAME model, thus altering the coarse scale facial geometry ac-
cording to age. This network is complemented by a refine network
that adds age-appropriate skin displacement on top of the coarse
geometry. Compared to some methods with heavy neural networks,
our network structure is simple and efficient, enabling the produc-
tion of age-appropriate facial geometry, including fine-scale wrin-
kles. Qualitative and quantitative evaluations show that our method
outperforms current state-of-the-art methods.

The main contributions of this paper are: (i) a diffusion-based
facial age editing network that effectively preserves identity; (ii) a
biophysical skin editing approach that simulates age-related skin
color changes; (iii) an age-conditioned geometric network that can
adjust the head size for children; (iv) a lightweight and efficient
refine network that produces realistic high-frequency geometric
changes, such as skin wrinkles.

2. Related Work

Here, we give a brief overview of two related topics: face age trans-
formation and reconstruction.

Face age transformation Face re-aging is one of the most
challenging face manipulation tasks due to missing datasets of real
people spanning their whole lives. Additionally, the apparent age of
a face can differ from the actual chronological age due to various
factors such as genetics, lifestyle, environmental influences, and
the presence of makeup. Early works in this field focus on build-
ing a physics-based model [LTC02, SCS∗12] or a prototype-based
method [KSSS14,TGMM12,TBP01] to simulate aging effects and
facial details, such as wrinkles.

More recent approaches are mostly data-driven methods us-
ing deep learning techniques. Some employ age-conditioned
Generative Adversarial Networks(GAN)-based [GPAM∗20] meth-
ods to generate re-aged images by editing latent representa-
tion [OESF∗20,HKSC19,LLS19]. While these approaches can pro-
duce realistic results, it is difficult for them to preserve identity
information. To address this problem, some work design a net-
work containing an Encoder and a generative Decoder [HLY∗21,
GTLMC22] or directly apply an Encoder-Decoder-based net-
work [YPN∗20, APCO21]. These methods can produce high-
quality re-ageing results. However, they overlook the optical
changes in skin due to ageing.

In recent years, several biophysical skin appearance models
have been proposed [DJ06,JSB∗10,GGD∗20,AXX∗23,LGLG24].
These methods mainly focus on simulating accurate skin appear-
ance using practical models, but do not account for ageing changes.
In contrast, [IGAJG15] proposes a complex biophysical skin model
to simulate appearance changes due to ageing, yet it does not incor-
porate any structural changes.

Aside from appearance changes, human faces undergo changes
in shape as they age. Therefore, some research, such as [HLY∗21],
also focuses on extracting shape features. However, these studies
primarily concentrate on 2D image editing. In contrast, our work
performs face re-ageing by considering both the 2D image space
and 3D head shape. Furthermore, unlike other approaches that cat-
egorize ages into specific groups, our method allows for the editing
of faces on a continuous scale to achieve any target age within the
extensive range of 10−80 years old.

Face reconstruction There are many excellent 3D face recon-
struction methods. Several works apply model-free approaches to
regress 3D shapes, such as 3D Morphable Model (3DMM) [BV99].
There are also some well-known statistical models, such as Face-
Warehouse [CWZ∗14], Basel Face Model (BFM) [PKA∗09], and
FLAME [LBB∗17]. Recently, several works have relied on deep
learning methods to reconstruct 3D mesh, such as COMA using
convolutional mesh autoencoder [RBSB18] and MICA [ZBT22].
Unlike our work, these works focus on reconstructing a good coarse
shape, but not on re-ageing faces. Therefore, they do not incorpo-
rate an age factor to control the head shape.

After obtaining the coarse shape, some works further add refine-
ment methods to obtain more detailed shape features. Some employ
or capture a 3D high-quality face dataset, and then compute facial
details map from images [CCZ∗19, GZC∗17, LMG∗20, THM∗17].
On the other hand, some methods design neural networks to pre-
dict facial detail maps, such as displacement maps [FFBB21]. More
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Figure 2: Overview. Starting with a single image I as input, our method first employs an age predictor [RTG15], to estimate the source

age as. With a given target age at , SkinNet edits the biophysical skin appearance due to ageing based on a skin model while AgeEditNet

changes the structural aging effects iteratively from the source age as to the target ages at . Subsequently, we use the trained Encoder of

DECA [FFBB21] to predict lighting, camera, and shape information. The next step involves GeoNet, which processes shape (β), expression

(ψ), pose (θ), and age (a) parameters to reconstruct a coarse shape. This is followed by Re f ineNet, a lightweight network designed to predict

a displacement map. Finally, we render the resulting image using the re-aged texture and detailed shape, incorporating the camera (c) and

lighting (l) parameters. Here, we brighten the displacement map to show the details more clearly.

related to our work, DECA [FFBB21] presents a state-of-the-art
method to reconstruct an animatable detailed 3D Face Model from
a single in-the-wild image. Furthermore, Danecek et al. extended
DECA for emotion reconstruction with a novel deep perceptual
emotion consistency loss [DBB22]. We follow a similar strategy
to obtain detailed shape reconstruction, but our refinement network
is lightweight, consisting of only two convolutional layers.

3. Method: 3DFAT

We propose 3DFAT, a novel method to generate a 3D age-editable
model from a single image. We leverage the trained Encoder of
DECA [FFBB21] to extract lighting, camera, and shape informa-
tion from a single image. For texture editing, we first apply a simple
biophysical skin model to simulate changes in skin albedo due to
ageing, followed by a novel diffusion network, AgeEditNet, which
alters the age of the input image (Section 3.1). In the 3D shape
reconstruction phase, our novel geometric network, GeoNet, uses
shape, expression, pose, and age factors to reconstruct a coarse
shape. This is followed by a lightweight network, Re f ineNet,
which predicts a displacement map to achieve a detailed shape
(Section 3.2). Finally, using the same camera and lighting settings,
we render the face with the re-aged texture and the detailed shape.

3.1. Texture Editing

3.1.1. Biophysical Skin Editing

Ageing causes coarse structure changes like wrinkles, as well as
changes to optical properties due to chromophores such as melanin
and hemoglobin, which primarily affect skin color. In recent years,
several biophysically-based spectral skin reflectance models have
been proposed [DJ06, JSB∗10, GGD∗20, AXX∗23, LGLG24].

In this work, we employ the recently proposed skin model

Figure 3: Biophysical skin editing. The SkinNet consists of

PredNet and ReconNet. Given an input image, PredNet predicts

chromophore concentration, which is further edited and fed into

ReconNet to reconstruct re-aged skin appearance.

© 2024 The Authors.
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of [LGLG24], which is based on diffusion theory and includes
five choromophore parameters. This model has been demonstrated
to reproduce skin appearance with high accuracy. We simulate
skin changes due to ageing by adjusting melanin and hemoglobin
concentrations (Cm and Ch). Figure 3 illustrates the network
structure of SkinNet, which consists of PredNet and ReconNet.
PredNet predicts the concentrations of the two chromophores, and
ReconNet reconstructs skin appearance from chromophores con-
centrations. Both networks are Multilayer Perceptrons (MLPs).

Between these two networks, we compute the new chromophore
parameters by taking into account the source age as and target age
at as show in the following equation:

Cm(at) = (1+
km(as −at)

10
)×Cm(as),

Ch(at) = (1+
kh(as −at)

10
)×Ch(as)

(1)

where km = −0.08 and kh = −0.06 represent the decrease in
concentration of each chromophore per decade as a function of
age [IGAJG15]. An ablation study for this step is reported in
Section 4.5.

Training Details: The training dataset for these two networks
is the augmented Lookup Table generated by the skin appearance
model [LGLG24]. This Lookup table covers a wide number of skin
colors, allowing for the simulation of appearances across different
ethnicities and genders. The training process is fast and efficient
since we do not train on a large image dataset. The testing dataset
is the same image dataset used by other networks in our pipeline.

The loss function for both networks is the Mean Squared
Error(MSE). The PredNet and ReconNet are separately optimized
using Adam solver with a weight decay of 1e-6 and learning rates
of 3e-4.

3.1.2. Ageing Structural Editing

After editing skin properties, we employ AgeEditNet, a denoising-
diffusion network as outlined in [HBC23], to iteratively edit the age
in images. The α-blending diffusion method, known for its simplic-
ity and efficiency, serves as a robust denoising diffusion framework,
with several powerful applications. In fact, it enables the mapping
between arbitrary image densities. Using this network architecture
(Figure 4), we achieve the mapping of facial features from source
ages to target ages by adjusting the parameter α.

Age-α transformation: However, the relationship between the
parameter α and age a may not be linear. To address this issue,
we use a pre-trained age predictor [RTG15], to estimate the age of
subjects in images in the training dataset at each iteration. We then
model this relationship using polynomial regression, represented
as α = Θ(a). This allows for the accurate prediction of actual input
values for both the source and target ages. For further details on
this approach, please refer to the ablation study in Section 4.5.

Age editing method: Using the age-transformation parameter
α, our network, denoted as D, is capable of iteratively editing faces
to achieve a target age, αt , starting from the source face age, αs.
The sampling algorithm is detailed below.

Generating facial dataset ′Li f espan Dataset′ with paired

ages: We selected the FFHQ-Aging dataset [OESF∗20], an ex-
tension of the Nvidia FFHQ dataset [KLA21], which includes

Figure 4: Ageing structural editing. AgeEditNet is an α-blending

diffusion network that re-ages the image from the source age as to

the target age at with age-α modification.

Age editing algorithm

Require: Is, αs := s
T , αt := t

T

if αt > αs do

for i = s, ..., t do

Iαi+1 = Iαi +D(xαi ,αi)
else do

for i = t, ...,s do

Iαi+1 = Iαi −D(xαi ,αi)

70,000 images with age and gender information. To create a
paired datasets, essential for our work, we follow a similar ap-
proach to FRAN [ZCS∗22], by applying SAM [APCO21] to
the FFHQ-Aging dataset. This process generates a high-quality
Li f espan Dataset with paired facial images of individuals aged
from 10 to 80 years old.

Training Details: Our network’s training requires paired syn-
thetic data of individuals aged 10 and 80 years old, along with the
original images. The input data consist of images representing a
10 years old age state, while the reference data are images corre-
sponding to an 80 years old state. Additionally, we use predictions
of images with the real age to compare with the original images, en-
suring the network’s quality. The loss function used in this process
is defined as follows:

Lage = ||O80 − I80||2 + ||Oαr − Iαr ||2 (2)

where O80 and I80 represent the predicted and synthetic images at
80 years old, respectively. Similarly, Oαr and Iαr denote the pre-
dicted and reference images corresponding to the actual age, re-
spectively.

To optimize this loss function, we use the Adam optimizer with
a learning rate of 4e− 3; the training of AgeEditNet is conducted
over 200 epochs.

3.2. Shape Reconstruction

3.2.1. Coarse Shape Reconstruction

FLAME is a statistical 3D face model capable of reconstructing
high-quality 3D coarse shapes [LBB∗17]. However, it is limited in
its ability to modify the head shape in accordance with age changes.
To address this issue, we incorporate the age factor along with
shape, expression, and pose information into the geometry network

© 2024 The Authors.
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Figure 5: Coarse shape reconstruction. Given the shape (β), ex-

pression (ψ), pose (θ) parameters predicted by the pre-trained

Encoder, along with an age parameter a, GeoNet reconstructs a

coarse shape of the input image.

GeoNet. This allows for the reconstruction of a 3D coarse shape
that can be altered with age. For more details on the impact of the
age factor, please refer to the ablation study in Section 4.5.

GeoNet is a convolutional mesh decoder, similiar to the one de-
scribed in [RBSB18]. It consists of a fully connected layer that
maps input facial data, followed by five blocks and a Chebyshev
Convolution layer [DBV16]. Each block includes an Up-Sampling
layer, a Chebyshev Convolution layer with K = 3 Chebyshev poly-
nomials, and an Exponential Linear Unit(ELU) [CUH16] activation
function. Regarding the age parameter, we use a gating mechanism
for adults to ensure the head size remains constant during adult-
hood. The architecture of this part is shown in Figure 5.

Datasets: Reconstructing a high-quality 3D shape from a sin-
gle input image presents significant challenges. To address this,
we use the Facescape dataset [YZW∗20], which multi-view im-
ages of 359 subjects with 20 expressions and three different views
(front, left, and right). This dataset helps us in reconstructing accu-
rate 3D coarse shapes. Additionally, we employ Li f espan Dataset

for training. However, instead of using three different views, we use
synthetic images representing three distinct ages. Training on this
mixed dataset forces the network to maintain age consistency while
keeping pose and expression factors constant.

Training details: Leveraging the trained Encoder of DECA, we
accurately predict shape (β), expression (ψ), pose (θ), camera (c),
and lighting (l) parameters. The first three parameters form a suit-
able latent space for the FLAME model [LBB∗17], while the last
two are used for rendering. The total loss function is

Lshape_c = λvLv +λphoLpho +λageLage +λregLreg (3)

where Lv is the vertices loss, Lpho is the photometric loss, and
Lage is the age prediction loss; each loss component is weighted by
a factor λx

• Vertices loss: it computes the difference between the predicted
vertices Ṽ from GeoNet and those V from FLAME, as Lv = ||Ṽ −
V ||1.

• Photometric loss: defined as Lpho = ||M ⊙ (R̃−R)||2, where
M is the face mask. R are the reference images, which vary based
on the dataset source, ensuring shape consistency and improved re-
aged results. R̃ are the rendering results given by R(G,S,c) where
G is the coarse geometry, S is the shaded face computed as

S(T, l,N)i, j = Ti, j ⊙
9

∑
k=1

lkHk(Ni, j) (4)

Figure 6: Detailed shape reconstruction. Re f ineNet extracts the

high-frequency information from the input image as a displacement

map.

where T is diffuse texture, l and H are the SH coefficients and
basis [RH01], and N is the normal map of pixel (i, j) in the UV co-
ordinate space.

• Age prediction loss: Lage = ||ã−a||2, measures the accuracy
of predicted ages a against reference ages ã. The same age predic-
tor as in the age editing part is used.

• Regularization: to regularize the predicted mesh we use
Lreg =Lnormal +Llaplacian, where Lnormal is the mesh normal con-
sistency, computed for each pair of neighboring faces and Llaplacian

for mesh smoothing [NISA06].
We train this network using the Adam optimizer with a learning

rate of 1e−4 and a learning rate decay of 0.99 every epoch.

3.2.2. Detailed Shape Reconstruction

A primary challenge in reconstructing a 3D ageing model is the
generation of facial details, such as wrinkles. The coarse shapes
produced by GeoNet contain low- and middle-frequency informa-
tion about faces. Early work in this area often use some low-pass
filters like Difference of Gaussians (DoG) to blur the images, then
extracting high-frequency details by subtracting the blurred im-
age [CBZB15]. While these methods produce high-quality results,
they require the selection of user-defined parameters. To overcome
this limitation, we propose Re f ineNet, a lightweight network us-
ing two convolutional layers. We initialize the network’s weights
with a Gaussian filter (µ = 0, σ = 3), thus eliminating the need
for manual parameters tuning and reducing both training time and
complexity compared to deeper networks [FFBB21]. The architec-
ture of Re f ineNet is shown in Figure 6, where the displacement
map is brightened for clarity.

Training details: Given that our datasets consists only of 2D im-
ages, the loss function for this network compares rendering results
with reference images. Inspired by [THM∗17], we incorporate the
2D gradient of predictions and references into the loss function,
to retain high-frequency details while suppressing noise. The Loss
function is

Lshape_d = λphoLpho +λdxLdx +λdyLdy (5)

with photometric loss Lpho and derivative losses Ldx and Ldy on
the x and y axis, respectively.

• Photometric loss: After extracting the displacement map D,
we convert the coarse shape Gc to normal map Nc. We then obtain

© 2024 The Authors.
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Figure 7: Age transformation results from 14 to 80 years old. The input images are outlined with a thin red border. Our methods generates

realistic facial structural changes, such as wrinkles, with good identity preservation, as well as skin color changes due to ageing.

Figure 8: Coarse shape reconstructions with 20 years old and de-

tailed shape reconstructions of 40, 60, and 80 years old.

the detailed shape Gd as

Gd = Gc +D⊙Nc (6)

We convert Gd to the detailed normal map Nd , compute detailed
rendering R(Gd ,S(T, l,Nd),c), and then compute the photometric
loss with the same equation as in Section 3.2.1.

• Derivative loss: Following the approach in [THM∗17], the
derivative loss is calculated as

Ldx = ||
∂R

∂x
−

∂R̃

∂x
||1, Ldy = ||

∂R

∂y
−

∂R̃

∂y
||1 (7)

We train this network using an Adam optimizer with a learning
rate of 1e−5 and a 0.99 decay rate per epoch.

Figure 9: Comparison of the input (20 years old) and re-ageing

result (60 years old) and detailed comparison of the right eye and

chin in both facial appearance and detailed shape.

4. Results and Evaluation

In this section, we present the results of our work (Section 4.1),
qualitative and quantitative evaluation (Section 4.2 and Sec-
tion 4.3), a user study (Section 4.4), ablation study (Section 4.5),
and limitations (Section 4.6).

4.1. Results

Here, we sequentially display the results of 2D re-ageing results
and 3D coarse and detailed shape reconstruction of our work.

We present the lifespan changes of the whole face of three sub-
jects (A, B, C) from 14 to 80 years old in Figure 7. As can be seen,
our method produces realistic structural changes, such as wrinkles,
and performs well in identity preservation. Furthermore, the results
also illustrate the skin color changes due to ageing.

Figure 8 displays the corresponding coarse and detailed shape

© 2024 The Authors.
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Figure 10: An example of a round-trip transformation, aging a face

from 22 years old (a) to 62 years old (b), then de-aging back to 22

years old (c).

Figure 11: An extreme example of a subject from 80 to 10 years

old.

reconstructions for ages 40, 60, and 80 years. As shown, GeoNet

generates high-quality reconstructions from a single input image,
followed by Re f ineNet which produces detailed shapes, including
a wrinkle map. To highlight the details, we show a comparison of a
subject between ages 20 and 60, focusing on both facial appearance
and detailed shape, including cropped areas the right eye and chin,
as shown in Figure 9.

Our method generates realistic ageing effects, altering facial de-
tails and subtly changing eye color in addition to skin color. Fig-
ure 10 shows the process of ageing the face from 22 years old (a)
to 62 years old (b), then de-ageing it back to 22 years old (c). As
can be seen, our method is robust and consistent for both the ageing
and de-ageing processes. We also show an extreme example of age
reversal from 80 to 10 years old in Figure 11.

These examples demonstrate that our method effectively han-
dles subjects of various ages, ethnicities, and genders, producing
realistic re-ageing results with good identity preservation. Please
see more comparisons and the ablation study of the age factor in
Section 4.5.

Figure 12 shows rendering results of a face after age transforma-
tion and 3D upliting to obtain detailed shape. Here, we employ a
simple normal-based rendering technique using the Phong model
to relight faces under different environment maps. We render the
faces of a subject of 20, 40, 60 years old with diffuse albedo ob-
tained from the transformed 2D texture and shading according to
the transformed geometry; for specular roughness and specular re-
flectance we choose empirical values that are constant over the face.

4.2. Qualitative Evaluation

To the best of our knowledge, there are no public 3D re-
ageing methods in computer graphics and vision, therefore we
compare 2D rendering results with recent state-of-the-art re-
ageing methods, namely SAM [APCO21], LATS [OESF∗20],

Figure 12: Multi-view rendering results of 20, 40, 60 years old with

two environment maps.

Figure 13: Comparison of re-aged results using FRAN [ZCS∗22]

and our method. Input image from FRAN [ZCS∗22].

HRFAE [YPN∗20], FRAN [ZCS∗22], as well as 3D detailed shape
reconstruction methods close to us, namely DECA [FFBB21] and
EMOCA [DBB22]. Please note that for 3D comparison, those
methods can only reconstruct 3D shapes without age editing.

Age transformation: FRAN is a recent re-ageing approach
that demonstrates good identity preservation [ZCS∗22]. As their
code is not publicly available, we borrow an image from their pa-
per which is representative of their best result to compare with us.
As can be seen in Figure 13, our method performs slightly better in
identity preservation, such as mouth shape (row 3), and produces
more plausible facial details, such as a grayer eye color for the old
subject (row 2), as well more realistic lightening of skin color with
age. Additionally, FRAN manipulates facial ages from 18 to 80
years old, which is narrower range than our method.

Figure 14 shows the results of several recent methods for two

© 2024 The Authors.
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Figure 14: Qualitative comparison among our method and three SOTA ageing methods, namely SAM [APCO21], HRFAE [YPN∗20], and

LAT S [OESF∗20]. Notably, SAM shows a large identity loss compared to the other three methods, particularly for the male subject. In

contrast, HRFAE demonstrates improved identity preservation, but this method is constrained by the limited age range (20− 69 years old).

Additionally, challenges in producing significant changes for the oldest age group are observed in both HRFAE and LATS although LATS is

the best method among these four to de-age images to the children. Aside from the re-ageing quality, SAM and LATS can NOT preserve the

background in the input image, especially for the right subject with a complex background.

subjects, displayed side by side. SAM has significant identity loss
compared to the other methods, particularly failing to reconstruct
a similar chin pose for the male subject. Compared with SAM,
HRFAE demonstrates improved identity preservation; however,
this method is constrained by its limited age range (20-69 years
old). Additionally, we observe that HRFAE does not produce sig-
nificant changes for the oldest group, a problem shared by LATS,
although LATS is the most effective method among these four for
de-ageing images to childhood. Aside from the re-ageing quality,
SAM and LATS cannot preserve the background in the input image,
especially for the right subject with a complex background. Please
note that despite SAM poor performance in identity preservation,
likely due to some pre-processing steps, it performs well in render-
ing results with different ages. Therefore, similar to [ZCS∗22], we
choose SAM to generate our training dataset. Overall, our method
outperforms the other four in this task.

3D detailed reconstruction: To the best of our knowledge,
there is no publicly available 3D facial re-ageing method in
computer graphics and vision. Therefore, we only compare with
DECA [FFBB21] and EMOCA [DBB22], which are closer to our
method. These two methods can NOT edit ages, so we first employ
our method to alter the ages in the input images for them and then
produce detailed shapes for the aged images using their methods.
In contrast, we can obtain the re-aged image and shape directly us-
ing our method. As shown in Figure 15, our method outperforms

Figure 15: Comparison of 3D detailed reconstruction among

DECA [FFBB21],EMOCA [DBB22], and ours. DECA and

EMOCA can NOT alter ages, therefore we feed them the re-aged

images using our methods. The input image is taken from the

CelebA dataset.

the other two methods in generating ageing effects on the facial
geometry, such as wrinkles around the eyes and chins.

4.3. Quantitative Evaluation

Quantitative evaluation of re-ageing tasks is still a challenge due
to the missing photos of people. Similar to recent works [YPN∗20,
APCO21, LLS19, HKSC19, YHWJ17], we employ an online face
recognition API InsightFace [DGXZ19] to evaluate the results

© 2024 The Authors.
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of SAM [APCO21], LATS [OESF∗20], HRFAE [YPN∗20], and
our method. Here, we choose 100 images of the CelebA-HQ
dataset [KALL18]. Since the age labels of most test data are
"young", we assume the average ages are 25 years old and re-
age images to 60 years old to compare. Among these four meth-
ods, LATS [OESF∗20] is the only method to split ages into many
classes, but it can interpolate images between two classes. For the
age class 50-69, we choose the middle interpolation of this group
to represent 60 years old.

We predict the age and identity accuracy of the re-aged images.
The results of average age prediction in Table 1 align with our
qualitative evaluation that LATS and HRFAE have under-age is-
sues to different extents. For identity accuracy, we predict the em-
bedding of the original faces using the work of [DGXZ19] and
compute the cosine similarity of two embeddings. In Table 1, we
note that LATS [OESF∗20] and HRFAE [YPN∗20] receive slightly
better identity preservation than ours while all these three surpass
SAM [APCO21]. However, taking their under-age problems into
account, 3DFAT (ours) outperforms the other three methods.

Table 1: Quantitative evaluation

avg. age pred. identity preservation
SAM [APCO21] 56.93 0.6173
LATS [OESF∗20] 43.5681 0.9230
HRFAE [YPN∗20] 49.0181 0.9607
Ours 59.17 0.8518

4.4. User Study

To further evaluate the performance of our method, we conducted
two user studies with 10 participants each, comparing our method
with SAM [APCO21] and FRAN [ZCS∗22]. In the first study,
participants were instructed to choose the method that best rep-
resented how the person in the input photograph might look at a
specified target age. We selected 12 input images, including peo-
ple of different ages (26-61 years old) and genders, with target
ages ranging from 20 to 80 years old. In the second study, par-
ticipants were asked to select the method whose output best pre-
served the identity of the person at the target age. The experiment
proceeded by presenting the reference image on the left and three
re-aged images on the right, arranged in random order. Partici-
pants engaged in a ranking task, making sequential selections: first
choosing the most accurate representation, then the second best
from the remaining images. For each input image, the same out-
puts were presented multiple times, with the order of presentation
changed each time to exclude any potential bias. The selections
were aggregated across multiple subjects. All experiments were
conducted in a darkroom using a calibrated screen to ensure consis-
tent viewing conditions. We implemented our experiments in Mat-
lab utilizing the Psychophysics Toolbox extensions (PsychToolbox
v3.0.19) [Bra97, Pel97, KBP∗07].

Overall, we collected 576 rankings per user study, including a
small pilot run. Following the ranking task, we aggregated the se-
lections across participants and performed statistical analyses using
Fisher’s exact test to determine the significance of the differences
in method preferences. In the first user study, our method signifi-
cantly outperformed both SAM and FRAN in being selected as the

most accurate representation of the person at the target age. Our
method was selected as the first choice 44.1% of the time, FRAN
36.3%, and SAM 19.6%. The p-values for the first choices were
p = 0.0082 (FRAN vs. ours), p < 1 × 10−9 (FRAN vs. SAM),
and p < 1× 10−18 (ours vs. SAM), indicating strong preferences.
In the second user study, which focused on identity preservation,
the results favored our method, with our method being selected
54.5% of the time, FRAN 42.7%, and SAM 2.8%. The p-values for
first choices were p < 1× 10−4 (FRAN vs. ours), p < 1× 10−66

(FRAN vs. SAM), and p < 1× 10−96 (ours vs. SAM). These re-
sults demonstrate that our method outperforms FRAN and SAM
in both accurately re-aging and preserving the identity of the per-
son. Figure 16 shows the frequencies with which each method was
chosen as the first choice in each user study.

(a) Re-aging quality (b) Identity preservation

Figure 16: Bar plot showing the frequency with which each method

was chosen as the first choice, along with 95% confidence intervals.

4.5. Ablation Study

This section presents three ablation studies: the incorporation of the
age factor in GeoNet, the age-alpha transformation in AgeEditNet,
and the placement of biophysical skin editing within our pipeline
using SkinNet.

Age factor in GeoNet: Figure 17 compares 3D coarse shape re-
construction with different ages as input for the GeoNet, and the
3D reconstruction result from FLAME [LBB∗17]. Our result of fa-
cial reconstruction with 20 years old is similar to that of FLAME.
However, in contrast to FLAME, our method can manipulate the
head shape to a smaller size when given a younger age, and pre-
serve the identity shape, expressions, and poses at the same time.

Age-alpha transformation in AgeEditNet: It is well-
established that facial changes vary across different age intervals.
For example, facial changes are generally more pronounced be-
tween the ages of 10 and 20 years than between 20 and 30 years.
Therefore, it is not feasible to re-age the input by linearly control-
ling the parameter α linearly from the source age to the target age as
described in Section 3.1.2. Here, we introduce an age-alpha trans-
formation in AgeEditNet to address this issue. Figure 18 compares
the results with and without this operation. The input image sources
from the CelebA dataset with the “young” label. We assume the
subject is around 20 years old, and re-age their face to 10 years old
and 30 years old, respectively. As shown in this figure, the facial
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Figure 17: Comparison between FLAME [LBB∗17] and 3D coarse

shapes with different ages from GeoNet.

Figure 18: Ablation study of age-alpha transformation in

AgeEditNet. The image is taken from the CelebA dataset.

changes from 20−10 years old are larger than those from 20−30
years old, consistent with what we would expect for a face.

Biophysical skin editing: We report three ablation studies on
biophysical skin editing. The first study aims to show the impor-
tance of this step. The second study further discusses the order of
this step in the whole pipeline. The third one compares the editing
effects based on the concentrations of two chromophores.

Figure 19 (b, c) reports an ablation study of the ageing results
for an input image aged 20 years (a) with and without biophysical
skin editing, showing the subject at 60 years old. As can be seen,
the result with biophysical skin editing appears more realistic than
the one without editing.

Figure 20 compares the effects of biophysical skin editing
(SkinNet) applied before (c) and after (b) the structural changes
(AgeEditNet). As can be observed, the pre-processing result more
effectively produces ageing effects, such as wrinkles, especially in
the areas of the eyes and chin. The primary reason is that skin edit-
ing reduces the skin color intensity as it ages, resulting in lighter
skin tones, including areas around wrinkles. Therefore, we perform
skin editing before making changes to facial structures.

The last ablation study for biophysical skin editing examines the
different values for the decrease in the concentrations of melanin
and hemoglobin, demoted as km and kh, respectively. Biophysical
skin editing affects different skin types based on the estimation of
these two chromophores. Here is an example showing the input im-
age (60 years old) and de-aged results (30 years old) with different

Figure 19: Comparison between re-ageing results with and without

biophysical skin editing.

Figure 20: Ablation study of the biophysical skin editing before

and after the structural changes.

km and kh (see Figure 21). The range for km is 0, -0.04, -0.08, -0.16,
while the range for kh is 0, -0.03, -0.06, -0.12.

As shown in this Figure 21, we de-aged the input image
(60 yrs) (a) to the result (30 yrs) (e) with km = −0.08,kh =
−0.06 [IGAJG15]. Images in the top row show that faces get darker
as km decreases, due to increased melanin concentration. Similarly,
images in the second row show that faces get more reddish as kh de-
creases, due to increased hemoglobin concentration. These changes
are in line with what we would expect from de-aging the subject.

4.6. Limitations

Although our method can produce realistic 3D re-ageing results by
editing in both texture and geometry, it still has some limitations.
First, we employ a diffusion-based method to edit ages between
10−80 years old, which excludes the infant and child stages. Sec-
ond, while our method outperforms many others in identity preser-
vation, it cannot produce certain generative ageing effects, such as
gray hair and skin sagging. Third, a halo effect is present in some
final results. One possible solution is to employ alpha matting in-
stead of a binary facial mask for better performance around facial
boundaries. Additionally, using an eye mask can help mantain ac-
curate eye colors. Moreover, we currently train our method using
a 256×256 resolution dataset; however, it can be trained with a
higher-resolution dataset. Finally, we do not separate environment
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Figure 21: Ablation study of the biophysical skin editing with dif-

ferent decreases of chromophore concentrations km and kh. The

subject in (a) is 60 years old, and the target age is 30 years old,

so we expect an increase in chromophores concentration.

maps from the input images, which impacts the relightability of the
generated age-transformed 3D face.

5. Conclusion

This paper presents a neural pipeline for realistic editing of facial
age in terms of both facial appearance and 3D shape with age-
appropriate details. Unlike previous works that either focused on
purely 2D age transformation of facial images, or purely focused
on 3D geometry estimation for a given 2D facial photograph, our
method is the first to propose a joint pipeline that uplifts facial age
transformation from 2D to 3D. Furthermore, we demonstrate state-
of-the-art results for both the aspects of age-appropriate facial ap-
pearance transformation with identity preservation, as well as facial
geometry transformation including reduction in head size for young
age and fine scale geometry for skin wrinkles for older age. In fu-
ture work, it would be interesting to extend our method to handle
changes in hair appearance as well as larger scale changes in facial
shape due to ageing using generative techniques. Additional useful
direction of extension would be predicting de-lit albedo textures
with age-transformations for realistic relighting applications.
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