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Jet Noise in the ‘Zone of Silence’

Mohammed Z. Afsar∗, Ann P. Dowling† and Sergey A. Karabasov‡

University of Cambridge, Cambridge, CB2 1PZ, UK

We analyze the far field acoustic power spectrum of a jet flow convecting a region
of turbulent activity by formulating an acoustic analogy. The analogy is defined using
Goldstein’s linearized Euler equation system (J. of Aero-Acoustics 2002, vol. 1, pp. 1)
with the propagation based on a parallel mean flow, and the source statistics on a Reynolds
averaged Navier Stokes (RANS) calculation.

Our analysis confirms the jet noise spectrum can be thought of as being composed of two
terms. The first is significant at high frequencies, while the second term is important at low
frequencies and is especially dominant at small observation angles to the jet flow—in the
so-called ‘zone of silence’. This additional term appears to account for the experimentally
observed low frequency noise in the ‘zone of silence’ (Lush, JFM 1971, vol. 46, pp. 477)
and has previously been discussed by Goldstein (JFM 1975, vol. 70, pp. 595). We show
that the low frequency term does not occur if the fluctuating Reynolds stress source term
in the momentum equation is assumed to be isotropic at all times, but that it is significant
if that source is only supposed to be statistically isotropic—if the cross power spectral
density of the fluctuating Reynolds stress source term is taken to be isotropic. The low
frequency term depends on the gradient of the mean flow velocity. In this paper, we assess
the relative magnitudes of the terms in noise spectrum, and show the behavior of the
additional low frequency term.

Our work contributes to showing that a unified treatment of the jet noise problem is
possible using an acoustic analogy to predict both the high and low frequency noise within
reasonable accuracy and a modicum of empirical tuning.

I. Introduction

T
he existence of different mechanisms that generate noise from a jet flow has long been argued.1,2 One of
these mechanisms was thought to dominate the jet noise spectrum at high frequency. Another type, was

found to be most significant at very low frequencies. This point of view began to prevail after some rather
surprising experiments with jet flows. Lush3 and Ahuja4 found, when jet velocity was high, the peak noise
occurred at a lower frequency, and this peak grew the closer to the jet axis the observations were made—in
the so-called ‘zone of silence’. The low frequency behavior in the ‘zone of silence’ was interesting—not least
because it was somewhat difficult to explain; but also the noise spectrum, here, seemed to be dependent on
the mean velocity profile.

Now, most of the theoretical attempts to explain the observed noise in the ‘zone of silence’ have used the
acoustic analogy.5 The standard procedure is to re-arrange the Navier-Stokes equations so that the linear
fluctuations (from any base flow) appear on the left hand side, and the non-linear fluctuations are put to
the right hand side. The linear fluctuations represent the acoustic propagation and the non-linear terms are
the sources of the noise. For example, in the Lilley equation6 the mean flow is based on a parallel shear
layer in the streamwise direction. The real breakthrough to explain the noise in the ‘zone of silence’ came
after analyzing the Lilley equation. Goldstein7 (and later, Balsa8) proved at very low frequencies the noise
spectrum, using Lilley’s equation, would be proportional to the square of the mean velocity gradient. The
startling result Goldstein7 found was this mean flow dependent term in the spectrum did account for the
noise the experimenters were observing in the ‘zone of silence’ of the jet flow.
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Hitherto, the standard approach in jet noise prediction is to model the source terms that appear on the
right hand side of the acoustic analogy equation, and solve the wave propagation problem, using a parallel
mean flow for example.9–11 Reynolds Averaged Navier Stokes (RANS)-based models have been successful
in predicting the noise that dominates at high frequency—outside of the ‘zone of silence’; for example, take
the model by Tam and Aurialt.9 But what has remained somewhat elusive is a method that predicts both

the high frequency and low frequency noise.
Our aim in this paper is to show, for a cold jet flow, the noise spectrum can indeed be understood by

two terms. The first, is significant at high frequency, while the second term is important at low frequencies
and dominant in the ‘zone of silence’. The low frequency term is proportional to the local mean velocity
gradient and was discussed by Goldstein7 and Balsa.8 We show the low frequency term can exist if the cross
power spectral density of the fluctuating Reynolds stress source term is assumed to be isotropic. However,
this low frequency term will not occur if the Reynolds stress source term is, itself, taken to be isotropic for
all values of time. The acoustic analogy we use, is based on Goldstein’s12 linearized Euler equation system;
and, we solve the wave propagation problem for a parallel shear layer. The source statistics and mean flow
are defined by a RANS calculation of the Stromberg jet: the Reynolds number is 3600 and the Mach number
is 0.9.13 We focus on noise predictions at an observation angle of 30o to the jet flow, and the jet noise
directivity. For both of these cases, we compare our predictions to the available DNS data.14,15

II. Acoustic Analogy

A. Governing Equations

Imagine a region of turbulence convected by a jet flow. The turbulent field is confined to a region near the
jet, so that at large distances from the flow, all of the turbulent motion has ceased. Within the jet region,
momentum is transferred in a random fashion, the jet flow interacts with this transfer causing energy changes
in the field. The physical processes of momentum transfer and energy change are governed by the Navier
Stokes equations, and generate acoustic waves that propagate to the far field.

The outcome of this section is Eq. (25)—a formula for the power spectral density of the far field pressure
due to the turbulent activity in the jet flow. We represent the turbulent field by a ‘source term’, which is
simply a stationary random function described by field variables (y, τ). The sources represent the dynamics
of the turbulent field and generate noise in the far field, at the observer position (x, t). A picture of the jet
flow is shown in Fig. (1).

Figure 1. Coordinate system for a jet flow

We define the analogy using the linearized Euler equations formulated by Goldstein.12 In his system, the
Euler equations are linearized about a base flow with density ρ̄, pressure p̄, and velocity ṽj . The bar and

2 of 13

American Institute of Aeronautics and Astronautics



single prime represent the time average and its perturbation, and the tilde and double prime represent the
Favre average and its perturbation. The averaging operations are defined in the usual way:

(•)(y) ≡ lim
T→∞

1

2T

T∫

−T

(•)(y, τ)dτ and ρ̄(̃•) ≡ ρ(•). (1)

The momentum variable is defined with zero time average, ui = ρv′′i ; and the Favre averaged stagnation
enthalpy, and its perturbation, take the special definitions:

h̃o = h̃+
1

2
ṽ2 and h′′o = h′′ + ṽiv

′′

i +
1

2
v′′2. (2)

The system is given by the set of equations:

∂ρ′

∂τ
+

∂

∂yj

(ρ′ṽj + uj) = 0 (3)

∂ui

∂τ
+

∂

∂yj

(ṽjui) +
∂p′

∂yi

+ uj

∂ṽi

∂yj

−

(
ρ′

ρ̄

)
∂τ̃ij
∂yj

=
∂T ′

ij

∂yj

i = 1, ..3. (4)

(
1

γ − 1

)
∂p′

∂τ
+

(
1

γ − 1

)
∂

∂yj

(p′ṽj) +
∂

∂yj

(uj h̃) + p′
∂ṽj

∂yj

−

(
ui

ρ̄

)
∂τ̃ij
∂yj

= Q. (5)

(Throughout this paper, summation applies across repeated indices.)

(γ is the ratio of the specific heat capacities of air, γ = 1.4.)

The nice feature of Goldstein’s equations are the source terms, which are in a simple form, viz.:

T ′

ij = −(ρv′′i v
′′

j − ρ̄ṽ′′i v
′′

j )
︸ ︷︷ ︸

Noise due to momentum transfer

(6)

Q = −ṽj

∂T ′

ij

∂yi

+
1

2
δij

[
DT ′

ij

Dτ
+
∂ṽk

∂yk

T ′

ij

]

︸ ︷︷ ︸
Noise due to energy change

−
∂

∂yj

(
ρv′′j h

′′

o − ρ̄ṽ′′j h
′′

o

)

︸ ︷︷ ︸
Noise due to enthalpic heating

. (7)

In this paper, however, we concentrate on the cold jet flow where the noise from enthalpic heating is negligible
compared to momentum transfer. Moreover, for the same reason, the perturbations in density can be
neglected, i.e. ρ(y, τ) ≈ ρ̄(y). Then, the source terms reduce to:

T ′

ij = −ρ̄(v′′i v
′′

j − ṽ′′i v
′′

j ) (8)

Q = −ṽj

∂T ′

ij

∂yi

+
1

2
δij

[
DT ′

ij

Dτ
+
∂ṽk

∂yk

T ′

ij

]
. (9)

D/Dτ is the usual convective derivative, given by:

D

Dτ
=

∂

∂τ
+ ṽj

∂

∂yj

. (10)

The tensor, τ̃ij , defined by τ̃ij = δij p̄+ρ̄ṽ′′i v
′′

j , appears in the propagation operator of the linearized equations.
It drives the jet evolution in the flow by interacting with the mean pressure. For a parallel mean flow the
vector ∂τ̃ij/∂yi is identically zero.
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B. Representation Theorem

The wave propagation problem is solved in the frequency domain using the adjoint Green function. This
method has been used many times in the past, for example the work by Dowling et al,16 and by Tam and
Aurialt.17 The adjoint Green function method is advantageous because it allows one to specify the turbulent
field for a particular observer point. The method amounts to solving a set of homogeneous equations (when
the right hand side is zero) in the jet region. Any unknown constants are easily found, because this solution
in the jet must reduce to the solution of the wave equation in the far field, where the mean flow is all zero.
In this paper we use the Fourier transform pair (with angular frequency ω):

f̂(ω) =

∞∫

−∞

f(τ)e−iωτ dτ and f(τ) =
1

2π

∞∫

−∞

f̂(ω)eiωτ dω. (11)

It is algebraically straightforward to formulate a representation theorem for the far field pressure. For
example, by taking the momentum-like adjoint Green function and performing the inner product of this,
and the momentum equation (Eq. 4), gives the adjoint momentum equation. One must integrate each term
by parts and apply the divergence theorem; we have to suppose, then, that any surface terms at infinity, far
away from the jet, are zero. A similar operation gives the adjoint mass equation and adjoint energy equation.
Hence, the representation theorem for the far field pressure is:

p̂(x, ω) = −

∫

V∞(y)

(
Ĝi(y, ω | x)

∂T̂ ij

∂yj

(y, ω) + Ĝ4(y, ω | x)Q̂(y, ω)

)
d3y. (12)

T̂ ij(y, ω) is the Fourier transform of T ′

ij(y, τ), and Ĝ(y, ω | x), the Fourier transform of the adjoint Green’s
function, satisfies the adjoint equations:

iωĜo + ṽj

∂Ĝo

∂yj

+

(
Ĝi

ρ̄

)
∂τ̃ij
∂yj

= 0 (13)

iωĜj +
∂Ĝo

∂yj

+ ṽi

∂Ĝj

∂yi

− Ĝi

∂ṽi

∂yj

+ h̃
∂Ĝ4

∂yj

+

(
Ĝ4

ρ̄

)
∂τ̃ij
∂yi

= 0 j = 1, ..3. (14)

(
iω

γ − 1

)
Ĝ4 +

(
ṽj

γ − 1

)
∂Ĝ4

∂yj

− Ĝ4
∂ṽj

∂yj

+
∂Ĝj

∂yj

= δ(y − x). (15)

Ĝo is the adjoint density-like variable and Ĝ1-Ĝ3 are the adjoint momentum-like variables. Ĝ4, the pressure-

like quantity, is the variable in the adjoint energy equation.

C. An equivalent representation theorem: far field pressure budget

An important aspect of the present analysis is that the source term in the representation theorem is T̂ij only.

The term Q, is, a function of T̂ij as well—see Eq. (9). If we now insist that T̂ij is continuous throughout
the field space (y, τ) we can integrate Eq. (12) by parts. It seems sensible to do this. Computing spatial
derivatives of a function that we can, at best, model, would be numerically challenging. Especially given
that one would be relying upon a CFD solution that is only ever known on a discrete set of points. The
Green function, on the other hand, can be determined, and differentiated, with accuracy. Substituting Eq.
(9) into Eq. (12) and integrating each term by parts, so that we isolate T̂ij , gives the equivalent sound field
representation:

p̂(x, ω) =

∫

V∞(y)

Îij(y, ω | x)T̂ ij(y, ω) d3y. (16)
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Îij is a propagation tensor defined by:

Îij(y, ω | x) =
∂Ĝj

∂yi

(y, ω | x) −

[
∂ṽj

∂yi

(y)Ĝ4(y, ω | x) + ṽj(y)
∂Ĝ4

∂yi

(y, ω | x)

]
(17)

+
δij
2

[
iω

(
1 +

ṽk

iω

∂

∂yk

)
Ĝ4(y, ω | x) −

∂ṽk

∂yk

(y)Ĝ4(y, ω | x)

]
.

The equivalent representation states, mathematically, what we said in words at the beginning of this
section. For a cold jet flow, momentum transfer and energy change in the field of turbulence (through
T̂ij) generates acoustic waves (through Green function terms) that propagate to the far field. The far field
“pressure budget” is shown in Fig. (2).

Figure 2. The equivalent representation theorem, Eqs. (16) & (17)

D. Power spectral density formula

The power spectral density of the far field pressure is:

P̂ (x, ω) =

∫

V∞(y)

∫

V∞(η)

Îijkl(y, η, ω | x)R̂ij,kl(y, η, ω) d3η d3y. (18)

η is the vector separation between the correlation positions y and y + η; in Cartesian coordinates η =

(η1, η2, η3). The integrand is expressed in terms of the 4th rank tensors: Îijkl(y, η, ω | x)—for the wave

propagation, and R̂ijkl(y, η, ω) for the turbulent field. They are easily defined from standard theory,18 i.e.,

Îijkl(y, η, ω | x) = Îij(y,−ω | x)Îkl(y + η, ω | x), (19)
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where the second rank tensors Îij are given by Eq. (17). R̂ijkl(y, η, ω), the 4th rank cross power spectral

density of the stationary random function T̂ij is:

R̂ij,kl(y, η, ω) =

+∞∫

−∞

Rij,kl(y, η, τ0)e
−iωτ0 dτ0 (20)

=

+∞∫

−∞

T ′

ij(y, τ)T
′

kl(y + η, τ + τ0)e
−iωτ0 dτ0.

We simplify the wave propagation tensor Îijkl by assuming the variation of second rank tensor Îkl is small
over η2 and η3 compared to the correlation length. The dependence on η1 can be approximated, for example,
by following Tam and Aurialt,9 i.e.,

Îkl(y + η, ω | x) ≈ Îkl(y, ω | x)eikoη1cosθ (21)

where the observer is in the far field at an angle θ to the jet flow; and ko = ω/c∞ is the wave number in the
far field. The power spectral density then simplifies to,

P̂ (x, ω) =

∫

V∞(y)

Îij(y,−ω | x)Îkl(y, ω | x)

∫

V∞(η)

R̂ij,kl(y, η, ω)eikoη1cosθ d3η d3y (22)

We will find it useful to label Îijkl(y, ω | x) as

Îijkl(y, ω | x) = Îij(y,−ω | x)Îkl(y, ω | x); (23)

and the integral of the turbulent field tensor over η, R̂total
ij,kl (y, ω), as

R̂total
ij,kl (y, ω) =

∫

V∞(η)

R̂ij,kl(y, η, ω)eikoη1cosθ d3η. (24)

Then, the final form of power spectral density is rather easier to handle.

P̂ (x, ω) =

∫

V∞(y)

Îijkl(y, ω | x)R̂total
ij,kl (y, ω) d3y (25)

The rest of this paper is devoted to analyzing Eq. (25) for a parallel shear flow. We adopt a cylindrically
based coordinate system for a jet flow that is circular cylindrical, so that the field spaces are y = (y1, r, ψ)
and x = (x1, R,Ψ). The mean flow is directed axially in y1, and a function of r; and the observer is in
the far field at an angle θ to the jet axis. To evaluate the wave propagation tensor, Îijkl (using Eqs. 17 &
23), we require a Green function solution for a parallel flow. That problem is relatively straightforward; for
example, the method used by Afsar et al19 is quite convenient for a CFD based mean flow, and is used in
this paper. For the turbulent field tensor R̂ij,kl, on other hand, we must resort to simple modeling.

III. Instantaneous Isotropy: model T ′
ij(y, τ)

We restrict our attention to the kinematic condition of isotropy that is interpreted in two ways. First,
we consider the instantaneous field (y, τ), and model the stationary random function T ′

ij(y, τ). Second, we
consider the statistical field, where we have already averaged over time, and model, therefore, the statistical
function Rij,kl(y, η, τ0). In this section we assess the first of these approaches—model T ′

ij(y, τ).
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A. Definition

If we suppose the stationary random function T ′

ij(y, τ) is isotropic for all values of time τ , then:

T ′

ij(y, τ) = δijQ1(y, τ) (26)

Notice that under this definition, Q1 = T ′

11 = T ′

22 = T ′

33, and T ′

12 = T ′

13 = T ′

23 = 0. If we substitute
instantaneous isotropy into Eq. (20) for R̂ij,kl(y, η, ω) we get:

R̂ij,kl(y, η, ω) = δijδkl

+∞∫

−∞

T ′

11(y, τ)T
′

11(y + η, τ + τ0)e
−iωτ0 dτ0 (27)

= δijδkl

+∞∫

−∞

R11,11(y, η, τ0)e
−iωτ0 dτ0.

B. Power spectral density

Substituting Eq. (27) into the power spectral density formula Eq. (25) gives,

P̂ (x, ω) =

∫

V∞(y)

Îjjkk(y, ω | x)R̂total
11,11(y, ω) d3y (28)

If we retain the momentum transfer term only, in Eq. (17), the power spectrum under instantaneous isotropy
is simply,

P̂ (x, ω) =

∫

V∞(y)

∣∣∣∣∣
∂Ĝj

∂yj

(y, ω | x)

∣∣∣∣∣

2

R̂total
11,11(y, ω) d3y. (29)

A formula like this appeared in Morris and Farrasat10 and Afsar et al.19

C. R11,11(y, η, τ0)

In this paper we use a Gaussian model for R11,11(y, η, τ0), suggested by Tam and Aurialt.9 The model is
scaled on the local values of the turbulent kinetic energy k, the rate of energy dissipation ǫ, and the mean
flow.

R11,11(y, η, τ0) =
4

9
ρ̄2A2k2 exp

(
−
| η1 |

Uτs
−

ln 2

l2s

[
(η1 − Uτs)

2 + η2
2 + η2

3

])
(30)

The statistical quantities that represent a characteristic length scale, ls, and time scale, τs, of the function
R11,11(y, η, τ0) are defined by

ls = cl
k

3

2

ǫ
and τs = cτ

k

ǫ
. (31)

The characteristic scales are multiplied by empirical constants cl and cτ . The constant, A, multiplies the
amplitude of R11,11(y, η, τ0). All of these constants, (cl, cτ , A), are chosen so that the predicted 90o spectrum
is close enough to the experimental data. To use this model in our power spectral density formula, however,
we have to first take the Fourier transform, and then integrate in η. Those steps are quite straightforward,
and have been spelled out before,9 we just the final result:

R̂total
11,11(y, ω) =

∫

V∞(η)

R̂11,11(y, η, ω)eikoη1cosθ d3η (32)

=
4

9
ρ̄2A2k22

( π

ln 2

) 3

2

l3sτsexp

(
−

ω2l2s
4U2 ln 2

)
1

1 + ω2τ2
s

(
1 − U

c∞
cos θ

)2 .
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D. Predicted noise spectra

R̂11,11(y, η, ω) is defined using a k − ǫ RANS calculation of the Stromberg13 jet. The Reynolds number is
3600 and the Mach number is 0.9. The Green function is based on the RANS mean flow at 6 jet diameters
downstream of the nozzle exit. At this axial location, the kinetic energy from the RANS solution is maximum.

We can now analyze the noise due to momentum transfer and energy change separately. In Figs. (3a)
we show the thirty degree prediction, and in Fig. (3b) we show the overall sound pressure level (OSPL).

E. Conclusions

1. Momentum transfer is biggest part of the spectrum at large observation angles, outside of the ‘zone of
silence’.

2. Instantaneous isotropy with momentum transfer only, gives reasonable predictions compared to the
DNS data, at large observation angles outside the ‘zone of silence’.

(a) Thirty degree spectrum (b) Directivity: Overall sound pressure level

Figure 3. Instantaneous isotropy. SPL = 10 log(4πP(x, ω)/p2

ref
(Dj/Uj)), Dj is the nozzle exit diameter; Uj is the

nozzle exit velocity and p2

ref
is the reference pressure for Stromberg’s jet.13 | x |= 30Dj . Comparisons are made

against the DNS data.14,15 The coefficients in Eq. (32), (A, cl, cτ ), are (0.125, 0.5, 1.0).

IV. Statistical Isotropy: model Rij,kl(y, η, τ0)

Now we turn our attention to the statistical field by representing the cross power spectral density of
fluctuating Reynolds stress, Rij,kl(y, η, τ0), directly.

A. Definition

If we suppose the statistical function Rij,kl(y, η, τ0) is isotropic and symmetric in all its tensor indices, then:

Rij,kl(y, η, τ0) = (δijδkl + δikδjl + δilδjk)F (y, η, τ0) (33)

The scalar function, F (y, η, τ0) = 1
3R11,11(y, η, τ0). Under statistical isotropy the Fourier transform of

Rij,kl(y, η, τ0) is:

R̂ij,kl(y, η, ω) = (δijδkl + δikδjl + δilδjk)
1

3

+∞∫

−∞

R11,11(y, η, τ0)e
−iωτ0 dτ0. (34)
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B. Power spectral density

Substituting Eq. (35) into the power spectral density formula Eq. (25) gives,

P̂ (x, ω) =
1

3

∫

V∞(y)

(
Îjjkk(y, ω | x) + Îjkjk(y, ω | x) + Îjkkj(y, ω | x)

)
R̂total

11,11(y, ω) d3y (35)

The quadratic forms, (Îjjkk, Îjkjk, Îjkkj), can easily be found using Eqs. (17) and (23). We note here the

biggest contribution to the power spectrum will come from the Hermitian quadratic form Îjkjk.

1. Momentum transfer and Energy change

In the second rank propagation tensor Îij , momentum transfer is given by term I. The part of the tensor
that corresponds to energy change is the sum of three terms: IIa, IIb and IIc.

Îij(y, ω | x) =
∂Ĝj

∂yi

(y, ω | x)

︸ ︷︷ ︸
Momentum transfer: term I

−
∂ṽj

∂yi

(y)Ĝ4(y, ω | x)

︸ ︷︷ ︸
Energy change: term IIa

− ṽj(y)
∂Ĝ4

∂yi

(y, ω | x)

︸ ︷︷ ︸
Energy change: term IIb

(36)

+
δij
2
iω

(
1 +

ṽk

iω

∂

∂yk

)
Ĝ4(y, ω | x)

︸ ︷︷ ︸
Energy change: term IIc

.

C. Predicted noise spectra

The function R11,11(y, η, τ0) is given by Eq. (31), and the wave propagation (the three quadratic forms)
is based upon a mean flow at 6 Dj downstream of the nozzle exit. In Fig. (4) we assess the contribution
momentum transfer, and energy change, play to the total power spectrum. Notice the predictions are very
good, and particularly good in the ‘zone of silence’.

(a) Thirty degree spectrum: Sound pressure level, SPL (dB) (b) Directivity: Overall sound pressure level, OSPL (dB)

Figure 4. Statistical isotropy. SPL = 10 log(4πP(x, ω)/p2

ref
(Dj/Uj)), Dj is the nozzle exit diameter; Uj is the

nozzle exit velocity and p2

ref
is the reference pressure for Stromberg’s jet.13 | x |= 30Dj . Comparisons are made

against the DNS data.14,15 The coefficients in Eq. (32), (A, cl, cτ ), are (0.144, 0.5, 1.0).
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D. Conclusions

The condition of statistical isotropy has revealed some startling findings:

1. For the thirty degree spectrum, the peak noise occurs at a lower frequency (compare Figs. 3a and 4a).

2. The overall sound pressure level is in reasonable agreement with the DNS data, at large observation
angles and at smaller angles.

3. Momentum transfer is biggest part of the spectrum, especially at small observation angles, in the ‘zone
of silence’.

4. The noise due to energy change is non-negligible outside of the ‘zone of silence’, near 90o.

E. Momentum transfer term, ∂Ĝ1/∂r

We have seen that most of the predicted noise in the ‘zone of silence’ is due to the transfer of momentum.
In fact, it is solely due to the transfer of momentum by the component ∂Ĝ1/∂r. In Fig. (5) we plot the
noise due to this component, and compare it to the total noise predicted under the condition of statistical
isotropy. The comparison is made for a parallel shear layer Green function based upon a mean flow at 1 Dj

(Fig. 5a), and 6 Dj (Fig. 5b) downstream of the nozzle exit . In both cases, whether the Green function is
based upon a mean flow that is “plug flow-like”, or “Gaussian-like,” the noise in the ‘zone of silence’ (under
statistical isotropy) is completely due to the component ∂Ĝ1/∂r. Indeed, this does show the predicted noise
in the ‘zone of silence’ will depend on the mean flow profile, if a parallel shear layer is used to represent an
evolving jet.20 Notice also that none of the admitted noise sources under an assumption of instantaneous
isotropy involves this propagation term, ∂Ĝ1/∂r.

(a) Green function based on: mean flow at 1 Dj (b) Green function based on: mean flow at 6 Dj

Figure 5. Noise in the ‘zone of silence’. Overall sound pressure level (dB), with the same legend as Figure 4.
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V. Discussion: two dominant terms in the jet noise spectrum

We have shown it is possible to predict the noise in the ‘zone of silence’ by supposing, for example,
Rij,kl(y, η, τ0) is isotropic, and symmetric, in all of its indices. The noise in the ‘zone of silence’ results

entirely from the transfer of momentum by the off-diagonal term, ∂Ĝ1/∂r. Outside of the ‘zone of silence’
the noise generated by other momentum transfer terms, like the trace, ∂Ĝj/∂yj , begin to dominate.

(a) Direct and Deviatoric Momentum Transfer (b) Dominant terms in Statistical Isotropy

Figure 6. Dominant terms in the noise spectrum. Overall sound pressure level (dB), with the same legend
as Figure 4.

The behavior of the dominant terms in the noise spectrum, like ∂Ĝ1/∂r and ∂Ĝj/∂yj , is given by the
momentum transfer tensor, Eq. (17). That is,

1. Inside of the ‘zone of silence’: Off-diagonal term in the tensor: deviatoric momentum transfer

∂Ĝ1

∂r
(y, ω | x) ∝

1

(1 −M(r) cos θ)2
cos θ

ko

[
∂

∂r
−

2 cos θ

(1 −M(r) cos θ)

dM

dr
(r)

]
D1Ĝ4

Dτ
(y, ω | x) (37)

∼
2ko cos2 θ

(1 −M(r) cos θ)3
dM

dr
(r)

remains O (ω) (At very low frequency, ko → 0.)

2. Outside of the ‘zone of silence’: Diagonal terms in the tensor: direct momentum transfer

∂Ĝj

∂yj

(y, ω | x) ∝
D1Ĝ4

Dτ
(y, ω | x) (38)

remains O(ω2). (At very low frequency, ko → 0.)

If one supposes Rij,kl(y, η, τ0) remains isotropic, in the limit of very low frequency the noise spectrum is
proportional to the mean flow dependent quantity, ω2(dU/dr)2 cos2 θ. This is because, when the frequency
is very low, any term in the noise spectrum that is multiplied by ω2(dU/dr)2 (Eq. 37) will dominate over
one that is multiplied by ω4 (Eq. 38) . As Goldstein7 remarked in his article, “it is the velocity gradient that

acts as a sounding board to increase the efficiency of the source term. Thereby producing a low frequency

11 of 13

American Institute of Aeronautics and Astronautics



generator with exceptional acoustic efficiency”. In Fig. (6) we show that the condition of statistical isotropy
naturally recovers this behavior. Inside the ‘zone of silence’ the spectrum closely matches the noise due to
the deviatoric momentum transfer component, Eq. (37); and outside of the zone the higher frequency terms
in the momentum transfer tensor dominate.

VI. Conclusion

The noise spectrum from a cold jet flow can be thought of as being composed of two terms. One of these
terms dominates at high frequency, while the other is significant at very low frequency and is multiplied
by ω2(dU/dr)2 (where dU/dr is the local mean flow gradient). This low frequency term is biggest at small
observation angles to the jet flow, in what is termed the ‘zone of silence’. It was first shown to exist by
Goldstein.7

The noise in the ‘zone of silence’ can be predicted if the cross power spectral density (Rij,kl) of the
Reynolds stress source term (T ′

ij) is taken to be isotropic and symmetric in all of the tensor indices. By
supposing this, the predicted sound remains in reasonable agreement to the DNS data at large observation
angles, and at small angles in the ‘zone of silence’. The low frequency term, that accounts for the noise in
the ‘zone of silence’, will not occur if the Reynolds stress source term (T ′

ij) itself is taken to be isotropic for
all values of time.
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