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Comparison of Jet Noise Models

Mohammed Z. Afsar∗, Ann P. Dowling† and Sergey. A. Karabasov‡

University of Cambridge, Cambridge, CB2 1PZ, UK

Acoustic analogy theories for Jet Noise Prediction are formulated from the Navier Stokes

equations using Green functions, describing wave propagation, and semi-empirical modeling

of the turbulent statistics that act as noise sources. In a departure from this standpoint

the Tam and Aurialt use an ad-hoc kinetic theory type argument that has been successful

in predicting the 90 degree acoustic spectrum. In this paper we reassess the underlying

assumptions of the Tam and Aurialt model. It is shown, while the Tam and Aurialt model

can be interpreted as the integration of a source with a derivative of a Green function; the

particular derivative is discontinuous across a thin shear layer, resulting in a sound power

spectrum that is sensitive to the position of the discontinuity even when the acoustic

wavelength is large. This is a disadvantage because there is some arbitrariness in the radial

position of maximum shear, if a parallel shear flow is used to represent a developing jet.

Comparison is made between predictions of the far-field sound from acoustic analogies and

the Tam and Aurialt model.

I. Introduction

M
any theories for jet noise prediction are based upon an acoustic analogy. This is where the Navier-Stokes
equations are recast as the linear fluctuations from a base flow, that describe the propagating waves, and

the nonlinear fluctuations to represent the acoustic source terms. The original sound field problem can then
be solved using a Green function solution, for the wave propagation, and a turbulence model describing the
statistics of the source terms. Lighthill’s original theory1 described the acoustic propagation for a base flow
at rest; since then, various analogies have been proposed. The Lilley equation2 includes mean flow refraction
effects in the propagation operator, by considering a parallel shear flow in the axial direction. Indeed, in the
most general case the base flow would be an evolving mean flow that varies in all directions.

Acoustic analogies assume the source terms are known, and their statistics can be modeled in some
manner. The source term in Lighthill’s theory, Tij , was given by an exact rearrangement of the Navier-
Stokes equations, without explicit linearization of the flow variables. Hence, Tij = ρvivj +(p−ρc2∞)δij− τij ;
where, vi is the fluid velocity, p is the pressure, ρ is the density and τij the viscous stress tensor. Lighthill
then assumed for the low Mach number cold jet, at least, the source term would be dominated by the self
noise, or the so-called turbulence-turbulence interaction from correlated eddies. That is, Tij ≈ ρ∞v

′
iv

′
j , where

now ρ∞ is the density for the base flow at rest and v′i is the fluctuating velocity. Although this neglected
turbulence-shear interactions, or shear noise, the recent DNS analysis by Freund3 for the Stromberg jet case4

has shown the net acoustic power (all observation angles) from the self noise alone amounts to 83% of Tij

and is particularly dominant at higher observation angles, approaching 90 degrees.
Tam and Aurialt5 introduced their model through a heuristic argument based on an analogy between the

molecular pressure, from the kinetic theory of gases, and the turbulent pressure from packets of fine scale
turbulence. The theoretical basis of their model initially seemed to be at odds with the acoustic analogy.
It was later shown, however, by Morris and Farassat6 that Tam and Aurialt’s approach was equivalent
to an acoustic analogy provided one represents the source and Green function consistently. Even though
the difference to the acoustic analogy was simply an integration by parts, the Tam and Aurialt model had
a convected time derivative on the source, rather than on the Green function in the form arising from
Lilley’s equation. Tam and Aurialt then modeled the convective derivative of the source term with Gaussian
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statistics divided by the characteristic time scale, τ = k
ǫ
; where, k is the turbulent kinetic energy, and ǫ

the rate of energy dissipation. Several researchers6,7 have pointed out this assumption would imply the
Fourier transform of the source function becomes infinite as ω → 0, which is certainly not consistent with
experimental data (ω is the frequency in rad/s). The acoustic spectrum using the Tam and Aurialt model
leads to a frequency scaling on ω2. This approach does remain in good agreement with the experimental
data, for the higher observation angles, approaching 90 degrees. Goldstein7 has suggested an alternative
reason for the measured low frequency scaling: that it could be due to a source term in the energy equation.

In this paper we compare sound predictions using the Tam and Aurialt model and various acoustic
analogies, for the Stromberg4 test case: Reynolds number, 3600; Mach number, 0.9. The paper is organized
as follows. In section 2, we develop the acoustic analogy formalism using Goldstein’s8 general set of linearized
equations; with particular attention to the parallel shear layer and vortex sheet mean flows. We formulate a
representation theorem using the adjoint Green function for a base flow defined by a general mean flow. We
show, for a parallel shear layer, the adjoint equations can be written in a conservation form that does not
involve derivatives of the mean flow profile. In section 3, we analyze these conservation equations numerically
showing they are advantageous when the mean flow profile in defined on a discrete set of points. We then
conclude in section 4, by discussing the predicted acoustic spectra using the Tam and Aurialt model in
comparison with various acoustic analogies. We find the far-field pressure predicted by the Tam and Aurialt
model is sensitive to slight changes in the mean flow profile. This arises because in their formulation the
integrand is discontinuous across the shear layer, when the acoustic wavelength is large; resulting in sensitivity
to the exact location of the source relative to the shear layer. That sensitivity does not arise in a formulation
based on the acoustic analogy.

II. Acoustic Analogies

A. Governing Equations

Suppose an emanating jet flow contains a region of turbulence action that exists within the vicinity of the
jet. Mathematically, the turbulence is represented by source functions defined within the region near the
jet, and described by coordinates (y, τ). The sources are assumed to be representative of the turbulent field,
in the statistical sense, and are the generators of jet noise that propagates to the far field, at the observer
position, (x, t).

We develop the usual acoustic analogy beginning with the Navier Stokes Equations; the noise generated
by heat conduction and viscous dissipation is neglected.1 The resulting Euler equations are re-written with
the dependent variables expressed as the sum of their mean, and perturbation about that mean. Hence, the
bar and single prime are the time average, and its perturbation; the tilde and double prime are the Favre
average, and its perturbation. The averaging operations are defined in the usual manner:

(•) ≡ lim
T→∞

T∫

−T

(•)(y, τ)dτ and ρ̄(̃•) ≡ ρ(•). (1)

The application of the averaging definitions linearizes Euler equations about a base flow with density ρ̄,
pressure p̄, and velocity ṽj . We use the simplified version proposed by Goldstein,8 which casts the system of
equations as the linearized Euler operator, on the left hand side, and simple non-linear source terms, on the
right hand side.

∂ρ′

∂τ
+

∂

∂yj

(ρ′ṽj + uj) = 0 (2)

∂ui

∂τ
+

∂

∂yj

(ṽjui) +
∂p′

∂yi

+ uj

∂ṽi

∂yj

−

(
ρ′

ρ̄

)
∂τ̃ij
∂yj

=
∂T ′

ij

∂yj

i = 1, ..3. (3)

(
1

γ − 1

)
∂p′

∂τ
+

(
1

γ − 1

)
∂

∂yj

(p′ṽj) +
∂

∂yj

(uj h̃) + p′
∂ṽj

∂yj

−

(
ui

ρ̄

)
∂τ̃ij
∂yj

= Q (4)
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The momentum variable is defined with zero time average, ui = ρv′′i ; and summation applies across
repeated indices. In this system, the Favre averaged stagnation enthalpy and its perturbation are defined,
i.e.:

h̃o = h̃+
1

2
ṽ2 and h′′o = h′′ + ṽiv

′′
i +

1

2
v′′2 (5)

The source terms, on the right hand side of the linearized equations, are given by:

T ′
ij = −(ρv′′i v

′′
j − ρ̄ṽ′′i v

′′
j ) (6)

Q = −ṽj

∂T ′
ij

∂yi

+
1

2
δij

[
DT ′

ij

Dτ
+
∂ṽk

∂yk

T ′
ij

]

︸ ︷︷ ︸
Tij-mean flow interaction

−
∂

∂yj

(
ρv′′j h

′′
o − ρ̄ṽ′′j h

′′
o

)

︸ ︷︷ ︸
Heat source

(7)

where, the convective derivative is defined as:

D

Dτ
=

∂

∂τ
+ ṽj

∂

∂yj

(8)

In this paper, we concentrate on propagation effects described through the Green function and so consider
the effect of the source term T ′

ij , in the momentum equation. The perturbations in density are neglected,
i.e. ρ(y, τ) ≈ ρ̄(y), compared to the fluctuations in velocity. Physically, for the cold jet, the density does not
display significant fluctuation to include it within T ′

ij . The mean density, ρ̄(y), however, can be a function

of y for the wave propagation problem. In addition the effect of τ̃ij , where τ̃ij = δij p̄ + ρ̄ṽ′′i v
′′
j , is neglected

in the propagation operator. It could, in principle, be included when considering a base flow determined by
a CFD solution, but we do not expect its contribution to be significant.

B. Green Function Equations and Sound Field Representation Theorems

The wave propagation problem is solved in the frequency domain using the adjoint Green function method,
because it allows specification of the source region for a particular observer point (Dowling et al,9 Tam and
Aurialt10). We solve the adjoint equations in the frequency domain from the outset, to avoid the instability
waves the propagation operator may support (Agarwal et al11). In practical terms, the Green function
method amounts to solving the homogeneous equations (i.e., when the right hand side is zero) in the jet
region, and matching the solution to a time-harmonic sink in the far field, where the mean flow is zero. We
use the following Fourier transform pair:

f̂(ω) =

∞∫

−∞

f(τ)e−iωτ dτ (9)

f(τ) =
1

2π

∞∫

−∞

f̂(ω)eiωτ dω. (10)

The representation theorem is then formulated in the usual manner. For example, by taking the
momentum-like Green function and performing the inner product of this and the momentum equation,
Eq. 3, gives the adjoint equation after integrating each term by parts and using the divergence theorem.
Similarly for mass and energy; hence the representation theorem for pressure is given by:

p̂(x, ω) = −

∫

V∞

Ĝi(y, ω | x)
∂T̂ ij

∂yj

(y, ω) d3y (11)

where, T̂ ij(y, ω) is now the Fourier transform of T ′
ij(y, τ), and Ĝ(y, ω | x), the Fourier transform of the

adjoint Green’s function, satisfies:
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iωĜo + ṽj

∂Ĝo

∂yj

= 0 (12)

iωĜj +
∂Ĝo

∂yj

+ ṽi

∂Ĝj

∂yi

− Ĝi

∂ṽi

∂yj

+ h̃
∂Ĝ4

∂yj

= 0 j = 1, ..3. (13)

(
iω

γ − 1

)
Ĝ4 +

(
ṽj

γ − 1

)
∂Ĝ4

∂yj

− Ĝ4
∂ṽj

∂yj

+
∂Ĝj

∂yj

= δ(y − x) (14)

In this system, Ĝo represents the adjoint density-like variable; Ĝ1-Ĝ3 are the adjoint momentum-like variables
and Ĝ4 is the variable in the adjoint energy equation, a pressure-like variable.

For the general case of an evolving jet, we are relying on a near field CFD solution for the mean flow
profile. There may, however, be some numerical difficulty in computing the mean velocity derivatives when
using CFD data that is known on a discrete set of points. In particular, at high frequencies where the
acoustic resolution may need to be greater than the mean flow. But if the mean velocity dilatation is zero,
i.e. ∇.ṽ = 0, which applies to a parallel shear layer, then it is possible to redefine the adjoint system of
equations in a conservation form that does not include derivatives of the mean flow. This easily follows by
defining another Green function:

Ĝ5(y, ω | x) =
1

γ − 1

D1Ĝ4

Dτ
(y, ω | x) (15)

The convective derivative in the axial direction, D1/Dτ , is understood to represent:

iω + U
∂

∂y1
(16)

Then Eq. (12) is unchanged and Eqs. (13) and (14) become:

1

c̃2
D2

1Ĝj

Dτ2
+
∂Ĝ5

∂yj

= 0 (17)

Ĝ5 +
∂Ĝj

∂yj

= δ(y − x) (18)

where, by parallel shear layer we specifically mean:

ṽj = δj1U(y2, y3) p̄ = p∞ ρ̄ = ρ̄(y2, y3) h̃ = h̃(y2, y3) (19)

The numerical convenience of Eqs. (17) and (18) is discussed later in §3. Indeed, another advantage of
of Eqs. (17) and (18) is the absence of singular terms when the shear layer is very thin. Hence, the jump
conditions across a thin shear layer follow immediately.

We adopt a cylindrically based coordinate system, for a jet flow that is circular cylindrical; hence y =
(y1, r, ψ) and x = (x1, R,Ψ). The mean flow is directed axially in y1, and a function of r; the observer is in
the far field at an angle θ to the jet axis, i.e. cosθ = x1/R . In the limiting case, the thin shear layer tends
to a vortex sheet mean flow, where the mean velocity is uniform in the jet region and discontinuous across
the jet boundary. Integrating the adjoint energy equation, Eq. (18), over a infinitesimal disk of volume Vǫ

positioned across the jet boundary, with its inner surface at a− ǫ and outer radius a+ ǫ, shows:

limVe → 0

∫

Vǫ

(
Ĝ5(y, ω | x) + ∇.Ĝ(y, ω | x)

)
dVe = 0 (20)

The assumption that Ĝ5 remains bounded implies its volume integral tends to zero as the shear layer thickness
tends to zero. Application of the divergence theorem shows the normal component of Ĝ, i.e. Ĝr(y, ω | x),
remains continuous. The adjoint momentum equation, Eq. (17), similarly shows that Ĝ5 is continuous.
The jump condition for dĜ5/dr can be expressed quite simply by taking Fourier transforms in y1, writing
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∂/∂y1 → ik, where, k is the wave number in the axial direction, and using Eq. (17). If we use our original
variable Ĝ4 these jump conditions become:

[
(iω + Uik)Ĝ4(y, ω | x)

]a+ǫ

a−ǫ
= 0 (21)

[
h̃

(iω + Uik)

d

dr
Ĝ4(y, ω | x)

]a+ǫ

a−ǫ

= 0 (22)

where, a ± ǫ refer to radii on either side of the jet interface. Eq. (21) then implies the Green function
Ĝ4 is discontinuous across a thin shear layer, and the convective derivative of Ĝ4, i.e. D1Ĝ4/Dτ , remains
continuous.

C. Power Spectral Density and Correlation Function Representation

The power spectral density of the far-field pressure follows from Eq. (11). In the spirit of Lighthill, we isolate
the source term, by integrating Eq. (11) by parts to place the derivatives onto the Green function, hence:

P(x, ω) =

∫

V∞(y)

∫

V∞(∆)

∂Ĝj

∂yi

(y,−ω | x)
∂Ĝl

∂yk

(y + ∆, ω | x)Rijkl(y,∆, ω) d3∆ d3y (23)

The power spectral density, P(x, ω), and the 4th rank cross power spectral density of the statistically
stationary sources, Rijkl(y,∆, ω), are defined in the usual way:

P(x, ω) =

∞∫

−∞

p′(x, τ)p′(x, τ + τ0)e
−iωτ0 dτ0 (24)

Rijkl(y,∆, ω) =

∞∫

−∞

T ′
ij(y, τ)T

′
kl(y + ∆, τ + τ0)e

−iωτ0 dτ0 (25)

We adopt the simplest kinematic representation for Rijkl, viz.

Rijkl(y,∆, ω) = δijδklQs(y,∆, ω) (26)

where, Qs(y,∆, ω) represents the two-point correlation function of 1
3 T̂nn at y and y + ∆; with δij-δkl being

unity tensors. The correlation function reduces to the statistical assessment of 1
3 ρ̄u

′′2, where u′′2 is the mean
square amplitude of the velocity. The Green function products in the integrand of Eq. (23) simplify to:

∂Ĝj

∂yi

(y,−ω | x)
∂Ĝl

∂yk

(y + ∆, ω | x)δijδklQs(y,∆, ω) (27)

=
∂Ĝj

∂yj

(y,−ω | x)
∂Ĝl

∂yl

(y + ∆, ω | x)Qs(y,∆, ω)

The spatial derivatives, ∂/∂yj , on the right hand side of Eq. (27), are re-written using the adjoint energy

equation, Eq. (14). For a parallel shear flow, Eq. (14) shows the divergence of the Green function Ĝj reduces

to the convective derivative on Ĝ4,
∂Ĝj

∂yj

∼ −
1

γ − 1

D1Ĝ4

Dτ
(28)

Therefore, using this relationship and Eq. (27) allows the power spectral density to be written in terms of
D1Ĝ4/Dτ :

P(x, ω) =
1

(γ − 1)2

∫

V∞(y)

∫

V∞(∆)

D1Ĝ4

Dτ
(y,−ω | x)

D1Ĝ4

Dτ
(y + ∆, ω | x)Qs(y,∆, ω) d3∆ d3y (29)
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which is equivalent to Eq. (61) in Morris and Farassat.6 In this form Qs(y,∆, ω) is represented by a model
function. We use the Gaussian model given by Tam and Aurialt5 where, U is the mean flow velocity and, q̂2

is proportional to 4/9ths of the mean square fluctuating kinetic energy; ls is the characteristic length scale
and τs is the characteristic time scale.

Qs(y,∆, ω) =

√
π

ln 2
q̂2
ls
U
exp

(
−
| ∆1 |

Uτs
−
ln2

l2s
(∆2

2 + ∆2
3) −

ω2l2s
4ū2 ln 2

−
iω∆1

U

)
(30)

In this paper, we assume the variation of the Green function over the correlation length in the 2 and
3 directions are small compared to the acoustic wavelength. For a parallel jet the dependence on ∆1 is
approximated, following Tam and Aurialt:5

Ĝ4(y + ∆, ω | x) ≈ Ĝ4(y, ω | x)e−i ω

c∞
∆1cosθ (31)

for x in the far field. When the acoustic wavelength is the same order as the correlation lengths, ∆2,∆3,
or the jet is no longer parallel, the integral over ∆ in Eq. (29) then needs to be evaluated numerically.
That analysis can be found in Karabasov and Hynes.12 We focus on the approximated form when the Green
function product conveniently reduces,

D1Ĝ4

Dτ
(y,−ω | x)

D1Ĝ4

Dτ
(y + ∆, ω | x) =

∣∣∣∣∣
D1Ĝ4

Dτ
(y, ω | x)

∣∣∣∣∣

2

e−i ω

c∞
∆1cosθ (32)

The power spectral density equation then further simplifies,

P(x, ω) =
1

(γ − 1)2

∫

V∞(y)

∣∣∣∣∣
D1Ĝ4

Dτ
(y, ω | x)

∣∣∣∣∣

2 ∫

V∞(∆)

Qs(y,∆, ω)e−i ω

c∞
∆1cosθ d3∆ d3y (33)

The intervening steps, detailing the integration in ∆, have been spelled out by Tam and Aurialt;5 our
principal interest is in the behavior of the integrand of P(x, ω) in V∞(y). The final form of power spectral
density then follows as,

P(x, ω) =
1

(γ − 1)2

∫

V∞(y)

∣∣∣∣∣
D1Ĝ4

Dτ
(y, ω | x)

∣∣∣∣∣

2

qs(y, ω) d3y (34)

where, the model form of qs(y, ω) is then given by:

qs(y, ω) = 2
( π

ln 2

) 3

2

q̂2l3sτsexp

(
−

ω2l2s
4ū2 ln 2

)
1

1 + ω2τ2
s

(
1 − ū

c∞
cos θ

)2 (35)

and represents,

qs(y, ω) =

∫

∆

Qs(y,∆, ω)e−i ω

c∞
∆1cosθ d3∆ (36)

In this model the statistical quantities (q̂, ls, τs) are scaled on the local values of the turbulent kinetic
energy, k, and the rate of energy dissipation, ǫ. They are defined as,

q̂2 =
4

9
ρ̄2A2k2, ls = cl

k
3

2

ǫ
, and τs = cτ

k

ǫ
(37)

The empirical constants, (A, cl, cτ ) are chosen for best fit to the experimental data. In this study, we obtain
the (q̂, ls, τs) and the mean flow from a RANS solution.
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D. Comparison to the Tam and Aurialt Model

Consider now the mathematical difference between a representation theorem based on the acoustic analogy,
as in Eq. (34), and the Tam and Aurialt model.5 Morris and Farassat6 have shown the Tam and Aurialt
model does indeed correspond to an acoustic analogy if the source is modeled consistently. In our notation,
the Tam and Aurialt model follows by integrating Eq. (29) by parts to transfer the convective derivative onto
the source term. The resulting power spectral density involves the integration of the Green function Ĝ4 at
locations y and y + ∆; and the two point correlation of D1Tij/Dτ , modeled by the Gaussian statistics, given
by Eq. (30), divided by the characteristic time scale squared, τ2

s. After the Green function approximation is
applied, and integrations in ∆ performed, the power spectral density using the Tam and Aurialt approach
is:

P(x, ω) =
1

(γ − 1)2

∫

V∞(y)

| Ĝ4(y, ω | x) |2
qs(y, ω)

τ2
s

d3y (38)

where, qs(y, ω) is given by Eq. (35).
The analysis of the limiting form of the Green functions has shown D1Ĝ4/Dτ remains continuous across

a thin shear layer, whereas Ĝ4 is discontinuous. Therefore, the integrand in Eq. (38) is also discontinuous
across a thin shear layer, because it uses Ĝ4 in its representation theorem and models the convective derivative
of the source term as a continuous function.

Practically speaking, if one is using a parallel shear flow to represent an evolving jet there will be some
arbitrariness in the radial position of maximum shear relative to the source. Sound predictions obtained
using Eq. (34) are independent of slight differences in the location of the shear layer. The same is not true
for Eq. (38), which the Tam and Aurialt model uses, because the integrand can have discontinuous behavior.
We analyze this numerically in §4.

III. Numerical Analysis of Adjoint Green Functions

In this section we solve the adjoint equations numerically using a mean flow defined derived from a CFD
solution and hence on a discrete set of points. We focus on the parallel shear layer, comparing the numerical
solutions from an explicit second order equation in Ĝ4, and Eqs. (17)-(18) that avoid mean flow derivatives
altogether.

A. Second Order Equation

A standard way to determine Ĝ4, the adjoint pressure-like Green function, in a parallel shear flow, is to
formulate an explicit Green function equation. This single equation in Ĝ4 follows by eliminating Ĝj from
the adjoint Eqs. (12)-(14), after the application of the parallel shear flow conditions given by Eq. (19).
Therefore,

−
D1

Dτ

[
D3

1

Dτ3
−

∂2

∂y2
j

(
c̃2
D1

Dτ

)
+

∂

∂r

(
dc̃2

dr

D1

Dτ

)]
Ĝ4 + 2

dU

dr
c̃2

∂2

∂y1∂r

D1

Dτ
Ĝ4 = (γ − 1)

D3
1

Dτ3
δ(y − x) (39)

The usual adjoint Lilley equation, defined by the Green function Ĝa, and appearing as Eq. (5) in Tam and
Aurialt,10 is related to Ĝ4 by the correspondence: Ĝ4 = −(γ − 1)D2

1Ĝa/Dτ
2. To solve Eq. (39) we take

Fourier transforms in the axial direction y1, with wave number k, and in the azimuthal ψ, with the angular
order m. This gives a second order equation in r,

d2G†
4(r)

dr2
+

(
1

r
−

1

ρ̄

dρ̄

dr

)
dG†

4(r)

dr
(40)

+

[
−
k̂

D̄o

dM̄

dr

1

ρ̄

dρ̄

dr
−

2k̂2

D̄2
o

(
dM̄

dr

)2

+
k̂

D̄o

1

r

dM̄

dr
+

k̂

D̄o

d2M̄

dr2
−
ω2

c2∞
k̂2 +

ω2

c̃2
D̄2

o −
m2

r2

]
G†

4(r) = 0

valid away from the observer position. G†
4(r) is then solved by numerically integrating Eq. (40) and matching

to the solution to the sink. The mean flow is defined by, M̄(r) = U(r)
c∞

; and D̄o(r) = 1 + M̄(r)k̂. The axial
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wave number k is non-dimensionalised as, k̂ = k(c∞/ω); with the angular order being expanded as a Fourier
series.

B. First Order System: Solution to Eqs. (17) & (18)

The solution to Eqs. (17) & (18) is found by taking the Fourier transforms in y1 and ψ. This gives two

equations for G†
5(r) and G†

r(r):

dG†
5(r)

dr
=

[(ω
c̃

)2

D̄2
o

]
G†

r(r) (41)

dG†
r(r)

dr
=

[
k̂2

D̄2
o

(
c̃

c∞

)2

+

(
m
r

)2

(
ω
c̃

)2
D̄2

o

− 1

]
G†

5(r) −
G†

r(r)

r
(42)

The key feature of this system is the elimination of all mean flow derivatives. The coefficients of (41) & (42)
depend on the mean flow only.

C. Comparison of Numerical Solutions

In this study we allow the Green functions to be weakly causal, which satisfy boundedness conditions at
infinity, when | y, τ |→ ∞ (Dowling et al) .9 We use the method of stationary phase to evaluate the inverse
Fourier transform in axial wavenumber, k, by deforming the integration contour along path of steepest
descent; hence in (40), (41) and (42) k̂ = −cosθ. The ordinary differential Eqs. (40), (41) & (42) are solved
numerically, using a variable step 4th order Runge Kutta scheme. The integration begins by assuming the
solution is bounded algebraically at r = 0, as rm, where r is starting value. Therefore, we can express the
Green function solution in the jet region, after making the usual far field approximation, | x − y |≈| x |
when x → ∞,

Ĝ4(y1, r, ψ, ω | Ro) =
i(γ − 1)ω

4π | x | c2∞
e−i ω

c∞
(y1 cos θ−|x|)

∞∑

m=0

ǫm(−i)mAm(ω, θ)G†
4(r) (43)

where, ǫ = 1 if m = 0 and ǫ = 2 if m ≥ 1; for integral m.
In the far field the mean flow is zero, the Green function solution to a sink then follows immediately. For

example in terms of Ĝ4:

Ĝ4SINK
=

i(γ − 1)ω

4π | x | c2∞
e−i ω

c∞
(y1 cos θ−|x|)

∞∑

m=0

ǫm(−i)m

[
Jm

(
ω sin θ

c∞
Ro

)
+Bm(ω, θ)H(1)

m

(
ω sin θ

c∞
Ro

)]
(44)

where, Jm is a Bessel function, representing the free field that would exist in the absence of the jet. The

scattered field is given by the Hankel function of the first kind, H
(1)
m . The constant Am(ω, θ) is then

determined by matching the inner numerical solution to the far field sink, with the continuity of Ĝ4 and
dĜ4/dr. The far field demarcation Ro, is physically defined as the the point where the mean flow has reduced
to zero. Mathematically, it is chosen to be sufficiently large to allow the Bessel functions to approach their
large argument asymptotic form. In this study we let Ro = 20Dj , where Dj is the nozzle exit diameter. The

solution proceeds in a similar way for Ĝ5.
The second order equation, Eq. (40), requires that the derivatives of the mean flow, up to the second

order d2M̄/dr2, are adequately resolved. On the other hand, Eqs. (41) & (42) solve a conservation system
that has eliminated all derivatives of the mean flow exactly. Hence, Eqs. (41) & (42) require the weaker
condition of an adequately resolved mean flow, which is easily achieved in CFD solutions.

We restrict attention to a single azimuthal mode to investigate the behavior of the Green function, under
the equation systems. The mean flow is based on the axial location of maximum source strength, i.e. the
axial location where the amplitude of the source qs(y, ω) is maximum. For the Stromberg4 case this is about
6Dj downstream of the nozzle. The mean velocity derivatives are computed using centered differences that
are spatially filtered.13 Fig. 1a shows the difference in predicted SPL at 30 degrees using the second order
equation and the first order system. In this Figure, both systems use a mean flow profile defined with the
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(a) Standard resolution mean flow: 88 nodes (b) High resolution mean flow: 3000 nodes and spatial filtering

Figure 1. Sound Pressure Level, SPL = 10 log(4πP(x, ω)/p2

ref
(Dj/Uj)), where Dj is the nozzle exit diameter; Uj is

the nozzle exit velocity and p2

ref
is the reference pressure for Stromberg jet case.4 Strouhal number, ωDj/2πUj

based upon the nozzle exit diameter, Dj , and nozzle exit velocity, Uj . SPL predictions based on Green function
with azimuthal mode = 0, observation angle = 30o, | x |= 30Dj at the axial location of maximum source strength.
Empirical coefficients, (A, cl, cτ ) are (0.773, 0.130, 0.308) taken from Morris and Farassat.6

standard resolution of 88 points in the radial direction. The second order equation, Eq. (40), over predicts
the SPL at low frequencies, compared to the first order system, Eqs. (41) & (42).

The low frequency sensitivity of the second order method can be corrected. We define the mean flow
with enough resolution so that all derivatives of the mean flow, in the coefficients of Eq. (40), are adequately
resolved. The resolution of the mean flow is increased uniformly, using quadratic interpolation defined with
3000 nodes. The mean flow is spatially filtered13 and the derivatives are then computed using centered
differences. Finally, these derivatives are spatially filtered13 themselves. A thinner shear layer would, of
course, require even greater resolution. See Fig. 1b.

The difference in SPL using the second order equation and the first order system emerges at the lowest
frequencies and at the shallow observation angles (where the D̄o = 1+M̄k̂ term has greater departures from
unity). As the frequency increases the amplitude of the Green function is less affected by the high order
derivatives of the mean flow compared to the variation of the mean flow itself. The second order equation
remains accurate at high frequencies under standard resolution, because the Green function equations then
degenerate to a form given by ray theory. The advantage of the solving the equations in a conservation form,
without derivatives of the mean flow, is that they require less resolution. The subsequent noise predictions,
for the parallel shear flow, use this convenient first order conservation system.
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IV. Analysis of Far Field Noise

A. Ninety degree spectrum

In this section we compare the Tam and Aurialt model, Eq. (38), with various acoustic analogies, defined
by Eq. (34). In these predictions the shear layer is based upon a mean flow at the axial location where the
source amplitude is maximum. Fig. 2 shows the ninety degree spectrum with comparison to the Tanna jet
case6 .

Figure 2. Sound Pressure Level, SPL = 10 log(4πP(x, ω)/p2

ref
(Dj/Uj)), where Dj is the nozzle exit diame-

ter; Uj is the nozzle exit velocity and p2

ref
is the reference pressure. Parallel jet Green function using Eqs.

(41) & (42) based on the axial location of maximum source strength. Evolving jet Green function from
Karabasov and Hynes.12 Empirical coefficients for Eq. (34), (A, cl, cτ ) are (0.125, 0.45, 0.125); Eq. (38), (A, cl, cτ )
are (0.773, 0.130, 0.308).6 The experimental results from Tanna et al given by Morris and Farassat.6

If we compare acoustic analogy predictions to the Tam and Aurialt model, we find although they both have
similar maximum sound intensity, the acoustic analogies have steeper decay at high and low frequencies. This
arises because the acoustic analogy has the ω4 factor in the spectrum, compared to the ω2 and characteristic
time scale factor, 1/τ2

s, for the Tam and Aurialt model. This is summarized in Table 1.

Table 1. Comparison of Acoustic analogy and Tam and Aurialt.

Model Green function Source function 90o Frequency scaling

Acoustic analogy Eq. (34)
∣∣∣D1Ĝ4

Dτ
(y, ω | x)

∣∣∣
2

qs(y, ω) ω4

Tam and Aurialt Eq. (38) | Ĝ4(y, ω | x) |2 qs(y, ω)/τ2
s ω2

B. Sensitivity to the Radial Location of Maximum Shear

We have shown how a representation that uses Ĝ4, and assumes a model form for the convective derivative
of the source, can result in a power spectral density defined by a discontinuous integrand: Eq. (38). In this
section we assess the behavior of Eq. (38) by choosing different mean flow profiles as the basis for the Green
function product, | Ĝ4 |2. Comparison is made to Eq. (34), which defines a power spectral density using the
convective derivative of the Green function, D1Ĝ4/Dτ .

For a vortex sheet type mean flow we position the sheet along the jet boundary, at the radial location of
maximum shear (max | dU/dr |) for a particular mean velocity profile. We displace the vortex sheet relative
to the source position, by choosing different mean flow profiles to base the Green function on. The sensitivity
of the sound pressure can then be assessed for the vortex sheet, and parallel shear layer, using the power
spectral density equations, Eqs. (34) and (38). This is shown in Figs. 3a and 3b for the vortex sheet Green
function at 30 and 60 degrees. The Strouhal number, ωDj/2πUj ; based upon the nozzle exit diameter, Dj ,
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(a) Vortex Sheet, 30 degrees (b) Vortex Sheet, 60 degrees

(c) Shear layer, 30 degrees (d) Shear layer, 60 degrees

Figure 3. Sound Pressure Level variation. Dj is the nozzle exit diameter and y1 is the axial location in the
jet direction. SPL = 10 log(4πP(x, ω)/p2

ref
(Dj/Uj)); where, Uj is the nozzle exit velocity; | x |= 30Dj ; p2

ref
is the

reference pressure for Stromberg jet case4 and P(x, ω) is determined using a Green function placed at various
axial locations, y1. Strouhal number, ωDj/2πUj , is 0.02. Azimuthal mode, m = 0. Empirical coefficients for Eq.
(34) and Eq. (38), (A, cl, cτ ) are (0.773, 0.130, 0.308)6

and nozzle exit velocity, Uj , is 0.02 for the Stromberg jet. Figs. 3c and 3d show the sensitivity in predicted
sound power for the parallel shear flow, defined by the same observation angles and frequency.

Sound predictions using Eq. (38), results in an integrand that is discontinuous across a vortex sheet; and
varies significantly across a shear layer. This leads to the predicted sound being sensitive to the position
of the turbulent sources relative to the mean velocity profile. On the other hand Eq. (34), which uses the
conserved quantity D1Ĝ4/Dτ , displays only little sensitivity to the mean velocity profile chosen to define
the parallel jet. Once the radial length scale over which the mean flow profile varies is comparable with the
acoustic wavelength, we begin to see acoustic propagation effects dependent on the mean flow profile.
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V. Conclusions

We have investigated various acoustic analogies and found the representation theorem of Goldstein7 is
particularly advantageous. In the course of this, we have reanalyzed the Tam and Aurialt formulation, which
Morris and Farassat6 have shown is equivalent to an acoustic analogy where, D1Tij/Dτ is modeled with
Gaussian statistics. In addition to the frequency scaling problem this raises, i.e. Tij → ∞ as ω → 0,6,7 there
is another problem because the equivalent Green’s function (G4 in our notation: G4 being the independent
variable in the adjoint energy equation defined by Eq. (14)) is discontinuous across a vortex sheet and
rapidly varying across a shear layer. This leads to sensitivity of the predicted sound (provided θ not equal
to 90 degrees) to the details of the mean velocity profile.

There will always be some ambiguity in the choice of the mean flow velocity, if an evolving jet is repre-
sented by a parallel shear flow. The acoustic analogy leads to an integrand proportional to D1G4/Dτ , in
Eq. (34). This term is continuous across a vortex sheet and varies insignificantly across a thin shear layer.
It leads to a predicted sound field that is remarkably insensitive to uncertainties in the mean flow profile.

We have found it convenient to solve the propagation equations for G5 ∼ D1G4/Dτ . It is then possible to
cast the parallel flow propagation equations in a conservation form which involves no mean flow derivatives.
This has a particular advantage when the mean flow is determined from a near field CFD calculation, and
known only at discrete points that may have small oscillations. In this paper we have concentrated on
propagation effects seen through the Green’s function using a simple source description. Future work will
involve more accurate modeling of the source. Our current assumption of isotropic turbulence and Gaussian
statistics is clearly an oversimplification. We aim to use LES data to model the statistics of the large-scale
structures, and improved turbulence models for the small-scale.
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