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Abstract’
Exhaust flows from aircraft engines operate at higher temperatures than the free stream.
Accurate predictions of jet noise in heated flows is therefore of considerable interest. In this
paper, we develop a self-consistent jet noise model in heated flows using the generalized
acoustic analogy derived in reference [1]. We show that the acoustic spectrum can be written
as the sum of three terms: the momentum flux auto-covariance term, the enthalpy flux—
momentum flux covariance (or the coupling term) and the enthalpy flux auto-covariance. By
extending the axi-symmetric model of the Reynolds stress auto-covariance developed and
verified in Afsar er a/ [2], to heated jet turbulence, we reduce the number of independent
components in the acoustic spectrum to 11 terms. We focus on the structure of the coupling
term, and use recent Rayleigh scattering measurements in heated flows taken at NASA
Glenn to show that it becomes increasingly important as the acoustic Mach number
increases. That 1s, it can provide either, enhancement, or cancellation to the acoustic
spectrum depending on the acoustic Mach number and the position of the observation
point. This behavior can help explain why heating reduces the overall sound pressure level

(OASPL) at all observation angles in supersonic jets.
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Nomenclature

amplitude function

scalar field

sound speed

ambient sound speed

nozzle diameter

adjoint vector Green’s function

enthalpy

generalized Reynolds stress auto-covariance spectrum
acoustic spectrum

wave number vector

transverse wave number vector

streamwise length scale

acoustic Mach number

pressure

generalized Reynolds stress auto-covariance tensor
etkonal

time

averaging time

convection velocity

source volume

velocity vector

generalized enthalpy fluctuation



observer location

x =

Y = source location

4 = specific heat ratio

Yoij = propagator

r'y; = Fourier-transtormed propagator

i = unit tensor

n = separation vector

n. = transverse separation vector

D = space-time spectrum of the generalized Reynolds stress auto-covariance
tensor

P = density

0 = polar angle measured from jet axis

To = time delay

w = radian frequency

l...] = absolute value

Subscripts

(1,7, k, 1) = tensor suffixes =1,2,3

L = transverse component
(u,v) = tensor suffixes =1,2,3,4
Superscripts

a = adjoint



time average
tluctuating quantity
Favre average

complex conjugate



1. INTRODUCTION

Since aircraft engine exhaust streams tend to be quite hot, there is an ongoing effort to
develop mathematical models for predicting the aero-acoustics of heated jets across a Mach
number range extending from subsonic to low supersonic tlow ([3], [4], [5]). While
accounting for “temperature effects” in jet noise predictions is not new (Lush & Fischer [6],
Mortey et a/ [7] and Lilley [8]), recent advances in modeling cold jet acoustics (see reference
[9]) provide a theoretical basis for developing a much more rigorous theory of heated jet
tlows. One purpose of this paper 1s to lay the foundation for a theory of this type, but the
main focus will be on a phenomenon that has been previously neglected in jet noise
modeling: namely the influence the “enthalpy flux—momentum flux” noise source coupling
term has on the aero-acoustics of heated flows. We examine the effect of this coupling term
on the overall acoustic spectrum and show that it becomes increasingly important for near
transonic and supersonic heated flows and 1s likely to become negative at supersonic speeds.
This particular result may help explain why experiments (T'anna [10], Harper-Bourne [11],
Tester & Mortey [12] and Viswanathan [13]) and computational studies (Andersson [14],
Moore et al [15] and Bodony & Lele [16]) show that heating reduces the overall sound
pressure level (OASPL) at supersonic speed.

Acoustic analogy based models are able to produce reasonably good predictions of
the observed acoustic spectrum in cold flows; see [9]. Reference [9] used the formalism
developed in [1] and certain statistical assumptions about the turbulence to predict cold jet
acoustic spectra that were in reasonable agreement with recent jet noise measurements. But
the analysis was based on certain assumptions about the Reynolds stress auto-covariance that
were more restrictive than necessary (see Afsar [17] for further analysis of these

assumptions). Since our goal is to put the present theory on as tirm a foundation as possible,



we first eliminate the unnecessary assumptions used in reference [9] before extending it to
heated flows. The resulting formula for the acoustic spectrum is the sum of three terms that
depend on ditferent components of the generalized turbulence auto-covariance tensor
introduced in [9]. The first of these involves the momentum flux auto-covariance; the
second, the co-variance between the enthalpy flux and momentum flux (or the coupling
term); and the third involves the enthalpy flux auto-covariance.

As indicated above, the main focus of this paper is on the coupling term, which has
not been considered in previous jet notse models. The acoustic Mach number is assumed to
be less than 1.5 in order to ensure that the convection Mach number is always subsonic.
Recent Rayleigh scattering data taken at NASA Glenn is used to show that this term
becomes increasingly important as the Mach number increases while the analysis shows that
its sign can become negative at supersonic speeds. This term can, therefore, reduce the
radiated sound field. The Rayleigh scattering data is also used to show how the coupling
term becomes increasingly important at supersonic speeds. This result is the most novel
contribution ot the paper.

A large body of acoustic data has been obtained for heated jets in the decades
tollowing Lighthill’s [18] proposal ot the acoustic analogy (e.g. [19], [20], [6], [21], [22], [23],
[24], [25], [26], [10], [7] and [27]). More recent experiments were designed to check the
accuracy of earlier studies and to extend their applicability to a greater parameter range; (e.g.
28], [29], 301, [31], [32], [33], [34], [35], [361, [11], [37], [38], [39], [40], [41] and [42]).

It is still challenging to measure turbulence correlations ot the type needed for jet
noise modeling (see Karabasov ef a/ [43])—especially when the correlation tensor involves
transverse separations (Viswanathan [44], [45] and Mielke ez 4/ [40]). Moreover, there are

almost no measurements of the enthalpy—velocity correlations that appear in the acoustic



tormulas for heated flows. However it 1s now becoming less expensive to use large eddy
sitmulations (LES) and direct numerical simulations (IDNS) to calculate the turbulence
properties of heated flows (e.g., Bogey & Bailly [46], Bogey ez a/ [47], Gerolymos [48], Lew ez
al [49], Moore et a/ [15], Bodony & Lele [16] and Bodony [50]) and there is some hope that
these results can eventually be used to develop the turbulence auto-covariance models
needed for predict the sound from hot jets.

Tester & Mortey [12] and Lilley [8] were among the first to argue that it 1s necessary
to include enthalpy fluctuation “source terms” in order to obtain more realistic predictions
of the acoustic measurements. More recent support for this idea is also given by Harper-
Bourne [11]. Further evidence for the importance of this term 1s provided by recent LES-
based jet noise predictions (see Andersson [14], Lew er a/ [49]; Bodony & Lele [16] and
Bodony [50]). These calculations show that noise predictions based on Lighthill’s analogy is
much more accurate in heated flows when the pressure-density term --- sometimes referred
to as the “entropy term”--- is included. For example, Andersson [14] showed that the large
angle OASPL (figure 7.74) can be significantly over predicted when only the momentum
tlux source is present. Although Andersson [14] did not explicitly show that the pressure-
density term would produce better predictions at large angles, Lew ez a/ [49] did confirm this
tor a heated jet at a Mach number of 0.9 (see their figure 11). Bodony & Lele [16] showed
that the cancellation between the momentum flux and pressure-density terms is signiticant in
heated flows, and especially at small observation angles.

Most of these computational studies were interpreted in terms of Lighthill’s
tormulation— presumably because of its simplicity. But there are technical ditficulties in using
it as a starting point for mathematical modeling in heated flows—mainly because the

pressure density term that appears in the Lighthill source function contains both isentropic



and non-isentropic components with the latter being proportional to viscous and heat
conduction etfects which are believed to be negligible at the high Reynolds numbers of
interest in jet noise problems. The present paper extends the axi-symmetry model of Afsar e
al 2] to obtain a self consistent model for the enthalpy coupling term and the enthalpy flux
auto-covariance term in the formula for the acoustic spectrum and uses the result along with
data from recent measurements of the correlations function amplitudes taken at the NASA
Glenn Research Center to obtain a better theoretical understanding of the acoustic spectrum
tor heated jets. But no attempt is made to make quantitative predictions of the radiated
sound since the appropriate space-time data is not yet available for the enthalpy correlation
tunctions. The coupling term, which has not been considered in previous studies, is shown
to play an important role at high acoustic Mach numbers. We show that this term can
become negative when the local mean flow velocity is supersonic (with the source
convection speed still subsonic) and the observation point 1s close to the jet axis. This
phenomenon may, therefore, provide a possible basis for new noise reduction methods,
particulatly for the peak noise at small angles to the jet axis.

The remainder of the paper is organized as follows. The basic formalism is
summarized in Section 2. The statistical axi-symmetry model and the WKBJ approximation
are used to simplify the formula for the acoustic spectrum formula in Section 3. The
statistical axi-symmetry model 1s used to in section 4 to decompose the auto-covariance
tensor into three components. Section 5 uses these results and Recent Rayleigh scattering
data to explain the gross features of the acoustic spectrum in heated jets across a range of

Mach numbers and temperature ratios.



2. THE FUNDAMENTAL EQUATION

The acoustic spectrum,

+oco

L(z) = / N (2, 70) g 0

— 0
at the observation point z, ie. the Fourer transtorm of the far-field pressure auto-

covariance

+T

Plam) = o [ e et + ) ®
-7

can be expressed in terms of [, (z | y), the acoustic spectrum at g, due to a unit volume of

turbulence at Y by the equation:

L(a) = / Lo(z | y) dy, o)

Voo (y)

where V (g) denotes integration over all space with respect to y. Reference [9] shows that

this latter quantity is given by

L(z | y) = 2n)°Ty;(z | y;w) / U@ |y +nw)Hujul(y,n,w) dn, 4

Voo (n)
where the asterisks denote complex conjugate, Greek suffixes range from 1 to 4, and Latin

suffixes from 1 to 3. The second rank tensor detined by,
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is the Fourier transtorm of a “propagator”

8gi4(£,t | g> T)
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O
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that depends on the adjoint vector Green’s function g% (y,7 | z,t), determined by
equations (4.8) and (4.11) of reference [9], which shows that the Green’s function and,
therefore, v, (z,1 | Ys 7) can be calculated once the mean flow is known.

The rank four tensor, H,; u (g, ﬂ,w) is related to the generalized fluctuating stress

tensor

+T

/ [pv, v — pu, ] (y, 7) [pvy ) — pojvp] (y + 0,7+ 70) d,
-7

1

Ruj,ul(ga 7, 70) = T

by the simple linear transformation,

Hlljﬁul - 6Vj70mHam7>\n€ul7>\n> (8)
where
o
Hyjpu(y,mw) = o / e Ry (g, 1, 70) do, ©)

Uy, denotes the Favre averaged mean flow velocity, the overbar denotes the time average and,
- -1
€vjom = <6I/O'ij - ,YTalljéom>~ (10)

v, (Y, 7) = vu(y, 7) — U,(y) denotes a four dimensional velocity fluctuation, with the fourth

component defined by

UL(Q’ T) = (fy - 1) |:h/ + %UIQj] (y,T) = (02)/ + ,YT_l?]Q (11)

where h/ denotes the enthalpy fluctuation, (¢?)’ denotes the fluctuation in the squared sound
speed and v/ /(7 — 1) denotes the moving frame stagnation enthalpy fluctuation. The
dimensionless ratio, v,/ Ujetv;, which determines the relative importance of the fourth

component of v; to vl, where Ui, denotes a characteristic jet velocity, must scale as



O(V/02 Uy, for unheated jets when the Mach number is O(1) (see, Lilley [51] and Morfey,
Szewczyk & Tester [52]) because ¢ is expected to be O(v/v2)? in this case. The enthalpy
component of v; should, therefore, be small tor cold jets and can be set to zero in
Ry (Y., 7o), which will equal zero whenever (1, v) = 4.

Equation (7) shows that the generalized Reynolds stress auto-covariance tensor
Ry;u(y, n, o) possesses pair symmetry in the suffixes (v, j) when v = (1,2,3) and in the
suffixes (u, 1) when p = (1,2,3). It, therefore, follows from equations (8) - (10) that the
transformed tensor H,; ,; also has this property. Then since this symmetry does not exist

when the corresponding Greek sutfix is equal to 4, it makes sense to re-write equation (4) as

Lz |y) = 2n)°Ty(z | yiw) / Doz [y +n;0)Hijwu(y, n,w) dn

Voo (1)

Pl yw) [ Tile ]yt mo) e do

Vo (1)

©(2n)Ty(z | ) / Tty |y -+ s ) g (g, 1)

Voo (1)
+ (271)°Ty (z | y;w) / Uz |y + nw)Haja(y,n,w)dy (12)
Voo (1)
But since
+T
1 - -
Ryj,ﬂl(g, 7, ) = T [pv’yv; — pv’yv;} (g, 7) [pvilv; — pv’ﬂvg] (g +1,7+ 7o) dT,
“r
= R/J,l,l/j (g + ﬂa _ﬁa _7-0) (13)

it follows from equations (8) - (10) that



Hy (Y, w) = Huwi(y + 1, -1, w) (14)

The integration variables and index names can, therefore, be changed in the tormula for the

contribution of the second term in equation (12) to the integral [,(z) = / I(z | y)dy
Voo (y)

to show that the third term makes the same contribution to this integral as the complex

conjugate of the second term, which means that the acoustic spectrum I, (z | ) due to a

unit volume of turbulence at g, can also be expressed as the sum

\
—yzﬁi] z|y) +1 (z|y) +1¥ (2] y) (15)

of the following three terms
(1). The momentum flux auto-covariance term:
N (z|y) =Gz | y;w) / (@ |y + 0 iy, nw) dn (15)
Voo (1)

(11). The enthalpy flux — momentum flux covariance (or, the coupling term):

1P (z | y) = 2Re{ Tyj(z | y;w) / n(@ |y +mw) Hau(y,n,w) dny (15b)

Voo (1)
and (ii1) The enthalpy flux auto-covariance term:
I8 (2 | y) = Tuj(z | ysw) / @ |y +n ) Hajaly, n,w) dy (15¢)
Vo (1)
where Re denotes the real part and we have introduced the symmetric tensor

Gi; = (I'y; +T'i) /2 since Hj g has pair symmetries in its first and second pairs of suffixes



and Hajjy possesses one pair symmetry in its last pair. Notice that the enthalpy flux —

momentum flux coupling term involves the covariance ot the enthalpy flux at (at location, ¥)

with the momentum flux (at location, Y+ ﬂ) while the enthalpy flux term involves the auto-

covariance of the enthalpy flux itself.

3. APPROXIMATIONS

3.1. Kinematic approximations 1 and 2

The generalized Reynolds stress auto-covarance tensor R, ;,; that enters the acoustic
spectrum through equations (8) & (9) has 63 independent components. It 1s, theretore
necessary, to introduce some approximations to reduce this number to a reasonable value.
This was accomplished for cold jets in Afsar ef 2/ [2] by introducing a statistical axi-symmetry
model for the Reynolds stress auto-covariance tensor R;;i; or equivalently its Fourer
transform  Hyj (3, 1, w), which was verified against turbulence data from the PIV
experiments of Pokora & McGuirk [53] and a large eddy simulation (LES) of a cold jet flow.
Appendix A contains a shorter version of the verification given in Afsar ez a/ [2]. Since the
results show that the model is fairly accurate it seems appropriate to extend it to the
generalized auto-covariance tensor I2,; ,; (or equivalently its Fourier transtorm H,; ;) by

introducing the following two basic assumptions:

Assumption 1: H,;,,(y,1,w) depends upon 7 only through its magnitude, |QJ_| or in

symbolic form

Huj,ul(ga nlaﬁlaw> ~ ij}ul(g? M, QLLC‘)) (16)



However, as noted in Afsar et a/ [2] the Harper-Bourne [54] and Pokora & McGuirk
[53] experiments suggest turbulence in the round jet flow 1s more or less axi-symmetric. This
is demonstrated by figure (10) of Pokora & McGuirk [53] which shows that the axial
correlation length of 1?1717 (figure 10b) is significantly greater than the correlation lengths in
either of the transverse directions (see figures 10d and 10f in Pokora & McGuirk [53]).
Hence, it is reasonable to suppose Ryj,ul(g, n, To) is itself an axi-symmetric tensor, which
means that the 4™ 3 and 2™ rank tensors Rij ki, Rajr and Ry; 4 tespectively, are axi-
symmetric tensors, and, therefore, that the tensor form defined by each of them remains
invariant under the full rotation group which includes proper and improper rotations (i.e. the
orthogonal group O[3]) with respect to the axial direction’. We, therefore, also assume that
Assumption 2:

H Vil (y, 7, w) is an axi-symmetric tensor (17)

These two assumptions, which (as Afsar ez 2/ [2]) we again refer to as statistical axi-symmetry,

leads to the following approximation:

Hy;u(y, mn w) & Hyju(y, m, |Ql|,w) Is an axi-symmeiric tensor
(18)
It is now easy to show from (8) that that the tensor in (8) (i.. H, . (y,n, w)), which actually
enters (4), is also statistically axi-symmetric, i.e. that
Hojyuy,mn s w) & Hyju(y,ms 0 |,w) 19)

1s an axi-symmetric tensor.

# Under a more general definition of axi-symmetry, the representation of the tensor of odd parity Ry; ; would

be such that its tensor form is invariant to proper rotations only (see Afsar [17]).



3.2. Spectral tensor formalism

Observations reported in Harper-Bourne [62] and Pokora & McGuirk [63] indicate that the
streamwise and transverse turbulence correlation lengths are short compared to the
corresponding mean flow length scales (especially at the end of the potential core which is
the region ot most importance tor the results in this paper). Appendix B shows that this
disparity can be exploited to simplify the formula for the acoustic spectrum by using the
WKBJ approximation to account the variations of the propagator [}, (z | y + n;w) over the
turbulence correlation volume. Equation (B5) can be inserted into equation (15) to show that
the three components of the far-field acoustic spectrum I, (z | y) are given by the purely

algebraic results:

N (z | y) » Gz |y w)Gh(z | y;w) 50 (v, b, w) (202)
1B (z | y) = 2Re {Ty;(z | y;w)Giy(z | y;w) %, 4 (3 b w) } (20b)
1B (z | y) = Tyj(z | ys )Ty (@ | y;w0) %0 (v, kow) (20c)

where, k= CKZQS (z | Q). Equation (20) depends on the turbulence correlations only

through the complex conjugate of the fourth rank spectral tensor @, . (y, k1, k , w), which
is related to the Reynolds stress auto-covarance tensor (7) by (8), (9) and the Fourier

transform

q)l/j,ul (ga kl? EL 5 w) = / %Vj,ul (gv 7, Ld)@—ikﬂ d77 (21)

n



The wave vector k is defined by its Cartestan components k = (ky, k, ), where k; 1s the axial
component and El is in the transverse direction. H,; (g, Q,w) is related to the Reynolds
stress auto-covariance through equations (8) -- (10), and k can be identified with
(w/c..)¥V , S(z | y) using (B5). It is important to note that it would be impossible to define

the Fourier transform (21) if the auto-covarance tensor (7) were replaced by the correlation

tensor

+T

1
pvlyv/j (g, T)pvitv; (g +n,7+ 7o) dT, (22)

2T
-7

as 1s frequently done in analyses based on a Lilley-type equation since, as pointed out by

Batchelor ([55], p-179), the latter quantity tends to a non-zero value as || — oo.
It now follows from the symmetry properties of H,; i(y,n,w) that the spectral

tensor components have different symmetries in each of the three terms in (20) which are

summarized in table (1).

Spectral tensor Symmetries Number of
components independent
terms
Momentum flux 2 pair symmetries:
term *
©7,kl . .
11 (z | y) ’ (14 ) (k< 1)
Enthalpy flux — 1 pair symmetry:
rnorner.lturn flux @ % 18
coupling term 475, kl (k‘ < l)
15 (x| y)
Enthalpy flux
term * No symmetries. 9
, Dy a Y
I8 (x| y)

Table 1: Symmetries of the three terms in acoustic spectrum equation (20)



*

yjyl(%a kla ELa (U) of %Vj”ul(g> M, QJ_ 9 w) will

It is easy to show that the Fourier transform @

depend only on the magnitude squared ki of the transverse wave number k£, when

Hoju (Y, nl’ﬂg@ satisfies (19); i.e., that

¢:;j7l’[’l<g’ kl’ Ei’w> ~ Qij,ul (Q7 kl? kia w): (23)

where k* = k3 + k3. It is also easy to show that the Fourier trangform, ®; ,(y, k1, k>, w), of
Hoju(ys s | n, |, w) és an asi-symmetric tensor with respect to the wave number vector k in the sense
that the tensor form defined by each of the three tensors ®7; 1y, @7 1y, Pyj 4 temains invariant under
the full rotation group with respect to the ky —direction, when H,; .u(y, 71, | n, |,w) is an axi-
symmetric tensor. So it follows that <I>,,j7ul<g, kl,ﬁﬂw) must satisty the statistical axi-
symmetry property if the original generalized auto-covariance tensor Ry (Y, 11 n 7o) has
this property—but now in terms of the wave number vector k instead of the separation
VeCtor 7).

In total ®;. (y, kl,/{i,w) possesses 63 independent components. The three

contributions to the acoustic spectrum are then given by:

I (z|y) = Gij(z | yiw)Gila | y;w)0F (Y. ki kL w) (24a)

1P (z | y) = 2Re {Ty(z | y;w)Giy(z | ysw) %, 0y, ko, k2 w) } (24b)

1B (z | y) = Tz | ysw)Th(a | ysw) %0y, ki, k2, w) (24¢)



4. CONTRIBUTIONS TO THE ACOUSTIC SPECTRUM

Appendix C shows the application ot approximations 1 and 2 reduces the total number of

*

independent components of ¢,

(y, k1, k’i, w) from 63 to only 11. Inserting equation (C4)

into (24a) shows that the far field acoustic spectrum I (z | y) is given by:

IB] (1 | Q) ~ [G,;,,;sz - 2R'Q<G11Gz]€> + GHGH @;2,22(% k, W)
+Re [G1 Gy, — GGy (®T1,22 + <I>§2,11) (y: k. w)

+ GHGquy{l,ll (g~ E? (U)
+ 2[Gi Gl — GiGry + 2Re(GnGly) — 2G1aGhy] ©o33(y ks w)

+4[GuGry — GuGyy] (I)Tz,lz(y, k,w) (25)

The @’2‘3723 spectral tensor component can be re-written using the spectral version of
Millionshchikov’s identity, which 1s satistied by equation (C4) (see Afsar ef 4/ [2]) and the

result can be rearranged to obtain the following remarkably simple formula for [ B} (z ).

]B] (i ’ y) R [|G22‘2 + ‘G33’2 + 2’G23’2} (I>;2722 + Re |:G11(G;2 + G§3)] ((DTLzz + (1)32,11)

+ |G |2q)>{1,11 +2 [Re (G22G§3) - |G23|2} ¢§2,33 +4 [|G12|2 + |G13|2] qy{z,lzz (26)

where the arguments of the symmetric propagator, G, are (z | y; w) and the components of
spectral tensor are functions of (% k1, k% + k’g, w). Equation (26) applies to jets of any cross
section and does not require that the mean flow (which enters through the propagators G;)

be parallel or even weakly non-parallel. It is a generalization ot equation (6.27) in [9] and



depends on the six independent components ®3, 59, @7, 99, Poy 11, DTy 11, Pog 33 and Py 5,
of the spectral tensor ®7; ;; which are related to the components of the Reynolds stress auto-

covariance tensor by equation by (8), (9) and (21). Further analysis of the properties of
equation (26) can be found in Afsar [17].

Substituting (C7) into (24b) and (C8) into (24c) shows that the enthalpy terms

12 (x| y)and 18 (2| y) can be expressed as
I (| y) ~ ZRG{FMGS@ZLzz + TG @4 1y + 2[T42Gy + Dz G @Zz,zl}z 27)

[c[f] (z | Q) ~ [|F42|2 + |F43|2] (1)12,42 + |F41|2(I)Z1,41~ (28)

In the remainder of the paper recent flow measurements taken in the Small Hot Jet Acoustic
Rig (SHJAR), located in the AeroAcoustic Propulsion Laboratory (AAPL) at NASA Glenn
Research Center (GRC) (Mielke ef a/, [40] and [41]) are used to interpret the observed
behavior of the far field acoustic spectrum, [, (z), but with particular attention to how [ E]

and [ E] change with temperature ratio and acoustic Mach number.

5. TURBULENCE MEASUREMENTS IN HEATED JETS

A molecular Rayleigh scattering technique developed at (GRC) was used to measure gas
velocity, temperature, and density at a sampling rate of 10 kHz in the SHJAR Rig (which is a
vitiated air heated jet rig that uses a hydrogen combustor and central air compressor
tacilities, and can operated over a range of Mach numbers up to Mach 2, and static

temperature ratios up to 2.8). The testing was done with a 50.8-mm exit diameter nozzle



with a smooth round exit. The experiments covered a range of acoustic Mach numbers from
0.5 to 1.59 and a range of static temperature ratios (T'R = Tiet/Tw) from 0.835 to 2.7. A
high power continuous-wave laser beam was focused at a point in the flow field and
Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot
interferometer for spectral analysis. Photomultipler tubes operated in the photon counting
mode were used to sample the total signal level and the circular interference pattern to
provide simultaneous static density, static temperature, and axial velocity measurements.
Some of the data from these experiments was reported in Khavaran ez @/ [56], but this is the
tirst time that it was used to analyze the covariance functions that appear in the coupling
term. Measurements wetre acquired at several axial locations of y1/Dje > 2 and radial
locations of 0.0 < r/Dje < 1.25.

Measurements were carried out at the temperature ratios and Mach numbers

originally analyzed by Tanna [10] and summarized in table 2.

SETPOINT NOZZLE M TR

7 SMC000 0.900 0.835
23 SMC000 0.500 1.765
27 SMC000 0.900 1.765
32 SMC000 0.500 2.270
42 SMC000 0.500 2.700
46 SMC000 0.900 2.700
49 SMC000 1.480 2.700

Table 2: Flow conditions and associated set point numbers used by Tanna [10].



Time-resolved Rayleigh scattering measurements of axial velocity, static
temperature, and static density and the discrete correlation theorem (Press ez a/ [57]) were
used to calculate the fourth-rank correlation functions: R11,11(g; 0, 7o), R41,11(’_, 0, 7) and
Ry n (g, 0,79) defined in equations (7) and (11). The intermediate step involves the
calculation the power spectrum, which provides a measure of the energy of the fluctuations
in each frequency bin, and plays an important role in filtering noise from the data. Further

details can be found in Mielke ez 2/ [40] and [41].

5.1. Amplitudes of the enthalpy-associated correlation functions

The 2Re{l1 G}, P}, 1, } and [Tyt [*®7, 4 terms in the 121 components of (15) can be
used to get a tentative idea of how these purely fluid mechanical effects of R11,11(Q, 0,0),
Ry4111(y,0,0) and Ry 41(y,0,0) can influence the acoustic spectrum. Equation (5.20) of

reference [9] shows that

e 4 cos® 0 G2 .
IE] (z | Q) R <CT> 3, @41,11> (29)
> [1 — M<QJ_> cos 9] >
and
4 cos? 0 G2 .
IE] (z|y) =~ | 2| Q1 a1- (30)

tor a parallel mean flow, where (g) denotes the scaled adjont Lilley Green’s function

(defined by their equations (4.20) and (5.22) of reference [9]).



The Doppler tactors that appear in these tormulas arise from the propagator and, therefore,
can only depend on the mean tlow velocity and not on the source convection velocity. They
tend to have a much larger etfect at transonic speeds than those that would arise from
source convection effects because they are raised to a high power and can be much closer to
zero at small observation angles. And more importantly they can change sign at supersonic
speeds while the source convection Doppler factor cannot—since the analysis has been
restricted to subsonic convection Mach numbers. These are some of the most important
differences between the present more exact approach and the Lighthill approach. They tend

to become very significant at high Mach number and small observation angles.
Since |§ |2 has the dimensions of L ™3, where L is an appropriate length scale, these

results imply that an appropriate normalization for Ry 11 and Ry 41 18:
ply pPpProp ; ;

- and - . (31)

Figure (1) shows that 241 11 becomes the same order as [241 41 at high Mach number. This
can be seen this more clearly in figure (2), which shows the individual correlation functions

at various Mach numbers, at a fixed temperature ratio of 2.7.
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FIGURE 1: Heated jet correlation functions at fixed temperature ratio of TR = 2.70 along

Figure 1b: SP49, M = 1.48.

the nozzle lip line.
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The negative value of Ry; 41 at 2/ Djec = 2 (see figures 1b and 2b) could result from aliasing
associated with the under sampling ot the fluctuations, since the fluctuations close to nozzle
exit would contain frequencies as high as 100 kHz, whereas the sample rate in the
experiments 1s 10 kHz. The temperature measurements in the far downstream region
(/Djet > 10) could be affected by Mie scattering of the signal from dust particles present
in the flow (Mielke ez a/ [40] and [41]). The most reliable data, therefore, lies in the region
between x/D;e;=3 and 2/ Dje;=10. While the results show that the amplitude of Ry 17 can
become negative within this region when the Mach number is small (figure 2a), they also
show that it 1s always positive at the higher transonic and supersonic Mach numbers where
Ry1 11 1s of the same order as [241 41. At the low subsonic Mach numbers of figure (2b),
Ry1 41 (which exists in the enthalpy flux term equation 30) is seen to be large in magnitude

between x/D;et=3 and / D;e=10.

5.2. Mathematical structure of the coupling term

It tollows that the coupling term 1s only likely to be important at the higher transonic and
supersonic acoustic Mach numbers where Ry; 17 1s positive. In order to understand its etfect
on the acoustic spectrum it is necessary to consider its contribution to (29) which is

proportional to spectral tensor component,

* 3 — —1
(1)41711:/ {4< 7 ) Hy— (v —1)Hy 2 (g7 7, w) e L] dn (32)
n

There 1s no available data on the space and time correlation and we were unable to obtain

any estimates of these quantities from currently available LES results. But the second term



is almost certainly small compared to the first because the transverse scales and turbulence
intensities are almost always much smaller than the corresponding streamwise quantities. In
tact, it 1s not unreasonable to expect that the relative magnitudes of the Fourier transtorms

Hy11(y,m.w) and Hypo(y,m,w) are the same as the relative magnitudes of the

corresponding R11,11(g, 7, 7o) and Riq 20 (g, 7, 7o) components of the Reynolds stress auto-
covariance tensor. Since LES results reported in Karabasov er 2/ [43] indicate that the ratio of
the amplitude of the lateral co-variance Ri1,22(y, 1, 7o), to Ri1.11(y, 0, 7o), is less than 0.1 at
the end of the potential core, it may be reasonable to suppose that the relative magnitudes of

the Foutier transforms Hy; 11 (y, n,w) and Hyy 95(y, 1, w) behave similarly. This then implies

that the square brackets in equation (32) is proportional to a positive constant times

Hyy11(y,m, w) and that @7, ;; is, therefore, expected to be positive when the acoustic Mach

number 1s transonic and supersonic. Since the propagator depends only on the mean flow
and 1s unaffected by source convection, any Doppler factors that appear in this quantity
must depend only on the mean flow. These (mean tlow) Doppler factors would not appear
in the Lighthill approach—which does not explicitly account for mean tlow interaction
effects. These factors can be much larger than the weaker source convection Doppler factors
that occur in the Lighthill approach (as well as in the present approach) and can have a much
stronger effect on the radiated sound when the convection velocity is subsonic but the
acoustic Mach number is supersonic, as it 1s in the present result.

Equation (29) shows that for a parallel shear layer, ['y;G}; component of the
propagator is proportional to 3 mverse (mean flow) Doppler factors, and can, therefore,
change sign when the acoustic Mach number 1s supersonic and the observation point is close

to the downstream jet axis. But it can only become negative when the Mach number is



supersonic and the observation angle 1s within the “zone of silence’ of the parallel shear layer
Green’s function.

The I'y1 G}, component of the propagator is always positive at high subsonic Mach
numbers and, therefore, makes a positive (enhancement) contribution to the acoustic
spectrum. Although the contribution made by the enthalpy flux term [/ Blis always positive
definite (see equation 28), for the parallel shear layer Green’s function, it will not be as
directive as the coupling term (especially for transonic flows where the mnverse Doppler
tactors are much more intense at small angles). Equation (30) shows, [ B] has a pre-factor
with two inverse (mean flow) Doppler factors, and a leading multiplier of cos? 6, whereas the
propagator component multiplying (IDZLH (equation 29) is proportional to three mnverse
(mean flow) Doppler factors and has a cos® § multiplier.

When the Mach number is supersonic, the propagator I'4;G7; changes sign at small
observation angles to the jet axis, so that the contribution made by the component (29) to
the coupling term [ B] is negative. Analysis of the other terms in equation (27) shows that
propagator that multiplies ®7, 5, possesses 5 inverse Doppler factors for the parallel shear
layer Green’s function. If the sign changes in the spectral tensor component ®), 5, are the
same as (IDZLH with Mach number (at constant temperature ratio), this term could introduce
even more cancellation, since it is almost as directive as the term that dominates the
momentum flux term at small observation angles (see reference [9]).

This is the first time a cancellation effect brought about through the coupling between
enthalpy flux and momentum flux has been highlighted. This cancellation effect has the

potential of directly reducing the peak jet noise since the sign change in the propagator

occurs at angles within the “zone of silence’ ot |g\2.



6. CONCLUSIONS
A selt consistent approach to modeling jet noise in heated tlows was developed in this paper.
The starting point was the generalized form of the acoustic analogy derived by in [1], which
allowed the acoustic spectrum to be expressed as the sum of three terms: the momentum
tlux auto-covariance term, the enthalpy flux — momentum flux covariance (or the coupling
term) and the enthalpy flux auto-covariance. The statistical axi-symmetry model developed
by Afsar ez a/[2] for the momentum flux auto-covariance was extended to the coupling term
and enthalpy flux auto-covariance. This reduced the total number of independent terms in
the acoustic spectrum formula from 63 down to 11. The main focus of the paper was on the
coupling term, which was not considered in previous jet noise models. Recent Rayleigh
scattering measurements taken at NASA Glenn were used to show the coupling term
becomes increasingly important as the Mach number increases. Examination of its
mathematical structure showed that it can provide either an enhancement, or a cancellation,
depending on the acoustic Mach number and the position of the observation point relative
to the jet axis.

The acoustic spectrum formula, given by equations (26) — (28), can be used for jet
noise prediction, when the turbulence correlations are determined from either a

computational solution (such as a large eddy simulation) or experimental data.
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APPENDICES

A: SUMMARY OF AFSAR ET AL [2]

Afsar er al [2] showed that the statistical axi-symmetry assumption mmplies that the three
components of the Reynolds stress auto-covariance tensor are related to one another by the

Millionshchikov identity:
Rz 29 (Q, M, ’ﬂl ’7 To) =R 33 (y, M, ‘ﬂl |> To) + 2323,23(% m, |QL|, To) (A1)

Figure Al is a plot of Ryy2(y,m1, 7o) / Ra2,22(y, 0, 0) as a function of 7y for various axial
separations. The lines (solid, dashed, dot-dashed) are computed from the PIV data of
Pokora & McGuirk [53] and the filled symbols are corresponding quantities calculated from

the Millionshchikov identity (A1) with Rys 33(y, 11, 7o) and Ras 23(y, 11, To) computed from

the same PIV data.
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B: TRANSVERSE VARIATIONS OF RETARDED TIME IN THE
PROPAGATOR, I}, (z|y+nw)

Signiticant simplification can be obtained if the propagator s taken outside of the integral in
equation (15). But this amounts to neglecting variations of the Green’s function over the
turbulence correlation region, or neglecting the so-called ‘retarded time” etfects. It is now
known that these effects can give rise to subtle source cancellations and neglecting them
completely can lead to errors in the noise predictions.

Measurements taken by Pokora & McGuirk [53] seem to suggest that the transverse
correlation lengths will be small relative to the transverse mean flow length scales, especially
at the end of potential core, which is the region of primary interest here. We, theretore,
assume that the turbulence correlation lengths are short compared to the corresponding
transverse and streamwise length scales of the mean flow, say Dje; and L respectively, and
exploit this length scale disparity to simplify the formula for the acoustic spectrum. Although
the streamwise distance over which these fluctuations are correlated tends to be longer than
the corresponding transverse distances, the mean flow varies much more slowly in the
streamwise direction than in the transverse direction in high Reynolds number flows of
interest in jet noise applications.

Since the linear equation governing the far field adjoint Green’s function depends
only on the mean flow and reduces to the wave equation outside the source region, its
solution can only depend on the mean flow length scales (which enter through the
coefficients of the equation) and the acoustic length scale or wave length ¢ /w (since only
the acoustic waves reach the far field). When these lengths are all large compared to the
turbulence correlation lengths, the adjoint Green’s function (and therefore the propagator)

will be relatively constant over the correlation volume, and may, therefore, be moved outside



the integral over the separation vector in (15). But these variations cannot be neglected when
any of these length scales is the order of, or smaller, than the correlation length, which in
view of the above assumption, can only occur when acoustic wavelength ¢_/w is small
relative to Djer. The Helmholtz number, H = wDet /¢ (which is the ratio of the transverse
mean flow length scale to the acoustic wave length), will then be large and the propagator

le(g | z;w) can then therefore be represented by its high frequency, or WKBJ

approximation (Khavaran [58])
(z|ziw)~ Au(z | Z H)exp[iHS(z | 2)] B1)

whenever 1t does not remain constant over the correlation volume. Here
Z=(z1/L,z,/Djet) is a scaled dummy variable that varies on the mean flow length scales

and A,(z | z;w) expands as a power series in inverse powers of H; i.e.

At | 5 H) = HAD 2| 24 A | 24 a2 2+ (37) AT 2

ul
B2)
The phase factor S(z | 2) in equation (B1), which satisfies the usual Eikonal equation

(Goldstein [59]), and the amplitudes A,; can be expanded in Taylor series to obtain

05(z19)  __ S(z]D)
Sz|y+n) =8|y +ni——F + 00— + ... 3a
( |_ _) ( I_) ayL J ayfayj (B )
i N C0Au(z | g H) P Au(z |y H)
Au(z | g+ H) = Au(z | §; H) + i/T'_ i /agaf/_v
1 2 J

(B3b)



But since y varies on the slow scales Die; & L of the mean flow, A (z | § + 7; H) and
S(z | g + 1) can be well represented over the entire turbulence correlation volume V. ()

by the first term and the first two terms of their respective series. It, theretore, follows that:

S(z|g+7) = Sz | )+ i LD

- - 0 Ui (B4a)

and

Au(z | g+ H) = Au(z | §; H) (B4b)

tor variations on the scale of the correlation volume. Substituting these expressions into

equation (B1) and using equation (B2) shows that
Uiz |y +mw) ~ Tylz | giw) exp [iH7.9,8( | §)] (85)

when H > 1and, therefore, that

/ (@ |y +mw) sy n,w)dyp =~ Tz | y;0)@ (Y, b, w), (Bo)

*
where @7

(y, k, w) is defined by equation (21), and

sz yiw) = Az | g H) exp [iHS(z | )] (B7)



is the high frequency approximation to F;l (z | y; w). But the approximation (B6) will also be
valid for O(1) frequencies when I';(z | y;w) is interpreted to be the O(1) frequency result
in (B5), because H7j will be small for variations on the scale of the correlation volume, and
[ (z | y;w) will only involve length scales that are large compared to the correlation

volume and can therefore be factored out of the integral over that volume.

C. KINEMATIC THEORY: STATISTICAL AXI-SYMMETRY IN

q)ij“ul (g7 klv kia w)

C.1. Momentum flux term, /! (z | Y)

The basic invariants in the axi-symmetric model of ®F, ;,(y, k1, k‘ivw) consists of all terms
of the form (8;;0rs, 0ij0k1011, 0:10j10k16;1) with the tensor suffixes taking on all possible
values of (7,7, k,l), since ki enters this tensor only as scalar. So following the same

procedure used in Afsar ez a/ [2] for the real space tensor Rijp(y, MmN 7o), the spectral

tensor under statistical axi-symmetry O, (y, k1, k>, w) is

qﬁj,kl(ﬂv k1, ki,w) = 00 A1 (g, kQ, ki, w) + 0ir01 Az (% kQ, ki, w) + 5il5jkA3(g, k2. ki, w)
+ 04105100 A4y, k2, kp,w) + k101105545 (Y k2 ey, w)
+ 51‘151{15le6(% k2, ki, w) + 5j15115ikA7(g, k2, ki, w)
+ 041010 As(y, k2, k1, w) + 65161103 A9 (Y, k2 ky,w)

+ 5¢15j15k1511f110(g7 k2, ke, w), €1)



where each scalar field depends upon the invariant k? = k;k; = k3 + k:i and k;. Then since
7, 1 1s symmetric in the pairs, ie. ®F;, = %, 1, and @, = @, this equation can be

written as,

CI)Z},M(Q’ k1, k‘i,w) = 5@‘51@1%11(% k‘z, ki,w) + [5ik5ﬂ + 5il5jk] A2(g7 kQ, ki, w)
+ 04105100 As(y, Kk, w) + k101105545 (Y, K, by, w)
+ [0:10k101 + 8101104 + 0101105 + 010k104] AG(Q: k2 Ky, w)

+ 5i15j15k15111410(g7 Kk, w). €2

Substituting (i, 7, k, 1) = (1,2, 3) into equation (C2) shows that Ay, Ay, Ay, As As & A1

are related to the spectral tensor components by

Al(% k2, ki, w) = @32,22(% ki, k‘i,w) - 2(1);3,23(% k1, ki, w) (C3a)
A2(27 k2, ki, w) = 4)33,23(% ki, ki,w) (C3b)
A4(Qv k2, ki, w) = qy{LQQ(Q? ka1, ki,w) - @Zz,zz@a ka1, k‘i,w) + 2(1);3,23(& k1, ki,w) (C3¢)
A5(Qa ka ki, w) = q%zn(% ka1, ki»“) - @Zz,zz@a K, k‘i,w) + 2(1);3,23(& k1, ki,w) (C3d)
As(y, Kk, w) = Py 12(Y; k1, ki»w) — @3305(Y, b1, k‘i,w) (C3¢)
AlO(Qa kQa ki, w) = (I)TLH(Q? k1, /ﬂi,w) + (1)32722(% k1, /{i,w) - (I)T1722<Q7 kq, ki, w)

- (1)32’11(% kla ki’w) - 4@2,12(% kl'/ k?uw)' (C3f)

Dy, ko, ki,w), therefore, depends explicitly on six components: @7, 15, D3 59, Py 19,

* * * : {
D350, P11.00 & Py 14 and equation (C2) can be re-written as



D 1y, Foa,s ki,w) = [0ij0k1 — 61101001 — Or1011635 + 041051081011] Poo 55 (Y, ko1, k‘i,w)
+ [5ik5ﬂ + 001 — 20,081 + 207101081 4 2051011055
— 0101105 — 0;21011058 — 0j10k105 — 62416;6151»1](1);3723(&, ky, ki, w)
+ [5115115]'/@ + 0;10110ik + 010104
+ 0i10k1051 — 45@15,7‘151@1511} ®T2712(g7 Ky, ki,w)
4 [6:161 081 — 6310;1081001] P71 02 (Y, o1, ki , W)
+ (01601855 — 6:16,100100] 3y 11 (y. ko, K L w)

+ 51'15,7151@1511@9{1,11 (g, ky, kfi ,w) €4

which implies that ®3, 5) = @5, 35, P 5y = P g3and DF, 15 = D5 5.

C.2. Enthalpy flux — momentum flux coupling term, /' (z | Y)

Applying approximation 1 to the general 3 rank axi-symmetric tensor given by equation
3.3.10 of Batchelor ([55], pp. 43), using a proot similar to the one given in Afsar ez a/ [2] for
the momentum flux term and applying the single pair symmetry shown in table (1) implies

that

(I)Zchl (g7 ka1, ki ) w) =
— (5]415;61%11 (g, ]4}2, ]4}1,(,()) + ((5k15ﬂ + 6l15jk> 142(117 ]4}2, ]ﬁ,u)) + 5j15k1511A3(g: k‘z, kl, (,u)
©5)

Then since



A3<Qv k27 kl? w) = ‘1’11,11(% klv ki7w> - (D21,22<g7 /ﬁ, ki’w) - 2CI)2F12,21 <Q* klv kiv w) (CGC)

the scalar fields in (C5) can be replaced by the components of @}, (y, k1, ki ,w) to obtain

O 1a(ys ki, K w) = (05100 — 5108100) Py 00 (y, s k2, w)
+ (01651 + 611051 — 2651081011) Pipp 01 (, o1, kiaw)

—1-5]‘15/%1511@11711(3, ka1, kiaw) €7)

which shows that @}, (y, k1, k” ,w) depends upon the 3 components: @} 13, D5y 5, &

Do of @y (Y, k1, k* ,w). This result also implies that QY00 = P}y 33 and

* — H* — H* — B*
q)42,21 = CI)43,31 = (I)42,12 = (1)43,13

C.3. Enthalpy flux term, /% (z | Y)

Although @, (y, k1, ki,w) does not, in general, possess any symmetries in its suffixes,
approximation 2, introduces a pair symmetry in the suffixes (7, [). Applying approximation 1
to the 2™ rank axi-asymmetric tensor given by equation (3.3.9) of Batchelor ([55], pp. 43,
shows that CI)Z]'AZ (g ]ﬁ, ki,w) - (5'741511/11 (li, ]{2, ]ﬁ,u)) + 5]‘1AQ(Q, kQ, ]61, (,u), which can

then be re-written as:

CI)L‘AI (Qv ka1, ki,w) = (53‘! - 53'1511) @12,42 (Qv ka1, k‘i,w) + 5]'1511(1)21,41 (Qv k1, ki,w) (C8)



*  B* :
where @ 45 = i3 45 since

Al (Q? ]{;27 /ﬁ,w) = (I)Zl,zkl (Qv /{31, kﬁj‘”) - (1)22,42(% klv kivw) (C9a)
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